
ar
X

iv
:1

90
4.

07
67

6v
2 

 [
cs

.I
T

] 
 2

8 
D

ec
 2

01
9

Optimal Multi-View Video Transmission in

Multiuser Wireless Networks by Exploiting Natural

and View Synthesis-Enabled Multicast Opportunities

Wei Xu, Ying Cui, Zhi Liu

Abstract—Multi-view videos (MVVs) provide immersive view-
ing experience, at the cost of traffic load increase for wireless
networks. In this paper, we would like to optimize MVV transmis-
sion in a multiuser wireless network by exploiting both natural
multicast opportunities and view synthesis-enabled multicast
opportunities. Specifically, we first establish a mathematical
model to specify view synthesis at the server and each user, and
characterize its impact on multicast opportunities. This model
is highly nontrivial and fundamentally enables the optimization
of view synthesis-based multicast opportunities. For given video
quality requirements of all users, we consider the optimization
of view selection, transmission time and power allocation to
minimize the average weighted sum energy consumption for
view transmission and synthesis. In addition, under the energy
consumption constraints at the server and each user respectively,
we consider the optimization of view selection, transmission time
and power allocation and video quality selection to maximize
the total utility. These two optimization problems are challeng-
ing mixed discrete-continuous optimization problems. For the
first problem, we propose an algorithm to obtain an optimal
solution with reduced computational complexity by exploiting
optimality properties. For each problem, to reduce computational
complexity, we also propose a low-complexity algorithm to
obtain a suboptimal solution, using Difference of Convex (DC)
programming. Finally, numerical results show the advantage
of the proposed solutions over existing ones, and demonstrate
the importance of the optimization of view synthesis-enabled
multicast opportunities in MVV transmission.

Index Terms—Multi-view video, view synthesis, multicast,
convex optimization, DC programming.

I. INTRODUCTION

A multi-view video (MVV) is generated by capturing a

scene of interest with multiple cameras from different angles

simultaneously. Each camera can capture both texture maps

(i.e., images) and depth maps (i.e., distances from objects in

the scene), providing one view. Besides views captured by

cameras, additional views, providing new view angles, can
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be synthesized based on reference views using Depth-Image-

Based Rendering (DIBR) [2]. A MVV subscriber (i.e., user)

can freely select among multiple view angles, hence enjoying

immersive viewing experience. MVV is one key technique

in free-viewpoint television, naked-eye 3D and virtual reality

(VR) [3], [4]. Thus, it has vast applications in entertainment,

education, medicine, etc. The global market of VR related

products is predicted to reach 30 billion USD by 2020 [5].

A MVV is in general of a much larger size than a tradi-

tional single-view video, bringing a heavy burden to wireless

networks. Multiple views of a MVV can be jointly encoded

using multiview video coding [6], [7] or separately encoded

using state-of-the-art codec such as H.264/AVC and HEVC

[8]. In particular, joint encoding achieves a significant coding

gain by exploiting statistical dependencies from both tempo-

ral and inter-view reference frames for motion-compensated

prediction [9]–[12]. However, it yields a great traffic load

causing bandwidth waste. This is because with joint encoding,

multiple views have to be delivered simultaneously to a user

even though most of them will not be utilized by the user.

To improve transmission efficiency, views are usually encoded

separately at the cost of coding efficiency, and transmitted on

demand [13]–[16]. In this paper, we restrict our attention to

MVV transmission based on separate encoding.

In [14]–[17], the authors consider a wired MVV system

with a single server and multiple users. In particular, [14],

[16], [17] consider view synthesis only at the users, while [15]

considers view synthesis both at the server and users. Note

that view synthesis usually introduces distortion, the degree

of which depends on the distance between the synthesized

view and each of its two reference views and the qualities of

the two reference views. Thus, in [14]–[17], view selection is

optimized to minimize the total distortion of all synthesized

views subject to the bandwidth constraint. The transmission

models in [14]–[17] do not reflect channel fading and broad-

cast nature which are key features of wireless networks. Thus,

the solutions for MVV transmission in [14]–[17] cannot be

directly applied to MVV transmission in multiuser wireless

networks.

In [18]–[21], the authors consider a wireless MVV trans-

mission system with a single server [18]–[20] or multiple

servers [21] and multiple users, where channel fading and

broadcast nature of wireless communications are captured.

The transmission mechanisms in [18]–[21] make use of nat-

ural multicast opportunities to reduce energy consumption.

http://arxiv.org/abs/1904.07676v2
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In particular, [18], [19], [21] consider Orthogonal Frequency

Division Multiple Access (OFDMA), and optimize power and

subcarrier allocation to minimize the total transmission power

[18], [19] or bandwidth consumption [21]. None of [18],

[19] and [21] considers view synthesis at the server or users,

which can create multicast opportunities to further improve

transmission efficiency in multiuser wireless networks. Thus,

the transmission designs in [18], [19] and [21] may be further

improved. In [20], the authors adopt view synthesis at each

user to create multicast opportunities, but do not consider view

synthesis at the server, and hence the transmission design in

[20] cannot optimally utilize view synthesis-enabled multicast

opportunities.

In this paper, we would like to address the above limitations.

We consider MVV transmission from a server to multiple

users in a wireless network with Time Division Multiple

Access (TDMA) for multiple views. Different from [18],

[19], [21], we allow view synthesis at the server and each

user to maximally create multicast opportunities for efficient

MVV transmission in multiuser wireless networks. The main

contributions of this paper are summarized below.1

• First, we establish a mathematical model to specify view

synthesis at the server and each user and characterize

its impact on multicast opportunities. Note that this

model is highly nontrivial and fundamentally enables the

optimization of multicast opportunities. To the best of

our knowledge, this is the first work providing an elegant

mathematical model for specifying and controlling view

synthesis at the server and all users.

• Then, we consider the optimization of view selection,

transmission time and power allocation to minimize the

average weighted sum energy consumption for view

transmission and synthesis, for given quality require-

ments of all users. The problem is a challenging mixed

discrete-continuous optimization problem. We propose an

algorithm to obtain an optimal solution with reduced

computational complexity, by exploiting optimality prop-

erties of the problem. To further reduce computational

complexity, we propose a low-complexity algorithm to

obtain a suboptimal solution, by transforming the original

problem into a Difference of Convex (DC) problem and

obtaining a stationary point of it using a DC algorithm.

• Next, we consider the optimization of view selection,

transmission time and power allocation and quality se-

lection to maximize the total utility under the energy

consumption constraints for the server and each user,

respectively. The problem is more challenging, as it has

extra discrete variables and the constraint functions are

not tractable. By using equivalent transformations and DC

programming, we propose a low-complexity algorithm to

obtain a suboptimal solution.

1This paper extends the results in the conference version [1] which does
not consider the difference in timescale between view selection and time
and power allocation, and studies only the energy consumption minimization
problem.

Fig. 1. System model. K = 6, r1 = 1, r2 = 1, r3 = 2, r4 = 3,
r5 = 4, r6 = 5, V = 5, V = {1, 2, 3, 4, 5}, V = {1, 1.5, 2, · · · , 5},
∆k = 1 for all k ∈ K, x1 = x2 = x3.5 = x5 = 1 and y1,1 = y2,1 =
y3,2 = y4,2 = y4,3.5 = y5,3.5 = y5,5 = y6,5 = 1.

• Finally, numerical results show that the proposed solu-

tions provide substantial gains compared to existing so-

lutions, and demonstrate the importance of the optimiza-

tion of view synthesis-enabled multicast opportunities in

MVV transmission.

The key notation used in this paper is listed in Table I.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider downlink transmission

of a MVV from a single-antenna server (e.g., base station or

access point) to K (>1) single-antenna users, denoted by set

K , {1, 2, · · · ,K}. V (>1) views (including texture maps

and depth maps) about a scene of interest, denoted by set

V , {1, 2, · · · , V }, are captured by V evenly spaced cameras

simultaneously from different view angles, and are referred

to as the original views. The V original views are then pre-

encoded independently using standard video codec and stored

at the server. We consider Q − 1 evenly spaced additional

views between original view v and original view v+1, where

Q = 2, 3, · · · is a system parameter and v ∈ {1, 2, · · · , V −1}.

That is, the view spacing between any two neighboring views

is 1/Q. The additional views, providing new view angles, can

be synthesized via DIBR. The set of indices for all views,

including the V original views (which are stored at the server)

and the (V −1)(Q−1) additional views (which are not stored

at the server but can be synthesized at the server), is denoted by

V , {1, 1+1/Q, 1+2/Q, · · · , V }. For ease of exposition, we

assume all views have the same source encoding rate, denoted

by R (in bit/s).

Using DIBR, a view can be synthesized using one left view

and one right view as the reference views, at the server or

a user. The quality of each synthesized view depends on its

distance to its two reference views and the qualities. The server

may need to synthesize any additional view v ∈ V \ V as it

stores only the original views. Specifically, it can synthesize

additional view v ∈ V \ V using its nearest left original view

⌊v⌋ and right original view ⌈v⌉.2 Each user k may need to

synthesize any view v ∈ V\{1, V },3 using two views from the

2⌊v⌋ denotes the greatest integer less than or equal to v, and ⌈v⌉ denotes
the least integer greater than or equal to v.

