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Abstract—Sparse Bayesian learning (SBL)-based approxi-
mately sparse channel estimation schemes are conceived for
space-time trellis coded (STTC) multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM)
systems relying on trellis-based encoding and decoding over
the data subcarriers. First, a pilot-aided channel estimation
scheme is developed employing the multiple response extension
of SBL (MSBL) framework. Subsequently, a novel data-aided
joint channel estimation and data decoding framework relying
on optimal maximum likelihood sequence detection (MLSD) is
intrinsically amalgamated with our powerful EM-based MSBL
algorithm. Explicitly, an MSBL-based MIMO channel estimate is
gleaned in the E-step followed by a novel modified path-metric-
based Viterbi decoder in the M-step. Our theoretical analysis
characterizes the performance of the proposed schemes in terms
of the associated frame error rate (FER) upper bounds by
explicitly considering the effect of estimation errors along with
evaluating the product measure of the STTC under consideration.
Finally, our simulation results are complemented by the Bayesian
Cramér-Rao bound (BCRB), the associated complexity analysis
and the performance of the proposed schemes for validating the
theoretical bounds.

Index Terms—Space-time trellis codes, MIMO-OFDM, sparse
Bayesian learning, maximum likelihood sequence detection,
frame error rate

I. INTRODUCTION

Space-time trellis codes (STTC) [1], [2] have garnered sig-
nificant attention due to their attractive performance gains as
a result of the inherent spatio-temporal diversity for multiple-
input multiple-output (MIMO) systems [3]. Towards this end,
the recent work in [4] employs STTC for vehicular communi-
cation while [5] combines STTC systems with space-time shift
keying to further improvize the associated performance gains.
Further, orthogonal frequency division multiplexing (OFDM)
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in multi-antenna systems has emerged as one of the key tech-
nologies such as 3GPP-LTE, Mobile WiMAX, IMT-Advanced
as well as wireless LAN standards like IEEE 802.11a, IEEE
802.11n [6]. In this context, [7], [8] have explored the inte-
gration of STTC-based signal design for frequency selective
MIMO-OFDM systems. Towards this end, the performance of
trellis coded MIMO-OFDM wireless systems depends heavily
on the quality of the channel state information (CSI) available
at the receiver, which necessitates the development of schemes
for improved accuracy of estimation. A brief review of related
works in the existing literature is presented next.

1. Review of Existing Contributions

Existing works developed pilot-based techniques [9] and
training-based signal designs [10], [11] for channel estimation
in OFDM and MIMO-OFDM wireless systems respectively.
The frameworks therein can be readily extended for channel
estimation in STBC/STTC MIMO-OFDM systems. However,
the accuracy of such schemes is highly dependent on the
number of pilot subcarriers, thereby leading to a significant
bandwidth overhead. This limitation has resulted in the need
for the design of accurate channel estimation schemes in the
presence of fewer information devoid pilot symbols. In this
regard, joint channel estimation and symbol detection tech-
niques were developed based on the expectation-maximization
paradigm [12], [13] and evolutionary algorithms [14] which
resulted in an improved performance owing to the iterative na-
ture of channel estimation and symbol detection. Nevertheless,
none of the above OFDM-based channel estimation schemes
take into account the temporal sparsity inherent in multipath
wireless channels.

To overcome the above shortcomings of conventional pilot-
based estimation approaches, the sparse signal recovery frame-
work of [15] has been widely applied for OFDM channel
estimation [16]–[19]. To elaborate, the sparsity of OFDM
channels arises since the number of significant channel taps
of a wireless multipath channel is typically much lower than
the total number of taps corresponding to the maximum
delay spread of the channel [20]. In this regard, the sparse
Bayesian learning framework [21] has been demonstrated
to be less prone to converging to estimates other than the
maximally sparse solution in comparison to popular sparse
signal recovery algorithms such as basis pursuit [22] and focal
underdetermined system solver FOCUSS [23]. These events
were referred to as ‘structural errors’ in [21]. Another strength



2

of the SBL framework is that instead of choosing a fixed
sparsity promoting prior, it evaluates the Bayesian evidence
corresponding to each parameterized model prior and then
finally choses the one which maximizes the Bayesian evidence.
The diverse applications of SBL have been demonstrated in
recent works such as [24] and [25] to perform target imaging
in MIMO radars and channel estimation in millimeter wave
hybrid MIMO systems, respectively. The authors of [26], [28]
proposed schemes to exploit the simultaneous sparsity for
the estimation of a MIMO-OFDM channel via the M-SBL
framework in uncoded scenarios. Furthermore, in the external
turbo encoder/decoder considered in [27] for simulations, the
log-likelihood ratio-based bit detection was not integrated with
the EM framework, while we developed the paradigm of joint
channel estimation and sequence detection in this study. Our
recent contribution in [27] overcomes the above shortcoming
with the aid of our SBL-based sparse channel estimation in
OSTBC MIMO-OFDM wireless systems. A brief summary
of the existing and proposed works is presented in a tabular
format in Table I.

2. Our Contributions

• Against this background we develop a new pilot-based
MSBL technique for approximately sparse channel esti-
mation in trellis coded MIMO-OFDM systems.

• Subsequently, joint sparse channel estimation and se-
quence detection is conceived for STTC MIMO-OFDM
systems by intrinsically amalgamating an evolved Viterbi
decoder with our EM framework. This potent arrange-
ment yields an MSBL-based channel estimate in the
E-step followed by a novel modified path-metric-based
trellis decoder in the M-step.

• New theoretical performance bounds are presented in
terms of the coded frame error rate (FER), which cannot
be found in the SBL-based OFDM channel estimation
literature.

• Bayesian Cramér-Rao bounds (BCRBs) are derived for
benchmarking the MSE performance, followed by a com-
parison of the computational complexities of the proposed
and existing schemes. The simulation results confirm the
theory and they are also contrasted to the family of
existing and genie-based benchmark schemes.

3. Outline and Notations

The rest of the paper is organized as follows. The system
model and encoding/decoding aspects of the trellis coded
MIMO-OFDM wireless system under consideration are de-
scribed in Section II. Section III motivates the paradigm
of approximately sparse channel estimation followed by a
discussion of the MSBL-based pilot aided scheme designed for
our STTC MIMO-OFDM system under consideration. Section
IV develops the proposed data-aided joint estimation frame-
work. The analytical pairwise error probability (PEP) upper
bounds characterizing the FER performance of the MSBL-
based MLSD in STTC MIMO-OFDM systems are developed
in Section V followed by our theoretical BCRBs and our
complexity analysis in Sections VI and VII-A respectively.

Our simulation results are presented in Section VII followed
by our conclusions in Section VIII.

The following notations have been used. Small case letters
(k), small case boldface letters (h), and upper case boldface
letters (H) are used to represent scalars, vectors and matrices
respectively. The quantities A ∈ RL×M and B ∈ CL×M
denote a real and complex-valued L × M matrices A and
B, respectively. The superscript notation such as x(r) denotes
the estimate of the variable x in the rth iteration while x̂
is used to denote the estimate of x. The operators (·)∗, ⊗,
(·)H , and Tr(·) are used to denote the complex conjugate,
matrix Kronecker product, conjugate transpose and trace of
a matrix ,respectively. The notation IN is used to represent
a N × N identity matrix and 0L×M represents a L × M
matrix of zeros, respectively. For a vector a, am denotes the
mth element of a. Furthermore, diag (a1, . . . , aZ) represents
a diagonal matrix with principal diagonal elements a1, . . . aZ .
For a matrix A, Am,n, vec (A), |A|, and A•k denote the
(m,n)th element, vector obtained by stacking the columns of
the matrix A, determinant and kth column of A, respectively.
A complex Gaussian distribution with mean vector µ and co-
variance matrix Σ is represented as CN (µ,Σ). The notation
, represents a definition while ≡ denotes equivalence upto a
known constant term. Calligraphic subscript notations such as
(·)P , (·)F , and (·)F,P denote the pilot, frame and pilot-based
equivalent of the frame-based nature of the input argument
vector/matrix.

