
ar
X

iv
:1

90
1.

05
71

9v
2

 [
cs

.I
T

]
 3

0
O

ct
 2

01
9

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019 1

AI Coding: Learning to Construct Error Correction

Codes
Lingchen Huang, Member, IEEE, Huazi Zhang, Member, IEEE, Rong Li, Member, IEEE,

Yiqun Ge, Member, IEEE, Jun Wang, Member, IEEE,

Abstract—In this paper, we investigate an artificial-
intelligence (AI) driven approach to design error correction
codes (ECC). Classic error-correction code design based upon
coding-theoretic principles typically strives to optimize some
performance-related code property such as minimum Hamming
distance, decoding threshold, or subchannel reliability ordering.
In contrast, AI-driven approaches, such as reinforcement learn-
ing (RL) and genetic algorithms, rely primarily on optimization
methods to learn the parameters of an optimal code within a cer-
tain code family. We employ a constructor-evaluator framework,
in which the code constructor can be realized by various AI
algorithms and the code evaluator provides code performance
metric measurements. The code constructor keeps improving
the code construction to maximize code performance that is
evaluated by the code evaluator. As examples, we focus on RL
and genetic algorithms to construct linear block codes and polar
codes. The results show that comparable code performance can
be achieved with respect to the existing codes. It is noteworthy
that our method can provide superior performances to classic
constructions in certain cases (e.g., list decoding for polar codes).

Index Terms—Machine learning, Code construction, Artificial
intelligence, Linear block codes, Polar codes.

I. INTRODUCTION

Error correction codes (ECC) have been widely used

in communication systems for the data transmission over

unreliable or noisy channels. In [1], Shannon provided the

definition of channel capacity and proved the channel coding

theorem,

“All rates below capacity C are achievable, that

is, for arbitrary small ǫ > 0 and rate R < C, there

exists a coding system with maximum probability of

error

λ ≤ ǫ (1)

for sufficiently large code length n. Conversely, if

λ→ 0, then R ≤ C.”

Following Shannon’s work, great effort has been continu-

ously devoted to designing ECC and their decoding algo-

rithms to achieve or approach the channel capacity.

Specifically, with a code rate smaller than channel capacity,

code construction and decoding algorithms are designed to

L. Huang, H. Zhang, R. Li and J. Wang are with the Hangzhou
Research Center, Huawei Technologies, Hangzhou, China. Y. Ge
is with the Ottawa Research Center, Huawei Technologies, Ottawa,
Canada. (Email: {huanglingchen, zhanghuazi, lirongone.li, yiqun.ge,
justin.wangjun}@huawei.com).

Code

Performance

Coding

Theory

Code

Construction

AI

Techniques

Fig. 1: Error correction code design logic

improve its code performance. Equivalently, given a target er-

ror rate, we optimize code design to maximize the achievable

code rate, i.e. to approach the channel capacity.

A. Code design based on coding theory

Classical code construction design is built upon coding

theory, in which code performance is analytically derived

in terms of various types of code properties. To tune these

properties is to control the code performance so that code de-

sign problems are translated into code property optimization

problems.

Hamming distance is an important code property for linear

block codes of all lengths. For short codes, it is the domi-

nant factor in performance, when maximum-likelihood (ML)

decoding is feasible. For long codes, it is also important for

performance in the high signal-to-noise ratio (SNR) regime.

A linear block code can be defined by a generator matrix G

or the corresponding parity check matrix H over finite fields.

Directed by the knowledge of finite field algebra, the distance

profile of linear block codes can be optimized, and in par-

ticular, the minimum distance. Examples include Hamming

codes, Golay codes, Reed-Muller (RM) codes, quadratic

residue (QR) codes, Bose-Chaudhuri-Hocquenghem (BCH)

codes, Reed-Solomon (RS) codes, etc.

Similar to the Hamming distance profile, free distance,

another code property, is targeted for convolutional codes.

Convolutional codes [2] are characterized by code rate and

the memory order of the encoder. By increasing the memory

order and selecting proper polynomials, larger free distance

can be obtained at the expense of encoding and decoding

http://arxiv.org/abs/1901.05719v2

2 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

complexity. Turbo codes [3], by concatenating convolutional

codes in parallel, are the first capacity-approaching codes

under iterative decoding.

In addition to the distance profile, code properties of

decoding threshold and girth are adopted for the design

of low density parity check (LDPC) codes. First investi-

gated in 1962 [4], they are defined by low density parity

check matrices, or equivalently, Tanner graphs. Three decades

later, LDPC codes were re-discovered [5] and shown to

approach the capacity with belief propagation (BP) decoding

on sparse Tanner graphs. Code structures, such as cyclic

and quasi-cyclic (QC) [6], not only provide minimum dis-

tance guarantee but also simplify hardware implementation.

The most relevant code property, however, is the decoding

threshold [7]. Assuming BP decoding on a cycle-free Tanner

graph, it can accurately predict the asymptotic performance.

The decoding threshold can be obtained by the extrinsic

information transfer (EXIT) chart [8] technique, as well as

density evolution (DE) [7], [9] and its Gaussian approxima-

tion (GA) [10], as a function of the check node and variable

node degree distributions of the parity check matrix. Thus,

the degree distributions of a code ensemble can be optimized.

In addition, the girth, defined as the minimum cycle length

in the Tanner graph, is maximized to maximally satisfy the

cycle-free assumption.

The code property of synthesized subchannel reliabilities

can be targeted for the design of polar codes [11], the first

class of capacity-achieving codes with successive cancel-

lation (SC) decoding. For polar codes, physical channels

are synthesized to N polarized subchannels, with the K
most reliable ones selected to carry information bits. As N
increases, subchannels polarize to either purely noiseless or

completely noisy, where the fraction of noiseless subchannels

approaches the channel capacity [11]. For binary erasure

channel (BEC), subchannel reliabilities can be efficiently

calculated by Bhattacharyya parameters. For general binary-

input memoryless channels, DE was applied to calculate

subchannel reliabilities [12], [13], and then improved in [14]

and analyzed in [15] in terms of complexity. For AWGN

channels, GA was proposed [16] to further reduce complexity

with negligible performance loss. Recently, a polarization

weight (PW) method [17], [18] was proposed to generate

a universal reliability order for all code rates, lengths and

channel conditions. Such a channel-independent design prin-

ciple is adopted by 5G in the form of a length-1024 reliability

sequence [19].

As concluded in Fig. 1 (left branch), the classical code

design philosophy relies on coding theory (e.g., finite field

theory, information theory) as a bridge between code perfor-

mance and code construction.

B. Code design based on AI

Recently, AI techniques have been widely applied to

many industry and research domains, thanks to advances

in algorithms, an abundance of data, and improvements in

computational capabilities.

In communication systems, AI-driven transceivers have

been studied. By treating an end-to-end communication sys-

tem as an autoencoder, people proposed to optimize an entire

transceiver jointly given a channel model without any expert

knowledge about channel coding and modulation [20]. In

addition, for AWGN channel with feedback, recurrent neural

network (RNN) was used to jointly optimize the encoding

and decoding [21]. By regarding a channel decoder as a

classifier, it was reported that a one-shot NN-based decoding

could approach maximum a posteriori (MAP) performance

for short codes [22]. It was also observed that for structured

codes, the NN-based decoder can be generalized to some

untrained codewords, even though no knowledge about the

code structure is explicitly taught. However, this NN-based

decoder is a classifier in nature, and its complexity is pro-

portional to the number of codewords to be classified. As

the code space expands exponentially with the code length,

the NN-based decoder may not satisfy the stringent latency

constraint in physical layer.

In contrast, our work focuses on using AI techniques to

help design codes rather than to directly encode and decode

signals. Code design can be done offline where the latency

constraint is significantly relaxed. Moreover, we can continue

to use legacy encoding and decoding algorithms as they admit

efficient and flexible hardware or software implementations.