3Note that view 1 and view V cannot be synthesized as they are boundary
views.
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TABLE I
KEY NOTATION

Notation Description

V set of original views

V set of all views

K set of all users

R source encoding rate of all views

H finite channel state space

∆k maximum allowable distance between synthesized view and two reference views for user k
rk view requested by user k

xv ∈ {0, 1} view transmission variable for view v
yk,v ∈ {0, 1} view utilization variable for view v at user k

th,v ≥ 0 time allocated to transmit view v under system channel state h

ph,v ≥ 0 power allocated to transmit view v under system channel state h

Eb synthesis energy consumption per time slot for one view at server

Eu,k synthesis energy consumption per time slot for one view at user k
R source encoding rate of all views

T slot duration

B bandwidth

left reference view set V
−

k,v , {x ∈ V : v−∆k ≤ x < v} and

the right reference view set V
+

k,v , {x ∈ V : v < x ≤ v+∆k},

respectively, where

∆k ∈ {1, 1 + 1/Q, · · · , V − 1}, k ∈ K. (1)

Here, ∆k denotes the maximum allowable distance between

any synthesized view and each of its two reference views for

user k. Thus, ∆k can reflect the view quality for user k. That

is, a smaller ∆k indicates higher quality for user k.

Let Uk(∆k) denote the utility of user k for view quality

∆k, where Uk(·) can be an arbitrary nonnegative, strictly

decreasing and concave function [22]. Then, for given qualities

∆ , (∆k)k∈K, the total utility is given by

U(∆) ,
∑

k∈K

Uk(∆k). (2)

We study the system for the duration of the playback time

of multiple groups of pictures (GOPs), and assume that the

view angle of each user does not change within the considered

duration. Note that the playback time of one GOP is usually

0.5–1 seconds. Let rk ∈ V denote the index of the view

requested by user k ∈ K. Assume rk, k ∈ K are known at the

server. To satisfy user k’s view request, if rk ∈ V \ {1, V },

the server transmits either view rk or two reference views

in V
−

k,rk
and V

+

k,rk
, respectively, for user k to synthesize

view rk; if rk ∈ {1, V }, the server transmits view rk .

To save transmission resource by making use of multicast

opportunities, the server transmits each view at most once.

Let xv denote the view transmission variable for view v,

where

xv ∈ {0, 1}, v ∈ V . (3)

Here, xv = 1 indicates that the server will transmit view v and

xv = 0 otherwise. Denote x , (xv)v∈V . As for all v ∈ V \V ,

xv = 1 indicates that view v is synthesized at the server, x

also reflects view synthesis at the server. Let yk,v denote the

view utilization variable for view v at user k, where

yk,v ∈ {0, 1}, v ∈ V , k ∈ K. (4)

Here, yk,v = 1 indicates that user k will utilize view v (as view

v is requested by user k, i.e., rk = v, or view v ∈ V
−

k,rk
∪V

+

k,rk

will be used to synthesize view rk at user k) and yk,v = 0
otherwise. It is clear that y , (yk,v)k∈K,v∈V reflects view

synthesis at all users. To guarantee that each user can obtain

its requested view, we require:4

yk,rk +
∑

v∈V
+

k,rk

yk,v = 1, k ∈ K, (5)

yk,rk +
∑

v∈V
−
k,rk

yk,v = 1, k ∈ K, (6)

∑

v∈V\({rk}∪V
−
k,rk

∪V
+

k,rk
)

yk,v = 0, k ∈ K. (7)

Note that the constraints in (4), (5) and (6) indicate that user

k either utilizes view rk directly, i.e.,

yk,rk = 1, yk,v = 0, v ∈ V
−

k,rk
∪ V

+

k,rk
, k ∈ K,

or utilizes one left view in V
−

k,rk
and one right view in V

+

k,rk

to synthesize view rk, i.e.,

yk,rk = 0,
∑

v∈V
−
k,rk

yk,v =
∑

v∈V
+

k,rk

yk,v = 1, k ∈ K.

In addition, the constraints in (4) and (7) indicate that user

k does not utilize view rk or views that are not in its two

reference view sets, i.e.,

yk,v = 0, v ∈ V \ ({rk} ∪ V
−

k,rk
∪ V

+

k,rk
), k ∈ K.

The server has to transmit view v in order for a user to utilize

view v. Thus, we have the following constraints on the relation

between the view transmission variables and view utilization

variables:

xv ≥ yk,v, k ∈ K, v ∈ V . (8)

4For notation simplicity, for all k ∈ K, we define
∑

v∈V
−
k,rk

yk,v = 0 if

V
−
k,rk

= ∅ and
∑

v∈V
+

k,rk

yk,v = 0 if V
+
k,rk

= ∅.
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We also refer to (x,y) as view selection variables, as we can

control view synthesis at the server and all users via choosing

values for (x,y). Due to the video coding structure, we do not

allow the change of values for (x,y) during the considered

time duration.

The following example shows how view selection variables

(x,y) affect multicast opportunities.

Example 1 (Natural and View Synthesis-Enabled Multicast

Opportunities): Consider an illustration example as shown

in Fig. 1. Consider K = 6, r1 = 1, r2 = 1, r3 = 2,

r4 = 3, r5 = 4, r6 = 5, V = 5, V = {1, 2, 3, 4, 5},

V = {1, 1.5, 2, · · · , 5} and ∆k = 1 for all k ∈ K. As user 1

and user 2 both request view 1, view 1 can be transmitted

once to serve the two users simultaneously, corresponding to

natural multicast opportunities. Without view synthesis, the

server has to transmit five views, i.e., views 1, 2, 3, 4 and

5 (with view 1 being utilized by two users), making use of

natural multicast opportunities. In contrast, if view synthesis

is allowed at the server and each user, the server transmit only

four views, i.e., views 1, 2, 3.5 and 5 (each being utilized by

two users), utilizing both natural and view synthesis-enabled

multicast opportunities.

Based on view selection variables (x,y), the proposed

model mathematically specifies view synthesis at the sever

and all users, and characterizes its impact on multicast oppor-

tunities. Later, we shall see that this enables the optimization

of multicast opportunities.

We consider a slotted narrowband system of bandwidth B
(in Hz). Consider the block fading channel model, i.e., assume

the channel of each user does not change within one time

slot of duration T (in seconds). Note that T is about 0.005

seconds. For an arbitrary time slot, let Hk ∈ H denote the

random channel state of user k, representing the power of the

channel between user k and the server, where H denotes the

finite5 channel state space. Let H , (Hk)k∈K ∈ HK denote

the random system channel state at an arbitrary time slot,

where HK represents the finite system channel state space.

We assume that the server is aware of the system channel

state H at each time slot. Suppose that the random system

channel states over time slots are i.i.d. The probability of

the random system channel state H at each time slot being

h , (hk)k∈K ∈ HK is given by qH(h) , Pr[H = h].

We consider Time Division Multiple Access (TDMA)6 for

multiple views. That is, different views are transmitted one

after another over the same frequency channel. Consider an

arbitrary time slot. The time allocated to transmit view v under

the system channel state h, denoted by th,v, satisfies:

th,v ≥ 0, h ∈ HK , v ∈ V. (9)

5Note that we consider a finite channel state space for tractability of
optimization. In addition, note that due to limited accuracy for channel
estimation (and channel feedback), the operational channel state space in
practical systems is finite.

6Note that TDMA is analytically tractable and has applications in WiFi
systems. In addition, the proposed transmission scheme and the optimization
framework for a TDMA system can be extended to an OFDMA system [23].

In addition, we have the following total time allocation con-

straints under the system channel state h:

∑

v∈V

th,v ≤ T, h ∈ HK . (10)

The transmission power for view v under the system channel

state h, denoted by ph,v, satisfies:

ph,v ≥ 0, h ∈ HK , v ∈ V . (11)

The maximum transmission rate of view v to user k under the

system channel state h is given by
Bth,v

T
log2

(

1 +
ph,vhk

σ2

)

(in bits/s), where σ2 is the power (in Watt) of the complex

additive white Gaussian channel noise at each receiver. To

reduce the chance of stall (i.e., the chance that a playback

buffer is empty) during the video playback at each user, the

average arrival rate of each playback queue should be no less

than its service rate. Thus, we have the following successful

transmission constraints:7

B

T
EH

[

tH,v log2

(

1 +
pH,vHk

σ2

)]

≥ yk,vR, k ∈ K, v ∈ V ,

(12)

where the expectation EH is taken over the random system

channel state H ∈ HK . The transmission energy consumption

per time slot under the system channel state h at the server

is
∑

v∈V th,vph,v. Besides view transmission, view synthesis

also consumes energy. For ease of exposition, we assume that

the energy consumptions for synthesizing different views at

the server are the same. Let Eb denote the synthesis energy

consumption (in Joule) [24] per time slot for one view at

the server. Thus, the total synthesis energy consumption per

time slot at the server is
∑

v∈V\V xvEb. Let Eu,k denote

the synthesis energy consumption (in Joule) per time slot

for one view at user k. Considering heterogeneous hardware

conditions at different users, we allow Eu,k, k ∈ K to be

different. Then, the synthesis energy consumption per time

slot at user k is (1−yk,rk)Eu,k, and the total synthesis energy

consumption per time slot at all users is
∑

k∈K(1−yk,rk)Eu,k.