II. SPACE-TIME TRELLIS CODED MIMO-OFDM SYSTEM
MODEL: AN OVERVIEW

Consider a space-time trellis coded MIMO system with
N transmit antennas (TAs) and M receive antennas (RAs).
The complex baseband multipath channel impulse response
(MCIR) h̃i,j(t) between TA i and RA j is given by

h̃i,j(t) =

Ls∑
l=1

αi,j(l)δ(t− τ(l)), (1)

where the quantities αi,j(l) and τ(l) represent the channel
attenuation factor and the propagation delay corresponding to
the lth multipath component, while δ(t) and Ls denote the
Dirac delta function and the number of multipath components.
The channel vector hi,j ∈ CL×1 is obtained by sampling the
channel hi,j(t) = gi(t)∗ h̃i,j(t)∗gj(t), at the baud rate t = T ,
where gi(t) and gj(t) represent the baseband transmit and
receive filters respectively and ∗ denotes the convolution oper-
ator. Due to the finite bandwidth of the transmitted signal, the
resulting sampled channel impulse response corresponds to a
low-pass filtered of the sparse CIR h̃i,j(t), and thereby exhibits
approximate sparsity [26], [29]. Let the L-tap equivalent chan-
nel vector corresponding to the discrete time approximately
sparse channel be denoted by hi,j = [hi,j(1), . . . , hi,j(L)]
where the components hi,j(l), 1 ≤ l ≤ L, are assumed to be
independent of each other. Furthermore, similar to [26], [27],
we assume the non-zero components of hi,j to coincide for
all the transmit receive antenna pairs (i, j). This yields the
MN channel vectors hi,j ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ M exhibit
similar sparse CIRs, which can be exploited for improving the
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TABLE I: Review of Existing Works

[10]-2003, [12]-2008 [13]-2014 [14]-2014 [16]-2002 [17]-2008 [26]-2015 [27]-2018 Proposed
[11]-2006 [18]-2010 Work-2019

MIMO X X X X X X X
STBC/OSTBC X X
Turbo X
STTC X X
OFDM X X X X X X X X
Pilot-based channel estimation X X X
Joint channel estimation X X X X X X
and symbol detection
Channel sparsity X X X X X
Compressed sensing (CS)-based X
sparse channel estimation
Fixed sparsity promoting prior X
SBL-based prior X X X X
Joint likelihood maximization X X X
incorporates bit detection
Theoretical BER/FER bounds X X X

performance of channel estimation. Recent contributions such
as [30], [31] also exploited the common sparsity for channel
estimation in frequency division duplex massive MIMO sys-
tems. For brevity, the term approximately sparse is used in the
rest of this work to refer to approximate simultaneous sparsity.

The employment of STTC in MIMO-OFDM can lead to
two different system models based on the specific choice of
the encoding/decoding procedures. These can be classified
as MIMO-OFDM SubCarrier (MO-SC) and MIMO-OFDM
SYmbol (MO-SY) systems, wherein space-time trellis encod-
ing/decoding is performed across the data subcarriers [7],
[32] for a single symbol and consecutive OFDM symbols
for each subcarrier [33], respectively. Note that the MO-
SC system described in this work is similar in nature to
the the space-frequency trellis coded systems presented in
earlier contributions such as [7], [32]. However, in order to
distinguish between space-frequency trellis coded and MO-SY
systems that perform coding across subcarriers and OFDM
symbols, respectively, we adhere to the nomenclature of
MO-SC throughout this work to refer to space-frequency
trellis coded systems. Our previous work in [34] presented
a preliminary study of MSBL-based approximately sparse
channel estimation techniques designed for MO-SY systems.
By contrast, this work presents a detailed description of
SBL-based approximately sparse channel estimation schemes
for MO-SC systems followed by comprehensive performance
and complexity analyses. In the MO-SC system, the binary
information bits generated by a source are initially mapped to
a complex modulated symbol drawn from a constellation S
such as Q-ary phase shift keying (PSK), similar to [7], [32]
where the quantity Q denotes the constellation size. These are
subsequently fed into a single space-time trellis encoder that
produces code vectors ck ∈ CN×1 as, ck = [c1,k, . . . cN,k]T ,
which satisfies E{|ci,k|2} = 1. Let the codeword matrix be
defined as

C = [c1, . . . , cK ] ∈ CN×K , (2)

where K denotes the block length of the STTC under consid-
eration. Without loss of generality, this work also assumes the
block length K to be equal to the total number of subcarriers
in the MO-SC system. The codeword C is subsequently passed

through a bank of demultiplexers corresponding to each TA
followed by the IFFT and multiplexing operations, as shown in
Fig. 1. Furthermore, prior to transmission, a cyclic prefix (CP)
of sufficient length is appended to each of the OFDM symbols
formed from the N IFFT outputs. The complex baseband
signal yj ∈ CK×1 at the jth receive antenna after CP removal
and FFT can be represented as

yj =

N∑
i=1

CiFhi,j + nj , (3)

where each diagonal matrix Ci ∈ CK×K is constructed from
the ith row of the codeword matrix C and denotes the coded
MIMO-OFDM symbol of the ith TA. The matrix F ∈ CK×L
denotes the submatrix comprised of the first L columns of the
standard discrete Fourier transform (DFT) matrix. The vector
nj ∈ CK×1 represents the complex symmetric zero mean
additive white Gaussian noise (AWGN) vector with indepen-
dent and identically distributed (i.i.d) samples and covariance
matrix Rn = σ2

nIK . Let Y = [y1, . . . ,yM ] ∈ CK×M
represent a concatenation of the receive vectors yj for all
RAs and N ∈ CM×K denote a similar concatenation of noise
vectors nj . Let YT

•k denote the kth column of YT , which
corresponds to the received signal over the kth subcarrier. It
can be expressed as

YT
•k = Hkck + N•k, (4)

where Hk ∈ CM×N denotes the effective MIMO channel
matrix corresponding to the kth subcarrier and is defined as

Hk =

[
(Fh1,1)k . . . (Fh1,N )k...

. . .
...

(FhM,1)k . . . (FhM,N )k

]
, (5)

with each element (Fhi,j)k representing the kth DFT com-
ponent of the channel vector hi,j . The decoded codeword
Ĉ = [ĉ1, . . . , ĉK ] ∈ CN×K can now be obtained via Viterbi
decoding, which minimizes the cost function given by [1]

Ĉ = arg min
C∈SN×K

K∑
k=1

∥∥YT
•k −Hkck

∥∥2
. (6)
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Fig. 1: Block diagram representation of a trellis coded MIMO-OFDM system with coding over subcarriers (MO-SC)

The performance of the ML decoder above naturally depends
on the accuracy of CSI Ĥk at the receiver. This motivates
the SBL-based schemes described next to obtain improved
CSI estimates by exploiting sparsity of the underlying channel
in STTC MIMO-OFDM systems. In contrast to the MO-SC
system described above and shown in Fig. 1 that has a single
space-time trellis encoder/decoder across all the subcarriers,
the MO-SY system employed in our previous work in [34]
that operates across multiple OFDM symbols, has a total of
K independent space-time trellis encoder/decoder pairs, one
for each of the K subcarriers. Thus, the coded block of the
MO-SC system considered in this work spans a single OFDM
symbol, which leads to a significantly lower processing delay
in comparison to the MO-SY system that has a block duration
of K OFDM symbols per subcarrier. This also renders the
MO-SC system well-suited for practical implementation.

III. PILOT-BASED MSBL (P-MSBL) FOR
APPROXIMATELY SPARSE CHANNEL ESTIMATION

Similar to previous MIMO-OFDM works such as [26],
[27] based on the multiple measurement vectors (MMV) yj
corresponding to all M RAs, the MO-SC system can be
expressed as

Y = ΦH + N, (7)

where Y = [y1, . . . ,yM ] ∈ CK×M , N = [n1, . . . ,nM ] ∈
CK×M , Φ = C (IN ⊗ F) ∈ CK×LN , and H =[

h1,1 . . . h1,M...
. . .