As shown in Fig. 1 (right branch), we explore the alterna-

tive AI techniques for code construction, in addition to the

expert knowledge from coding theory. There are numerous

AI algorithms out there, which could not be all covered in

this paper. We will focus on reinforcement learning (RL) and

genetic algorithm as representatives. Nevertheless, we work

within a general framework that may accommodate various

AI algorithms.

Specifically, we hope to answer the following two ques-

tions:

• Q1: Can AI algorithms independently learn a code

construction (or part of it) within a given general en-

coding/decoding framework?

• Q2: Can the learned codes achieve comparable or bet-

ter error correction performance with respect to those

derived in classic coding theory?

For the first question, we try to utilize AI techniques

to learn linear code constructions. By code construction

we mean the degree of freedom we have in determining

a set of codes beyond the minimum constraints required

to specify a general scope of codes. The input to AI is

restricted to the code performance metric measured by an

evaluator (viewed as a black box) that implements off-the-

shelf decoders under a specific channel condition. Therefore,

AI knows neither the internal mechanism of the decoders

nor the code properties so that code construction beyond the

encoding/decoding constraints is learned without the expert

knowledge in coding theory.

For the second question, we demonstrate that AI-driven

techniques provide solutions that perform better when expert

knowledge fails to guarantee optimal code performance.

These cases include (i) a target decoder is impractical, or (ii)

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 3

the relation between code performance and code properties is

not theoretically analyzable (incomplete or inaccurate). For

example, although the minimum distance of short linear block

codes can be optimized, the resulting optimality of code

performance is only guaranteed under maximum likelihood

(ML) decoding at high SNRs. In reality, ML decoders may

be impractical to implement, and a high SNR may not

always be available. As for polar codes, existing theoretical

analysis mainly focuses on SC decoders. To the best of our

knowledge, the widely deployed successive cancellation list

(SCL) decoders still lack a rigorous performance analysis,

even though there have been some heuristic constructions

optimized for SCL [23], [24], and its variants CRC-aided

SCL (CA-SCL) [19] and parity-check SCL [25]–[27]. In

the absence of theoretical guarantee, the open question is

whether the current code constructions are optimal (for a

specific decoder)? We will address these cases and show that

AI techniques can deliver comparable or better performances.

It is worth noting that a recent approach [28] also focuses

on using AI techniques for code design rather than decoding.

In their work, the off-the-shelf polar decoder is embedded

in the code optimization loop. Only the code construction

was optimized while the encoding and decoding methods

remain the same, which allows efficient implementation of

legacy encoding and decoding algorithms. Specifically, the

proposed code optimization method is based on the genetic

algorithm, where code constructions evolve via evolutionary

transformations based on their error performance.

In this paper, we employ a general constructor-evaluator

framework to design error correction codes. AI techniques are

investigated under this framework. The performance of con-

structed codes are compared with the state-of-the-art classical

ones, and the results are discussed. The structure of this paper

is as follows. Section II introduces the constructor-evaluator

framework. By instance, the constructor is implemented by

RL and genetic algorithms. The evaluator implements the

decoder and channel conditions of interest and provides per-

formance metric measurements for given code constructions.

Section III shows examples of designing linear block codes

and polar codes under the proposed framework. Section IV

concludes the paper and discusses some future works.

II. CODE CONSTRUCTION BASED ON LEARNING

A. The constructor-evaluator framework

We advocate a code design framework, as shown in Fig. 2.

The framework consists of two parts, i.e. a code constructor

and a code evaluator. The code constructor iteratively learns

a series of valid code constructions based on the perfor-

mance metric feedback from the code evaluator. The code

evaluator provides an accurate performance metric calcula-

tion/estimation for a code construction under the decoder

and channel condition of interest. The code construction

keeps improving through the iterative interactions between

the constructor and evaluator until the performance metric

converges.

The constructor-evaluator framework in Fig. 2 is quite

general. The code constructor knows neither the internal

Evaluator

Constructor

code

construction

performance

measure

Fig. 2: Constructor-evaluator framework

mechanism nor the channel condition adopted by the code

evaluator but requests the code evaluator to feed back an

accurate performance metric of its current code construc-

tion under the evaluator-defined environment, by which the

exploration of possible code construction opens for a wide

range of decoding algorithms and channel conditions. Similar

ideas have been proposed in existing works. For example,

the differential evolution algorithm was used to optimize

the degree distribution of LDPC codes under both erasure

channel [29] and AWGN channel [7]. The algorithm also

treats the optimization problem as a black box, and merely

relies on the cost function (e.g., decoding threshold) as

feedback.

In most cases, the code constructor is trained offline, be-

cause both coded bits and decoding results can be efficiently

generated and training computation is not an issue in an of-

fline simulator. Once constructed e.g., the performance metric

converges, the resultant codes can be directly implemented in

a low-complexity practical system with legacy encoding and

decoding algorithms, which is applicable from the industry’s

point of view.

Note that the constructed codes are closely related to the

code evaluator because of performance metric. Different code

evaluators, e.g. with different decoding parameters, channel

condition assumptions, or decoding algorithms, may result

in different code constructions in the end. During training

procedure, we choose some realistic decoding algorithms

and channel condition. In theory, an online training is a

natural extension by collecting performance metric samples

from a real-world decoder and continuing to improve code

construction.

B. Constructor

The code constructor generates code constructions based

on performance metrics feedback from the code evaluator.

To fit the code design problem into the AI algorithms, a

code construction is defined under the constraints of code

representations. For example,

• Binary matrix: the generator matrix for any linear block

codes, or the parity-check matrix for LDPC codes. This

is the most general form of definition.

• Binary vector: a more succinct form of definition for

some codes, including the generator polynomials for

4 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

convolutional codes, or whether a synthesized subchan-

nel is frozen for polar codes.

• Nested representation: defining a set of codes in a

set of nested matrices or vectors. This bears practical

importance due to low implementation complexity and

rate compatibility. Examples include LTE-RM codes and

5G Polar codes.

According to the code representations and how the con-

struction improvement procedure is modeled, there are sev-

eral approaches to implement the constructor:

1) Reinforcement learning approach: RL approach can be

used, because we model construction procedure as a Markov

decision process (MDP). An MDP is defined by a 4-tuple (S,

A, Pa, R):

• S is the state space,

• A is the action space,

• Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) is the

probability that action a in state s at time t will lead to

state s′ at time t+ 1,

• R is the immediate reward feedback by code evaluator

after transitioning from state s to state s′, triggered by

action a.

Code construction can be viewed as a decision process

in general. For the binary matrix and binary vector code

representations, the decisions correspond to which positions

are 0 or 1. For the nested code representation, the decisions

correspond to how to evolve from a set of subcodes to

their supercodes (or vice versa). In our setting, a state s
corresponds to a (valid) code construction, and an action

a that leads to the state transition (s → s′) corresponds

to a modification to the previous construction s. The state

transition (s→ s′) herein is deterministic by the action a and

the previous state s. The reward function is the performance

metric measurement with respect to the decoder and channel

condition of interest. In the end, a desired code construction

can be obtained from the final state of the MDP.

There are several classical algorithms to solve MDP that

are model-free, i.e., they do not require the model of the code

evaluator. These include:

• Q-learning [30]: given the architecture of a code con-

struction, its potential code construction schemes corre-

spond to a finite set of discrete states and action spaces.

In Q-learning, a table Q(s, a) is maintained and updated

to record an expected total reward metric to take action

a at state s. At learning stage, an ǫ-greedy approach is

often used to diverge the exploration in the state and

action space. When a state transition (s, a, s′, R) has

been explored, the table Q(s, a) can be updated by:

∆Q(s, a) = αQ ·[R+γ ·maxa′Q(s′, a′)−Q(s, a)], (2)

where αQ is learning rate, γ is reward discount factor,

and R is reward from the evaluator. After sufficient

exploration, the table Q(s, a) is then used to guide the

MDP to maximize the total reward.