Therefore, the weighted sum energy consumption per time slot

under the system channel state h is given by:

E(x,y, th,ph) =
∑

v∈V

th,vph,v +
∑

v∈V\V

xvEb

+ β
∑

k∈K

(1− yk,rk)Eu,k, h ∈ HK , (13)

where x , (xv)v∈V , y , (yk,v)k∈K,v∈V , th , (th,v)v∈V ,

ph , (ph,v)v∈V and β ≥ 1 is the corresponding weight

factor for the K users. Note that β > 1 means imposing a

higher cost on the energy consumptions for user devices due

7More conservatively, we can use R+ δ for some δ > 0 in (12) instead of
R. In addition, in the startup phase, the playback buffer usually stores some
view data, say L0 bits. It is known that the chance of stall during the playback
phase decreases with δ and with L0.
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to their limited battery powers. The average weighted sum

energy consumption per time slot is given by

EH[E(x,y, tH,pH)] = EH





∑

v∈V

tH,vpH,v



+
∑

v∈V\V

xvEb

+ β
∑

k∈K

(1− yk,rk)Eu,k. (14)

In Section III, we shall minimize the average weighted sum

energy consumption for given quality requirements of all users.

In Section IV, we shall maximize the total utility under the

energy consumption constraints at the server and each user.

III. AVERAGE WEIGHTED SUM ENERGY MINIMIZATION

In this section, we consider the minimization of the av-

erage weighted sum energy consumption for given quality

requirements of all users. We first formulate the optimization

problem. Then, we develop an algorithm to obtain an optimal

solution with reduced computational complexity by exploiting

optimality properties. Finally, to further reduce computational

complexity, we develop a low-complexity algorithm to obtain

a suboptimal solution using DC programming.

A. Problem Formulation

We would like to minimize the average weighted sum

energy consumption by optimizing the view selection and

transmission time and power allocation for given quality

requirements of all users. Specifically, for given ∆, we have

the following optimization problem.

Problem 1 (Energy Minimization):

E⋆ , min
x,y,t,p

EH [E(x,y, tH,pH)]

s.t. (3), (4), (5), (6), (7), (8), (9), (10), (11), (12),

where EH[E(x,y, tH,pH)] is given by (14). Let

(x⋆,y⋆, t⋆,p⋆) denote an optimal solution of Problem

1, where x⋆ , (x⋆
v)v∈V , y⋆ , (y⋆k,v)k∈K,v∈V ,

t⋆ , (t⋆h,v)h∈HK,v∈V and p⋆ , (p⋆h,v)h∈HK ,v∈V .

Problem 1 is a challenging mixed discrete-continuous op-

timization problem with two types of variables, i.e., binary

view selection variables (x,y) as well as continuous power

allocation and time allocation variables (t,p). For given

(x,y), the optimization with respect to (t,p) is nonconvex,

as
∑

v∈V th,vph,v is not convex in (th,ph).

B. Optimal Solution

In this part, we develop an algorithm to obtain an optimal

solution of Problem 1. Define Y , {y : (4), (5), (6), (7)} and

X × Y , {(x,y) : (3), (8),y ∈ Y}. First, by a change

of variables, i.e., using eh,v , ph,vth,v (representing the

transmission energy for view v under h) instead of ph,v for

all h ∈ HK , v ∈ V , and by exploiting structural properties of

Problem 1, we obtain an equivalent problem of Problem 1.

Problem 2 (View Selection):

min
(x,y)∈X×Y

E⋆
t (y) +

∑

v∈V\V

xvEb + β
∑

k∈K

(1− yk,rk)Eu,k

where E⋆
t (y) is given by the following problem. Let (x⋆,y⋆)

denote an optimal solution of Problem 2.

Problem 3 (Time and Energy Allocation for Given y): For

any given y ∈ Y,

E⋆
t (y) , min

t,e
EH





∑

v∈V

eH,v





s.t. (9), (10),

eh,v ≥ 0, h ∈ HK , v ∈ V , (15)

B

T
EH

[

tH,v log2

(

1 +
eH,vHk

tH,vσ2

)]

≥ yk,vR,

k ∈ K, v ∈ V . (16)

Let (t⋆(y), e⋆(y)) denote an optimal solution of Prob-

lem 3, where t⋆(y) , (t⋆h,v (y))h∈HK ,v∈V and e⋆(y) ,

(e⋆h,v (y))h∈HK ,v∈V .

Note that the constraints in (11) and (12) are equivalent

to the constraints in (15) and (16), respectively. This for-

mulation (including Problem 2 and Problem 3) separates the

two types of variables (i.e., binary variables and continu-

ous variables) and facilitates the optimization. Due to the

equivalence between Problem 1 and Problems 2 and 3, we

know that (x⋆,y⋆, t⋆(y⋆),p⋆(y⋆)) is an optimal solution

of Problem 1, where p⋆(y) , (p⋆h,v (y))h∈HK,v∈V with

p⋆h,v(y) = e⋆h,v(y)/t
⋆
h,v(y), h ∈ HK , v ∈ V. Thus, we

can obtain an optimal solution of Problem 1 by first solving

Problem 3 and then solving Problem 2.

1) Solution of Problem 3: First, we focus on solving Prob-

lem 3. Problem 3 is a convex optimization problem and can

be solved using standard convex optimization techniques [25].8

Note that when the sizes of H and K are large, the numbers

of variables and constraints in Problem 3 are huge, leading

to high computational complexity. As Problem 3 is convex

and strictly feasible, implying that Slater’s condition holds,

the duality gap is zero. To accelerate the speed for solving

Problem 3, we can also adopt partial dual decomposition to

enable parallel computation [26]. Specifically, by relaxing the

coupling constraints in (16), we obtain a decomposable partial

dual problem of Problem 3.

Problem 4 (Partial Dual Problem of Problem 3): For any

given y ∈ Y,

D⋆(y) ,max
λ

D(y,λ) =
∑

h∈HK

qH(h)Dh(y,λ)

s.t. λk,v ≥ 0, k ∈ K, v ∈ V, (17)

where λ , (λk,v)k∈K,v∈V . Let λ
⋆(y) denote an optimal

solution of Problem 4. Dh(y,λ) is given by the following

subproblem.

8In this paper, we assume that the server is aware of the statistics of the
random system channel. Thus, the problems considered in this paper are not
stochastic optimization problems.
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Problem 5 (Subproblem of Problem 4 for h ∈ HK): For

any given y ∈ Y and λ � 0,

Dh(y,λ) , min
th,eh

∑

v∈V

eh,v

−
∑

k∈K

∑

v∈V

λk,v

(

B

T
th,v log2

(

1 +
eh,vhk

th,vσ2

)

− yk,vR

)

s.t. eh,v ≥ 0, v ∈ V , (18)

th,v ≥ 0, v ∈ V , (19)
∑

v∈V

th,v ≤ T, (20)

where eh , (eh,v)v∈V . Let (t⋆h(y,λ), e
⋆
h(y,λ)) denote

an optimal solution of Problem 5, where t⋆h(y,λ) ,

(t⋆h,v(y,λ))v∈V and e⋆h(y,λ) , (e⋆h,v(y,λ))v∈V .

Define t⋆(y,λ) , (t⋆h(y,λ))h∈HK and e⋆(y,λ) ,

(e⋆h(y,λ))h∈HK . We have the following result.

Lemma 1 (Relationship between Problems 4,5 and Prob-

lem 3): For any given y ∈ Y, D⋆(y) = E⋆
t (y), t⋆(y) =

t⋆(y,λ⋆(y)) and e⋆(y) = e⋆(y,λ⋆(y)).

Proof: Please refer to Appendix A.

By Lemma 1, we can obtain an optimal solution of Prob-

lem 3 by solving Problem 4 and Problem 5 for all h ∈ HK .

As Problem 5 for all h ∈ HK can be solved in parallel

using standard convex optimization techniques, we can com-

pute (t⋆(y,λ), e⋆(y,λ)) efficiently. In addition, Problem 4 is

convex and can be solved using the subgradient method [27].

In particular, for all k ∈ K, v ∈ V , the subgradient method

generates a sequence of dual feasible points according to the

following update equation:

λk,v(n+ 1) = max{λk,v(n) + ηk,v(n)sk,v(y,λ(n)), 0},
(21)

where λ(n) , (λk,v(n))k∈K,v∈V and sk,v(y,λ(n)) denotes a

subgradient of D(y,λ(n)) with respect to λk,v given by:

sk,v(y,λ(n)) , yk,vR

−
B

T

∑

h∈HK

qH(h)t⋆h,v(y,λ(n)) log2

(

1 +
e⋆h,v(y,λ(n))hk

t⋆h,v(y,λ(n))σ
2

)

.

(22)

Here, n denotes the iteration index and {ηk,v(n)} is a step

size sequence, satisfying:

ηk,v(n) > 0,

∞
∑

n=0

ηk,v(n) = ∞,

∞
∑

n=0

η2k,v(n) < ∞, lim
n→∞

ηk,v(n) = 0.

