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Interference Alignment for One-hop and Two-hops
MIMO Systems with Uncoordinated Interference

Siavash Mollaebrahim, Pouya M. Ghari, Mohammad Sadegh Fazel, Glauber Brante, Member, IEEE,
Muhammad Ali Imran, Senior Member, IEEE

Abstract—Providing higher data rate is a momentous goal
for wireless communications systems, while interference is an
important obstacle to reach this purpose. To cope with this
problem, interference alignment (IA) has been proposed. In this
paper, we propose two rank minimization methods to enhance the
performance of IA in the presence of uncoordinated interference,
i.e., interference that cannot be properly aligned with the rest
of the network and thus is a crucial issue. In this scenario,
we consider perfect and imperfect channel state information
(CSI) cases. Our proposed approaches employ the l2 and the
Schatten-p norms to approximate the rank function, due to its
non-convexity. We also use a new convex relaxation to expand the
feasible set of our optimization problem, providing lower rank
solutions compared to other IA methods from the literature. In
addition, we propose a modified weighted-sum method to deal
with interference in the relay-aided MIMO interference channel,
which employs a set of weighting parameters in order to find
more solutions.

Index Terms—Interference alignment, MIMO interference
channel, relay-aided MIMO interference channel, convex relax-
ation.

I. INTRODUCTION

INTERFERENCE management is a crucial issue in wire-
less networks, especially in heterogeneous environments

consisting of smaller cells deployed to meet the explosively
increasing traffic demand, where interference poses a seri-
ous obstacle for wireless communications [1]. Then, several
methods have been proposed in the literature to deal with
interference, which are either based on accounting other users’
signals as noise, or trying to orthogonalize the communication
links. Using any of these two approaches in a K-user MIMO
system gives each user a portion of 1/K of all available
resources. Consequently, when the number of users increases,
the amount of resources devoted to each user considerably
decreases [2].

On the other hand, interference alignment (IA) is a promis-
ing technique that exploits the spatial dimensions offered by
multiple antennas to coordinate transmissions, such that the
interference at each receiver can be reduced. A measure of
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the sum-capacity of interference channels is given by the
degrees of freedom (DoF), also denoted as multiplexing gain
in [3], which is defined as d = lim

SNR→∞
Csum(SNR)
log(SNR) where

Csum(SNR) is the sum capacity of the network. Also, the DoF
can be interpreted as the number of interference-free signaling
dimensions [4]. For instance, in a K-user MIMO system where
each user has N antennas, it has been shown that IA can yield
KN/2 DoF [5]. However, this result is highly dependent on
the channel extensions, which is not usually available, while
it can also increase the implementation complexity [6]. The
main idea behind IA is to design precoding and receiver filter
matrices in order to minimize the dimension of the interfering
signals. In addition, in contrast to other methods that require
the decomposition of multi-antenna nodes and infinite symbol
extensions, as in [3], linear beamforming-based interference
alignment schemes are simpler to implement [7].

Recently, various methods have been proposed to design
linear precoding and receive matrices for IA, as in [4], [7]–
[11]. For instance, the authors in [4] propose a rank con-
strained rank minimization (RCRM) approach, whose goal
is to minimize the rank of the interference matrix, which
consequently reduces the dimension occupied by the interfer-
ence. In addition, [4] also shows that the RCRM approach
is equivalent to maximize the DoF in MIMO interference
channels. Nevertheless, due to the non-convexity and NP-
hardness of the RCRM problem, the nuclear norm has been
used in [4] as an approximation for the rank function, which
was replaced in [8] by the sum of log functions. Alternatively,
other approaches have employed algorithms to optimize ob-
jective functions, e.g., SINR maximization [9], or interference
leakage minimization [10].

An important issue for IA techniques is the uncoordinated
interference, which severely degrades the performance of the
coordinated part of the network [12]. For instance, in hetero-
geneous pico-cell networks, the interference caused by femto
and home base stations are usually sources of uncoordinated
interference, whose associated users are not always able to
cooperate. Thus, their interference cannot be fully aligned.

Furthermore, interference is also an important issue for
relay-aided MIMO networks, since it impacts the signal re-
ceived at the relay and at the destination simultaneously.
Moreover, the design of relay processing matrices becomes
a complicated task [13]. Unfortunately, previous single-hop
IA algorithms are not easily applicable for relay-aided sce-
narios, once the power constraints of relays depend on the
precoding matrices at transmitters, as well as on the processing
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matrices at the relays. Recently, the number of methods has
been proposed to design processing matrices for relay-aided
interference channels such as [6], [14]–[16]. For instance,
in [14] the authors propose two IA approaches for an amplify-
and-forward (AF) relay channel, extending previous proposals
for the single-hop scenario [10], [17]. AF relaying has been
chosen due to its lower complexity and shorter delay compared
to decode-and-forward (DF) relaying [18]. Then, in the first
approach the sum power of the interference at the receiver is
minimized, while the second approach aims at minimizing the
weighted-sum mean square errors (WMSE).

A. Contributions

In this paper, we design IA techniques in scenarios subjected
to uncoordinated sources of interference. Then, two examples
of these scenarios would be the heterogeneous networks,
which can be modeled as a MIMO interference channel where
interference of neighbor femto-cells are not coordinated with
interference of the macro BS; and a relay-aided scenario,
where the noise enhanced by relays can also be seen as
uncoordinated interference.

The main contribution of this paper relates to three issues.
Firstly, the rank function of a semidefinite matrix is defined
by the number of non-zero singular values of it, and because it
is non-convex, we need to use a surrogate to minimize it. The
surrogate of the rank function defines how we treat the singular
values. The first contribution of this paper relates to this issue.
We use the l2 norm of singular values of the interference
matrix to minimize the rank of it, in which larger singular
values will have higher weights than in the l1 norm [4]. This
difference in relative weightings for small and large residuals
is reflected in the solutions of the associated approximation
problems. For instance, when the effect of interference is
strong the interference matrix can have larger singular values,
and thus minimizing the l2 norm is a reasonable choice
because it penalizes the large singular values more than the
smaller ones. Moreover, in the second method we use the
Schatten-p norm as the surrogate of the rank function. The
Schatten-p norm is a proper candidate because its behavior is
more similar to the rank function (it treats the singular values
comparatively equally) than the nuclear norm [4] and the log
function [8]. Thus, using the Schatten-p norm can help us to
obtain lower rank solutions which means that the dimension
occupied by the interference matrix becomes smaller, and
higher DoF interpreted as the number of interference-free
signaling dimensions can be obtained.

Secondly, in the RCRM framework, the signal matrix should
be full rank. Authors in [4], [8] have restricted their analysis to
positive definite matrices which are full rank. However, there
are matrices which are not positive definite but still they are
full rank. Considering those matrices enables us to expand
the feasible set of our optimization problem. Expanding the
feasible set of an optimization problem can lead to improved
results, once more candidates to the solution are considered.