• Policy Gradient (PG) [31]: if the architecture of a

code construction translates into an immense set of

states and actions, we consider continuous state and

action space. PG defines a differentiable policy function

πθPG
(s, a), parameterized by θPG, to select the action

at each state. The policy function πθPG
(s, a) outputs a

probability desity/mass function of taking each action a
at state s according to the policy πθPG

. Then the next

state s′ is determined and the reward R is evaluated

by the code evaluator. When a complete episode

(s0, a0, R0, s1, a1, R1, · · · , st, at, Rt, · · · , sT−1, aT−1, RT−1)
is explored, where t is the time stamp and T is the

time horizon length, the policy function is updated:

∆θPG = αPG ·
T−1
∑

t=0

[∇θPG
log πθPG

(st, at) ·
T−1
∑

t′=t

Rt′].

(3)

After sufficient exploration, the policy function πθPG

can be used to lead the MDP to maximize the total

reward.

• Advantage Actor Critic (A2C) [32]: A2C merges the

idea of state value function into PG to take advantage

of stepwise update, and speeds up the convergence. In

addition to the policy (actor) function πθA(s, a), A2C

defines a differentiable value (critic) function VθC (s).
The interaction between A2C and the code evaluator is

similar to that of PG. For A2C, the policy (actor) update

can be more frequent, i.e. in stepwise manner, since the

cumulative reward from st,
∑T−1

t′=t R, is estimated by

the critic function. At each state translation exploration

(s, a, s′, R), the advantage value is calculated:

Adv(s, s′, R) = R+ γ · VθC (s
′)− VθC (s). (4)

Then the actor function πθA can be adjusted by:

∆θA = αA · Adv(s, s
′, R) · ∇θA log πθA(s, a). (5)

The critic function VθC can be updated by:

∆θC = αC ·Adv(s, s
′, R) · ∇θCVθC (s). (6)

By viewing code construction as a decision process, its

influence on code performance can be modeled (or approx-

imated) as differentiable functions that can be realized by

neural networks. A code construction (to be optimized) is

embedded in the coefficients of the neural networks. Due

to the excellent function approximation capability of neural

networks, these coefficients can be learned through optimiza-

tions techniques such as gradient descent.

2) Genetic algorithm approach: we observe that a code

construction can usually be decomposed into many discrete

decisions. For the binary matrix and binary vector code rep-

resentations, the decisions on which positions are 0 or 1 can

be made individually. These decisions may collaboratively

contribute to the overall code performance. They resemble

the “chromosomes” of a code construction, where a set of

good decisions is likely to produce good code constructions.

The process of refining these decisions can be defined in

iterative steps, where each step produces a better construction

based on several candidate constructions. Genetic algorithm

is well-suited for this purpose.

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 5

Below, we briefly describe how a genetic algorithm can be

applied to the code design.

1) A number of code constructions {C1, C2, · · · } are ran-

domly generated, defined as initial population.

2) A subset of (good) code constructions are selected as

parents, e.g., Cp1, Cp2.

3) New constructions (offspring) are produced from

crossover among parents, e.g., {Cp1, Cp2} → Co1.

4) Offsprings go through a random mutation to introduce

new features, e.g., Co1 → Cm1.

5) Finally, good offspring replace bad ones in the popu-

lation, and the process repeats.

The above operations are defined in the context of error

correction codes. Regarding code definition C, it may boil

down to a set of chromosomes (binary vectors and matrices)

accordingly.

Crossover is defined as taking part of the chromosomes

from each parent, and combining them into an offspring. This

step resembles “reproduction” in biological terms, in which

offspring are expected to inherit some good properties from

their parents. Subsequently, mutation randomly alters some of

the chromosomes to encourage exploration during evolution.

A fitness function is defined to indicate whether the newly

produced offspring are good or bad. In this work, the fitness

is defined as the code performance.

C. Evaluator

The evaluator provides performance metric measurements

for code constructions. If the performance metric of the

decoder is analyzable, it can be directly calculated. In most

cases, the error correction performance estimation in terms of

block error rate (BLER) can be performed based on sampling

techniques, such as Monte-Carlo (MC) method. To ensure

that the estimation is accurate and thereby does not mislead

the constructor, sufficient MC sampling (simulation) should

be performed to control the estimation confidence level. If the

designed code is to work within a range of BLER level, the

performance metric measurements can merge error correction

performance at several SNR points. Measuring more than

one SNR points provides a better control over the slope

of BLER curve, at the cost of longer evaluation time. In

addition, power consumption and implementation complexity

for the encoding and the corresponding decoding also can be

factored into the performance metric measurements.

Intuitively, the evaluator can be stationary. The decoding

algorithm, including the parameters and the channel statistics

can be static. Then the code design is preferred to be realized

offline, and is not very sensitive to the code design time

consumption. On the other hand, the evaluator can be non-

stationary. For example, the channel statistics can be time-

varying. Then online design may be required. In this case,

a feedback link is required for performance measurement of

each code construction. The communication cost and code

design time consumption should be considered as well.

III. LEARNING CODE REPRESENTATIONS

In this section, we present several code design examples

in which the code constructions are automatically gener-

ated by the constructor-evaluator framework. Specifically,

we propose three types of AI algorithms to learn the code

constructions under the three definitions mentioned in II-B:

• Binary matrix → policy gradient: we provide an

example of short linear block codes.

• Binary vector→ genetic algorithm: we focus on polar

codes with a fixed length and rate.

• Nested representation → A2C algorithm: we design

nested polar codes within a range of code rates with the

proposed scheme.

Although we provide three specific code examples, the AI

algorithms are generic. That means all codes defined by the

above three representations can be learned by the proposed

methods.

We use the following hardware platform and software

environment. For the reinforcement learning approach (in-

cluding policy gradient and A2C), we use one Telsa V100

GPU and one 28-thread Xeon Gold CPU to accomplish

learning within the Tensorflow framework. For the genetic

algorithm approach, the program is written in Matlab and

C/C++ language and runs on a server that contains 4 Intel

Xeon(R) E5-4627v2 (16M Cache, 3.30 GHz) CPUs with 12

cores and 256 GB RAM. For all the AI algorithms, we did not

pay extra attention to the optimization of hyperparameters, as

they seem not to affect the results very much. For a proof of

concept, binary codes and AWGN channel are considered in

this work. Codewords are encoded from randomly generated

information bits. It is shown that these learned codes can

achieve at least as good error correction performance as the

state-of-the-art codes.

A. Binary matrix: linear block codes

The definition of a linear block code of dimension K
and length N is a binary generator matrix G in a standard

form (i.e. G = [I,P] where I is an identity matrix of size

K × K and P is a matrix of size K × (N − K)). For the

decoder, a class of most-reliable-basis (MRB) reprocessing

based decoding can achieve near-ML performance. The class

of decoders uses the reliability measures at the decoder

input to determine an information set consisting of the

K most reliable independent positions. One efficient MRB

reprocessing based decoder is the ordered statistic decoding

(OSD) [33]. By incorporating box and match algorithm

(BMA) into OSD [34], the computational complexity can

be reduced at the cost of additional memory for a realistic

implementation. Therefore, our code evaluator deploys BMA

decoder in this example.

The linear block code construction is modeled by a single-

step MDP with a PG algorithm, as shown in Fig. 3. The

state, action and reward are introduced in section II-B1, and

detailed as follows.

• The input state s0 is a code construction defined a

binary generator matrix of size K × N . To impose a

6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

BMA decoding

code

construction

performance

measure

RL Policy function

init ial

construction

designed

construction

Fig. 3: Framework of learning linear block codes by policy

gradient.

standard form of generator matrix, the input state is

always set as s0 = [IK ,0], where IK is an identity

matrix of size K ×K and the parity part P = 0 is an

all-zero matrix of size K × (N −K).
• A Gaussian policy function πθPG

is implemented by a

multilayer perceptron (MLP) neural network, defined by

NeuralNet(θPG), with two hidden layers and sigmoid

output nonlinearity:

– The hidden layer width is 2K(N −K), a function

of code dimension and code length. Here, we set it

as twice the size of the neural network output.