...hN,1 . . . hN,M

]
∈ CLN×M denote the receive, noise,

measurement, and channel matrices respectively with C =[
C1,C2, . . . ,CN

]
∈ CK×KN denoting the transmit code-

word. Based on the terminology used in the popular works of
CS literature such as [35], [36], Φ is termed as the ‘measure-
ment matrix’ since it directly relates the receive signal matrix
Y to the unknown sparse MIMO-OFDM channel matrix H as
seen in (7). For the purpose of channel estimation, consider
P pilot symbols placed uniformly across the K subcarriers
such that the pilot equivalent CP of the transmit codeword
C is given by, CP =

[
CP,1,CP,2, . . . ,CP,N

]
∈ CP×PN

where the diagonal codeword matrix CP,i corresponding to

the transmit antenna i comprises of the P pilot symbols as
its diagonal entries. Let yP,j ∈ CP×1 represent the received
signal at the P pilot subcarrier locations on the jth receive
antenna and YP = [yP,1,yP,2, . . . ,yP,M ] ∈ CP×M denote
the matrix of concatenated received vectors yP,j across all
the M RAs. The system model corresponding to the pilot
observations can be expressed as

YP = ΦPH + NP , (8)

where the measurement matrix ΦP = CP (IN ⊗ FP) ∈
CP×LN and FP ∈ CP×L denotes a submatrix of the DFT
matrix F, comprising only the P rows corresponding to
the pilot subcarrier positions. Let us assume the quasi-static
block fading MIMO channel matrix H to remain constant
over a frame comprising V consecutive OFDM symbols. Let
YP,v ∈ CP×M , 1 ≤ v ≤ V denote the pilot-based receive
matrix corresponding to the vth frame. The equivalent system
model for the block fading scenario above is formulated as

YF,P = ΦF,PH + NF,P , (9)

where YF,P =
[
YT
P,1, . . . ,Y

T
P,V
]T ∈ CPV×M ,

ΦF,P =
[
ΦT
P,1, . . . ,Φ

T
P,V

]
∈ CPV×LN and NF,P =[

NT
P,1, . . . ,N

T
P,V
]
∈ CPV×M denote the corresponding re-

ceive, measurement and noise matrices concatenated over the
MO-SC frame, with ΦP,v and NP,v similarly corresponding
to the vth frame. Note that when PV < LN , the resultant
channel estimation problem above is ill-posed, rendering pop-
ular conventional techniques such as least-squares ineffective.
In such scenarios, SBL-based schemes similar to the ones pro-
posed in [20], [28] that exploit the sparsity of the underlying
channel are ideally suited for channel estimation. As a part
of the SBL framework, the parameterized prior CN (0,Γ)
is assigned to each of the channel vectors hi,j associated
with Γ = diag (γ) where γ = [γ1, γ2, . . . , γL]

T denotes the
hyperparameter vector. Since the vectors hi,j are assumed to
be simultaneously sparse, the matrix Γ is identical for all the
transmit receive antenna pairs (i, j). Additionally, it has also
been established in [21], [37] that for hyperparameter estima-
tion based on Bayesian evidence maximization, the SBL-based
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hyperparameter estimates γ̂l corresponding to non-significant
multipath components approach zero. Thus, the associated
channel coefficient estimates ĥi,j(l) corresponding to the non-
significant paths l approach 0 ∀ (i, j). The parametric form
of the multiple SBL (MSBL) prior assignment for the channel
matrix H of the MO-SC space-time trellis coded system under
consideration is given by

p (H; Γ) =

M∏
j=1

p (hj ; Γ) ,

=

M∏
j=1

N∏
i=1

L∏
l=1

1

πγl
exp

(
−|hi,j(l)|

2

γl

)
(10)

where hj =
[
hT1,j ,h

T
2,j , . . . ,h

T
N,j

]T ∈ CLN×1 denotes the jth

column of the channel matrix H. The P-MSBL framework for
approximately sparse channel estimation is outlined next.

1. P-MSBL for MO-SC Systems

The SBL framework aims to estimate the hyperparameters
by maximizing the likelihood function p (YF,P ; Γ) given by

p (YF,P ; Γ) =

M∏
j=1

(π)−PV |Σy|−1
exp

(
−yHj Σ−1

y yj
)

(11)

with respect to the hyperparameters Γ where Σy = σ2IPV +
ΦP (IN ⊗ Γ) ΦH

P . However, owing to the intractability of the
conventional ML approach above, the iterative expectation
maximization (EM) algorithm can be employed for hyperpa-
rameter estimation [21]. Let the channel matrix H denote the
hidden parameter for the EM algorithm and Γ(r) represent
the estimate of the hyperparameter matrix in the rth iteration.
The expectation (E-step) in the rth iteration computes the log-
likelihood function L

(
Γ|Γ(r)

)
as [21]

L
(
Γ|Γ(r)

)
= EH|YF,P ;Γ(r) {log p (YF,P ,H; Γ)} (12)

= EH|YF,P ;Γ(r) {log p (YF,P | H; Γ)}+

EH|YF,P ;Γ(r) {log p (H; Γ)} , (13)

where log p (YF,P | H; Γ) ≡ −‖YF,P−ΦF,PH‖2
σ2 and

log p (H; Γ) can be computed from (10). Further, the a
posteriori probability density function (PDF) correspond-
ing to each hj can be obtained as p

(
hj |YF,P ; Γ(r)

)
∼

CN
(
µ

(r)
j ,Σ(r)

)
, with the a posteriori mean vector µ

(r)
j ∈

CLN×1 given as [37] µ
(r)
j = σ−2Σ(r)ΦH

F,P (YF,P)
•j and

covariance matrix Σ(r) ∈ CLN×LN given as [37]

Σ(r) =

(
σ−2ΦH

F,PΦF,P +
(
Γ

(r)
K

)−1
)−1

, (14)

where Γ
(r)
K = IN ⊗ Γ(r). Finally, the posterior density of

the concatenated MIMO-OFDM channel matrix H can be
evaluated as [37] p

(
H|YF,P ; Γ(r)

)
∼ CN

(
M(r),Σ(r)

)
,

with the mean M(r) =
[
µ

(r)
1 ,µ

(r)
2 , . . . ,µ

(r)
M

]
∈ CLN×M and

Algorithm 1 P-MSBL-based Channel Estimation in MO-SC
Trellis Coded Systems
Input: YF,P , ΦF,P , σ2, I
Initialization: γ(0)

l = 1, ∀ 1 ≤ l ≤ L =⇒ Γ(0) = IL
Set counter r = −1
while r < I do

r ← r + 1
E-step: Evaluate a posteriori covariance matrix Σ(r) as
per (14) and mean matrix M(r) as

M(r) =
[
µ

(r)
1 , . . . ,µ

(r)
M

]
,µ

(r)
j = σ−2Σ(r)ΦH

F,P (YF,P)
•j

M-step: Evaluate hyperparameter estimates
γ

(r+1)
l , ∀ 1 ≤ l ≤ L as per (18)

end while
Output: ĤP = M(I)

Σ(r) as defined in (14). The subsequent maximization (M-
step) obtains the hyperparameter matrix estimate Γ(r+1) by
maximizing L

(
Γ | Γ(r)

)
as

Γ(r+1) = arg max
γ

(
EH|YF,P ;Γ(r) {log p (YF,P | H; Γ)}+

EH|YP ;Γ(r) {log p (H; Γ)}
)

(15)

≡ arg max
γ

EH|YF,P ;Γ(r) {log p (H; Γ)} . (16)

The equivalence of the optimization problem in (16) follows
from the fact that log p (YF,P | H; Γ) ≡ −‖YF,P−ΦF,PH‖2

σ2 is
independent of the hyperparameter vector γ as shown above.
Employing the MSBL-based prior assignment for the MIMO
channel matrix of (10), the maximization problem in (16)
can be recast and solved to obtain the final expression for
hyperparameter update as shown in (17) and (18). The E
and M-steps are iterated for a fixed number of iterations I
to obtain the P-MSBL-based MIMO-OFDM channel estimate
ĤP = M(I). In the next section we propose a framework for
joint estimation of the hyperparameters Γ and ML decoding
of the space-time trellis codewords Cv, 1 ≤ v ≤ V in order
to further enhance the performance of channel estimation.

IV. DATA-AIDED MSBL (DA-MSBL) FOR JOINT
CHANNEL ESTIMATION AND SEQUENCE DETECTION

The DA-MSBL framework proposed for the MO-SC system
begins by assigning the parameter to be estimated as Θ =
{C1:V ,Γ} where the coded frame C1:V = [C1, . . . ,CV ] ∈
CN×KV represents the concatenation of space-time trellis
codewords Cv for V consecutive OFDM symbols. Let us
consider the parameter set {YF ,H} as the complete data asso-
ciated with YF =

[
YT

1 ,Y
T
2 , . . . ,Y

T
V

]T ∈ CKV×M denoting
a concatenation of the receive matrices Yv, 1 ≤ v ≤ V . The
log-likelihood function L

(
C1:V ,Γ | C(r)

1:V ,Γ
(r)
K

)
in the rth

iteration of the E-step invoked for the joint estimation of the
MO-SC code frame C1:V and the hyperparameter matrix Γ
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Γ(r+1) = arg max
γ

EH|YF,P ;Γ(r)

log

 M∏
j=1

N∏
i=1

L∏
l=1

1

πγl
exp

(
−|hi,j(l)|

2

γl

) (17)

=⇒ γ
(r+1)
l =

1

MN

M∑
j=1

N−1∑
i=0

(
|M(r)

(l+iL,j)|
2 + Σ

(r)
(l+iL,l+iL)

)
. (18)

C
(r+1)
1:V = arg max

C1:V ∈SN×VK
EH|YF ;C

(r)
1:V ,Γ

(r)

{
V∑
v=1

log p
(
YT
v |H; Cv

)}
(19)

R(r)
k =


R̃(k,k) R̃

∗
(k,k+K) . . . R̃

∗
(k,k+(N−1)K)

...
. . . . . .