Thus, we propose a new convex constraint that yields two
important improvements in the IA context. First, the proposed
constraint expands the feasible set of our optimization problem

compared to the other approaches in the literature (e.g., [4]),
which allows increased performance in terms of the sum-rate
at medium and high SNR. Second, the proposed constraint
provides lower rank solutions with respect to the interference
matrix, consequently obtaining better DoF. We also propose a
new method to deal with interference in the AF relay-aided
MIMO system, for which a modified weighted-sum method is
proposed. The modified approach employs a set of weighting
parameters in order to find more solutions which can increase
our abality to get better results.

Thirdly, in comparison with [4], [8]–[10], we consider
the effect of imperfect CSI for coordinated and uncoordinated
cases, and a method has been proposed to deal with it. In
fact, since the performance of IA methods degrades in the
present of imperfect CSI, proposing approaches to deal with
it is important. In this case, we face enhanced noise whose
power scales with the desired signal power which degrades
the performance of IA.

Notation: The expectation operator is denoted by E [.]. The
Hermitian transpose of a matrix A, its trace and its i-th
largest singular value are denoted by AH , tr(A) and δi(A),
respectively. Moreover, 1a and Ia are the square matrix of
ones and the identity of order a, respectively, while 0a×b is
an a× b matrix of zeros. Finally, A(i, j) denotes the element
in the i-th row and the j-th column of A.

II. PROPOSED METHODS FOR MIMO INTERFERENCE
CHANNELS

A. System Model for MIMO Interference Channel

Let us consider a K-user interference channel with K
transmit-receive pairs and M sources of uncoordinated inter-
ference. As we stated, in heterogeneous networks, femtocells
and home base stations may cause uncoordinated interference.
For instance, in the LTE heterogeneous network, traditional
base stations and picocells coexist with femtocells and home
base stations. In this network, there are interfaces S1 and
S11 which support data traffic between the corresponding
nodes that create uncoordinated interference. By using those
interfaces, information of uncoordinated interference can be
obtained [12]. Each transmitter and receiver has Nt and Nr
antennas, respectively. Moreover, transmitters are assumed to
be synchronized and each user transmits the symbol vector
sk ∈ Rd×1, k = 1, · · · ,K, to its associated receiver. Indeed,
IA needs synchronization to avoid any timing and carrier
frequency offsets. In the absence of synchronization, additional
interference terms are added to our system, and make it too
complicated. To meet this requirement, some synchronization
strategies such as using GPS satellite signals or software
defined radio (SDR) implementation have been introduced
[19]–[21]. Also, (Nt ×Nr, d)K denotes this K-user MIMO
system, where d is the DoF intended by each user [22], i.e., the
number of signal space dimensions that are free of interference
which is denoted as multiplexing gain [4]. Then, the received
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signal at the k-th receiver after linear processing is

yk = WH
k Hk,k F ksk +WH

k

K∑
l=1,l 6=k

Hk,l F lsl

+WH
k

M∑
m=1

∼
Hk,m

∼
Fm xm +WH

k nk (1)

where Hk,l ∈ RNr×Nt represents the channel between the
k-th receiver and the l-th transmitter, while

∼
Hk,m ∈ RNr×Nm

is the channel between the k-th receiver and the m-th un-
coordinated source. Moreover, W k ∈ RNr×d is the linear
receive filter, F k ∈ RNt×d and

∼
Fm ∈ RNm×dm are the

precoding matrices at the k-th transmitter and at the m-th
uncoordinated source, respectively, xm ∈ Rdm×1 denotes the
symbol vector of the m-th uncoordinated source, and nk is
the zero-mean complex additive white Gaussian noise with
covariance σ2

k INr
.

Generally, IA relies on channel state information (CSI),
and most IA approaches have assumed of having perfect CSI
knowledge at the transmitter and receiver nodes. However, this
assumption is unpractical due to the channel estimation errors,
feedback delay, etc. Thus, in this paper we consider the effect
of imperfect CSI caused by channel estimation errors.

To do this, we model the estimated channel matrices for
coordinated and uncoordinated cases, respectively, as Ĥk,l =
Hk,l + 4k,l and Ψ̂k,m = H̃k,m + 4̃k,m, where 4k,l,
4̃k,m are the additive estimation error imposed on the CSI.
For the coordinated case, the channel estimation errors are
uncorrelated and orthogonal with Hk,l, so that their entries are
assumed to be i.i.d. zero mean circularly symmetric Gaussian
random variables with variance σ2

4. This also holds for the
uncoordinated case (with variance σ2

4̃). Therefore, the vari-
ances of the channel entries and the estimated channel entries
σ2
h,σ2

ĥ
for coordinated interference, σ2

h̃
, σ2

Ψ̃
for uncoordinated

interference can be written as

σ2
4 = (1− ρ2)σ2

h, σ
2
4̃ = (1− τ2)σ2

h̃
(2a)

σ2
ĥ
= ρ2σ2

h, σ
2
Ψ̂
= τ2σ2

h̃
(2b)

where ρ and τ denote the estimation quality for both cases
(e.g., denoting full CSI when ρ = 1). Therefore, the received
signal at the k-th receiver with imperfect CSI is

yk−sum = yk−es−W
H
k

K∑
l=1

4k,l F lsl−WH
k

M∑
m=1

4̃k,m

∼
Fm xm

(3)
where yk−es denotes the received signal at the k-th receiver
by using the estimated channel matrices (Ĥk,l, Ψ̂k,m) in (1).

The main IA goal is that the desired signal spans over all d
dimensions, at the same time that the interference subspaces
have zero dimension. Therefore, perfect IA holds when the
following conditions are satisfied:

WH
k Hk,l F l = 0, (4)

rank
(
WH

k Hk,k F k

)
= d, (5)

where we assume that all users intend to achieve the same

DoF given by d.

The system (Nt × Nr, d)K is proper when the number of
variables is equal or smaller than the number of equations,
implying in Nr +Nt− d(K +1) ≥ 0, which has been shown
to be necessary but not sufficient in a general case [22]. Never-
theless, when Nt = Nr the necessary condition also becomes
sufficient [3], which was latter shown in [23] that the necessary
condition can be sufficient even when Nt 6= Nr. However, due
to the considered sources of uncoordinated interference, even
if (4) and (5) are satisfied, the DoF d may not be achieved due
to the presence of the uncoordinated interference [23]. Indeed,
since the system is improper, the dimension of interference is
not zero. Thus, designing precoding and linear receive matrices
to minimize the rank of the interference is the main purpose
here.

Defining the signal and interference matrices as Sk and Jk,
∀k ∈ [1,K], respectively as

Sk , WH
k Hk,k F k, (6)

Jk , WH
k

[
{Hk,l F l}Kl=1,l 6=k · · ·

{ ∼
Hk,m

∼
Fm

}M
m=1

]
, (7)

where Jk ∈ Rd×[(K−1)d+Am] and Am =
∑M
m=1 dm. The

columns of Sk span the subspace in which the k-th receiver
observes the transmitted signal, and the interference subspace
is spanned by the columns of Jk. Besides, DOF of the k-th
user can be expressed as dk = rank(Sk) − rank(Jk) [4]. We
can state (4) and (5) as rank(Sk) = d and rank(Jk) = 0.