It has been shown in [27] that λ(n) → λ
⋆(y) as n → ∞, for

all initial points λ(0) � 0. Therefore, we can solve Problem 3

by solving Problem 4 and Problem 5 for all h ∈ HK .

Algorithm 1 Algorithm for Obtaining an Optimal Solution of

Problem 1
Output (x⋆,y⋆,t⋆,p⋆).

1: Set E⋆ = ∞, n = 0, and choose any λ(n) ≥ 0.
2: for (x,y) ∈ X×Y do
3: repeat
4: For all h ∈ HK , obtain (th(y,λ(n)), eh(y,λ(n))) by

solving Problem 5 using standard convex optimization
techniques.

5: For all k ∈ K and v ∈ V , compute λk,v according to (21),
where sk,v(y,λ(n)) is obtained according to (22).

6: Set n = n+ 1.
7: until convergence criteria is met.
8: For all h ∈ HK , set th(y) = th(y,λ(n− 1)) and eh(y) =

eh(y,λ(n− 1)).
9: Compute E(x,y) =

∑

h∈HK qH(h)eh(y) +
∑

v∈V\V xvEb + β
∑

k∈K(1− yk,rk)Eu,k.

10: if E(x,y) ≤ E⋆ then
11: Obtain p = (ph,v)h∈HK ,v∈V where ph,v = eh,v/th,v ,h ∈

HK , v ∈ V .
12: Set E⋆ = E(x,y) and (x⋆,y⋆, t⋆,p⋆) = (x,y, t,p).
13: end if
14: end for

2) Solution of Problem 2: Next, we focus on solving Prob-

lem 2, which is a challenging discrete optimization problem.

Problem 2 can be solved by exhaustive search over X×Y. We

would like to reduce the search space by analyzing optimality

properties of Problem 2. For any two users a ∈ K and b ∈ K,

define rmax , max{ra, rb}, rmin , min{ra, rb} and La,b

is given by (23), as shown at the top of the next page. For

all user k ∈ K, define Lk ,
⋃

i∈K:i6=k Lk,i. We have the

following lemma.

Lemma 2 (Optimality Properties of Problem 2): (i) x⋆
v =

maxk∈K y⋆k,v, v ∈ V ; (ii) Suppose βEu,k ≥ Eb, k ∈ K. Then,

y⋆k,v = 0, k ∈ K, v ∈ V \ (∪k∈KLk).
Proof: Please refer to Appendix B.

Statement (i) indicates that view v will be transmitted if at

least one user utilizes it. La,b can be viewed as the set of views

that may be utilized by user a when considering the presence

of only users a and b, as illustrated in Fig. 2; Lk can be inter-

preted as the set of views that may be utilized by user k con-

sidering the presence of all users; ∪k∈KLk can be treated as

the set of views that may be utilized by at least one user. Thus,

Statement (ii) indicates that no views in V \ (∪k∈KLk) will be

utilized by any user. Lemma 2 characterizes the relationship

between x⋆ and y⋆, and determines some zero elements of y⋆.

Let X × Y , {(x,y)| y ∈ Y, xv = maxk∈K yk,v, v ∈ V},

where Y , {y ∈ Y|yk,v = 0, v ∈ V \ (∪k∈KUk) , k ∈ K}.

Based on Lemma 2, we can reduce the feasible set for (x, y)
from X×Y to X×Y without losing optimality.

3) Algorithm: Based on the results in Section III-B1 and

Section III-B2, we develop an algorithm to obtain an optimal

solution of Problem 1, as summarized in Algorithm 1.

C. Suboptimal Solution

Although the complexity for obtaining an optimal solution

of Problem 2 has been reduced based on Lemma 2, the
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La,b ,











{ra}, V
+

rmin
∩ V

−

rmax
= ∅,

{ra, rmax −∆, rmin +∆} ∪ (V
+

rmin
∩ V

−

rmax
∩ V), V

+

rmin
∩ V

−

rmax
6= ∅ and rmax /∈ V

+

rmin
,

{ra, rb, rmax −∆, rmin +∆}, rmax ∈ V
+

rmin
.

(23)

(a) V
+
rmin

∩ V
−
rmax

= ∅

(b) V
+
rmin

∩ V
−
rmax

6= ∅ and rmax /∈ V
+
rmin

(c) rmax ∈ V
+
rmin

Fig. 2. Illustration of La,b. V = {1, 2, 3, 4, 5}, V = {1, 1.25, 1.5, · · · , 5}
and ∆k = 1, k ∈ K.

complexity of Algorithm 1 is still unacceptable when K is

large. In this part, we propose a low-complexity algorithm to

obtain a suboptimal solution of Problem 1.

First, by Lemma 2, we can replace xv in Problem 1 with

maxk∈K yk,v for all v ∈ V , without loss of optimality.

Recalling that p can be determined by e and t, we can use e

instead of p. The discrete constraints in (4) can be equivalently

transformed to:

yk,v ∈ [0, 1], k ∈ K, v ∈ V , (24)

yk,v(1− yk,v) ≤ 0, k ∈ K, v ∈ V. (25)

The reasons are given below. It is clear that (4) implies (24)

and (25). By (24), we have yk,v(1−yk,v) ≥ 0, k ∈ K, v ∈ V .

Together with (25), we have yk,v(1−yk,v) = 0, k ∈ K, v ∈ V ,

implying (4). Therefore, (4) is equivalent to (24) and (25).

By noting that the constraints in (25) are concave, we can

disregard the constraints in (25) and add to the objective

function a penalty for violating them. Therefore, we can

convert Problem 1 to the following problem.

Problem 6 (Penalized DC Problem of Problem 1):

min
y,t,e

EH





∑

v∈V

eH,v



+ Eb

∑

v∈V\V

max
k∈K

yk,v

+ β
∑

k∈K

(1− yk,rk)Eu,k + ρP (y)

s.t. (5), (6), (7), (9), (10), (15), (16), (24),

where the penalty parameter ρ > 0 and the penalty function

P (y) is given by

P (y) =
∑

k∈K

∑

v∈V

yk,v(1− yk,v). (26)

Note that the objective function of Problem 6 can be viewed

as a difference of two convex functions and the feasible set

of Problem 6 is convex. Thus, Problem 6 can be viewed as

a penalized DC problem of Problem 1. By [28], there exists

ρ0 > 0 such that for all ρ > ρ0, Problem 6 is equivalent to

Problem 1. Now, we solve Problem 6 instead of Problem 1 by

using the DC algorithm in [29]. The main idea is to iteratively

solve a sequence of convex approximations of Problem 6, each

of which is obtained by linearizing the penalty function P (y).
Specifically, the convex approximation of Problem 6 at the i-th
iteration is given below.

Problem 7 (Convex Approximation of Problem 6 at i-th
Iteration):

(y(i), t(i), e(i)) , arg min
y,t,e

EH





∑

v∈V

eH,v





+ Eb

∑

v∈V\V

max
k∈K

yk,v + β
∑

k∈K

(1− yk,rk)Eu,k + ρP̂
(

y;y(i−1)
)

s.t. (5), (6), (7), (9), (10), (16), (24),

where

P̂
(

y;y(i−1)
)

, P
(

y(i−1)
)

+∇P
(

y(i−1)
)T (

y − y(i−1)
)

=
∑

k∈K

∑

v∈V

(

1− 2y
(i−1)
k,v

)

yk,v +
(

y
(i−1)
k,v

)2

.

Here, y(i−1) denotes an optimal solution of Problem 7 at the

(i− 1)-th iteration.

Problem 7 is a convex optimization problem and can

be solved using standard convex optimization techniques.

Similarly, to improve computation efficiency, we can adopt

partial dual decomposition and parallel computation, as in

Section III-B. Due to space limitation, we omit the details.

It is known that the sequence {(y(i), t(i), e(i))} generated

by the DC algorithm is convergent, and its limit point is a

stationary point of Problem 6. We can run the DC algorithm

multiple times, each with a random initial feasible point of

Problem 6. Then, we select the stationary point with the

minimum average weighted sum energy among those with

zero penalty, denoted by {(y†, t†, e†)}. Due to the equivalence

between Problems 1 and 6, we know that for sufficiently large

ρ, we can obtain a feasbile solution of Problem 1 based on

(y†, t†, e†) as follows. Based on y†, we obtain x† , (x†
v)v∈V
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Algorithm 2 Algorithm for Obtaining a Suboptimal Solution

of Problem 1
Input c ≥ 1
Output (x†,y†, t†,p†)

1: E = +∞.
2: while c > 0 do
3: Find a random feasible point of Problem 6 as the initial point

(y(0), t(0), e(0)), choose a sufficiently large ρ, and set i = 0.
4: repeat
5: Set i = i+ 1.
6: Obtain (y(i), t(i), e(i)) of Problem 7 using standard convex

optimization techniques or partial dual decomposition and
parallel computation (similar to Steps 3-7 in Algorithm 1).

7: until convergence criteria is met.

8: if P (y(i)) = 0 then
9: Set c = c− 1.