– The coefficients in the neural network are defined

by θPG.

– The output of the neural network is a real-valued

matrix µ of size K × (N − K), which defines

the policy function πθPG
. It is used to determine

the parity part P of the generator matrix, to be

described shortly.

• An action a is sampled from the Gaussian policy

function πθPG
as follows. Specifically, a is a real-valued

matrix of size K × (N −K), where each ai,j is drawn

from Gaussian distribution with mean µi,j and variance

σ2 = 0.1. Then, the action a is quantized to a binary-

valued matrix P. The probability of taking this action

a is recorded as π′
θPG

(s0, a).
• The output state s1 is updated by [IK ,P], which is the

generator matrix of the constructed codes.

• The reward R is defined as −EsN0, the required EsN0

to achieve BLER=10−2 under BMA decoding. It is also

the feedback to the policy function.

– The BLER performance of code s1 is defined by

BMA(s1, EsN0, BMAo, BMAs), where EsN0
is the SNR point, BMAo is the order, BMAs is

the control band size. See details in [34].

The PG algorithm for linear block code construction is also

described in Algorithm 1, with parameters listed in Table I.

To optimize the policy function, the coefficients θPG in

Algorithm 1 Policy gradient based linear block codes design

// Initialization:

Randomly initialize the policy function πθPG
;

Set initial state s0 = [IK ,0];
// Loop:

while 1 do

(s1, π
′
θPG

(s0, a))← Constructor(s0)

R← Evaluator(s1)

∆θPG ← SGD(πθPG
, π′

θPG
(s0, a), R)

θPG ← (θPG +∆θPG)
end while

// Constructor:

function (s1, π
′
θPG

(s0, a)) = Constructor(s0)

µ← NeuralNet(θPG)
for i = {1, · · · ,K} do

for j = {1, · · · , N −K} do

ai,j ∼ N (µi,j , σ
2), where σ2 = 0.1;

Pi,j = (ai,j > 0.5) ? 1 : 0;
end for

end for

s1 ← [IK ,P];
π′
θPG

(s0, a)← fN (a|µ, σ2);
return s1, π

′
θPG

(s0, a)
end function

// Evaluator:

function R = Evaluator(s1)

Obtain EsN0 such that BLER = 0.01 ←
BMA(s1, EsN0, BMAo, BMAs);
R = −EsN0;

return R
end function

TABLE I: Policy Gradient algorithm parameters

Parameters values

Policy function hidden layer number 2
Policy function hidden layers width 2K(N −K)

Batch size 1024

Learning rate 10−5

Reward −EsN0
Decoder BMA

the neural network are trained by mini-batch based stochastic

gradient descent (SGD) according to (3). Here, we directly

implement a method called “AdamOptimizer”, which is

integrated in Tensorflow, to update θPG. For each policy

function update step, after exploring a batch of action-reward

pairs, the rewards are first normalized before equation (3) is

applied. Such processing reduces gradient estimation noise

and enables a faster convergence speed. Fig. 4 shows the

evolution of average EsN0 w.r.t. the BLER of 10−2 per

iteration during the learning procedure. We observe that the

average EsN0 improves in a stair-like manner. This is because

the stochastic gradient descent (SGD)-based PG algorithm

tends to pull the mean of the normal distribution, from

which the action is sampled, towards a local optimal point.

In the vicinity of this local optimal point, explorations are

conducted randomly, which accounts for the performance

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 7

Iteration
0 1000 2000 3000 4000 5000 6000

av
er

ag
e

E
sN

0
at

 B
L

E
R

=
1E

-2

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

stair like

~0.11dB

Fig. 4: Evolution of the average reward per batch

Es/N0 (dB)
-2 -1 0 1 2 3 4 5 6

B
L

E
R

10-6

10-5

10-4

10-3

10-2

10-1

100

RM(32,16,8) BMA(1,5)
Learned (32,16,7) BMA(1,5)
RM(64,22,16) BMA(1,10)
Learned (64,22,12) BMA(1,10)

Fig. 5: Performance comparison between learned linear block

codes and RM codes

fluctuations as if it has converged. Due to the high dimension

of the action space, a small-probability exploration would be

helpful to avoid local optimum.

The error correction performance comparison between the

learned code constructions, RM codes and extended BCH

(eBCH) codes are plotted. In Fig. 5, the learned linear block

codes show similar performance to RM codes for cases of

(N = 32,K = 16) and (N = 64,K = 22). In Fig. 6,

the learned linear block codes show similar performance to

eBCH codes for cases of (N = 32,K = 16) and (N =
64,K = 36).

It is interesting that for the case of N = 32,K = 16,

though the minimum code distance of the learned code

(D = 7) is smaller than that of RM code or eBCH code

(D = 8), there is no obvious performance difference within

the practical SNR range (BLER within 10−4 ∼ 10−1). In

this SNR range for the considered case, the error correction

performance of linear block codes is determined by the code

distance spectrum, not only the minimum distance.

Alternatively, the design of linear block codes also can be

modeled as a multi-step MDP. For example, from an initial

state, an action can be defined as determining one column (or

row) of matrix P per step, or sequentially flipping each entry

of matrix P per step. Furthermore, Monte Carlo tree search

Es/N0 (dB)
0 1 2 3 4 5 6

B
L

E
R

10-6

10-5

10-4

10-3

10-2

10-1

100

eBCH(32,16,8) BMA(1,5)
Learned (32,16,7) BMA(1,5)
eBCH(64,36,12) BMA(1,8)
Learned (64,36,7) BMA(1,8)

Fig. 6: Performance comparison between learned linear block

codes and eBCH codes

(MCTS) can be incorporated into reinforcement learning to

potentially enhance code performance [35].

B. Binary vector: polar codes with a fixed length and rate

Polar codes can be defined by c = uG [36]. A code

construction is defined by a binary vector s of length N , in

which 1 denotes an information subchannel and 0 denotes

a frozen subchannel. Denote by I, the support of s, the

set of information subchannel indices. The K information

bits are assigned to subchannels with indices in I, i.e., uI .

The remaining N −K subchannels, constituting the frozen

set F , are selected for frozen bits (zero-valued by default).

The generator matrix consists of the K rows, indicated by

I, of the polar transformation matrix G = F
⊗n, where

F =

[

1 0
1 1

]

is the kernel and ⊗ denotes Kronecker power,

and c is the codeword.

For the decoders, both SC and SCL type decoders are

considered. An SC decoder recursively computes the transi-

tion probabilities of polarized subchannels, and sequentially

develops a “path”, i.e., hard decisions up to the current (i-th)

information bits û , û1, û2, · · · , ûi. At finite code length,

an SCL decoder brings significant performance gain, which

is briefly described below.

1) run L instances of SC in parallel, keep L paths;

2) extend the L paths (with both 0, 1 decisions) to obtain

2L paths, and evaluate their path metrics (PMs);

3) preserve the L most likely paths with smallest PMs.

Upon reaching the last bit, only one path is selected as

decoding output. We consider two types of SCL decoders,

characterized as follows.

• SCL-PM: select the first path, i.e., with smallest PM;

• SCL-Genie: select the correct path, as long as it is

among the L surviving paths.

In practice, SCL-Genie can be implemented by CA-SCL [37],

[38], which selects the path that passes the CRC check. With

a moderate number of CRC bits (e.g., 24), CA-SCL yields

almost identical performance to SCL-Genie.

8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

...

initial

population
offsprings

...

crossover mutation selection

SC/SCL

decoding

Genetic algorithm

performance

measure

code

construction

Fig. 7: Framework of learning polar codes by genetic algo-

rithm.