Therefore, to maximize DOF of each user (via minimizing
the rank of the interference matrix and fixing the rank of the
signal matrix), the precoding and receive filter matrices are
designed as follows:

min
W k,F k,
k∈[1,K]

K∑
k=1

rank(Jk), (8a)

s.t.: rank(Sk) = d. (8b)

The minimization problem in (8) involves the rank function
of the interference, which is intractable in closed-form. In the
literature, the nuclear norm (or l1 norm of singular values)
has been used as a surrogate of the rank function in [4].
The nuclear norm is defined as the sum of the singular
values of the matrix, denoted by ‖.‖∗ =

∑rank(.)
i=1 δi(.). Then,

since the rank of a semidefinite matrix equals to the number
of its non-zero singular values, it is expected that lower
rank solutions are obtained by minimizing the nuclear norm.
However, although it can be solved efficiently [24], the nuclear
norm emphasizes small singular values, while less weight is
put on large singular values [25]. When perfect IA cannot
be attainable, then the rank of the interference matrix is not
zero, a difference between the rank function and nuclear norm
appears. Therefore, the number of DoF decreases.

This motivates us to search for other approaches in order to
increase the DoF. In the following, we propose two semidef-
inite programming (SDP)-based rank minimization methods
with the ability to enhance the performance of IA in the
presence of uncoordinated interference sources.
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B. SDP Constrained l2 Norm Minimization for Perfect CSI

Choosing appropriate weights for the singular values is
an important issue to minimize the rank function, espe-
cially in presence of uncoordinated interference (Nr +Nt −
d(K + 1) ≥ 0 does not hold, and the rank of interference
matrix is not zero), and this leads to increase the singular
values of Jk (then DoF decreases).

This can be shown via the interpretation of the singular
value decomposition (SVD). From linear algebra, the length
of the projection of ji (the i-th row of JH ) onto v is ||jiv||;
thus, the sum of length squared of the projections is ||JHv||2.
Moreover, the first singular value of JH which is denoted
by v1 is a column vector that maximizes the sum of length
of the projections onto v i.e. v1 = argmax

||v||=1

||JHv||2. Also,

σ2
1 = ||JHv1||2(σ1 is the first singular value of JH ) is the

sum of the squares of the projections of the points to the
line determined by v1 [26]. We can continue this procedure
to find all singular vectors (they should be perpendicular to
each other). Suppose that we add a new column to J (for
instance one uncoordinated interference source exists in the
network), because the cost function that yields v1 is separable,
the singular values of JH increases. Therefore, existence of
uncoordinated source leads to increase the singular values of
J.

To minimize the rank of interference matrix, minimizing
l2 norm of its singular values is a good candidate for such
scenarios since it sets higher weights for larger singular values.
Indeed, in lp norm approximation, a penalty function is defined
as φp(u) = |u|p, where u is denoted as residual. Then,
comparing the l1 and l2 norms, for small u we will have
φ1(u)� φ2(u), meaning that the l1 norm approximation [4]
will put relatively larger emphasis on small residuals compared
to the l2 norm approximation. However, for large u we will
have φ2(u) � φ1(u); thus, the l1 norm puts less weights
on large residuals in comparison with l2 norm approximation
[25]. Consequently, l2 norm yields fewer large singular values
than the nuclear norm [4]. This characteristic is beneficial
to achieve higher DoF with uncoordinated interference. Thus,
using the l2 norm to approximate the rank function we have

min
W k,F k,
k∈[1,K]

K∑
k=1

tr(Zk), (9a)

s.t.: rank(Sk) = d, (9b)

Zk = JHk Jk, (9c)

recalling that Sk and Jk are respectively given by (6) and
(7). Moreover, since (9c) is not a constraint of a convex
optimization problem, we use the Schur complement to convert
it into a linear matrix inequality (LMI). To this end, we
relax (9c) to Zk � JHk Jk. Using the schur complement, this

constraint can be expressed as follows
(
Id Jk
JHk Zk

)
� 0 [27].

so that

min
W k,F k,
k∈[1,K]

K∑
k=1

tr(Y k), (10a)

s.t.: rank(Sk) = d, (10b)
Y k � 0ζ×ζ , (10c)

Y k =

(
Id Jk
JHk Zk

)
, (10d)

with ζ = Kd+Am.
Yet, the rank constraint in (10b) does not imply a convex

feasible set. To address this issue, we restrict the signal matrix
to positive definite matrices, which are full rank (they satisfy
(10b)). In order to satisfy this criterion, we resort to the
following lemma.

Lemma 1. Sk is positive definite and full rank when

Sk − γ Id � 0d×d, (11)

where 0 < γ � 1.

Proof. If the scalar bTAb is positive for any given non-zero
column vector b, then the symmetric matrix A is positive
definite. Due to the fact that (11) is positive semidefinite, we
have

bT (Sk − γId)b ≥ 0, (12)
bTSkb ≥ γbT Idb > 0. (13)

Then, since Id is positive definite and γ > 0, Sk is also
positive definite and full rank.

Consequently, by using Lemma 1 we can state our opti-
mization problem as follows:

min
W k,F k,
k∈[1,K]

K∑
k=1

tr(Y k), (14a)

s.t.:Sk − γ Id � 0d×d (14b)
Y k � 0ζ×ζ , (14c)

Y k =

(
Id Jk
JHk Zk

)
, (14d)

Lemma 2. The dual form of (14) at each iteration of the al-
ternating minimization approach can be expressed as follows:

max

K∑
k=1

tr (γC1,k −D3,k) (15a)

s.t.: Iζ −C2,k +DD1,k +DD2,k = 0ζ×ζ , (15b)
D1,k −C1,k = 0d×d, (15c)
C1,k � 0d×d, (15d)
C2,k � 0ζ×ζ , (15e)
Hk,kF kD1,k + ΘD2,k = 0Nr×d, (15f)

where C1,k and C2,k are Lagrange multipliers associated
with the inequality constraints, D1,k, D2,k and D3,k are
Lagrange multipliers associated with the equality constraints,
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while Θ =

[
{Hk,lF l}Kl=1,l 6=k · · ·

{ ∼
Hk,m

∼
Fm

}M
m=1

]
, DD1,k =(

0d×d 0d×(ζ−d)
D2,k 0(ζ−d)×(ζ−d)

)
and

DD2,k =

(
D3,k 0d×(ζ−d)

0(ζ−d)×d 0(ζ−d)×(ζ−d)

)
.

In order to obtain the dual problem of (14) at each iteration
of the alternating minimization approach, which is a single
variable problem, we employ the Lagrange dual function.
Please see Appendix A.

Since, we replace (10b) by (11), our optimization problem is
convex and SDP at each iteration of the alternating minimiza-
tion approach. Therefore, strong duality holds ( means that the
optimal values of the primal and dual problems are equal) at
each iteration of the alternating minimization approach.

Let us now introduce a matrix Υ into Lemma 1 in order
to consider new possible solutions that have been disregarded
in [4], [8]. As we stated before, considering the new solutions
can lead to get a better result. Thus, we have:

Sk + Υ− γ Id � 0d×d. (16)

If Υ satisfies tr(C1,kΥ) ≥ 0, from Proposition 1, we
conclude that the optimal value of the dual problem associated
with the constraint in (16) is smaller than the case when
Υ = 0. Therefore, adding the matrix Υ can decrease the
rank of the interference matrices compared to the optimization
problem in (14). Consequently, the IA scheme may achieve
higher DoF.