10: if EH

[

∑

v∈V e
(i)
H,v

]

+ Eb

∑

v∈V\V maxk∈K y
(i)
k,v +

β
∑

k∈K(1− y
(i)
k,rk

)Eu,k < E then

11: Set E = EH

[

∑

v∈V e
(i)
H,v

]

+

Eb

∑

v∈V\V maxk∈K y
(i)
k,v + β

∑

k∈K(1 − y
(i)
k,rk

)Eu,k,

x† = (x†
v)v∈V , y† = y(i), t† = t(i) and

p† = (p†
h,v)h∈HK ,v∈V , where x†

v = max y
(i)
k,v, v ∈ V

and p†
h,v = e

(i)
h,v/t

(i)
h,v,h ∈ HK , v ∈ V .

12: end if
13: end if
14: end while

according to Lemma 2 (i). Based on t† and e†, we then

compute p† , (p†h,v)v∈V,h∈HK using p†h,v = e†h,v/t
†
h,v.

(x†,y†, t†,p†) can serve as a suboptimal solution of Prob-

lem 1. The details are summarized in Algorithm 2.9

IV. TOTAL UTILITY MAXIMIZATION

In this section, we consider the total utility maximization

under the energy consumption constraints for the server and

each user. We first formulate the optimization problem. Then,

we develop a low-complexity algorithm to obtain a suboptimal

solution using DC programming.

A. Problem Formulation

First, we impose the energy consumption constraints for the

server and each user:

EH





∑

v∈V

tH,vpH,v



+
∑

v∈V\V

xvEb ≤ Ēb, (27)

(1 − yk,rk)Eu,k ≤ Ēu,k, k ∈ K, (28)

where Ēb and Ēu,k represent the energy consumption limits

(for each time slot) at the server and user k, respectively. We

would like to maximize the total utility by optimizing the

view selection, transmission time and power allocation, and

quality selection under the energy consumption constraints.

9Note that in Algorithm 2, EH

[

∑

v∈V e
(i)
H,v

]

=
∑

h∈HK qH(h)
∑

v∈V e
(i)
H,v

can be computed as qH(h),h ∈ HK

are known.

Specifically, for given Ēb and Ēu,k, k ∈ K, we have the

following optimization problem.

Problem 8 (Total Utility Maximization):

max
x,y,t,p,∆

U(∆)

s.t. (1), (3)− (12), (27), (28).

Let (x⋆,y⋆, t⋆,p⋆,∆⋆) denote an optimal solution of Prob-

lem 8 with slight abuse of notation, where ∆⋆
, (∆⋆

k)k∈K.

Problem 8 is a challenging mixed discrete-continuous op-

timization problem with two types of variables, i.e., dis-

crete view selection variables and quality selection variables

(x,y,∆) as well as continuous power and time allocation

variables (t,p). Problem 8 is even more challenging than

Problem 1, as it has extra discrete variables ∆ and the

constraint functions of ∆ in (5)-(7) are not tractable.

B. Suboptimal Solution

In this part, we propose a low-complexity algorithm to

obtain a suboptimal solution of Problem 8 using equivalent

transformations and DC programming. First, we transform

Problem 8 to an equivalent penalized DC Problem which can

be solved using DC programming. Specifically, we relax the

discrete constraints in (1) to:

1 ≤ ∆k ≤ V − 1, k ∈ K. (29)

Then, we transform the constraints in (5)-(7) to the following

constraints:

yk,rk +
∑

v>rk,v∈V

yk,v = 1, k ∈ K, (30)

v − rk −∆k ≤ c(1− yk,v), v ∈ V, k ∈ K, (31)

yk,rk +
∑

v<rk,v∈V

yk,v = 1, k ∈ K, (32)

rk − v −∆k ≤ c(1− yk,v), v ∈ V, k ∈ K, (33)

where c > V − 2 is a positive constant. Next, as for solving

Problem 1, we eliminate x, use e instead of p, convert the

discrete constraints in (4) to the continuous constraints in

(24) and (25), and disregard (25) by adding to the objective

function a penalty for violating (25). Therefore, we can convert

Problem 8 to the following problem.

Problem 9 (Penalized DC Problem of Problem 8):

max
y,t,e,∆

U(∆)−ρP (y)

s.t. (3), (9), (10), (15), (16), (24), (28)− (33)

EH





∑

v∈V

eH,v



+ Eb

∑

v∈V\V

max
k∈K

yk,v ≤ Ēb, (34)

where P (y) is given by (26). Let (y∗, t∗, e∗,∆∗) denote an

optimal solution of Problem 9.

The following result shows the equivalence between Prob-

lem 8 and Problem 9.

Theorem 1 (Relationship between Problem 8 and Prob-

lem 9): There exists ρ0 > 0 such that for all ρ > ρ0 and



9

Algorithm 3 Algorithm for Obtaining a Suboptimal Solution

of Problem 8
Input c ≥ 1
Output (x†,y†, t†,p†,∆†)

1: Set U = 0.
2: while c > 0 do
3: Find a random feasible point of Problem 8 as the initial point

(y(0), t(0), e(0),∆(0)), choose a sufficiently large ρ and c >
V − 2, and set i = 0.

4: Obtain (y(i), t(i), e(i),∆(i)) based on DC programming (sim-
ilar to Steps 4-7 in Algorithm 2).

5: if P (y(i)) = 0 then
6: Set c = c− 1.
7: if U(∆(i)) > U then

8: Set U = U(∆(i)), x† = (x†
v)v∈V , y† = y(i), t† =

t(i), p† = (p†
h,v)h∈HK ,v∈V and ∆† = ∆(i), where

x†
v = maxk∈K y

(i)
k,v, v ∈ V and p†

h,v = e
(i)
h,v/t

(i)
h,v,h ∈

HK , v ∈ V .
9: end if

10: end if
11: end while

c > V − 2, y⋆ = y∗, t⋆ = t∗, p⋆ = p∗ and ∆⋆ = ∆∗, where

p∗ = (p∗h,v)h∈HK ,v∈V with p∗h,v = e∗h,v/t
∗
h,v,h ∈ HK , v ∈

V .

Proof: Please refer to Appendix C.

We can obtain a stationary point of Problem 9, denoted

by (y†, t†,p†,∆†) with P (y†) = 0, using DC programming.

By Theorem 1, we know that (y†, t†,p†,∆†) is a feasible

solution of Problem 8. Similarly, based on y†, we can obtain

x† , (x†
v)v∈V with x†

v = maxk∈K yk,v, v ∈ V . Based on t†

and e†, we then compute p† , (p†h,v)v∈V,h∈HK where p†h,v =

e†h,v/t
†
h,v,h ∈ HK , v ∈ V. (x†,y†,p†, t†,∆†) serves as a

suboptimal solution of Problem 8. The details are summarized

in Algorithm 3.

V. NUMERICAL RESULTS

In the simulation, we set β = 2, R = 18.59 Mbit/s,10

Eb = 10−3 Joule, Eu,k = 10−3 Joule, k ∈ K [24],

V = {1, 2, 3, 4, 5}, B = 10 MHz,11 T = 100 ms,

Uk(∆k) = V − ∆k, k ∈ K and σ2 = BkBT0, where

kB = 1.38×10−23 Joule/Kelvin is the Boltzmann constant and

T0 = 300 Kelvin is the temperature. For ease of simulation, we

consider two channel states, i.e., a good channel state and a bad

channel state, and set H = {0.5d, 1.5d}, Pr[Hk = 0.5d] = 0.5
and Pr[Hk = 1.5d] = 0.5 for all k ∈ K, where d = 10−6

reflects the path loss. In addition, we assume that the K users

randomly request views in an i.i.d. manner. Specifically, for all

k ∈ K, rk falls in two regions, i.e., V1 , {2, 2+ 1
Q
, · · · , 4} and

V2 , {1, 1+ 1
Q
, · · · , 1+ Q−1

Q
}∪{4+ 1

Q
, · · · , 5}, according to

10We use MVV sequence Kendo as the video source [30] and use HEVC
in FFmpeg to encode the video with quantization parameter 15, frame rate
30 frame/s and resolution 1024×768.

11We consider a multi-carrier TDMA with 10 channels, each with band-
width 1 MHz.

Zipf distribution with Zipf exponent γ,12 i.e., Pr[rk ∈ V1] =
1−γ

∑
v∈{1,2} v−γ , P1 and Pr[rk ∈ V2] =

2−γ
∑

v∈{1,2} v−γ , P2.

Note that a smaller γ indicates a longer tail. Furthermore, for

all k ∈ K, a view in V1 or V2 is requested according to the

uniform distribution, i.e., Pr[rk = v] = P1

2Q+1 , v ∈ V1 and

Pr[rk = v] = P2

2Q , v ∈ V2. We randomly generate 100 view

requests for all users, and evaluate the average performance

over these realizations.