...
R̃
∗
(k+(N−1)K,k) R̃

∗
(k+(N−1)K,k+K) . . . R̃

∗
(k+(N−1)K,k+(N−1)K)

 (20)

C(r+1)
v = min

Cv∈SN×K

K∑
k=1

∥∥∥(YT
v

)
•k
−H(r)

k cv(k)
∥∥∥2

+ cHv,kR
(r)
k cv,k. (21)

can be simplified as

L
(
C1:V ,Γ | C(r)

1:V ,Γ
(r)
)

= E
H|YF ;C

(r)
1:V ,Γ

(r)
K
{log p (YF ,H; C1:V ,Γ)} (22)

= E
H|YF ;C

(r)
1:V ,Γ

(r)
K
{log p (YF | H; C1:V ,Γ) +

log p (H; C1:V ,Γ)} (23)
= E

H|YF ;C
(r)
1:V ,Γ

(r)
K
{log p (YF | H; C1:V ,Γ) +

log p (H; Γ)} , (24)

where log p (YF | H; C1:V ,Γ) ≡ −
∑V
v=1‖Yv−ΦvH‖2

σ2 and the
simplification in (24) results from the fact that the channel
likelihood p (H; C1:V ,Γ) is independent of the codewords
C1:V . The a posteriori density p

(
H|YF ; C

(r)
1:V ,Γ

(r)
)

is
derived similar to that of the P-MSBL scenario with mean
M(r) ∈ CLN×M and covariance Σ(r) ∈ CLN×LN given as

M(r) =
[
µ

(r)
1 , . . . ,µ

(r)
M

]
(25)

Σ(r) =

(
σ−2

(
Φ

(r)
F

)H
Φ

(r)
F +

(
Γ

(r)
K

)−1
)−1

. (26)

The vector µ
(r)
j is evaluated as µ

(r)
j =

σ−2Σ(r)
(
Φ

(r)
F

)H
(YF )•j and corresponds to column-

wise concatenation of the mean vectors
(
µ

(r)
j,i

)
for

all 1 ≤ i ≤ N transmit antennas i.e. µ
(r)
j =[(

µ
(r)
j,1

)T
, . . . ,

(
µ

(r)
j,N

)T]T
. The concatenated measurement

matrix Φ
(r)
F =

[(
Φ

(r)
1

)T
, . . . ,

(
ΦT
V

)T]T
∈ CKV×LN .

The M-step aims at jointly maximizing the cost function
L
(
C1:V ,Γ|C(r)

1:V ,Γ
(r)
)

with respect to both the unknown
hyperparameter matrix Γ and codewords C1:V . Interestingly,
the joint maximization problem in (24) reduces to decoupled
optimization problems with respect to the hyperparameters
Γ and the codewords C1:V . This arises since the first
term in (23) is independent of the hyperparameters γ. The
second term log p (H; C1:V ,Γ) corresponding to the channel

likelihood is thus independent of the block codeword C1:V .
The resulting expression for hyperparameter estimation is
similar to that of the P-MSBL scheme and is given as

γ
(r+1)
l =

1

MN

M∑
j=1

N−1∑
i=0

(
|M(r)

(l+iL,j)|
2 + Σ

(r)
(l+iL,l+iL)

)
,

(27)
where the a posteriori mean and covariance matrices M(r)

and Σ(r) are given in (25) and (26) respectively. For optimal
codeword detection, one can now express maximization of
the log-likelihood function L

(
C1:V ,Γ|C(r)

1:V ,Γ
(r)
)

in (23)
with respect to the block code matrix C1:V as shown in (29).
Upon employing the equivalent MIMO-OFDM system model
of (4), the codeword detection optimization problem above can
be recast as shown in (19), where H = [H1,H2, . . . ,HK ]
denotes a concatenation of the effective MIMO channel ma-
trix Hk corresponding to 1 ≤ k ≤ K subcarriers. The
decoupled optimization problem constructed for each code-
word Cv is shown in (30) and can be further simplified
as demonstrated in (31). One then can further simplify the
maximization problem by the addition and subtraction of the
term cHv,kEH|YF ;C

(r)
v ,Γ(r)

{
HH
k

}
EH|YF ;C

(r)
v ,Γ(r) {Hk} cv,k

in the summation above to obtain C
(r+1)
v as shown in (21).

The matrix H(r)
k , EH|YF ;C

(r)
v ,Γ(r) {Hk} ∈ CM×N de-

notes the a posteriori estimate of the frequency domain MIMO
channel matrix Hk and is determined employing updates of
the previous rth iteration of the E-step as

H(r)
k =


(
Fµ

(r)
1,1

)
k

. . .
(
Fµ

(r)
1,N

)
k

...
. . .

...(
Fµ

(r)
M,1

)
k

. . .
(
Fµ

(r)
M,N

)
k

 (28)

and R(r)
k denotes the covariance of

(
H(r)
k

)H
as depicted

in (21) with R̃ = (IN ⊗ F) Σ(r) (IN ⊗ F)
H ∈ CNK×NK .

The optimal codeword estimation problem for the DA-MSBL
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C
(r+1)
1:V = arg max

C1:V ∈SN×VK
E

H|YF ;C
(r)
1:V ,Γ

(r) {log p (YF | H; C1:V ,Γ)}

= arg max
C1:V ∈SN×VK

E
H|YF ;C

(r)
1:V ,Γ

(r)

{
V∑
v=1

log p (Yv | H; Cv,Γ)

}
(29)

C(r+1)
v = − arg max

Cv∈SN×K
EH|YF ;C

(r)
v ,Γ(r)

{
K∑
k=1

∥∥(YT
v

)
•k
−Hkcv,k

∥∥2

}
. (30)

C
(r+1)
1:V = − arg max

Cv∈SN×K

K∑
k=1

(
YT
v

)H
•k

(
YT
v

)
•k
−EH|YF ;C

(r)
v ,Γ(r)

{
HH
k

}
cHv,k

(
YT
v

)
•k
−

(
YT
v

)H
•k

EH|YF ;C
(r)
v ,Γ(r) {Hk} cv,k + cHv,kEH|YF ;C

(r)
v ,Γ(r)

{
HH
k Hk

}
cv,k (31)

approach in MO-SC wireless systems takes the final form of

C(r+1)
v = arg min

Cv∈SN×K

K∑
k=1

∥∥∥∥∥∥
[(

YT
v

)
•k

0n×1

]
−

 H(r)
k(

R(r)
k

)1/2

 cv,k

∥∥∥∥∥∥
2

(32)
As can be seen, a unique aspect of the procedure for codeword
estimation described above is that it directly integrates the
paradigm for ML sequence detection in the M-step of the
EM framework thereby yielding the optimal bit estimates,
unlike existing approaches in [20], [26]. Finally, the MIMO
channel and codeword estimates after I iterations are given by,
ĤDA = MI and Ĉ1:V = CI

1:V respectively. As demonstrated
in the seminal contributions on SBL by Wipf and Rao [21],
[37], the proposed MSBL schemes are globally convergent,
i.e. each iteration leads to an increase in the ML cost function
until a fixed point is reached. Furthermore, similar to the
criterion employed in other related SBL treatises [24], [26], the
proposed schemes are said to converge, when the difference
between the successive hyperparameter estimates becomes
sufficiently small, i.e

∥∥γ(r+1) − γ(r)
∥∥2 ≤ ε and the threshold

ε is a suitably chosen small value. For instance, this has been
set as ε = 10−8 in the simulations.