Proposition 1. Introducing the matrix Υ using (16) modifies
the objective function of the dual problem as follows:

max tr
(
C1,k(γId −Υ)−D3,k

)
. (17)

Proof. Please see Appendix B.

Proposition 2. Let the optimal values of the problem in (14),
associated with the constraints in (11) and (16) be P ∗ and
P ∗(Υ), respectively. Then, for any Υ we have that

P ∗(Υ) ≥ P ∗ − tr(C∗1,kΥ). (18)

Proof. Please see Appendix C.

Thus, in order to be as close as possible to the lower bound
of P ∗(Υ), Υ should be relatively small. This implies that,
in order to obtain lower rank solutions for the interference
matrix, we choose small values for the entries of Υ in a way
that the condition tr(C1,kΥ) ≥ 0 is satisfied. Since C1,k

is positive semidefinite, 1d satisfies tr(C1,kΥ) ≥ 0. Indeed,
tr(C1,kΥ) equals the summation of the diagonal elements of
C1,kΥ. When Υ = 1d, tr(C1,kΥ) equals the summation of
all elements of C1,k which is equivalent to aT1 C1,ka1 where
a1 is a vector that all elements of it equals one. Besides, C1,k

is positive semidefinite which leads to aT1 C1,ka1 ≥ 0. Thus,
we can conclude that tr(C1,kΥ) ≥ 0. Therefore, the matrix
Υ is chosen as follows:

Υ = υ 1d, (19)

where υ is a positive constant. Although (16) does not
guarantee that Sk is positive definite, our results show that

Algorithm 1 Alternating minimization approach to solve the
optimization problem in (10)

1: Choose an arbitrary matrix W k, k ∈ [1,K], ε and n = 1
2: fix W k and solve (20) with respect to F k

3: fix F k and solve (20) with respect to W k

4: if rank(Sk) 6= d then
5: υ → υ/2
6: else
7: end algorithm
8: end if
9: n = n+ 1

10: Until f(n)− f(n− 1) ≤ ε

by choosing sufficiently small values for υ provides full
rank Sk. Either way, if Sk is not full rank, we decrease υ
step by step until a full rank matrix is obtained. Therefore,
one can conclude that using Υ expands the feasible set of
the optimization problem, which enables us to obtain lower
optimal values.

Finally, our proposed optimization problem can be state as:

min
W k,F k,
k∈[1,K]

K∑
k=1

tr(Y k), (20a)

s.t.:Sk + Υ− γ Id � 0d×d (20b)
Y k � 0ζ×ζ , (20c)

Y k =

(
Id Jk
JHk Zk

)
, (20d)

since (20) has two variables, we use an alternating minimiza-
tion approach [28] to solve it which is detailed in Algorithm 1
where f(.) is the cost function of the optimization problem and
ε is a convergence threshold.

C. SDP Constrained l2 Norm Minimization for ImPerfect CSI

As we can observe from (3), in the imperfect CSI case, we
have additional terms at the receivers, due to the estimation
noise, which scales up with the power of transmitters (es-

pecially due to the term WH
k

K∑
l=1

4k,l F l). This can reduce

DoF of the network, making it interference-limited. Thus,
to tackle this issue, we can minimize the power of the
noise caused by imperfect CSI at each receiver expressed

as
K∑
l=1

σ2
4tr(W

H
k tr(FlF

H
l )Wk) for the k-th receiver. The

power of enhanced noise does not imply a cost function of
a convex optimization problem. One approach to minimize it
could be to fix Wk and minimize tr(FlF

H
l ) in a first moment,

then to fix Fl and minimize tr(WkW
H
k ) secondly. Since the

former terms are non-convex, similar to (9) we can use the
Schur complement to relax them. Consequently, we have the
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following optimization problems for the imperfect CSI case:

min
F k

k∈[1,K]

K∑
k=1

tr(Y k) +

K∑
k=1

tr(Rk), (21a)

s.t.:Sk + Υ− γ Id � 0d×d (21b)
Y k � 0,Rk � 0 (21c)

Y k =

(
Id Jk
JHk Zk

)
,Rk =

(
I Fk

FHk R′k

)
(21d)

and

min
W k

k∈[1,K]

K∑
k=1

tr(Y k) +

K∑
k=1

tr(Γk), (22a)

s.t.:Sk + Υ− γ Id � 0d×d (22b)
Y k � 0,Γk � 0 (22c)

Y k =

(
Id Jk
JHk Zk

)
,Γk =

(
I Wk

WH
k Γ′k

)
(22d)

where R′k � FHk Fk and Γ′k � WH
k Wk. The procedure to

solve (21)-(22) is similar to that of (20).

D. Schatten-p Norm Minimization

Alternatively, the Schatten-p norm may also be used as a
surrogate of the rank operator. The Schatten-p norm, with p ∈
(0, 1], is defined as

fp(A) =
∑
i>1

(δi(A))
p
, (23)

which equals to the nuclear norm when p = 1. Hence, the
nuclear norm is a special case of the Schatten-p norm. In
addition to, when p tends to zero, fp(A) → rank(A). This
property helps us to approximate the sum of the number of
non-zero singular values, instead of their magnitudes as in [4],
and in comparison with [8], it enables us to treat the singular
values closer to the rank function. Also, it suggests that the
Schatten-p norm may find low-rank solutions when p is small.

However, to avoid the non-differentiability of (23), we resort
to [29] so that the objective function to be minimized can be
written as

min
W k,F k

K∑
k=1

d∑
i=1

(δi(Jk) + ξ)
p
, (24)

where ξ is a constant with a small positive value. Yet, (24) is
not convex, so that we employ a Taylor expansion to linearize
it. Then, at the l-th iteration the expansion of (24) is given by

(
δi(J

l
k) + ξ

)p
+

 p(
δi(J

l
k) + ξ

)1−p

(δi(Jk)− δi(J lk)) .
(25)

Here, J lk is fixed and can be removed. As a result, the objective
function simplifies to

min
W k,F k

K∑
k=1

d∑
i=1

p δi(Jk)(
δi(J

l
k) + ξ

)1−p . (26)

Algorithm 2 Iterative algorithm to solve (27)
1: Choose an arbitrary matrix W k, k ∈ [1,K], ε and l = 1
2: G0

k ← Id
3: for n = 1 : nmax do
4: fix W k and solve (27) with respect to F k

5: fix F k and solve (27) with respect to W k

6: if rank(Sk) 6= d then
7: υ → υ/2
8: else
9: end algorithm

10: end if
11: end for
12: l = l + 1
13: update Gl+1

k according to J lk
14: Until f(l)− f(l − 1) ≤ ε

Proposition 3. The complete optimization problem using the
Schatten-p norm is given by:

min
W k,F k

K∑
k=1

∥∥∥Gl
kJk

∥∥∥
∗
, (27a)

s.t.: Sk + Υ− γ Id � 0d×d, (27b)

where Gl
k = ΛkΦ

l
kΛ

H
k is the weight matrix and Λk is

obtained by the singular value decomposition of Jk. Moreover,
Φl
k ∈ Rd×d is a diagonal matrix whose i-th diagonal element

is given by p

(δi(Jl
k)+ξ)

1−p .