For comparison, we consider two commonly used view

selection mechanisms, based on which we shall construct

optimization-based baseline schemes to minimize the weighted

sum energy consumption and maximize the total utility, re-

spectively. In one view slection mechanism, the view requested

by each user is transmitted [18]. In our setup, this requires

view synthesis at the server but does not consider view

synthesis at each user, and hence is referred to as the synthesis-

server mechanism here. More specifically, for all k ∈ K and

v ∈ V , yk,v = 1 if v = rk , and yk,v = 0 otherwise; for

all v ∈ V , xv = maxk∈K yk,v. In the other view selection

mechanism, no synthesized views will be transmitted. In our

setup, this requires view synthesis at each user but does not

consider view synthesis at the server [20], and hence is referred

to as the synthesis-user mechanism here. More specifically,

for all k ∈ K, yk,v = 0 if v /∈ V ∩ ({rk} ∪ V
−

k,rk
∪ V

+

k,rk
).

We use Matlab and CVX toolbox to implement the proposed

solutions and baseline schemes which are all optimization-

based designs.

A. Weighted Sum Energy Minimization

In this part, we compare the weighted sum energy con-

sumptions of the proposed optimal and suboptimal solutions

with those of two baseline schemes at ∆k = 1, k ∈ K.

First, we compare the proposed optimal solution (obtained

using Algorithm 1) with the proposed suboptimal solution of

Problem 1 (obtained using Algorithm 2) at small13 numbers of

users. Fig. 3 illustrates the weighted sum energy consumption

and computation time (reflecting computational complexity)

versus the number of users, respectively. From Fig. 3 (a),

we can see that the weighted sum energy consumption of the

suboptimal solution is the same as that of the optimal solution

when K is small (under our setup). From Fig. 3 (b), we can

see that the computation time of the suboptimal solution grows

with the number of users at a much smaller rate than that of

the optimal solution. This numerical example demonstrates the

applicability and efficiency of the suboptimal solution.

Next, we compare the proposed suboptimal solution of

Problem 1 with two baseline schemes, i.e., the synthesis-

server-energy scheme and the synthesis-user-energy scheme.

The two schemes adopt the synthesis-server mechanism and

the synthesis-user mechanism, respectively. In addition, the

synthesis-server-energy scheme adopts the optimal power and

12Note that Zipf distribution is widely used to model content popularity in
Internet and wireless networks. In addition, the proposed solutions and their
properties are valid for arbitrary distributions of view requests.

13Note that the computational complexity of Algorithm 1 is not acceptable
when K is large.
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(a) Weighted sum energy versus K . (b) Computation time versus K .

Fig. 3. Comparison between the optimal solution and suboptimal solution at
∆k = 1, k ∈ K, Q = 5 and γ = 1.

time allocation obtained by solving Problem 3 with (x,y)
chosen according to the synthesis-server mechanism using

Steps 3-13 of Algorithm 1; the synthesis-user-energy scheme

adopts the power and time allocation and view selection

obtained by solving Problem 1 with extra constraints on y

which are imposed according to the synthesis-user mechanism

using Algorithm 2. Note that leveraging on our proposed

transmission mechanism, both baseline schemes can utilize

natural multicast opportunities; the synthesis-server-energy

scheme does not create view synthesis-enabled multicast op-

portunities, but it can guarantee to transmit no more than

K views; the synthesis-user-energy scheme can create view

synthesis-enabled multicast opportunities, but it may cause

extra transmissions (i.e., may transmit more than K views).

Fig. 4 illustrates the weighted sum energy consumptions

versus the number of users K , Zipf exponent γ and view

spacing 1/Q. From Fig. 4 (a), we can see that the weighted

sum energy consumption of each scheme increases with K ,

as the traffic load increases with K . From Fig. 4 (b) and

Fig. 4 (c), we can see that the weighted sum energy con-

sumption of each scheme decreases with γ and with 1/Q.

This is because a larger γ or a lager 1/Q indicates that view

requests from the users are more concentrated, leading to more

natural multicast opportunities. From Fig. 4, we can see that

the synthesis-server-energy scheme outperforms the synthesis-

user-energy scheme in most cases, demonstrating that creat-

ing view synthesis-enabled multicast opportunities in a naive

manner usually causes extra transmissions and yields a higher

weighted sum energy consumption; the proposed suboptimal

solution outperforms the two baseline schemes, revealing the

importance of the optimization of view synthesis-enabled

multicast opportunities in reducing energy consumption. Note

that the gains of the proposed suboptimal solution over the

baseline schemes are large at large K , small γ or small 1/Q,

as more view synthesis-enabled multicast opportunities can be

created in these regions.

B. Total Utility Maximization

In this part, we compare the total utilities of the proposed

suboptimal solution of Problem 8 (obtained using Algorithm 3)

and two baselines, i.e., the synthesis-server-utility scheme and

the synthesis-user-utility scheme, at Ēb = 10 × 10−3 Joule

and Ēu,k = 10−3 Joule, k ∈ K.14 The two baseline schemes

adopt the synthesis-server mechanism and the synthesis-user

mechanism, respectively. In addition, the synthesis-server-

utility scheme chooses ∆k = min{∆k|(1), (5), (6), (7)},

k ∈ K with (x,y) in (5), (6) and (7) chosen according to the

synthesis-server mechanism, and achieves total utility U(∆)
if Problem 8 with its choice for (x,y,∆) is feasible; the

synthesis-user-utility scheme achieves the total utility that is

obtained by solving Problem 8 with extra constraints on y

which are set according to the synthesis-user mechanism using

Algorithm 3. Note that the synthesis-server-utility scheme and

the synthesis-user-utility scheme share the same properties

on natural and view synthesis-enabled multicast opportunities

as the synthesis-server-energy scheme and the synthesis-user-

energy scheme, respectively. For a realization of rk, k ∈ K,

if the problem for each scheme is infeasible, we set the total

utility to be 0, for ease of comparison.

Fig. 5 illustrates the total utility versus the number of users

K , Zipf exponent γ and view spacing 1/Q. From Fig. 5 (a),

we can see that the total utility of each scheme increases with

K when K is small, as there is enough energy for serving

more users; the total utilities of two baseline schemes no

longer increase with K when K becomes large, as Ēb and

Ēu,k, k ∈ K are not large enough and the optimization of the

two baseline schemes are more likely to be infeasible under

random user requests. From Fig. 5 (b) and Fig. 5 (c), we

can see that the total utility of each scheme increases with

γ and with 1/Q, as natural multicast opportunities increase

with γ and with 1/Q. Finally, from Fig. 5, we see that the

suboptimal solution outperforms the two baseline schemes,

also revealing the importance of the optimization of view

synthesis-enabled multicast opportunities in improving the

total utility. Similarly, we can see that the gains of the proposed

suboptimal solution over the baseline schemes are large at

large K , small γ or small 1/Q, as more view synthesis-enabled

multicast opportunities can be created in these regions.

VI. CONCLUSION

In this paper, we considered optimal MVV transmission

in a multiuser wireless network by exploiting both natural

multicast opportunities and view synthesis-enabled multicast

opportunities. First, we established a mathematical model

to specify view synthesis at the server and each user and

characterize its impact on multicast opportunities. To the best

of our knowledge, this is the first mathematical model that

enables the optimization of view synthesis-enabled multicast

opportunities. Then, we considered the minimization of the

weighted sum energy consumption for view transmission and

synthesis for given quality requirements of all users. We

also considered the maximization of the total utility under

the energy consumption constraints at the server and each

user. These two optimization problems are challenging mixed

discrete-continuous optimization problems. We proposed an

14Note that for each scheme, the constraints in (28) are always satisfied
under the choices for Eu,k, k ∈ K and Ēu,k, k ∈ K.
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(a) Weighted sum energy versus K at ∆k = 1,
k ∈ K, Q = 5 and γ = 1.

(b) Weighted sum energy versus γ at ∆k = 1,
k ∈ K, Q = 5 and K = 5.

(c) Weighted sum energy versus 1/Q at ∆k =
1, k ∈ K, γ = 1 and K = 5.

Fig. 4. Comparison between the suboptimal solution and two baseline schemes.

(a) Total utility versus K at γ = 1, Q = 5 and
Ēb = 10× 10−3 Joule and Ēu,k = 10−3 Joule,
k ∈ K.

(b) Total utility versus γ at K = 5, Q = 5 and
Ēb = 10× 10−3 Joule and Ēu,k = 10−3 Joule,
k ∈ K.

(c) Total utility versus 1/Q at γ = 1, K = 5 and
Ēb = 10× 10−3 Joule and Ēu,k = 10−3 Joule,
k ∈ K.

Fig. 5. Comparison between the suboptimal solution and two baseline schemes.

algorithm to obtain an optimal solution of the first problem

with reduced computational complexity, by exploiting opti-

mality properties. In addition, for each problem, we proposed

a low-complexity algorithm to obtain a suboptimal solution,

using DC programming. Finally, using numerical results, we

showed the advantage of the proposed solutions, and demon-

strated the importance of view synthesis-enabled multicast

opportunities in MVV transmission.

APPENDIX A: PROOF OF LEMMA 1

First, we relax the coupling constraints in (16)

and obtain the following partial Lagrange function

L(y, t, e,λ), given by (35), as shown at the top

of the next page, where λk,v, k ∈ K, v ∈ V
denote the Lagrange multipliers with respect to the

constraints in (16) and Lh(y, th, eh,λ) ,
∑

v∈V eh,v −
∑

k∈K

∑

v∈V λk,v

(

B
T
th,v log2

(

1 +
eh,vhk

th,vσ2

)

− yk,vR
)

.