Genetic algorithm is applied to construct polar codes for

various types of decoders. We observe that the information

subchannels in a code construction play the same role of

chromosomes in genetic algorithm, because they both in-

dividually and collaboratively contribute to the fitness of

a candidate solution. The key insight is that good code

constructions are constituted by good subchannels. Therefore,

a pair of good parent code constructions is likely to produce

good offspring code constructions. This suggests that a

genetic algorithm may ultimately converge to a good code

construction. The framework is shown in Fig. 7, and the

algorithm is detailed below.

During the initialization of the genetic algorithm, the

population (code constructions) are randomly generated.

Specifically, the information subchannel set I is randomly

and uniformly selected from {1, · · · , N} for each code con-

struction without given prior knowledge about existing polar

code construction techniques such as Bhattacharyya [11] and

DE/GA [14], [16]. The purpose is to test whether the genetic

algorithm can learn a good code construction without this

expert knowledge.

A population of M code constructions are randomly

initialized and sorted according to ascending BLER per-

formance BLERIi
, BLER1 ×BLER2, which is de-

fined as the product of BLERs at two SNR points. Typi-

cally, M should be sufficiently large to store all the good

chromosomes (subchannel indices) to ensure an efficient

convergence. A polar decoder, denoted by BLERx ←
PolarDecoder(Ii, SNRx), returns the BLER performance

of the constructed codes at a specified SNR point. At least

1000 block error events are collected to ensure an accurate

estimate.

After initialization, the algorithm enters a loop consisting

of four steps, as shown in Fig. 8.

1) Select parents Ip1, Ip2 from population. The i-th code

construction is selected according to a probability dis-

tribution e−αi/
∑M

j=1
e−αj (normalized), where α is

called the sample focus. Specifically, the correspond-

ing cumulative distribution function cdf is sampled

uniformly at random to determine the index p to be

selected. This is implemented in Matlab with a com-

mand: [∼,p]=histc(rand,cdf). In this way, a

better code construction will be selected with a higher

probability. Two distinct code constructions, denoted

by their information subchannel sets Ip1 and Ip2, are

selected as parents. By adjusting the parameter α,

we can tradeoff between exploitation (a larger α) and

exploration (a smaller α).

2) Merge subchannels from parents by Imerge = Ip1 ∪
Ip2. Note that |Ip1| = |Ip2| = K and their union

set contains more than K subchannels. This ensures

that an offspring code construction contains the sub-

channels from both parents. In fact, it implements the

“crossover” function described in Section II-B2.

3) Mutate the code construction by including a few

mutated subchannels Imutate from Imerge =
{1, · · · , N}\Imerge, that is, the remaining subchan-

nels. Specifically, ⌊β× |Imerge|⌉ indices are randomly

and uniformly selected from Imerge, where β is called

the mutation rate. Finally, the K information subchan-

nels of the offspring Io are randomly and uniformly

selected from Imerge∪Imutate. Note that the offspring

may or may not contain the mutated subchannels

depending on whether those in Imutate are finally

selected into Io. The mutation rate β provides a way

to control exploration. The larger β is, the more likely

a mutated subchannel is included in the offspring.

4) Insert the offspring Io back to population according

to ascending BLER performance. If its BLER perfor-

mance is worse than all existing ones in the population,

it is simply discarded.

The while loop can be terminated after a maximum number

of iterations Tmax is reached, or a desired performance is

obtained by the best code construction in the population. The

algorithm is described in Algorithm 2.

We compare the learned code constructions with the base-

line schemes below:

• IDE/GA, a close-to-optimal construction under SC de-

coding that is obtained via GA [16]: we search for a

design SNR (starting from -20dB, increasing with step

size 0.25dB) to obtain a construction that requires the

lowest SNR to achieve BLER=10−2.

• IPW , an SNR-independent construction obtained by

PW [17], [18].

• IRM−Polar , a heuristic construction [23] that yields

better performance under SCL-PM decoder. The only

difference from [23] is that we use PW [17], [18] as the

reliability metric to make the design SNR-independent.

We use them as baselines, and observe the learning process

through two metrics: (1) the BLER performance of the

learned codes at two SNR points, which corresponds to the

required SNRs to achieve BLER=10−1 and 10−2 for the

baseline scheme (2) the difference between the learned infor-

mation subchannels Ilearned and those of baseline schemes.

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 9

I. Select

α = 0.03

α = 0.01

S
el

e
ct

io
n

 p
ro

b
ab

il
it

y

Population (ordered by ascending BLER)

Exploration

Exploitation

II. Merge

III. Mutate

Parents

1

Select with

probability β

Randomly select

K subchannels

Mp1 p2

Select the i-th polar

construction with

probability e
-αi

IV. Insert

B
L

E
R

 p
er

fo
rm

a
n
ce

1 Mj

Population (ordered by ascending BLER)

Evaluate Io and insert back to population

Subchannels of parent p1 Subchannels of parent p2

Merged subchannels

Ip1 Ip2

Imerge=Ip1 Ip1

`Imerge={1, ,N}\Imerge

`Imerge

Imerge Imutate

Io

Io

Fig. 8: Genetic algorithm for polar code construction in four steps.

TABLE II: Convergence time for learning process

N K design EsN0 (dB) nchoosek(N,K) # iterations

16 8 4.50 12870 126

32 16 4.00 6.0× 109 623

64 32 3.75 1.8× 1019 2100

128 64 3.50 2.4× 1037 5342

256 128 3.25 5.8× 1075 19760

512 256 3.00 4.7× 10152 56190

To demonstrate the effectiveness of genetic algorithm,

we record the first time (iteration number) a code con-

struction converges to the existing optimal construction, i.e.,

Ilearned = IDE/GA under SC decoding. The results for

different code lengths are shown in Table II. Note that a

brute-force search would check all nchoosek(N,K) possible

candidates, which is prohibitively costly as shown in Table II.

By contrast, a reasonable converging time is observed with

the genetic algorithm at medium code length. There is no

big difference in terms of learning efficiency between the

SC and SCL decoders. For SC decoder, there exists already

an explicit optimum way of constructing polar codes and

the learned construction could not outperform that. However,

the optimal code constructions for both SCL-PM and SCL-

Genie are still open problems. The above results imply that

we can apply genetic algorithm to SCL decoders to obtain

good performance within a reasonable time.

We first consider SCL-PM with L = 8. The learning

process for N = 128,K = 64 is shown in Fig. 9. Note that

DE/GA is derived assuming an SC decoder. We adopt RM-

Polar [23] to obtain the baseline performance. In this case,

the minimum distance is 16 for RM-Polar and 8 for DE/GA

and PW. In this case, the PW construction coincides with

DE/GA, i.e., IPW = IDE/GA. In the upper subfigure, the

performance (product of BLERs measured at EsN0=[1.74,

2.76]dB) of the learned codes quickly converges and out-

performs that of the RM-polar codes at iteration 3100. In

the lower subfigure, unlike the case of the SC decoder, the

difference between Ilearned and IDE/GA (design EsN0 at

3.5dB) stops to decrease after reaching 8. The learned codes

outperform DE/GA by 0.8 dB and RM-polar by 0.2 dB at

BLER=10−3, as shown in Fig. 10. These results demonstrate

that, in the current absence of an optimal coding-theoretic

solution, learning algorithms can potentially play important

roles in code construction.

The same observation holds for SCL-Genie, where the

optimum construction is also unknown. The BLER curves

for N = 256,K = 128 under SCL-Genie with L = 8
is shown in Fig. 11. We aim at DE/GA (design EsN0 at

3.25dB) and PW constructions as the baseline schemes since

they perform better than RM-Polar under SCL-Genie. In

this case, the minimum distance is 16 for RM-Polar and 8

for DE/GA and PW. In the genetic algorithm, the evaluator

measures performance as product of BLERs at EsN0=[1.17,

1.88]dB. As seen, the learned codes perform better than those

generated by DE/GA and PW, with a slightly better slope.