V. PEP UPPER BOUND FOR MSBL-BASED MLSD
Similar to existing works [38], [39], the (i, j)th MIMO

channel matrix coefficient estimate
[
Ĥk

]
(i,j)

is modeled as[
Ĥk

]
(i,j)

= [Hk](i,j) + [∆k](i,j) . (33)

The variance σ2
H,k = E

{∣∣∣[Hk](i,j)

∣∣∣2} of [Hk](i,j) can be

evaluated as

σ2
H,k = E


∣∣∣∣∣
L∑
l=1

F•k(l)hi,j(l)

∣∣∣∣∣
2
 (34)

=

L∑
l=1

E
{
|F•k(l)hi,j(l)|2

}
(35)

=

L∑
l=1

E
{
|hi,j(l)|2

}
(36)

where the simplification from (34) to (35) exploits the fact that
the channel coefficients hi,j(l) are independent ∀ 1 ≤ l ≤ L

Algorithm 2 DA-MSBL-based Joint Channel Estimation and
Sequence Detection in MO-SC Trellis Coded Systems
Input: YF , σ2, V , I
Initialization: γ(0)

l = 1, ∀ 1 ≤ l ≤ L =⇒ Γ(0) = IL, C
(0)
1:V

: Obtained via (6) using ĤP ,
Set counter r = −1
while r < I do

r ← r + 1
E-step:

1) Φ
(r)
F =

[(
Φ

(r)
1

)T
, . . . ,

(
Φ

(r)
V

)T]T
; Φ(r)

v , 1 ≤

v ≤ V using C
(r)
1:V as per (7)

2) Evaluate a posteriori mean M(r) and covariance
matrix Σ(r) as per (25) and (26) respectively

3) Construct H(r)
k and R(r)

k as per (28) and (21)
respectively

M-step:
1) Evaluate γ(r+1)

l , ∀ 1 ≤ l ≤ L as per (27)
2) Evaluate C

(r+1)
v ∀ 1 ≤ v ≤ V as per (32)

end while
Output: ĤDA = M(I), Ĉ1:V = C

(I)
1:V

with E{hi,j(l)hi,j(l′)} = E{hi,j(l)}E{hi,j(l′)} = 0 ∀ l 6=
l′. The final result in (36) can be obtained by invoking the
following simplifications in (35). Since we have E{|ax|2} =
|a|2E{|x|2} where a is a constant and |F•k(l)|2 = 1, ∀ 1 ≤
k ≤ K, 1 ≤ l ≤ L, the variance σ2

H,k is the same for all
1 ≤ k ≤ K and the subscript k is dropped henceforth for
notational convenience.

Let the channel estimation error [∆k](i,j) in (33) be as-
sumed to be independent of [Hk](i,j) and modeled as a
symmetric complex Gaussian random variable with zero mean
and variance σ2

∆. Similar to σ2
H, one can deduce that the

variance σ2
Ĥ

is independent of k and can be evaluated as

σ2
Ĥ =

L∑
l=1

E

{∣∣∣ĥi,j(l)∣∣∣2} . (37)

Hence, it follows that
[
Ĥk

]
(i,j)

is a zero mean complex
Gaussian random variable with variance σ2

Ĥ
given by, σ2

Ĥ
=

σ2
H+ σ2

∆. The correlation coefficient ρ between [Hk](i,j) and
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d2
(
C, Ĉ

)
=

1

σ2
Ĥ

K∑
k=1

M∑
j=1

∣∣∣∣∣
N∑
i=1

[
Ĥk

]
(i,j)

∆ci,k

∣∣∣∣∣
2

, (38)

=
1

σ2
Ĥ

M∑
j=1

K∑
k=1

[[
Ĥk

]
(1,j)

, . . . ,
[
Ĥk

]
(N,j)

]∆c1,k
...

∆cN,k


︸ ︷︷ ︸

∆ck

[
∆c∗1,k, . . . ,∆c

∗
N,k

]

[
Ĥ
∗
k

]
(1,j)

...[
Ĥk

]
(N,j)

 (39)

=
1

σ2
Ĥ

M∑
j=1

[
ĥT1,j . . . , ĥ

T
N,j

]( K∑
k=1

Wk∆ck∆cHk WH
k

)[
ĥT1,j . . . , ĥ

T
N,j

]H
, (40)

[
Ĥk

]
(i,j)

is given by [40], ρ =

√
σ2
H√

σ2
H+σ2

∆

. Although the

evaluation of the true posterior distribution of the MSBL-based
channel estimates is intractable owing to the complex nature
of the iterative EM algorithm, the above model of channel
estimation errors in (33) directly determines the frame error
rate of the STTC MO-SC system as seen later. Consider the
transmission of any codeword C defined in (2). The cost
function given by the path metric in the trellis allows us to
determine the ML estimate Ĉ of the MO-SC codeword given
by [38]

Ĉ = arg min
C

K∑
k=1

M∑
j=1

∣∣∣∣∣[YT
]
(j,k)
− ρ

σĤ

N∑
i=1

[
Ĥk

]
(i,j)

ci,k

∣∣∣∣∣
2

.

(41)

The conditional PEP Pr
(

C→ Ĉ

∣∣∣∣[Ĥk

]
(i,j)

)
of the trans-

mitted codeword C being erroneously decoded as Ĉ can be
expressed as [38]

Pr
(

C→ Ĉ

∣∣∣∣[Ĥk

]
(i,j)

)
≤ exp

 −ν|ρ|2d2
(
C, Ĉ

)
4 (1 +Nν (σ2

H − |ρ|2))

 .

(42)
The quantity ν = SNR

N denotes the total signal to noise power
ratio (SNR) per TA. Let the codeword difference vector be
defined as ∆ci,k = (ci,k − ĉi,k). Then the squared distance
metric d2

(
C, Ĉ

)
can be simplified as shown in (38)-(40),

where we have Wk = (IN ⊗wk) ∈ CNL×N associated with

each Fourier vector wk =
[
1, e−j2π

k
K , . . . , e−j2π(L−1) kK

]T
∈

CL×1. Let the vector hi,j ∈ CLs×1 denote the sub-vector
corresponding to the non-zero coefficients hi,j with ĥi,j repre-
senting its M-SBL estimate. Furthermore, let ĥj corresponding

to the jth RA be defined as ĥj =
[
ĥ
H

1,j , . . . , ĥ
H

N,j

]T
∈

CNLs×1. Note that the underlying assumption is that the M-
SBL estimate considers perfect recovery of the channel support
associated with the Ls significant channel components and can
be justified as follows. At moderate to high SNRs, the M-SBL-
based estimates are sufficiently accurate to guarantee perfect
recovery of the channel support associated with the dominant
channel components. Furthermore, the error variances at the
non-significant tap locations can be neglected, since they are

substantially lower than those of the significant taps. Thus, the
squared distance metric can be closely approximated as

d2
(
C, Ĉ

)
≈

M∑
j=1

ĥ
H

j Dĥj
σ2
Ĥ

, (43)

where the effective codeword difference matrix D ∈
CNLs×NLs in (43) is defined as

D =

K∑
k=1

Wk∆ck∆cHk WH
k . (44)

Then we have Wk = (IN ⊗wk) ∈ CNLs×N and similar
to hi,j , wk represents a sub-vector of wk defined earlier
with entries corresponding to only the significant channel
tap locations of hi,j . Let q = rank (D). The positive semi-
definite matrix D = VΛVH , where V ∈ CNLs×NLs is
a unitary matrix and Λ = diag (λ1, . . . , λq, 0, . . . , 0) is a
NLs × NLs diagonal matrix comprised of the eigenvalues
of D. Since the MO-SC system performs encoding/ decoding
across subcarriers, one has to additionally account for the
correlated nature of the subcarrier MIMO channel matrices
Hk which renders the ensuing FER analysis quite challenging.
In particular, the rank and eigenvalues associated with the
codeword difference matrix D cannot be obtained for these
systems in a straightforward manner from the existing litera-
ture on STTC MIMO systems [41]. Thus, these results have
been derived in Appendix A and subsequently employed for
obtaining the FER bounds, which makes the analysis in this
work novel. In contrast, since the MO-SY system described
in [34] encodes/ decodes across the symbols, the pertinent
analysis to determine the FER bounds is much simplified.