Next, for any given y ∈ Y, we obtain the corresponding

partial dual function of Problem 3:

D(y,λ) ,min
t,e

L(y, t, e,λ)

s.t. (9), (10), (15),

where L(y, t, e,λ) is given by (35). As the objective function

and constraints are separable, this problem can be equivalently

decomposed into Problem 5, one for each h ∈ HK . As the

duality gap for Problem 3 is zero, we can show Lemma 1.

APPENDIX B: PROOF OF LEMMA 2

A. Proof of Statement (i)

We prove Statement (i) by contradiction. Suppose there

exists v0 ∈ V such that x⋆
v0

6= maxk∈K y⋆k,v0 . By (8), this

implies x⋆
v0

> maxk∈K y⋆k,v0 . By (3) and (4), we know

x⋆
v0

= 1 and y⋆k,v0 = 0, k ∈ K. Construct x† , (x†
v)v∈V

with x†
v0

= 0 and x†
v = x⋆

v, v 6= v0, v ∈ V . It is clear

that x† and y⋆ satisfy (3) and (8). In addition, the objective

function of Problem 1, i.e., EH [E(x,y, tH,pH)] increases

with xv , v ∈ V , and the constraints in (5), (6), (7), (9),

(10), (11), (12) do not rely on x. Therefore, (x†,y⋆, t⋆,p⋆)
is a feasible solution with a smaller objective value than the

optimal solution (x⋆,y⋆, t⋆,p⋆). Therefore, by contradiction,

we can prove Statement (i).

B. Proof of Statement (ii)

We prove Statement (ii) by contradiction. Suppose that there

exist k0 ∈ K and v0 ∈ V \ (∪k∈KLk) such that y⋆k0,v0
= 1.

In the following, we consider three cases, i.e., v0 /∈ V
−

rk0
∪

V
+

rk0
, v0 ∈ V

+

rk0
and v0 ∈ V

−

rk0
. In each case, we construct

a feasible solution which achieves a smaller objective value
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L(y, t, e,λ) ,
∑

h∈HK

qH(h)
∑

v∈V

eh,v −
∑

k∈K

∑

v∈V

λk,v

(

B

T

∑

h∈HK

qH(h)th,v log2

(

1 +
eh,vhk

th,vσ2

)

− yk,vR

)

=
∑

h∈HK

qH(h)Lh(y, th, eh,λ), (35)

under the assumption. Thus, by contradiction, we can show

Statement (ii).

1) v0 /∈ V
−

rk0
∪ V

+

rk0
: First, we construct y† ,

(y†k,v)k∈K,v∈V with y†k0,v0
= 0 and y†k,v = y⋆k,v , (k, v) 6=

(k0, v0), (k, v) ∈ K×V , and x† , (x†
v)v∈V with x†

v0
= 0 and

x†
v = x⋆

v, v 6= v0, v ∈ V. It is easy to show that (x†,y†, t⋆,p⋆)
is a feasible solution with a smaller objective value than

(x⋆,y⋆, t⋆,p⋆).

2) v0 ∈ V
+

rk0
: First, define Kv0 , {k ∈ K |yk,v0 = 1},

v1 , maxk∈Kv0
fv0(rk), and Mv0 , {k ∈ Kv0 |rk = v1}

where

fv0(rk) ,

{

rk rk < v0

rk −∆ rk > v0
.

By (5) and y⋆k,v0 = 1, we know y⋆k,v1 = 0 for all k ∈ Kv0 .

Construct y† , (y†k,v)k∈K,v∈V with y†k,v1 = 1, y†k,v0 =

0, y†k,v = y⋆k,v, v ∈ V \ {v0, v1}, k ∈ Kv0 and y†k,v =

y⋆k,v, v ∈ V, k ∈ K \ Kv0 ; construct x† , (x†
v)v∈V with

x†
v = maxk∈K y†k,v, v ∈ V; construct t† , (t†h,v)h∈HK ,v∈V

with t†h,v0 = 0, t†h,v1 = max{t⋆h,v0, t
⋆
h,v1

} and t†h,v = t⋆h,v, v ∈

V \ {v0, v1}, h ∈ HK ; construct p† , (ph,v)h∈HK ,v∈V with

p†h,v0 = 0, p†h,v1 = max{t⋆h,v0p
⋆
h,v0

, t⋆h,v1p
⋆
h,v1

}/t†h,v1 and

p†h,v = p⋆h,v, v ∈ V \ {v0, v1} for all h ∈ HK .

Next, we show that (x†,y†, t†,p†) is a feasible solution

of Problem 1. It is clear that (x†,y†, t†,p†) satisfies the

constraints in (3), (4), (5), (6), (7), (8), (9) and (11). Then,

we show that (y†, t†,p†) satisfies the constraints in (10) and

(12). Since
∑

v∈V t†h,v
(a)

≤
∑

v∈V t⋆h,v ≤ T, h ∈ HK , where

(a) is due to t†h,v0 = 0, t†h,v1 = max{t⋆h,v0, t
⋆
h,v1

},h ∈ HK

and t†h,v = t⋆h,v,h ∈ HK , v ∈ V \ {v0, v1}, we can show

that t† satisfies the constraints in (10). By the construction of

(x†,y†, t†,p†), we know:

B

T
EH

[

t†H,v log2

(

1 +
p†H,vHk

σ2

)]

≥ y†k,vR,

k ∈ K, v ∈ V \ {v1}. (36)

In addition, we have

B

T
EH

[

t†H,v1
log2

(

1 +
p†H,v1

Hk

σ2

)]

=
B

T
EH

[

t†H,v1
log2

(

1 +
t†H,v1

p†H,v1
Hk

t†H,v1
σ2

)]

(b)

≥
B

T
EH

[

t⋆H,v log2

(

1 +
t⋆H,vp

⋆
H,vHk

t⋆H,vσ
2

)]

,

k ∈ K, v ∈ {v0, v1}

⇒
B

T
EH

[

t†H,v1
log2

(

1 +
p†H,v1

Hk

σ2

)]

≥
B

T
max

v∈{v0,v1}

{

EH

[

t⋆H,v log2

(

1 +
t⋆H,vp

⋆
H,vHk

t⋆H,vσ
2

)]}

(c)

≥ R max
v∈{v0,v1}

y⋆k,v
(d)
= y†k,v1R, k ∈ K, (37)

where (b) is due to that x log2(1 + y/x) is monotonically

increasing with respect to x and y, respectively, t†h,v1p
†
h,v1

≥

t⋆h,vp
⋆
h,v, and t†h,v1 = t⋆h,v, h ∈ HK , v ∈ {v0, v1}, (c) is due

to the constraints in (12) for (y⋆, t⋆,p⋆), and (d) is due to

y†k,v1 = y⋆k,v0 = 1, k ∈ Kv0 and y†k,v1 = y⋆k,v1 , y
⋆
k,v0

= 0,

k ∈ K \ Kv0 . By (36) and (37), we know that (y†, t†,p†)
satisfies the constraints in (12). Thus, (x†,y†, t†,p†) is a

feasible solution of Problem 1.

Finally, we prove E⋆ ≥ E† , EH

[

E(x†,y†, t†H,p†
H)
]

.

By the construction of (x†,y†, t†,p†), we have (38), which

is shown at the top of the next page, where (e) is due to

x+ y−max{x, y} ≥ 0 for all x, y ≥ 0 and x⋆
v1

− x†
v1

≥ −1.

It remains to show (x⋆
v0

− 1)Eb + β
∑

k∈Mv0
Eu,k ≥ 0. We

prove this by considering two cases.

• Case 1: v1 ∈ {rk | k ∈ K}. In this case, we have (x⋆
v0

−

1)Eb + β
∑

k∈Mv0
Eu,k ≥ −Eb + β

∑

k∈Mv0
Eu,k

(f)

≥ 0

where (f) is due to Mv0 6= ∅ (as v1 ∈ {rk | k ∈ K}) and

−Eb + βEu,k ≥ 0 for all k ∈ K.

• Case 2: v1 /∈ {rk | k ∈ K}. First, by v1 =
maxk∈Kv0

fv0(rk), we know that there exists k′ ∈ Kv0

such that rk′ > v0. Thus we have V
+

rk0
∩V

−

rk′
∩V ⊆ Lk0,k′

and v0 ∈ V \ (∪k∈KLk), implying that v0 /∈ V
+

rk0
∩

V
−

rk′
∩ V . In addition, by noting that y⋆k,v0 = 1, k ∈ Kv0 ,

we have x⋆
v0

= maxk∈K yk,v0 = 1. Thus, we have

(x⋆
v0

− 1)Eb + β
∑

k∈Mv0
Eu,k

(g)

≥ 0, where (g) is due

to Mv0 = ∅ (as v1 /∈ {rk | k ∈ K}) and x⋆
v0

= 1.
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E⋆ − E†

= EH

[

t⋆H,v0
p⋆H,v0

+ t⋆H,v1
p⋆H,v1

− t†H,v0
p†H,v0

− t†H,v1
p†H,v1

]

+ (x⋆
v0

+ x⋆
v1

− x†
v0

− x†
v1
)Eb + β

∑

k∈K

(

y†k,rk − y⋆k,rk

)

Eu,k

= EH

[

t⋆H,v0
p⋆H,v0

+ t⋆H,v1
p⋆H,v1

−max{t⋆H,v0
p⋆H,v0

, t⋆H,v1
p⋆H,v1

} − 0
]

+ (x⋆
v0

+ x⋆
v1

− 0− x†
v1
)Eb + β

∑

k∈Mv0

Eu,k

(e)

≥ (x⋆
v0

− 1)Eb + β
∑

k∈Mv0

Eu,k, (38)

Therefore, (x†,y†, t⋆,p⋆) is a feasible solution with a

smaller objective value than (x⋆,y⋆, t⋆,p⋆).