10 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

Algorithm 2 Genetic algorithm based polar code design

// Parameters:

population size M = 1000, sample focus α = 0.03,

mutation rate β = 0.01, SNR1 and SNR2;

// Initialization:

for i = {1, 2, · · · ,M} do

Ii ← randomly and uniformly select K indices from

{1, · · · , N}
BLERIi

← BLER1 ×BLER2, where BLERx ←
PolarDecoder(Ii, SNRx)

end for

Sort {I1, · · · , IM} such that BLERIi
<

BLERIj
, ∀ i < j;

t = 0
while t < Tmax do

t← t+ 1
// Select:

for k = {1, 2} do

cdf ← pdf= e−αi/
∑M

j=1
e−αj

Uniformly sample the cdf to determine pk:

[∼,pk]=histc(rand,cdf)
Ipk
← select Ipk

from {I1, · · · , IM}
end for

// Merge:

Imerge = Ip1 ∪ Ip2
// Mutate:

Imerge = {1, · · · , N}\Imerge

Imutate ← randomly and uniformly select ⌊β ×
|Imerge|⌉ indices from Imerge

Io ← randomly and uniformly select K indices from

Imerge ∪ Imutate

// Insert:

{I1, · · · , IM , IM+1} = {I1, · · · , IM} ∪ Io where

IM+1 = Io
BLERIo

← BLER1 ×BLER2, where BLERx ←
PolarDecoder(Io, SNRx)
Sort {I1, · · · , IM+1} such that BLERIi

<
BLERIj

, ∀ 1 ≤ i < j ≤M + 1
end while

// Output:

I1 and BLERI1

However, the performance gain (0.06 dB between learned

codes and DE/GA) is much smaller than the case with SCL-

PM.

It is of interest to observe the difference between the

learned information subchannels and those selected by

DE/GA. In Fig. 12, the subchannel differences between the

learned construction and DE/GA under various code lengths

and rates are plotted, where the positive positions are Ilearned
and negative ones are IDE/GA (design EsN0 are labeled in

each subfigure). The evaluator is SCL-Genie with L = 8. The

first observation is that all the learned constructions prefer

subchannels with smaller indices. A close look would reveal

that the learned construction may violate the universal partial

order (UPO) [39], [40]. For the case of N = 128,K = 64

Iteration
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pr
od

(B
L

E
R

1,B
L

E
R

2)

10-4

10-2

100
N=128, K=64, Evaluator={SCL-PM}

BLER (learned)
BLER (RM-Polar)

Iteration
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Su
bc

ha
nn

el
 d

if
fe

re
nc

e

0

20

40

60

Difference to DE/GA
Difference to PW

Fig. 9: Evolution of learned polar code constructions (infor-

mation subchannels) and BLER performance under SCL-PM

(L = 8) decoder. The performance is defined as the product

of BLERs measured at EsN0=[1.74, 2.76]dB. The DE/GA is

constructed with design EsN0 at 3.5dB. In this case, the PW

construction coincides with DE/GA.

Es/N0 (dB)
1 1.5 2 2.5 3 3.5 4

B
L

E
R

10-3

10-2

10-1

100
N=128, K=64, Evaluator={SCL-PM}, QPSK/AWGN

PW
DE/GA
RM-Polar
Learned

Fig. 10: BLER comparison between learned polar code

constructions (information subchannels) and {DE/GA, PW,

RM-Polar} under SCL-PM (L = 8) decoder. The DE/GA is

constructed with design EsN0 at 3.5dB.

(the genetic algorithm evaluates performance as product of

BLERs at EsN0=[0.94, 1.89]dB.), the only difference is that

Ilearned preferred the 15-th subchannel over the 43-th. It

is easy to verify that this choice violates the UPO because

15 = [0, 0, 0, 1, 1, 1, 1] and 43 = [0, 1, 0, 1, 0, 1, 1] in binary

form. Note that UPO applies in theory to the SC decoder,

rather than the SCL decoder.

In this subsection, we demonstrate that good polar codes

can be learned for SC, SCL-PM and SCL-Genie decoders

using genetic algorithm. For SCL decoders, the learned

codes may even outperform existing ones. Note that a recent

independent work [28] proposed very similar approaches to

this subsection. The main difference is that prior knowl-

edge such as Bhattacharyya construction [11] and RM-Polar

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 11

Es/N0 (dB)
1 1.5 2 2.5

B
LE

R

10-3

10-2

10-1

N=256, K=128, Evaluator={SCL-Genie}, QPSK/AWGN

PW
DE/GA
RM-Polar
Learned

2.262.282.32.322.342.36

×10
-3

1

1.2

1.4

1.6

1.8

2

Learned

Human
knowledge

Fig. 11: BLER comparison between learned polar code

constructions (information subchannels) and {DE/GA, PW}
under SCL-Genie (L = 8) decoder. The DE/GA is con-

structed with design EsN0 at 3.25dB.

0 10 20 30 40 50 60

N
=

64
K

=
16

-1

0

1
Evaluator={SCL-Genie}, L=8

Learned
DE/GA at 0.50dB

0 10 20 30 40 50 60

N
=

64
K

=
32

-1

0

1

Learned
DE/GA at 3.75dB

0 20 40 60 80 100 120

N
=

12
8

K
=

64

-1

0

1

Learned
DE/GA at 3.50dB

Subchannel Index
0 50 100 150 200 250

N
=

25
6

K
=

12
8

-1

0

1

Learned
DE/GA at 3.25dB

15

43

Fig. 12: Difference of information subchannels between

learned constructions (Ilearned) and DE/GA (IDE/GA, de-

sign EsN0 labeled in each subfigure) under SCL-Genie

(L = 8) decoder.

construction [23] is utilized by [28] during the population

initialization to speed up the learning process, while no

such knowledge was exploited in our work. The detailed

differences are summarized below:

• The initialization of learning algorithms is different. The

work [28] initializes the (code constructions) popula-

tion based on the Bhattacharyya construction obtained

for BECs with various erasure probabilities, and RM-

Polar construction. In this way, the convergence time is

significantly reduced. In our experiment, we randomly

initialize the population to test whether the genetic

algorithm can learn a good code construction without

these prior knowledge. One of our motivation is to

answer Q1 in section I-B.

• The new population is generated in a different way.

In [28], the T best members in the population is

always secured in the next-iteration population, the

next nchoosek(T, 2) members are generated through

crossover of the T best members, and the final T
members are generated by mutation. In this work, we

select a pair of parents according to certain sample

probability (a better member is selected with higher

probability), which provides a flexible tradeoff between

exploration and exploitation.

• The crossover operation is not exactly the same. In

[28], the offspring takes half of the subchannels from

each of the parents. In our work, the subchannels of

both parents are first merged, followed a mutation step

that includes a few mutated subchannels. The resulting

offspring randomly takes K subchannels from among

these subchannels.

• The cost function of [28] is the error-rate at a single

SNR point, whereas our work allows to choose a set of

SNR points for potential benefit of controlling the slope

of error rate.

• The work [28] also tried belief propagation decoder,

whereas we focus on the SC-based decoders due to their

superior performances.

C. Nested representation: polar codes within a range of code

rates

We evaluate another type of polar code constructions with

nested property, which bears practical significance due to its

description and implementation simplicity. Polar codes for

code length N and dimension range [Kl,Kh] are defined as

a reliability ordered sequence of length N . The corresponding

polar code can be determined by reading out the first (or last)

K entries from the ordered sequence to form the information

position set.

The code design procedure is modeled by a multi-step

MDP. Specifically for each design step, with a given (N,K)
polar code (current state), a new subchannel (action) is

selected, to get the (N,K + 1) polar code (an updated

state). The reliability ordered sequence is constructed by

sequentially appending the actions to the end of initial polar

code construction.