Upon substituting the expression D = VΛVH into (43) we
can further simplify d2

(
C, Ĉ

)
as

d2
(
C, Ĉ

)
=

M∑
j=1

q∑
q̃=1

λq

∣∣∣β̂j,q̃∣∣∣2 , (45)

where β̂j,q̃ denotes the q̃th component of the vector β̂j =
1
σ̂Ĥ

VH ĥj ∈ CNLs×1. Furthermore, owing to the previous

assumption that the channel’s estimate vector ĥi,j is comprised
of independent components ∀ 1 ≤ i ≤ N, 1 ≤ j ≤M , all the

NLs components of the vector
ĥj
σĤ

are also independent. We
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can also observe that each element of the vector β̂j is sym-
metric zero mean complex Gaussian with its component-wise

variance given as E
{∣∣∣β̂j(l)∣∣∣2} = 1

σ2
Ĥ

E
{∣∣∣ĥj(l)∣∣∣2} ∀ 1 ≤

l ≤ NLs. Let E{|ĥi,j(l̃)|2} ≈ φ, 1 ≤ i ≤ N, 1 ≤ j ≤ M for
all Ls entries of ĥi,j . On substituting the value of σ2

Ĥ from

(37), one can write E
{∣∣∣β̂j(l)∣∣∣2} =

E
{
|ĥj(l)|2

}
∑L
l=1 E

{
|ĥi,j(l)|2

} which

can be further simplified as

E
{∣∣∣β̂j(l)∣∣∣2} ≈

E
{∣∣∣ĥj(l)∣∣∣2}∑Ls

l̃=1
E
{∣∣∣ĥi,j(l̃)∣∣∣2} , (46)

=
φ∑Ls
l̃=1

φ
=

1

Ls
. (47)

Furthermore, since V is a unitary matrix, the NLs com-
ponents of ĥj(l)

σĤ
are distributed as i.i.d CN

(
0, 1

Ls

)
. The

quantity
∣∣∣β̂j,q̃∣∣∣ is Rayleigh distributed hence has the PDF

of p
(∣∣∣β̂j,q̃∣∣∣) = 2Ls

∣∣∣β̂j,q̃∣∣∣ e−Ls|β̂j,q̃|2 . Upon substituting the

expression of d2
(
C, Ĉ

)
from (45) into (42), the resultant

expression of PEP can be expressed in terms of β̂j,q̃ as

Pr
(
C→ Ĉ

∣∣∣β̂j,q̃, 1 ≤ q̃ ≤ q, 1 ≤ j ≤M )
≤

M∏
j=1

exp

−ν̄ q∑
q̃=1

λq̃
∣∣β̂j,q̃∣∣2

 , (48)

with ν̄ = ν|ρ|2

4(1+Nν(σ2
H−|ρ|2))

. The PEP can be obtained by
averaging the expression on the right hand side of (48) with
respect to the i.i.d Rayleigh PDFs of

∣∣∣β̂j,q̃∣∣∣
Pr
(
C→ Ĉ

)
≤ E


M∏
j=1

exp

−ν̄ q∑
q̃=1

λq̃

∣∣∣β̂j,q̃∣∣∣2
 (49)

=

M∏
j=1

q∏
q̃=1

E
{
e−ν̄λq̃|β̂j,q̃|

2}
(50)

=

 q∏
q̃=1

(
1 +

λq̃|ρ|2 ν
4Ls

1 +Nν (σ2
H − |ρ|2)

)−M(51)

where (51) follows by substituting E
{
e−ν̄λq̃|β̂j,q̃|

2}
=

2Ls
∫∞

0
e−ν̄λq̃|β̂j,q̃|

2
∣∣∣β̂j,q̃∣∣∣ e−Ls|β̂j,q̃|2d ∣∣∣β̂j,q̃∣∣∣ = 1

1+
ν̄λq̃
Ls

and ν̄

in (50). Finally, the resultant average PEP of the STTC MO-
SC system in the presence of channel estimation errors can be
obtained as

Pr
(
C→ Ĉ

)
≤ (∆q)

−M

(
|ρ|2 ν

4Ls

1 +Nν (σ2
H − |ρ|2)

)−qM
︸ ︷︷ ︸

P (∆q)

,

(52)
where we have ∆q =

∏q
q̃=1 λq̃ . The detailed procedure of

evaluating of ∆q and the rank q of the effective codeword

difference matrix D has been described in Appendix A. Fur-
thermore, for the P-MSBL and DA-MSBL channel estimation
approaches presented in Sections III and IV respectively, by
employing the a posteriori covariance matrices Σ(I) obtained
in the final EM iteration, we can evaluate the respective values
of σ2

∆ as

σ2
∆ =

1

MNK
Tr
{

(IN ⊗ F) Σ(I) (IN ⊗ F)
H
}
. (53)

The expurgated union bound of the coded frame error rate
(FER) PFER of the STTC MO-SC system is given by [42]

PFER ≤ LB
W∑
w=1

A(w)P [∆q(w)] . (54)

The quantities W , LB = K log2 |S|, and A(w) denote the
order of the expurgated union bound, the total number of
symbols mapped to the codeword matrix C and the normal-
ized weighting coefficient corresponding to the wth product
metric. The PEP P [∆q(w)] is a function of the wth product
metric ∆q(w), which can be readily evaluated from (52). The
Bayesian Cramér-Rao bounds are derived next in order to
benchmark the performance of the proposed schemes.

VI. BAYESIAN CRAMÉR-RAO BOUNDS (BCRBS) FOR
P-MSBL AND DA-MSBL

The analytical BCRBs for the MSE of the proposed schemes
for the MO-SC systems are given below. Applying the vec (·)
operator of (9), the observation model for the pilot observa-
tions yF,P = vec (YF,P) can be expressed as

yF,P = (IMN ⊗ΦF,P) h + nF,P , (55)

where the effective parameter vector obeys h = vec (H) ∈
CLMN×1 and similarly nF,P = vec (NF,P) ∈ CPVM×1.
The Bayesian Fisher information matrix (BFIM) JB ∈
CLMN×LMN is defined as [40]

JB = −E(yF,P ,h)

{
∂2L (yF,P | h; Γ)

∂h∂hH

}
︸ ︷︷ ︸

JD

−Eh

{
∂2L (h; Γ)

∂h∂hH

}
︸ ︷︷ ︸

JP

,

(56)
where the matrices JD and JP denote the FIMs with respect
to the receive vector yF,P and the prior density of the param-
eter vector h, respectively. The quantity L (yF,P | h; Γ) ≡
1
σ2 ‖yF,P −ΦF,Ph‖2 represents the equivalent log-likelihood
function of the receive vector yF,P , ignoring the constants that
have no bearing on the BCRB. Upon employing the results in
[46], the FIM becomes JD = σ−2ΦH

F,PΦF,P . The quantity
L (h; Γ) denotes the channel likelihood parameterized by the
hyperparameter matrix Γ corresponding to the distribution
CN (0LMN×1, IMN ⊗ Γ). Thus, the FIM component JP be-
comes [40] JP = IMN ⊗Γ−1. The CRB of the mean squared
error of the P-MSBL-based channel estimate ĥP is given by

E
{∥∥∥h− ĥP

∥∥∥2
}

≥ Tr
{
J−1
B

}
(57)

= Tr
{((

IMN ⊗ Γ−1
)−1

+ σ−2ΦH
F,PΦF,P

)−1
}

(58)



10

3 6 9 12

Block Length V

0

50

100

150

200

250

300

 Max. No. of Iterations I

200

160

130

270

(a)

10 15 20 25 30SNR in dB

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S

E
 i
n

 H

FDI

SOMP

M-FOCUSS

GRP LASSO

P-MSBL (Proposed)

Genie P-MMSE

BCRB-MSBL

DA-MSBL (Proposed)

Genie DA-MMSE

BCRB DA-MSBL

(b)

0 3 6 9
SNR in dB

10
-3

10
-2

10
-1

10
0

F
E

R

FDI

SOMP

M-FOCUSS

GRP-LASSO

P-MSBL (Proposed)

Genie P-MMSE

DA-MSBL (Proposed)

Genie DA-MMSE

0 6 12

0.9

0.95

1

(c)

Fig. 2: (a) No. of EM iterations I versus block length V for ε = 10−8 (b) MSE and (c) BER performance of 2 × 2, 4-state
QPSK MO-SC wireless system for proposed SBL, existing sparse [43]–[45], and non-sparse [9] channel estimation schemes.

TABLE II: Power Delay Profile of Pedestrian B Channel
Model [47]

Tap (l) Rel. Delay τ(l) (in ns) Avg. Power E{|α(l)|2} (in dB)
1 0 0
2 200 -0.9
3 800 -4.9
4 1200 -8.0
5 2300 -7.8
6 3700 -23.9

In order to evaluate the BCRB corresponding to the DA-
MSBL scheme, since the a priori information related to the
channel vector h is identical for both P-MSBL and DA-
MSBL, the FIM JP remains the same for both the cases.
Similarly, the FIM JD for the DA-MSBL scheme evaluates to
JD = σ−2ΦH

FΦF . Finally, the corresponding BCRB can be
evaluated as

E
{∥∥∥h− ĥD

∥∥∥2
}

≥ Tr
{((

IMN ⊗ Γ−1
)−1

+ σ−2ΦH
FΦF

)−1
}
. (59)

It can be observed that the BCRB expression in (58) cor-
responds to that of an equivalent pilot-based minimum mean
squared error estimator (MMSE) with known channel sparsity,
while (59) corresponds to an ideal MMSE, which assumes
perfect knowledge of both the channel sparsity and of the
transmitted codewords.

