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Abstract—A central machine is interested in estimating the
underlying structure of a sparse Gaussian Graphical Model
(GGM) from datasets distributed across multiple local machines.
The local machines can communicate with the central machine
through a wireless multiple access channel. In this paper, we
are interested in designing effective strategies where reliable
learning is feasible under power and bandwidth limitations.
Two approaches are proposed: Signs and Uncoded methods. In
Signs method, the local machines quantize their data into binary
vectors and an optimal channel coding scheme is used to reliably
send the vectors to the central machine where the structure
is learned from the received data. In Uncoded method, data
symbols are scaled and transmitted through the channel. The
central machine uses the received noisy symbols to recover the
structure. Theoretical results show that both methods can recover
the structure with high probability for large enough sample size.
Experimental results indicate the superiority of Signs method
over Uncoded method under several circumstances.

Index Terms—Structure learning, Gaussian graphical model,
distributed learning

I. INTRODUCTION

IN recent years, by the explosion of the volume of training
data, distributed machine learning has become more impor-

tant than ever. Many modern big datasets are distributed over
several hosting machines which are connected to each other
via some communication links. In such systems, designing
distributed learning algorithms which efficiently exploit the
available resource demands a careful design where intensive
computational workloads and the amount of data communica-
tions are taken into account.

This paper is focused on the problem of structure learn-
ing in Gaussian Graphical Models (GGMs) in distributed
environments. A GGM for a d-dimensional random vector
x = (x1, · · · , xd)T ∈ Rd is specified by a graph G(V, E) where
V = {1, · · · , d} is the set of vertices and E ⊆ V2 is the
set of edges. The model comprises all d-dimensional normal
distributions N(µ,Θ−1) where Θ is the precision matrix with
Θjk , 0 iff ( j, k) ∈ E. It worths mentioning that GGM is
indeed a Markov Random Field (MRF).

In our problem setting, we assume that the data are dis-
tributed over multiple local machines so that each one contains
a single dimension of the whole dataset. The local machines
are connected to a central machine via a wireless medium.
The central machine is responsible for inferring the conditional
dependencies between the gathered data by the local machines.
The system’s block diagram is depicted in Figure 1. We
also assume that the communication links between the local
and the central machine are bandwidth limited implying that

transmission of the whole local datasets to the central machine
is impossible. Due to this constraint, each local machine
transmits some information from its local dataset to the central
machine. Then, the central machine estimates the underlying
graph structure using received information from the local
machines.

In this paper, we consider a wireless multiple access channel
between the local machines and the central node. Each local
machine is equipped with a single antenna while the central
node is equipped with multiple antennas. Hence, the overall
channel between the local and central machines is modeled as
a single-input multiple-output multiple access channel (SIMO-
MAC).

We have proposed two communication schemes for trans-
mitting information from the local machines to the central
machine. In the first scheme, we have separate the source
coding from the channel coding. In this scheme, we quantize
the source samples into single bits and assume that there exists
a channel coding such that the bits can be sent through the
channel reliably. We refer to this scheme as Signs method in
the paper.

In the second scheme, we do not use any source and channel
coding. In this scheme, we put the source samples into the
channel without any encoding. At the central machine, we
directly estimate the underlying graph structure using received
data from the channel. We refer to this scheme as Uncoded
method.

We have shown through theoretical analysis and experi-
ments that by transmitting only 1 bit per sample; the central
machine can reliably recover the underlying graph structure.
More precisely, we have shown theoretically that by consum-
ing only 1 bit per sample, under some mild conditions, the
central machine can perfectly recover the graph structure with
high probability. Moreover, the true signs of the edges weights
of the graph are obtained.

The paper is organized as follows. In Section II, we provide
a brief review on structure learning of GGMs. Section III
describes the detail of our modeling for the source and the
communication channel. In sections IV and V, we describe
Signs and Uncoded methods, respectively. Section VI provides
experimental results to compare and evaluate the proposed
methods. Finally, Section VII concludes the paper.

II. RELATED WORK

The problem of structure learning of GGMs from data
samples has applications in many fields including biology
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Figure 1. The whole system block diagram.

and social networks. For example, it has been used for gene
regulatory networks reconstruction in [1], [2] and analysis of
users relationships in social networks in [3]. There are many
studies addressing this problem from various perspectives [4],
[5], [6].

The Chow-Liu algorithm obtains the maximum likelihood
estimate of the structure if the underlying graph is a tree
[7]. Although this algorithm is applicable for discrete random
variables, it can be used for tree structured GGMs in a similar
manner [8]. Tavassolipour et al. [9] proposed a distributed
version of the Chow-Liu algorithm and proved it can recover
the underlying tree structure with high probability. Tan et al.
in [10] and [11] provided an analysis of the error exponent of
the Chow-Liu algorithm on tree-structured GGMs.

GGMs have the property that the neighbors of each variable
can be obtained by solving a linear regression problem for the
corresponding variable on other variables. This approach is
referred to as neighborhood selection in the literature. For the
sparse structures, there are some methods which penalize the
linear regression problem with `1 of the coefficient vector [12],
[13].

Among the proposed methods for sparse structure esti-
mation of GGMs, the `1-regularized maximum likelihood
approaches are more popular [6], [12], [14]. This class of
model is analyzed in several articles (see [4] and refs therein).
For instance, Ravikumar et al. [4] analyzed the performance of
the `1-regularized maximum likelihood estimator (MLE) under
high dimensional scaling. They showed that with probability
converging to one, the estimated structure correctly specifies
the zero pattern of the true precision matrix. A similar study
is conducted by [15] which analyzed the consistency of the
`1-regularized MLE in the Frobenius norm.