Note that the optimal constructions for (N,K) polar codes

and (N,K + 1) polar codes may not be nested, i.e., the

information set of (N,K) polar codes may not be a subset of

the information set of (N,K + 1) polar codes. As a result,

the optimal constructions for different (N,K) polar codes

with do not necessarily constitute a nested sequence. In other

words, the performance of some (N,K) codes needs to be

compromised for the nested property. Therefore, during the

construction of the reliability ordered sequence, a tradeoff

exists between the short-term reward (from the next state

construction) and long-term reward (from the construction of

a state that is a few steps away). The problem of maximizing

the total reward, which consists of both short-term reward

and long-term reward, can be naturally solved by the A2C

algorithm.

12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

TABLE III: A2C algorithm parameters

Parameters Values

Actor function hidden layer number 2
Actor function hidden layer width 4N

Critic function hidden layer number 2
Critic function hidden layer width 4N

Batch size 32

Actor learning rate 1.0× 10−3

Critic learning rate 2.0× 10−3

Reward discount factor 0.2
Reward log(BLER)
Decoder SCL-PM and SCL-Genie with L = 8

The framework is shown in Fig. 13. The state, action

and reward are introduced in section II-B1, and detailed as

follows.

• The input state st is a code construction defined a

binary vector of length N , in which 1 denotes an infor-

mation subchannel and 0 denotes a frozen subchannel.

Denote by Ist , the support of st, the set of information

subchannel indices.

• Both the actor function πθA(st) and critic function

VθC (st) are implemented by MLP neural networks,

defined by NeuralNet(θA) and NeuralNet(θC), with

two hidden layers and sigmoid output nonlinearity:

– The input to both of the actor and critic functions

is the state st (code construction).

– The hidden layer width is 4N .

– The coefficients in the neural network are defined

by θA and θC , respectively.

– The output of NeuralNet(θA) is a probability

mass function πθA(st) of all possible action at ∈
{1, · · · , N} taken at state st.

– The output of NeuralNet(θC) is a state value

estimation VθC (st) for the state st.

• An action at denotes the next information subchannel

position to be selected, which is sampled according to

the probability mass function πθA(st).
• The output state st+1 is updated by setting the at-th

position in st to 1, i.e., st+1 ← st[at] = 1.

• The reward Rt is defined as log(BLER) at a given

SNR point. It is also the feedback to the A2C function

block.

– The BLER performance of code construction st+1

is evaluated by the SCL decoding (either SCL-PM

or SCL-Genie decoding).

The A2C based polar code reliability ordered sequence

design is also described in Algorithm 3, with parameters

listed in Table III.

To optimize the A2C function block, the coefficients θC
and θA in the neural networks are trained by mini-batch based

SGD according to (6) and (5), respectively. Specifically, the

next state st+1 and the reward Rt are feed back to A2C func-

tion block. Note that the advantage value Adv(st, st+1, R)
in (6) and (5) is calculated according to (4), which requires

critic function and the current reward. The “AdamOptimizer”

in Tensorflow is applied to update θC and θA.

SCL decoding

code

construction

performance

measure

Advantage

Actor function

Critic function

A2C function

Fig. 13: Framework of learning polar codes by advantage

actor critic algorithm.

Algorithm 3 A2C based polar code reliability ordered se-

quence design

Initialize the coefficients θA and θC randomly;

while 1 do

s0 = zeros(1, N);
s0 ← s0[N − 1, N − 2, · · · , N −Kl + 1] = 1;

for t = 0 to (Kh −Kl) do

VθC ← NeuralNet(θC)
πθA ← NeuralNet(θA)
at ∼ πθA(st);
st+1 ← st[at] = 1;

Ist+1
← support(st+1);

BLER← PolarDecoder(Ist+1
, EsN0);

Rt = log(BLER);
∆θC ← SGD(VθC , st, st+1, Rt);
θC ← (θC +∆θC)
∆θA ← SGD(πθA , st, at, st+1, Rt);
θA ← (θA +∆θA)

end for

Sequence is {N − 1, N − 2, · · · , N − Kl +
1, a0, a1, · · · , aKh−Kl

}.
end while

As an example, a reliability ordered sequence of length

N = 64 and dimension range K ∈ [4, 63] is constructed

by A2C. To ensure a fair comparison, the design EsN0

for the DE/GA polar codes are always optimized to obtain

a construction that requires the lowest SNR to achieve

BLER=10−2. The constructed codes are tested under the

required SNRs to achieve BLER=10−2 for the optimized

DE/GA construction with the same K .

In the first experiment, the code performance evaluator

deploys SCL-PM with L = 8. Fig. 14 compares the relative

SNR to achieve a target BLER level of 10−2. A better overall

performance can be observed for the learned polar codes,

with the largest gain over 0.5 dB over DE/GA. There is

HUANG et al.: AI CODING: LEARNING TO CONSTRUCT ERROR CORRECTION CODES 13

Code Dimension (information length K)
0 10 20 30 40 50 60

re
la

tiv
e

E
sN

0
at

 B
LE

R
=

1E
-2

-1

-0.5

0

0.5

1

N=64, Evaluator={SCL-PM}, L=8

EsN0 (Learned - DE/GA)

Loss to DE/GA

Gain over DE/GA

Fig. 14: Relative performance between polar codes con-

structed by reinforcement learning and DE/GA under SCL-

PM

Code Dimension (information length K)
0 10 20 30 40 50 60 70

R
el

at
iv

e
E

sN
0

at
 B

LE
R

=
1E

-2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
N=64, Evaluator={SCL-Genie}, L=8

EsN0 (Learned - DE/GA)

Gain over DE/GA

Loss to DE/GA

Fig. 15: Relative performance between polar codes con-

structed by reinforcement learning and DE/GA under SCL-

Genie

almost no loss cases.

In the second experiment, the code performance evaluator

deploys SCL-Genie with L = 8. Fig. 15 compares the SNR

required to achieve a target BLER level of 10−2. A slightly

better overall performance can be observed for the learned

polar codes, with the largest gain of 0.16 dB at K = 15 over

DE/GA, and the largest loss of 0.09 dB at K = 58.

Some discussions on why good nested polar codes can be

learned using A2C algorithm are as follows. Compared with

the fixed (N,K) case, the nested code constraint makes the

optimization complicated for classical coding theory. Because

there is no theory to optimize the overall performance within

a range of code rates. The problem of selecting subchannels

in a nested manner is essentially a multi-step decision prob-

lem. It naturally fits into the multi-step MDP model and the

problem can be solved by existing RL algorithms.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we tried to design error correction codes

with AI techniques. We employed a constructor-evaluator

framework, in which the code constructor is realized by AI al-

gorithms whose target function depends on only performance

metric feedback from the code evaluator. The implementation

of the code constructor is illustrated (e.g., by reinforcement

learning and genetic evolution) and the flexibility of the code

evaluator is analyzed.

We have provided three detailed AI-driven code construc-

tion algorithms for three types of code representations. In

essence, the framework is able to iteratively refine code

construction without being taught explicit knowledge in

coding theory. For proof of concept, we show that, for linear

block codes and polar codes in our examples, the learned

codes can achieve a comparable performance to the state-of-

the-art ones. For certain cases, the learned codes may even

outperform existing ones.

For future works, both the constructor and evaluator design

need to be explored to either solve more general problems or

further improve the efficiency. Some code construction prob-

lems that were intractable under classical coding theoretic

approaches may be revisited using AI approaches. Moreover,

more realistic settings such as online code construction

should be studied.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication”, Bell System

Technical Journal, vol. 27, no. 34, pp. 379–423, Jul. 1948.

[2] P. Elias, “Error-free coding”, Transactions of the IRE, vol. 4, no. 4, pp.
29–37, Sep. 1954.

[3] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes”, IEEE Transactions on Communications, vol.
44, no. 10, pp. 1261–1271, Oct. 1996.