3) v0 ∈ V
−

rk0
: The argument for v0 ∈ V

−

rk0
is similar to

that for v0 ∈ V
+

rk0
and is omitted due to page limitation.

APPENDIX C: PROOF OF THEOREM 1

First, we show that Problem 8 and its continuous relaxation

have the same optimal solution. By relaxing the discrete

constraints in (1) into (29), we have:

Problem 10 (Continuous Relaxation of Problem 8):

max
x,y,t,p,∆

U(∆)

s.t. (3)− (12), (27), (28), (29).

Let (x†,y†,p†, t†,∆†) denote an optimal solution of Prob-

lem 10.

Note that the only difference between Problem 8 and Prob-

lem 10 is that ∆ in Problem 8 satisfy (1) and ∆ in Problem 10

satisfy (29). As the fact that ∆ satisfy (1) implies that ∆

satisfy (29), the optimal value of Problem 8 is no greater

than the optimal value of Problem 10. Thus, to show that

an optimal solution of Problem 10 is also an optimal solution

of Problem 8, it remains to show that the optimal solution

of Problem 10 satisfies (1). We prove this by contradiction.

Suppose ∆† does not satisfy (1). Based on ∆†, we construct

∆†
, (∆†

k)k∈K, where ∆†
k = max{x|x ≤ ∆†

k, (1)}. It

is clear that for all k ∈ K, ǫk , ∆†
k − ∆†

k ∈ [0, 1/Q).

As U(∆) is a strictly decreasing function of ∆ and ∆†
k ≥

∆†
k, k ∈ K, we have U(∆†) ≥ U(∆†). It remains to show

that (x†,y†,p†, t†,∆†) is a feasible solution of Problem 10.

Note that only the constraints in (5), (6) and (7) involve ∆.

Thus, it is sufficient to show for all k ∈ K: (i) {x ∈ V :
rk < x ≤ rk + ∆†

k} = {x ∈ V : rk < x ≤ rk + ∆†
k}, (ii)

{x ∈ V : rk−∆†
k ≤ x < rk} = {x ∈ V : rk−∆†

k ≤ x < rk},

and (iii) {x ∈ V : x < rk −∆†
k} ∪ {x ∈ V : rk +∆†

k < x} =

{x ∈ V : x < rk −∆†
k} ∪ {x ∈ V : rk +∆†

k < x}. We prove

Case (i) as follows:

{x ∈ V : rk < x ≤ rk +∆†
k}

= {x ∈ V : rk < x ≤ rk +∆†
k + ǫk}

= {x ∈ V : rk < x ≤ rk +∆†
k}

∪ {x ∈ V : rk +∆†
k < x ≤ rk +∆†

k + ǫk}

(a)
= {x ∈ V : rk < x ≤ rk +∆†

k} ∪ ∅

= {x ∈ V : rk < x ≤ rk +∆†
k}, (39)

where (a) is due to that rk + ∆†
k ∈ V, ǫk < 1/Q and the

view spacing is 1/Q. Case (ii) and Case (iii) can be proved

in a similar way to Case (i), and hence are omitted due to

page limitation. Thus, we have shown that (x†,y†,p†, t†,∆†)
is a feasible of Problem 10 with a larger objective value

than (x†,y†,p†, t†,∆†), which contradicts the optimality

of (x†,y†,p†, t†,∆†). Thus, we know that Problem 8 and

Problem 10 have the same optimal solution.

Next, we show that Problem 10 and the following problem

have the same optimal solution.

Problem 11 (Transformed Problem of Problem 8):

max
x,y,t,p,∆

U(∆)

s.t. (3), (4), (8), (9), (10), (11), (12), (27)− (33).

By comparing the constraints of Problem 10 and those of

Problem 11, it is sufficient to show that the constraints in (4)

and (30)-(33) are equivalent to the constraints in (4)-(7), i.e.,

Y = Y′, where Y = {y : (4), (5), (6), (7)} and Y′ , {y :
(4), (30), (31), (32), (33)}. By (4) and (7), we have yk,v =
0, k ∈ K, v ∈ {x ∈ V : x < rk−∆k}∪{x ∈ V : rk+∆k < x}.

Thus, given that (4) and (7) hold, (5) and (6) are equivalent to

(30) and (32). Then, to show Y = Y′, it is sufficient to show

{yk : (4), (7)} = {yk : (4), (31), (33)}, for all k ∈ K, where

yk , (yk,v)v∈V . We prove this by considering three cases for

k ∈ K: (i) v ∈ V1 , {x ∈ V : rk − ∆k ≤ v ≤ rk + ∆k},

(ii) v ∈ V2 , {x ∈ V : x > rk + ∆k}, and (iii)

v ∈ V3 , {x ∈ V : x < rk −∆k}.

• Case (i): In this case, as (7) for k is void, {(yk,v)v∈V1
:

(4), (7)} = {(yk,v)v∈V1
: (4)}. In addition, in this case,

it is obvious that v−rk−∆k ≤ 0 and rk−v−∆k ≤ 0. By

(4) and c > 0, we have c(1−yk,v) ≥ 0 ≥ v−rk−∆k and

c(1−yk,v) ≥ 0 ≥ rk−v−∆k. Thus, in this case, (31) and

(33) hold for k, implying {(yk,v)v∈V1
: (4), (31), (33)} =
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{(yk,v)v∈V1
: (4)}. Therefore, we can show {(yk,v)v∈V1

:
(4), (7)} = {(yk,v)v∈V1

: (4), (31), (33)}.

• Case (ii): In this case, {(yk,v)v∈V2
: (4), (7)} =

{(yk,v)v∈V2
: yk,v = 0}. In this case, as rk − v −∆k <

rk−v+∆k < 0, (33) always holds for k. Thus, it remains

to show {(yk,v)v∈V2
: yk,v = 0} = {(yk,v)v∈V2

:
(4), (31)}. First, we show that {(yk,v)v∈V2

: (4), (31)}
implies {(yk,v)v∈V2

: yk,v = 0}. By rk + ∆k ≥ 2,

c > V − 2 and V ≥ v, we have c > v − rk −∆k > 0,

which implies:

0 <
v − rk −∆k

c
< 1. (40)

In addition, by (31) and c > V − 2 ≥ 0, we have:

yk,v ≤ 1−
v − rk −∆k

c
. (41)

By (4), (40) and (41), we have yk,v = 0, v ∈ V2. That is,

{(yk,v)v∈V2
: (4), (31)} implies {(yk,v)v∈V2

: yk,v = 0}.

Next, it is obvious that {(yk,v)v∈V2
: yk,v = 0} im-

plies {(yk,v)v∈V2
: (4), (31)}. Therefore, we can show

{(yk,v)v∈V2
: (4), (7)} = {(yk,v)v∈V2

: (4), (31), (33)}.

• Case (iii): In this case, {(yk,v)v∈V3
: (4), (7)} =

{(yk,v)v∈V3
: yk,v = 0}. In this case, as v − rk −∆k <

v−rk+∆k < 0, (31) always holds for k. Thus, it remains

to show {(yk,v)v∈V3
: yk,v = 0} = {(yk,v)v∈V3

:
(4), (33)}. First, we show that {(yk,v)v∈V3

: (4), (33)}
implies {(yk,v)v∈V3

: yk,v = 0}. By v + ∆k ≥ 2,

c > V − 2 and V ≥ rk , we have c > rk − v −∆k > 0,

which implies:

0 <
rk − v −∆k

c
< 1. (42)

By (33) and c > V − 2 ≥ 0, we have:

yk,v ≤ 1−
rk − v −∆k

c
. (43)

By (4), (42) and (43), we have yk,v = 0, v ∈ V3. That is,

{(yk,v)v∈V3
: (4), (33)} implies {(yk,v)v∈V3

: yk,v = 0}.

Next, it is obvious that {(yk,v)v∈V3
: yk,v = 0} im-

plies {(yk,v)v∈V3
: (4), (33)}. Therefore, we can show

{(yk,v)v∈V3
: (4), (7)} = {(yk,v)v∈V3

: (4), (31), (33)}.

Therefore, we can show that Problem 10 and Problem 11 have

the same optimal solution.

Finally, Problem 11 is a DC problem and Problem 9 can be

viewed as its penalized DC problem. By [28], we know that

there exists ρ0 > 0 such that for all ρ > ρ0, Problem 9 and

Problem 11 have the same optimal solution.

Therefore, we complete the proof of Theorem 1.
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