Proof. Please see Appendix D.

An iterative approach to solve (27) is formalized by Algo-
rithm 2 where f(.) is the cost function of the optimization
problem and ε is a convergence threshold. For the imperfect
case, we can use (21)-(22) (we should just use (27a) instead

of
K∑
k=1

tr(Y k)).

III. THE PROPOSED METHOD FOR RELAY-AIDED MIMO
INTERFERENCE CHANNEL

Now, we extend the previous system model to the relay-
aided MIMO interference channels. Let us assume that X half-
duplex AF relays assist the communication among the K user
pairs. This system can be represented by (Nt × Nr, d)

K +
(Nx)

X , where Nx is the number of antennas at each relay.
Moreover, we assume no direct link between transmitters and
receivers, so that we denote the channel between the k-th
transmitter and the x-th relay by Hx,k ∈ RNx×Nt , while
the channel between the x-th relay and the k-th receiver is
Gk,x ∈ RNr×Nx .

Due to the half-duplex assumption, the communication
process contains two phases. First, each x-th relay receives
yx,r =

∑K
k=1 Hx,k F k sk + nx, where F k is the precoding

matrix used by the k-th transmitter, and nx is the noise vector
with zero mean and covariance σ2 I

Nx
. Then, in the second

phase, the relays amplify their received signals and forward
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them to the receivers. After applying the linear receive filter
W k ∈ RNr×d, each k-th receiver observes

yk =

X∑
x=1

WH
k Gk,xUxRx,k +WH

k

K∑
l=1,l 6=k

X∑
x=1

Gk,xUxRx,l

+WH
k

X∑
x=1

Gk,xUxnx +WH
k fk, (28)

where Ux ∈ RNx×Nx , ∀x ∈ [1, X], is the processing matrix
at the x-th relay, Rx,l = Hx,l F l sl, and fk is the zero-mean
white Gaussian noise with covariance σ2 I

Nr
.

Moreover, observing (28) we remark that its second term
represents the interference produced by the other transmitters
at each receiver. In addition, notice also that nx in the third
term of (28) is amplified by the relays along with the desired
signal, which we denote by enhanced noise. This issue cannot
be overlooked once it provides a serious obstacle in achieving
higher DoF [14]. Therefore, our approach for this AF relay-
aided MIMO interference scenario is to minimize the effect
of both the interference and the enhanced noise in a unified
design1.

First, let us define the transmit power of the x-th relay and
of the k-th transmitter as

PRx =

K∑
k=1

tr
(
UxHx,k F k F

H
k HH

x,kU
H
x

)
+ σ2I

Nx
tr
(
UxU

H
x

)
,

(29)

PUk =tr
(
F k F

H
k

)
, (30)

respectively, while the signal and interference matrices
(Sk,Jk) are given by

Sk ,
X∑
x=1

WH
k Gk,xUxHx,k F k, (31)

Jk , WH
k

[
{Gk,xUxHx,l F l}l=K,x=X

l=1,l 6=k,x=1

]
, (32)

with Jk ∈ Cd×[(K−1)dX].
Furthermore, the sum power of the enhanced noise can be

written as

N =

K∑
k=1

X∑
x=1

σ2tr
(
WH

k Gk,xUxU
H
x GH

k,xW k

)
, (33)

The optimization problem to minimize the effects of interfer-
ence (the rank of interference) and the enhanced noise (the
sum-power of enhanced noise) by designing Wk,Fk and Ux

can be staded as follows :

min
W k,F k,Ux,

k∈[1,K], x∈[1,X]

K∑
k=1

rank (Jk) +N, (34a)

s.t.: PRx = P1, (34b)
PUk = P2, (34c)
rank (Sk) = d, (34d)

1Notice that the enhanced noise in the relay-aided scenario can also be
seen as a source of single-hop interference from uncoordinated relays which
impacts receivers, as that considered in Section II-A.

where P1 and P2 are the amount of power available at each
relay and transmitter, respectively. In (34), we aim to minimize
the rank of the interference matrix and the sum power of the
enhanced noise.

In this section, we propose a weighted-sum method to
solve (34). We start with the design of the precoding matrix
F k, for which we employ the Schatten-p norm as a surrogate
of the rank function in (34a), which implies in (34d) being
replaced by (16). Moreover, since F k does not affect the sum-
power of the enhanced noise, the term N in (34a) can be
removed here. In addition, (34b) and (34c) are not constraints
of a convex optimization problem, for which we use the
Schur complement to turn them into the convex constraints.
Therefore,

min
F k,k∈[1,K]

K∑
k=1

∥∥∥Gl
kJk

∥∥∥
∗
, (35a)

s.t.: FF k =

(
INt

FH
k

F k F kk

)
, (35b)

QQx,k =

(
Id QWH

x,k

QW x,k QAx,k

)
, (35c)

FF k, QQx,k � 0, (35d)

tr(FF k) = P2 +Nt, (35e)
K∑
k=1

tr(QQx,k) = P1 + d− tr(UxU
H
x ), (35f)

Sk − γ Id � 0d×d, (35g)

where F kk � F k F
H
k , QW x,k = UxHx,k F k, and

QAx,k � QWH
x,kQW x,k. Then, after solving (35) we still

need to normalize F k in order to satisfy the power constraint
in (34c), so that we define

_

F k = αF k as the new precoding
matrix2, where α =

√
tr(F kk)

tr(F kFH
k )

.

Next, we determine the processing matrices at the relays
(Ux), for which we need to take the sum-power of the
enhanced noise (N ) into account. Then, since N and the
constraint in (34b) are not defined according to a convex op-
timization problem, we again resort to the Schur complement

2Notice that the Schur complement relaxes (34b) and (34c) in order to solve
the optimization problem. Therefore, in order to satisfy these constraints we
still need to normalize the obtained solution.
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in order to rewrite the optimization problem as

min
Ux,x∈[1,X]

K∑
k=1

∥∥∥Gl
kJk

∥∥∥
∗
+

K∑
k=1

X∑
x=1

σ2 tr(T x,k), (36a)

s.t.: T x,k =

(
INt

TWH
x,k

TW x,k TAx,k

)
, (36b)

QQx,k =

 Id
_

QW
H

x,k
_

QW x,k QAx,k

 , (36c)

Cx =

(
Nx UH

x

Ux Uxx

)
, (36d)

K∑
k=1

tr(QQx,k) + tr(Cx) = P1 + d+Nx, (36e)

T x,k, QQx,k, Cx � 0, (36f)

Sk − γ Id � 0d×d, (36g)

where TW x,k = WH
k Gk,xUx, TAx,k � TWH

x,k TW x,k,
_

QW x,k = UxHx,k

_

F k, and Uxx � UH
x Ux.