VII. SIMULATION RESULTS

An M ×N space-time trellis coded MIMO-OFDM system
with M ∈ {2, 4} RAs and N ∈ {2, 4} TAs is considered with
K = 64 equispaced subcarriers spread over a transmission
bandwidth of B = 5 MHz. A CP of duration 6.4µs is
appended at the beginning of each OFDM symbol. The number
of subcarriers is K = 64 which equals the block length of
the MO-SC system with P = 10 pilot subcarriers in each
OFDM symbol. The information bits are mapped to a QPSK
constellation having |S| = 4 symbols followed by the four-
state STTC corresponding to N = 2 [1] and N = 4 TAs

[48]. For the purpose of simulation, the standard Rayleigh
fading Pedestrian B channel model of [47] is employed. Table
II presents the power delay profile of the Pedestrian B channel,
i.e. the propagation delay τ(l) and average attenuation power
E{|α(l)|2} of each channel tap l, where 1 ≤ l ≤ Ls and
Ls = 6 denotes the number of non-zero channel taps. The
transmit and receive filters gi(t) and gj(t) are assumed to
be practical raised cosine filters with a roll-off factor of
0.5 [49] for the generation of the baseband channel impulse
response h̃i,j(t) in (1). The approximately sparse channel
vectors are generated by sampling h̃i,j(t) at the sampling
rate of fs = 5.1MHz similar to the approach employed in
[26]. As stated therein, these parameter values are chosen to
better enable a performance comparison between the different
schemes, while being as close as possible to a realistic settings.
The STTC frame is comprised of V = 6 consecutive OFDM
symbols. The hyperparameters are heuristically initialized as
γ

(0)
l = 1 prior to the start of the EM algorithm. Since

the proposed schemes do not assume any knowledge of the
underlying multipath delay profile, the length of each channel
vector hi,j is set to the CP length of L = 32. The stopping
criteria ε is set as ε = 10−8.

Fig. 2(a) demonstrates the number of EM iterations required
for convergence of the proposed MSBL-based hyperparam-
eter estimates for different values of V , with the stopping
parameter ε = 10−8. It can be observed that for lower values
of the block length V , the number of iterations required
for convergence of the algorithms is higher and vice-e-versa.
Further, for the value of V = 6 set in our simulations, the
number of EM iterations is observed to be I = 200.

The proposed P-MSBL and DA-MSBL schemes are em-
ployed to obtain the channel estimates ĤP and ĤDA respec-
tively for the MO-SC system. The MSE of the proposed tech-
niques is compared to that of the popular non-sparse frequency
domain interpolation (FDI) [9] approach conceived for OFDM
systems and also to several other existing sparse estimation
approaches, namely the SOMP [43], multiple FOCUSS (M-
FOCUSS) [44], group least absolute shrinkage and selection
operator (GRP-LASSO) [45]. The performances of the various
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Fig. 3: (a) MSE and (b) BER performance of 4× 4, 4-state QPSK STTC MO-SC wireless system for proposed SBL, existing
sparse [43]–[45], and non-sparse [9] channel estimation schemes (c) MSE versus P performance of 2×2, 4-state QPSK STTC
MO-SC wireless system for existing and proposed channel estimation schemes at SNR= 15dB.

schemes are benchmarked against that of the Genie P-MMSE
and Genie DA-MMSE approaches, which correspond to ideal
MMSE estimators. The Genie P-MMSE estimator employs
only the known pilot symbols, whereas the Genie DA-MMSE
approach considers all the transmitted symbols to be perfectly
known at the receiver for channel estimation. These estimators
are ideal, but impractical, owing to their known sparsity
assumption i.e. these schemes assume complete knowledge of
the location of the significant and non-significant channel taps.
However, they serve as valuable benchmarks to compare the
performance of the proposed and existing schemes.

Fig. 2(b) plots the MSEs of the approximately sparse
channel estimates Ĥ obtained using the proposed MSBL
approaches, while also comparing them to those of the existing
techniques, such as FDI [9], SOMP [43], M-FOCUSS [44],
and GRP-LASSO [45]. It can be readily seen that the P-
MSBL scheme has a significantly lower MSE than the non-
sparse FDI as well as than the sparse SOMP, M-FOCUSS and
GRP-LASSO schemes. Additionally, the DA-MSBL technique
of joint approximately sparse channel estimation and Viterbi-
based MLSD leads to a significant MSE reduction in the
estimated channel coefficients. The MSE performance of the
DA-MSBL scheme is also seen to almost coincide with that
of the data-aided genie MMSE estimator having perfect prior
knowledge of the sparse multi-path power delay profile. This
demonstrates the effectiveness of the DA-MSBL framework,
which does not assume any prior knowledge of the sparse
multipath channel, and yet achieves a performance close to
that of the genie scheme. Furthermore, the performance of
the P-MSBL and DA-MSBL schemes is seen to be in close
conformance with their respective BCRBs derived in Section
VI, which further ascertains the robustness of the proposed
MSBL techniques. This is because the BCRB of P-MSBL
corresponds to a pilot-based MMSE having known channel
sparsity while the BCRB for DA-MSBL represents an ideal
MMSE which assumes perfect knowledge of both the channel
sparsity and of the transmitted data symbols. By contrast,
neither of our P-MSBL and DA-MSBL do not have any a
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Fig. 4: Comparison of Theoretical FER bounds derived in (54)
with their practical counterparts for the proposed MSBL-based
MLSD techniques in MO-SC wireless system.

priori knowledge of the channel sparsity associated with DA-
MSBL additionally performing data detection. Fig. 2(c) shows
a comparison of the frame error rate (FER) of the STTC
MIMO-OFDM system relying on the proposed and on the
existing schemes. We can observe a trend similar to that of the
MSE performance of the various competing schemes to that
of the proposed P-MSBL techniques resulting in a significant
performance improvement.

Fig. 3(a) and 3(b) depict the MSE and FER, respectively
for a 4 × 4 four-state QPSK STTC MO-SC wireless system.
The performance of the various existing and proposed schemes
shows a trend similar to that of the 2 × 2 MO-SC system,
thus demonstrating the improved performance of the proposed
schemes for MIMO systems of various orders. Fig. 3(c)
illustrates the MSE of the various schemes with respect to
the number of pilots P with the total number of transmitted
symbols fixed as K. Interestingly, it can be observed that
the MSE performance of the pilot-based techniques improves
upon increasing the number of pilot symbols, while that of
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the data-aided DA-MSBL and the Genie DA-MMSE remains
unaffected, since they employ all the pilot and data symbols
for channel estimation, the sum total of which is constant.
Thus, the DA-MSBL delivers equivalent performance for
fewer pilot symbols, which demonstrates its efficiency. Fig.
4 demonstrates our comparison between the FER plots of
P-MSBL and DA-MSBL obtained via simulation and the
corresponding theoretical bounds developed in Section V.
The various parameters used for computing the theoretical
bounds are as follows. The standard four-state STTC of
[1] is considered for the 2 × 2 STTC MIMO system with
symbols drawn from a |S| = 4 QPSK constellation. For
this system, the order of the expurgated union bound W , the
product metric ∆̃q , and the weighing coefficients A(w) are
obtained from [41], yielding W = 2, ∆̃q(1, 2) = {4, 16},
and A(1, 2) = {2, 1} respectively. A detailed procedure of
evaluating ∆q corresponding to ∆̃q(1, 2) = {4, 16} has been
derived in the Appendix A. The gap between the theoretical
and practical FER curves decreases upon increasing SNR since
the PEP approximation in (43) incorporating NLs dominant
components and their squared distance metric d2

(
C, Ĉ

)
in

(43) becomes progressively tight at high SNR. It is observed
that the theoretical bounds approach the simulated curves at
high SNR, thereby validating the derived analytical results.