[4] R. Gallager, “Low-density parity-check codes”, IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[5] D. MacKay, “Good error-correcting codes based on very sparse ma-
trices”, IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, Mar. 1999.

[6] M. Fossorier, “Quasicyclic low-density parity-check codes from circu-
lant permutation matrices”, IEEE Transactions on Information Theory,
vol. 50, no. 8, pp. 1788–1793, Aug. 2004.

[7] T. Richardson, M. Shokrollahi and R. Urbanke. “Design of capacity-
approaching irregular low-density parity-check codes”, IEEE Transac-

tions on Information Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[8] S. ten Brink, G. Kramer and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection”, IEEE Transactions

on Communications, vol. 52, no. 4, pp. 670–678, Apr. 2004.

[9] T. Richardson and R. Urbanke, “Modern coding theory”, Cambridge

University Press, Oct. 2007.

[10] S. Chung, T. Richardson and R. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approxi-
mation”, IEEE Transactions on Information Theory, vol. 47, no. 2, pp.
657–670, Feb. 2001.

[11] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels”,
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, Jul. 2009.

[12] R. Mori and T. Tanaka, “Performance of polar codes with the con-
struction using density evolution”, IEEE Communications Letters, vol.
13, no. 7, pp. 519–521, July 2009.

[13] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels”, in IEEE International

Symposium on Information Theory, pp. 1–5, June 2009.

[14] I. Tal and A. Vardy, “How to construct polar codes”, IEEE Transactions

on Information Theory, vol. 59, no. 10, pp. 6562–6582, July 2013.

[15] R. Pedarsani, S. Hassani, I. Tal and E. Telatar, “On the construction of
polar codes”, in IEEE International Symposium on Information Theory,
pp. 1–5, July 2011.

[16] P. Trifonov, “Efficient design and decoding of polar codes”, IEEE

Transactions on Communications vol. 60, no. 11, pp. 3221–3227, Nov.
2012.

[17] R1-167209, “Polar code design and rate matching”, 3GPP TSG RAN
WG1 Meeting #86, Gothenburg, Sweden, Aug. 2016.

14 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019

[18] G. He, J. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang,
Y. Ge, R. Zhang and W. Tong, “β-expansion: A theoretical framework
for fast and recursive construction of polar codes”, in IEEE Global

Communications Conference, pp. 1–6, Dec. 2017.
[19] R1-1712174, “Summary of email discussion [NRAH2-11] polar code

sequence”, 3GPP TSG RAN WG1 Meeting #90, Prague, Czech Repub-
lic, Aug. 2017.

[20] T. O’Shea, J. Hoydis, “An introduction to deep learning for the physical
layer”, arXiv:1702.00832, Feb. 2017.

[21] H. Kim, Y. Jiang, S. Kannan, S. Oh and P. Viswanath, “Deepcode:
feedback codes via deep learning”, arXiv:1807.00801, Jul. 2018.

[22] T. Gruber, S. Cammerer, J. Hoydis and S. Brink , “On deep learning-
based channel decoding”, in 51st Annual Conference on Information

Sciences and Systems (CISS), pp. 1–6, Mar. 2017.
[23] B. Li, H. Shen and D. Tse, “A RM-polar codes”, arXiv:1407.5483,

July 2014.
[24] M. Qin, J. Guo, A. Bhatia, A. Fabregas and P. Siegel, “Polar code

constructions based on LLR evolution”, IEEE Communication Letters,
vol. 21, no. 6, pp. 1221–1224, Jan. 2017.

[25] P. Trifonov and V. Miloslavskaya, “Polar subcodes”, IEEE Journal on

Selected Areas in Communications, vol. 34, no. 2, pp. 254–266, Feb.
2016.

[26] T. Wang, D. Qu and T. Jiang, “Parity-check-concatenated polar codes”,
IEEE Communication Letters, vol. 20, no. 12, pp. 2342–2345, Dec.
2016.

[27] H. Zhang, R. Li, J. Wang, S. Dai, G. Zhang, Y. Chen, H. Luo and
J. Wang, “Parity-check polar coding for 5G and beyond”, in IEEE

International Conference on Communications, pp. 1–7, May 2018.
[28] A. Elkelesh, M. Ebada, S. Cammerer and S. ten Brink, “Decoder-

tailored polar code design using the genetic algorithm,” IEEE Transac-

tions on Communications, (Early Access), Apr. 2019.
[29] M. Shokrollahi and R. Storn. “Design of efficient erasure codes with

differential evolution”, in IEEE International Symposium on Information

Theory, pp. 1–5, June 2000.
[30] H. Watkins and P. Dayan, “Q-learning”, Machine Learning, vol. 8, pp.

279–292, May 1992.
[31] R. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning”, Machine Learning, vol. 8, pp.
229–256, May 1992.

[32] V. Konda and J. Tsitsiklis, “Actor-critic algorithms”, Advances in

neural information processing, pp. 1008–1014, 2000.
[33] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes

based on ordered statistics”, IEEE Transactions on Information Theroy,
vol. 41, no. 5, pp. 1379–1396, Sep. 1995.

[34] A. Valembois and M. Fossorier, “Box and match techniques applied
to soft-decision decoding”, IEEE Transactions on Information Theroy,
vol. 50, no. 5, pp. 796–810, May 2004.

[35] M. Zhang, Q. Huang, S. Wang and Z. Wang, “Construction of LDPC
codes based on deep reinforcement learning”, in IEEE International

Conference on Wireless Communications and Signal Processing, pp.
1–6, Oct 2018.

[36] E. Arikan, “Systematic polar coding,” IEEE Communications Letters,
vol. 15, no. 8, pp. 860–862, Aug. 2011.

[37] I. Tal and A. Vardy, “List decoding of polar codes”, IEEE Transactions

on Information Theroy, vol. 61, no. 5, pp. 2213–2226, May 2015.
[38] K. Niu and K. Chen, “CRC-aided decoding of polar codes”, IEEE

Communications Letters, vol. 16, no. 10, pp. 1668–1671, Oct. 2012.
[39] C. Schrch, “A partial order for the synthesized channels of a polar

code,” in IEEE International Symposium on Information Theory, pp.
1C-5, July 2016.

[40] M. Bardet, V. Dragoi, A. Otmani and J. Tillich, “Algebraic properties
of polar codes from a new polynomial formalism,” in IEEE International

Symposium on Information Theory, pp. 1C-6, July 2016, pp. 230C234.

Lingchen Huang is a research engineer at Huawei
Technologies Co., Ltd. His current research inter-
ests are channel coding schemes with focus on
algorithm design and hardware implementations.

Huazi Zhang is a research engineer at Huawei
Technologies Co., Ltd. His current research inter-
ests are channel coding schemes with focus on
algorithm design and hardware implementations.

Rong Li is a research expert at Huawei Technolo-
gies Co., Ltd. His current research interests are
channel coding schemes with focus on algorithm
design and hardware implementations. He has been
the Technical Leader on Huawei 5G air interface
design focusing mainly on channel coding.

Yiqun Ge is a distinguished research engineer at
Huawei Technologies Co., Ltd. His research areas
include designing low-power chip for wireless ap-
plications, research on polar codes and related 5G
standardization.

Jun Wang is a senior research expert at Huawei
Technologies Co., Ltd. His research areas include
wireless communications, systems design and im-
plementations.

	I Introduction
	I-A Code design based on coding theory
	I-B Code design based on AI

	II Code construction based on learning
	II-A The constructor-evaluator framework
	II-B Constructor
	II-B1 Reinforcement learning approach
	II-B2 Genetic algorithm approach

	II-C Evaluator

	III Learning code representations
	III-A Binary matrix: linear block codes
	III-B Binary vector: polar codes with a fixed length and rate
	III-C Nested representation: polar codes within a range of code rates

	IV Conclusion and Future works
	References
	Biographies
	Lingchen Huang
	Huazi Zhang
	Rong Li
	Yiqun Ge
	Jun Wang