Then, using the same rationale to obtain the linear receive
matrix W k we have

min
Wk,k∈[1,K]

K∑
k=1

∥∥Gl
kJk

∥∥
∗ +

K∑
k=1

X∑
x=1

σ2 tr(T x,k), (37a)

s.t.: T x,k =

(
INt TWH

x,k

TW x,k TAx,k

)
, (37b)

T x,k � 0, (37c)
Sk − γ Id � 0d×d. (37d)

Since (36) and (37) are bi-objective optimization problems,
there are multiple efficient (optimal) points that can optimize
them. The weighted-sum is a technique to find efficient points.
In this method, a constant weight is allotted to each objective.
Nevertheless, the weighted-sum cannot find the whole set of
efficient solutions, and the solutions are not uniformly dis-
tributed [30]. Therefore, in this paper we propose a modified
weighted-sum method inspired in [30] in order to find a larger
set of efficient optimal points.

The modified weighted-sum method changes weights adap-
tively, rather than increases weights with a fixed step as in
the traditional approach, which incurs in additional inequality
constraints. For instance, Fig. 1 illustrates a bi-objective opti-
mization problem, where f1 and f2 represent the two objective
functions, and whose Pareto front is a convex region with
non-uniform curvature. By using the traditional weighted-sum
method we find a few optimal solutions illustrated by the black
dots in the flat region of Fig. 1, but not all, regardless of the
size of the step of the weighting factor. However, by using
the modified weighted-sum method [30] we start with the
traditional approach using a large step size for the weighting
factor. Then, by calculating the distances between neighbour
solutions, denoted by µ, regions for further refinement are
identified, which allows us to enlarge the set of efficient
solutions, illustrated by the white dots in Fig. 1.

Therefore, we reformulate the objective functions in (36a)

Fig. 1. Modified weighted-sum method in a convex Pareto front. The black
dots are the solutions obtained with the traditional approach, while the white
dots are available due to the additional refinement of the modified approach.

and (37a) as

min w1

K∑
k=1

∥∥∥Gl
kJk

∥∥∥
∗
+

K∑
k=1

X∑
x=1

w2σ
2tr(T x,k), (38)

where w1, w2 are constant weights such that
∑2
i=1 wi = 1,

wi > 0. Moreover, due to the choice of the arbitrary offset
distance µ, two extra constraints must be imposed on (36)-
(37). Thus:

w1

∥∥∥Gl
kJk

∥∥∥
∗
≤ Zx1 − µ cos(θ), (39)

w2tr(T x,k) ≤ Zy2 − µ sin(θ), (40)

where θ = tan−1
(
−Z

y
1−Z

y
2

Zx
1−Zx

2

)
, with Zx1 and Zy1 representing

the respective positions of
∥∥∥w1G

l
kJk

∥∥∥
∗

and tr(w2T x,k) in
the Pareto front, calculated when w1 = α1 and w2 = 1− α1,
while Zx2 and Zy2 are the same positions recalculated when
w1 = 1− α1 and w2 = α1.

The proposed modified weighted-sum method is de-
tailed in Algorithm 3, where notice that a set of weights
{α1, α2, · · · , αn} is employed in order to expand the set
of solutions, once different weights yield different efficient
points. Moreover, similarly to previous sections we use an
alternating minimization approach to solve (36)-(37). In ad-
dition, due to the relaxation caused by the Schur comple-
ment, we still need to normalize the relay processing ma-
trix in order to satisfy (34b). Therefore, we define

_

Ux =
βUx as the new relay processing matrix, where β =√

P1

tr

(
Ux(Hx,k

_
F k

_

FH
k HH

x,k+σ2INr )UH
x

) , and we then choose the

relay processing and the linear receive matrices to maximize
the sum-rate. The complete method to find F k, Ux and W k

is formalized by Algorithm 4.

IV. CONVERGENCE AND COMPLEXITY

In terms of convergence, we use an alternating minimization
approach to solve our optimization problems. At each iteration,
we have a single-variable convex optimization problem; thus,
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Algorithm 3 Modified Weighted-Sum Method
1: Define the set of weights {α1, α2, · · · , αn}, ∀αi ∈ [0, 1], with
αi < αi−1 and ε

2: w1 ← αi
3: w2 ← 1− αi
4: solve (36)-(37) using the objective function defined by (38),

adding constraints (41)-(40)
5: w1 ← 1− αi
6: w2 ← αi
7: repeat (36)-(37)
8: Until f(n)− f(n− 1) ≤ ε

Algorithm 4 Algorithm to find F k, Ux and W k

1: Choose arbitrary matrices Ux and W k, n = 1
2: fix Ux and W k and determine F k by solving (35)
3: fix F k and jointly determine Ux and W k using Algorithm 3
4: n = n+ 1
5: Until f(n)− f(n− 1) ≤ ε

we can find a global optimum solution of that optimization
problem. This implies that after each iteration, the cost func-
tions of our multi-variable optimization problems are non-
increasing [28], [31]. This guarantees that the proposed meth-
ods will converge in terms of the cost function. However, we
should mention that because our all problems are non-convex
the convergence to a global minimum cannot be guaranteed.

The worst case complexity of a SDP problem can be
expressed as [32]:

O(L(b

N∑
i=1

n3
i + b2

N∑
i=1

n2
i + b3)) (41)

where b and ni are the number of equality constraints and the
dimensions of the i-th semidefinite cone, respectively. More-
over, L and N are the iteration complexity of the algorithm
and the number of semidefinite cone constraints, respectively.
Notice that, our proposed methods are SDP-based, and their
complexity can be expressed by (41). Besides, they differ from
other SDP-based approaches in the literature, since by using
constraint (11) we decrease the number of the inequalities
of rank minimization problem compared to [4], [8]. Thus
l2 norm minimization can get lower computation time. The
Schatten-p norm minimization and the algorithm in [8] have
two loops (the inner loop, and the outer loop); hence, we
can expect that their computation time is higher than l1 and
l2 minimization approaches. Furthermore, the complexity of
approaches in [9], [10] are O(N3

t ) or O(N3
r ) at each iteration,

but they require considerably more iterations to solve their
optimization problems. Therefore, it is difficult to compare
the overall complexity of the methods.

V. SIMULATION RESULTS

This section presents some numerical results employing the
MATLAB CVX toolbox [33]. The simulations are performed
over 200 channel realizations, where channel elements are
independent and identically distributed (i.i.d.) Gaussian ran-
dom variables with mean zero and unit variance. Moreover,
we assume σ2 = 1, while the transmit power of each user

1 1.5 2 2.5 3 3.5 4

Rank of uncoordinated interference

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 M

u
lt
ip

le
x
in

g
 G

a
in

l2 norm (proposed), n=3

Schatten-p norm (proposed), n=3, l=3

Log-det, n=3, l=3

RNMM, n=20

Nuclear norm, n=5

Min-Leakage, n=10000

Max-SINR, n=10000

(a) Average multiplexing gain

0 5 10 15 20 25 30 35 40 45 50

2
)

0

10

20

30

40

50

60

70

A
c
h

ie
v
a

b
le

 S
u

m
-R

a
te

 [
b

p
s
/H

z
]

Max-SINR, n=10000

l2 norm (proposed), n=3

Schatten-p norm (proposed), n=3, l=3

Log-det, n=3, l=3

RNMM, n=20

Nuclear norm, n=5

Min-Leakage, n=10000

(b) Achievable sum-rate

Fig. 2. Average multiplexing gain and achievable sum-rate for the
(10× 6, 4)3 MIMO interference channel with P = 30 dB and P1 = 0 dB.

is E[‖F ksk‖2] = P , ∀k, and the transmit power of each

uncoordinated source is E[‖
∼
F k′xf‖

2
] = Pk′ .