1. Complexity analysis and comparison

This subsection presents a brief complexity comparison of
the proposed MSBL schemes with that of the existing and
ideal (albeit impractical) schemes employed for comparison
purposes. As seen in Algorithms 1 and 2, the channel esti-
mation complexities of the P-MSBL and DA-MSBL schemes
are dominated by the matrix inverse computations associated
with the evaluation of the a posteriori covariance matrix
Σ(r) in (14) and (26) respectively. Employing the Woodbury
matrix identity [50], it can be deduced that these inverse
computations for the P-MSBL and DA-MSBL approaches
have complexities of O(P 3V 3) and O(L3N3), respectively.
The former is naturally lower than the latter. This is because
the P-MSBL approach employs only pilots for channel esti-
mation while the DA-MSBL incurs an additional complexity
associated with the codeword estimation procedure in the M-
step. A brief discussion on the MLSD complexity associated
with the proposed DA-MSBL scheme is presented along with
the comparison of the existing MSBL-based symbol detection
technique of [26]. The exact step-wise details of the MLSD
complexities for both the schemes is presented in the technical
report in [51]. It is interesting to note that the scheme in [26]
has an exponentially increasing complexity with respect to
the number of TAs. Furthermore, for the outer turbo code
in Fig. 1 of [26], the bit detection is performed disjointly
with respect to the MSBL-based channel estimation scheme,
hence resulting in an additional computational overhead and
suboptimal bit estimates. By contrast, the proposed DA-MSBL
scheme naturally amalgamates the ML decoding paradigm
with the EM framework and performs joint channel estimation
and sequence detection using a modified path metric-based
Viterbi decoder. Coming now to the existing schemes, the

sparsity agnostic FDI scheme is observed to have the lowest
computational complexity of order O(N3M3) imposed by the
matrix inversion of least squares estimation followed by a
simple linear interpolation. However, it yields an extremely
poor MSE and FER performance compared to the remaining
schemes. Furthermore, the complexity of the SOMP scheme
is O(L3N3M3), which is significantly higher than that of its
pilot-based counterpart P-MSBL. This is owing to the interior
point method-based convex solver employed to obtain the
corresponding estimates [52]. The complexity order of the
Genie - Pilot and Genie - Data Aided schemes
having a known multipath delay profile is O(L3

sN
3), where

Ls denotes the number of significant channel taps, with an
additional complexity imposed by STTC decoding in the
genie DA scheme. Finally, albeit the complexities of these
approaches are the lowest, they simply serve as performance
benchmarks and are impractical. Table III summarizes the
decoding complexities associated with the proposed and ex-
isting approaches. As illustrated therein, the complexity order
of O

(
KVN2

)
of MLSD employing DA-MSBL in MO-SC

systems is lower than that of its analogous counterparts given
by O

[
(K − P )V K2N2

]
for the existing approach in [26].

VIII. CONCLUSIONS

We have developed MSBL-based schemes for approxi-
mately sparse channel estimation in MO-SC STTC MIMO
wireless systems. Starting with the parameterized MSBL prior
for the MIMO-OFDM channel matrix, the pilot-based P-
MSBL scheme estimates the channel via Bayesian evidence
maximization. Then, the DA-MSBL framework was developed
for joint maximization of the ensuing likelihood function with
respect to both the hyperparameters and the unknown space-
time trellis codewords via a novel modified path metric-based
Viterbi decoder. Theoretical PEP bounds were also developed
for the proposed Viterbi-based MLSD in the presence of
channel estimation errors including a procedure of deriving
the product metric for MO-SC STTC MIMO systems. Our
simulation results demonstrated the enhanced MSE and FER
performance of the proposed schemes and also validated the
analytical bounds derived.

APPENDIX A
EVALUATION OF THE PRODUCT METRIC ∆q FOR A MO-SC

SYSTEM FOR D IN (44)

For a conventional STTC MIMO system, the distance matrix
D̃ is given by [48]

D̃ =

K∑
k=1

∆̃ck∆̃c
H

k , (60)

where ∆̃ck ∈ CN×1 denotes the kth independent error vector
for a K block length STTC. For the 2× 2, |S| = 4, and four-
state trellis coded MIMO system [1] used in the simulation
results, the product metric ∆̃q and rank q̃ corresponding to
the distance matrix D′ of the 2× 2, four-state STTC is given
by ∆̃q = {4, 16} and q = 2 [41]. Furthermore, for the
w = 1 product metric, the eigenvalues λ̃1 and λ̃2 are given by
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TABLE III: Order of complexity for MLSD using proposed DA-MSBL scheme and symbol detection in [26]

DA-MSBL in MO-SC systems O
(
AKV |S|2N2 +KLN3(K + L)

)
Symbol detection in [26] O

(
|S|N (K − P )V K2N2 +KLN3(K + L)

)

λ̃1 = 2, λ̃2 = 2 such that ∆̃q(1) = λ̃1λ̃2 = 4. One can express
D̃ = D̃1 + D̃2, where D̃1 and D̃2 are the two constituent
rank one outer product matrices corresponding to the linearly
independent error vectors ∆̃ck1

and ∆̃ck2
for k1, k2 particular

realizations of k : 1 ≤ k ≤ K. Using Weyl’s inequality,
the eigenvalues λ (Y + Z) of the sum of two matrices Y, Z
satisfy [53] λu+v−1 (Y + Z) ≤ λu (Y) + λv (Z), where the
indices u, v ≥ 1 and u+ v − 1 ≤ ntot with ntot denoting the
total number of positive eigenvalues of Y and Z. Using the
above result, one can obtain the following relationships cor-
responding to the eigenvalues of the component matrices D̃1

and D̃1, λ1

(
D̃1

)
+λ1

(
D̃2

)
≥ 2, λ2

(
D̃1

)
+λ1

(
D̃2

)
≥ 2,

and λ1

(
D̃1

)
+λ2

(
D̃2

)
≥ 2. Additionally, since D̃1 and D̃2

are both rank one matrices, one of λ1

(
D̃1

)
or λ2

(
D̃1

)
and

λ1

(
D̃2

)
or λ2

(
D̃2

)
is zero. Without any loss of generality,

one of the solutions is given by, λ1

(
D̃1

)
= 2, λ2

(
D̃1

)
=

0, λ1

(
D̃2

)
= 2, and λ2

(
D̃2

)
= 0. Corresponding to the

dominant error events as in (60), the distance matrix D for
the MO-SC system in (44) can be expressed as

D = D1 + D2, (61)

where D1 = Wk1
D̃1W

H
k1

, D2 = Wk2
D̃2W

H
k2

, Wki =(
IN ⊗wki

}
)
∈ CNLs×N and ki, 1 ≤ i ≤ 2 corresponds

to two realizations of {k : 1 ≤ k ≤ K} for which
the codeword difference matrices D̃1 and D̃2 do not van-
ish. Employing the result, rank

(
YZYH

)
= rank (Z) for

Y ∈ Cp×q and Z ∈ Cq×q provided Y is a full col-
umn rank matrix, it follows that the ranks of the matrices
D1 and D2 are rank

(
Wk1

D̃1W
H
k1

)
= rank

(
D̃1

)
and

rank
(
Wk2

D̃2W
H
k2

)
= rank

(
D̃2

)
since Wk1

and Wk2
are

full column rank matrices. Additionally, it can also be verified
that the vectors ∆ck1 , Wk1

∆̃ck1
and ∆ck2

, Wk2
∆̃ck2

are linearly independent. Since D1 = ∆ck1∆cHk1
and D2 =

∆ck2
∆cHk2

, the rank q of the matrix D which is a sum of the
matrices D1 and D2 as shown in (61), evaluates as q = 2.
Using the result for Y ∈ Cu×v and Z ∈ Cv×u with v ≥ u,
the v eigenvalues of the matrix ZY are the u eigenvalues
of matrix YZ with the remaining eigenvalues being zero.
Additionally, since rank (D1) = rank

(
D̃1

)
, we can evaluate

the eigenvalues λ(D1) of the matrix D1 as,

λ (D1) = λ
(
Wk1

D̃1W
H
k1

)
(62)

= λ
(
WH

k1
Wk1

D̃1

)
(63)

= λ
(
LsInD̃1

)
(64)

= Lsλ
(
D̃1

)
. (65)

Note that the result WH
k Wk = LsIN ∀ 1 ≤ k ≤ K

is employed for the simplification of (63) to (65). For the
channel’s power delay profile considered in this work, one
obtains Ls = 6 corresponding to the dominant channel taps
from the channel PDP characteristics, and on substitution the
eigenvalues of D1 and D2 can be seen to be λ (D1) =
[12, 0]

T and λ (D2) = [12, 0]
T respectively. The Weyl’s

identity is employed to compute the eigenvalues of D1 and
D2 that are used to obtain a bound on the eigenvalues of
D as λ1 (D) ≤ 24 and λ2 (D) ≤ 12 respectively. Using
these upper bounds, the product measure ∆q corresponding
to w = 1 for the distance matrix D can be evaluated as
∆q(1) = 288. For the w = 2 product metric, one can begin
with λ̃1 = λ̃2 = 4 for the given value of ∆̃q(2) = 16.
Following a similar approach as seen above ∆q(2) = 1152.
Thus, for the MO-SC system under consideration, the product
measure corresponding to the expurgated FER bound can be
finally obtained as ∆q(1, 2) = {288, 1152}.
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