The methods proposed for the MIMO interference channel
are compared with other IA frameworks from the literature,
such as the nuclear norm minimization [4], log-det heuris-
tic [8], the SINR maximization [9], the interference leakage
minimization [10] and the re-weighted nuclear norm mini-
mization (RNNM) [7] approaches. In addition, in the relay-
aided scenario the modified weighted-sum method is compared
with the leakage minimization and the weighted-sum mean
squared error (WMSE) minimization from [14], a zero-forcing
(ZF)-based approach from [6], and a hybrid MMSE and ZF-
based scheme from [15].

A. MIMO Interference Channel

In this section, we consider imperfect CSI for uncoordinated
interference with τ = 0.8. First, we start with a (10× 6, 4)

3

MIMO interference scenario with one source of uncoordinated
interference, whose transmit power is P1 = 0 dB. Moreover,
throughout this section we employ Υ = 1d for the proposed
l2 and Schatten-p norm minimization methods. Then, Fig. 2a
shows the average multiplexing gain (or DoF) as a function of
the rank of uncoordinated interference, which ranges from 1 to
4, when the transmit power of each user is P = 30 dB. As it
can be noticed from the figure, the proposed schemes increase
the average multiplexing gain, with the l2 norm minimization
approach achieving the best performance in this scenario.
Moreover, it is worth noting that when the rank of uncoor-
dinated interference is higher than 3, all other methods cannot
provide any average multiplexing gain, while the proposed
methods achieve considerably better performance.

For the same scenario, Fig. 2b and Fig.3 depict the average
sum-rate (R) versus the signal-to-noise ratio (SNR) (P/σ2)
and the estimation quality (ρ) respectively, when the rank of
uncoordinated interference is equal to one. As we can observe
from Fig. 2b, Max-SINR [9], Min-Leakage [10] and l2 norm
minimization methods have very similar performances at low
SNR, with a slight advantage for the two former in that region.
Nevertheless, the l2 norm minimization method outperforms
the other schemes when P/σ2 > 20 dB, achieving higher
sum-rate than the other approaches when P increases. Such
increased performance is in part due to the expansion of the
feasible set of the optimization problem, which brings impor-
tant gains especially when the uncoordinated interferences are
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Fig. 3. The achievable sum-rate versus the estimation quality (ρ) for
(10× 6, 4)3 MIMO interference channel with one uncoordinated source, and
P = 20 dB and P1 = 0 dB .
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Fig. 4. Average multiplexing gain (or DoF) for the (10× 6, 4)3 MIMO
interference channel versus the rank of the uncoordinated interference sources
when there are two sources of uncoordinated interference.

strong. Also, Fig.3 shows the effect of imperfect CSI, and
based on it our proposed method can achieve higher sum-rate.

In Fig.4 we consider a (10 × 6, 4)3 MIMO interference
system with two sources of uncoordinated interference. We
plot the average multiplexing gain as a function of the rank
of the first uncoordinated source, while the rank of the second
uncoordinated source is fixed to 1. As it can be observed, the
proposed methods noticeably outperform the other approaches.
For example, when the rank of the first uncoordinated source
is equal to 2, all other methods do not obtain any average
multiplexing gain, while our proposed methods considerably
improve the IA performance.

In order to compare the computation time of each algorithm,
we show in Table I the average computation time of the
proposed l2 and Schatten-p norm methods, as well as the other
benchmark algorithms for two different MIMO scenarios:
(10× 6, 4)

3 and (6× 4, 2)
4. As we can observe, the average

computation of the l2 norm minimization approach is smaller
than all other schemes.

Finally, we compare three different MIMO scenarios in

TABLE I
AVERAGE COMPUTATION TIME OF THE IA SCHEMES.

MIMO Interference Scenario
(10× 6, 4)3 (6× 4, 2)4

l2 norm 3.95 s 3.77 s
Schatten-p norm 23.97 s 16.02 s
Nuclear norm [4] 8.47 s 5.80 s
Min-Leakage [10] 12.15 s 16.94 s
Log-det [8] 25.45 s 14.74 s
Max-SINR [9] 13.42 s 17.50 s
RNNM [7] 21.3 s 19 s
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Fig. 5. Average multiplexing gain (or DoF) for three different system models.

terms of the average multiplexing gain, while we increase the
number of antennas at the receiver: (10× 8, 4)

3, (8× 8, 4)
3

and (6× 4, 3)
3. Fig.5 depicts the average multiplexing gain,

where we observe that both l2 and Schatten-p norm methods
achieve higher DoF, in all scenarios.

B. Relay-Aided MIMO Interference Channel

In the relay-aided MIMO interference scenario we consider
µ = 0.01. Then, Fig. 6a illustrates the achievable sum-rate as
a function of the SNR for (2× 2, 2)

3
+ 32 system scenario.

As we can observe, the proposed modified weighted-sum
method considerably outperforms the WMSE and Leakage
Minimization approaches [14]. Such improvements are ob-
tained once our rank minimization approach tries to minimize
the dimensions occupied by the interference, which increases
the DoF. As a consequence, the sum-rate is also increased, es-
pecially at medium and high SNR. The Leakage Minimization
approach, on the other hand, tries to minimize the energy of
the interference. However, such lower-energy solutions lead to
lower DoF when compared to the rank minimization approach.
In addition, the WMSE method leads to an unfair distribution
of the rate among the users, with some transmitters having
much smaller rates than the others at medium and high SNR,
jeopardizing the sum-rate.

Finally, in Fig. 6b we consider a scenario of a macro base
station serving three users, and we plot the SINR as a function
of 1/σ2. Then, we compare our proposed method with a zero-
forcing (ZF)-based approach from [6] and a hybrid MMSE
and ZF-based scheme from [15]. As we observe, our proposed
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Fig. 6. The average sum-rate for (2× 2, 2)3+32 versus P/σ2, the achievable
SINR for (4× 2, 2)4 + 24 relay-aided MIMO interference channel as a
function of 1/σ2.

method obtains higher SINR than the other methods when the
SINR is greater than 15dB, while the hybrid MMSE and ZF-
based scheme performs better at low SINR.

VI. CONCLUSION

In this work, two rank minimization methods are proposed
for the MIMO interference channel when there are sources
of uncoordinated interference in the network for perfect and
imperfect CSI cases. Due to the non-convexity of the rank
function, we employ the l2 norm and the Schatten-p norm to
approximate the rank function. The l2 norm is a reasonable
choice when the perfect interference alignment is not attain-
able, while the Schatten-p norm generalizes the nuclear norm,
which is usually employed in this context, but with the advan-
tage that it provides solutions closer to the rank function when
p → 0. We also propose a new convex relaxation to expand
the feasible set of our optimization problem, by introducing
a matrix denoted by Υ, which provides lower rank solutions.
Besides, a new method is proposed to decrease the effect of
interference in the relay-aided MIMO interference channel,
for which a modified weighted-sum method is proposed. The
modified approach employs a set of weighting parameters in
order to expand the feasible set and provide more optimal
points. Finally, finding algorithms with lower complexity that
require less overhead which is important for the large networks
could be a topic for the future work. Also, developing fully
distributed IA methods especially for the relay-aided scenarios
is another interesting future topic.

APPENDIX A
PROOF OF LEMMA 2

To write the Lagrange dual function, we should con-
sider constraints (31) and (32). Moreover, according to con-
straint (10d), Y k(1:d, 1:d) = Ik, where Y k(1:d, 1:d) is a
submatrix of Y k. Thus, the Lagrangian associated with (10)

can be expressed as follows:

L(W ,C,D) =

K∑
k=1

tr
(
(Sk −WH

k Θ)D1,k

)
+

K∑
k=1

tr
(
(−Y k)C2,k

)
K∑
k=1

tr(Y k) +

K∑
k=1

tr
(
(−Sk + γId)C1,k

)
+

K∑
k=1

tr
(
Y k(1:d, 1:d)D3,k

)
−

K∑
k=1

tr(D3,kId)

+

K∑
k=1

tr
(
(Jk −WH

k Hk,lV l)D2,k

)
, (42)

where C1,k and C2,k are the Lagrange multipliers associated
with the inequality constraints, D1,k, D2,k and D3,k are the
Lagrange multipliers associated with the equality constraints,

and Θ =

[
{Hk,lF l}Kl=1,l 6=k · · ·

{ ∼
Hk,m

∼
Fm

}M
m=1

]
. Then, by

using (10d), we can rewrite the interference matrix based on
Y k as Jk = Y k(1:d, d+ 1:ζ), recalling that ζ = Kd+ Am.
Furthermore, we have

tr

(
Y k

(
0d×d 0d×(ζ−d)

C2,k 0(ζ−d)×(ζ−d)

))
= tr(JkD2,k). (43)

Moreover, since Y k(1:d, 1:d) = Id must be included as a
constraint to the dual problem. Thus,

tr

(
Y k

(
D3,k 0d×(ζ−d)

0(ζ−d)×d 0(ζ−d)×(ζ−d)

))
= tr

(
Y k(1:d, 1:d)D3,k

)
.

(44)

Finally, since (42) is a linear function it becomes unbounded
unless the following constraints hold:

Iζ −C2,k +DD1,k +DD2,k = 0ζ×ζ , (45)
D1,k −C1,k = 0d×d, (46)

C1,k � 0d×d, (47)
C2,k � 0ζ×ζ , (48)

Hk,kF kD1,k + ΘD2,k = 0Nr×d, (49)

where DD1,k =

(
0d×d 0d×(ζ−d)

D2,k 0(ζ−d)×(ζ−d)

)
and DD2,k =(

D3,k 0d×(ζ−d)

0(ζ−d)×d 0(ζ−d)×(ζ−d)

)
, yielding (15) and concluding the

proof.
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APPENDIX B
PROOF OF PROPOSITION 1

Using the constraint in (16) changes the Lagrangian of our
optimization problem as follows:

L(W ,C,D) =

K∑
k=1

tr(Y k) +

K∑
k=1

tr
(
(−Sk + γId −Υ)C1,k

)
+

K∑
k=1

tr
(
(Sk −WH

k Θ)D1,k

)
−

K∑
k=1

tr(D3,kId)

+

K∑
k=1

tr
(
Y k(1:d, 1:d)D3,k

)
+

K∑
k=1

tr
(
(−Y k)C2,k

)
+

K∑
k=1

tr
(
(Jk −WH

k Hk,lF l)D2,k

)
, (50)

where it is worth noting that the matrix Υ has no effect
in the constraints (45)-(49) because it does not depend on
any variable of the primal optimization problem. As a result,
only the cost function of the dual problem may be modified,
yielding (17).

APPENDIX C
PROOF OF PROPOSITION 2

As previously mentioned, based on strong duality the op-
timal values of both dual and original problem are equal.
Thus, let us suppose that the optimal value obtained by (15)
when Υ = 0 is P ∗, while P ∗(Υ) denotes the optimal
value of (15) with a non-zero Υ. Moreover, let C0

1,k and
D0

3,k be the optimal matrices of (15) when Υ = 0, so that
the maximum value of tr(C1,k −D3,k) associated with the
constraints in (15b)-(15f) is tr(C0

1,k − D0
3,k). On the other

hand, when Υ is non-zero we denote CΥ
1,k and DΥ

3,k as
the optimal matrices. However, since the constraints of (15)
remain unchanged and only the objective function is modified
according to Proposition 1 we can conclude that

tr(C0
1,k −D0

3,k) ≥ tr(CΥ
1,k −DΥ

3,k). (51)

Taking each objective function into account we have

P ∗ = tr(C0
1 −D0

3,k), (52)

P ∗(Υ) = tr(CΥ
1 )− tr(CΥ

1 Υ)− tr(DΥ
3,k). (53)

Then, we can write the following

P ∗ − P ∗(Υ) = tr(C0
1 −D0

3,k)− tr(CΥ
1 −DΥ

3,k) + tr(CΥ
1 Υ).

(54)

As long as tr(C0
1 − D0

3,k) − tr(CΥ
1 − DΥ

3,k) ≥ 0 and
tr(CΥ

1 Υ) ≥ 0 we can conclude that P ∗(Υ) ≥ P ∗ −
tr(CΥ

1 Υ), while as long as tr(CΥ
1 −DΥ

3,K) − tr(CΥ
1 Υ) ≤

tr(C0
1 −D0

3,k) we can also conclude that P ∗(Υ) ≤ P ∗.
Therefore,

P ∗ − tr(CΥ
1 Υ) ≤ P ∗(Υ) ≤ P ∗. (55)

Thus, when Υ is small P ∗(Υ) approaches to its lower
bound (P ∗ − tr(C1Υ)). As a result, Υ should be chosen
as a matrix with small entries, ensuring that tr(CΥ

1 Υ) ≥ 0.

APPENDIX D
PROOF OF PROPOSITION 3

The nuclear norm is defined as the sum of the singular
values of the matrix, denoted by ‖.‖∗ =

∑rank(.)
i=1 δi(.).

Thus, let us assume that (26) is the nuclear norm of a
given matrix Rk = Gl

k Jk. Then, due to the fact that the
SVD decomposition of Jk equals to ΛkΠkΨ

H
k , Gl

k must be
equal to ΛkΦ

l
kΛ

H
k in order to (26) and (27a) be equivalent

expressions, where Φl
k ∈ Rd×d is given by

Φl
k =


p

(δ1(Jl
k)+ξ)

1−p . . . 0

...
. . .

...
0 · · · p

(δd(Jl
k)+ξ)

1−p

 . (56)

Therefore, we have that

‖Rk‖∗ =
∥∥∥ΛkΦ

l
kΛ

H
k ΛkΠkΨ

H
k

∥∥∥
∗
=
∥∥∥ΛkΩkΨ

H
k

∥∥∥
∗
, (57)

where Ωk = Φl
k Πk is a diagonal matrix. Finally, according

to (57) we conclude that ‖Gl
kJk‖∗ =

d∑
i=1

p δi(Jk)

(δi(Jl
k)+ξ)

1−p .
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