Besides the lasso typed estimators, thresholding based es-
timators are proposed for sparse recovering of the precision
matrix [5], [8]. For example, Sojoudi [5] proposed a simple
thresholding method and showed, under certain conditions, the
resulting structure is identical to the structure obtained by the
lasso.

In the distributed setting, there are several studies which
address the problem of covariance/precision matrix estimation
[16], [17], [18]. Arroyo and Hou [18] studied the problem of
sparse precision matrix estimation in the situation where the
samples are distributed among several machines. Their work

differs from our setting in the sense that we assume the data
are split across dimensions whereas they split the data across
samples. Meng et al. [16] addressed estimation of the precision
matrix in a distributed manner where the zero pattern of the
precision matrix is known in advanced.

III. PROBLEM FORMULATION

We are given n i.i.d. random vectors drawn from a d-
dimensional zero mean normal distribution N(0,Qx) with
(Qx)j j = 1. The focus of this paper is the problem of
estimating the zero pattern of the sparse precision matrix
Θx = Q−1

x in a situation where the data is stored in d
separate local machines such that each machine possesses one
dimension of the sample vectors.

Denoting the whole gathered data by {x(1), · · · , x(n)}, the jth
machine captures the j-th dimension of the sample vectors.
We denote the j-th dimension of the i-th sample by x(i)j , i.e.

x(i) = [x(i)1 , · · · , x(i)
d
]T . Hence, the local data at the j-th local

machine is {x(1)j , · · · , x(n)j }.
The probability density function of the normal distribution

is given by

f (x;Θ) = 1√
det(2πΘ−1)

exp
{
−1

2
xTΘx

}
. (1)

The negative log-likelihood of n i.i.d. samples is given by

g(Θ) = tr(ΘSx) − log det(Θ), (2)

where Sx = 1
n

∑n
i=1 x(i)

(
x(i)

)T
is reffered to as sample covari-

ance matrix. One of the well known methods for estimating the
sparse precision matrix is to solve an `1-regularized maximum
likelihood function stated as

Θ̂ = arg min
Θ�0

{
g(Θ) + λn‖Θ‖1,off

}
, (3)

where ‖Θ‖1,off :=
∑

j,k |Θjk |, and λn is a user defined
regularization parameter. There is an efficient algorithm known
as glasso [19] for solving the above log-determinant program.

In [4], it is stated that the Hessian matrix of (2) is given by

Γ = ∇2
Θ
g(Θ)

���
Θ=Θx

= Θ−1
x ⊗ Θ−1

x . (4)
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where ⊗ is the Kronecker matrix product. The entry Γ(j,k),(l,m)
corresponds to the second derivative ∂2g

∂Θ jk∂Θlm
, evaluated at

Θ = Θx and Γ(j,k),(l,m) = cov{xj xk, xl xm}.
We define the set of non-zero entries in the true precision

matrix Θx as

S(Θx) = {( j, k) ∈ V2 |(Θx)jk , 0}. (5)

Recall that V = {1, · · · , d}. Note that S(Θx) includes the
diagonal entries. Let Sc(Θx) be the complement set of S(Θx)
which includes all pairs ( j, k) where (Θx)jk = 0. For any two
subsets T and T ′ of V×V , the notation ΓTT ′ denotes a |T |× |T ′ |
sub-matrix of Γ with rows and columns indexed by T and T ′,
respectively.

We adopt the incoherence condition used by Ravikumar et
al. [4] to obtain error bounds on consistency of the solutions.
We define max-row-sum norm of a d by d matrix X as

|||X |||∞ = max
i=1, · · · ,d

d∑
j=1

��Xi j

�� . (6)

Assumption 1. (Incoherence Condition [4])
There exists some α ∈ (0, 1] such that

|||ΓScS(ΓSS)−1 |||∞ ≤ (1 − α). (7)

An implication of the above condition is that the non-edge
pairs cannot have strong influence on the edges.

Assumption 2. (Covariance Control [4])
There exist constants κΣ, κΓ < ∞ such that

|||Qx |||∞ ≤ κΣ, (8)

|||Γ−1
SS |||∞ ≤ κΓ . (9)

The above assumptions imply that the covariance elements
along any row of Qx and Γ−1

SS have bounded `1 norms.
Having no access to the original data, the central machine

finds the solution of the optimization problem (3) using
received data from the local machines. The likelihood function
g(Θ) in (2) depends on the samples via the sample covariance
matrix Sx . Thus, obtaining an appropriate approximate of the
sample covariance matrix at the central machine would result
in a good estimate of the underlying structure.

A. Channel Model

There is a wireless channel between the local machines and
the central node. In this paper, we assume that the channel
can be modeled as a single-input multiple-output Gaussian
multiple access channel (SIMO-GMAC) with additive white
noise. The number of antennas at the receiver is assumed to
be m. All transmitters have equal transmit power which is
denoted by p. This implies, for all j, the following constraint
on the transmit symbols should be satisfied:

1
n

n∑
i=1

���s(i)j ���2 ≤ p, (10)

where s(i)j ’s are the channel inputs at the local machine j.
Denoting the transmit symbols by vector s, the channel output
is modeled by

y = Hs + z, (11)

where H ∈ Cm×d is assumed to be an invertible com-
plex matrix. In the fading environments, the channel gains
are drawn from independent circularly symmetric complex
Gaussian distribution. The additive noise z is an independent
circularly symmetric Gaussian vector with covaraience matrix
σ2
z Id .

IV. SIGNS METHOD

We assume that each local machine applies a sign function
on its local dataset to obtain binary data. More precisely, given
samples {x(1)j , · · · , x(n)j } at local machine j, it obtains the signs

dataset { x̂(1)j , · · · , x̂(n)j } where x̂j = sign(xj). Then, it transmits
the binary data to the central machine with the rate of 1 bit
per sample using a channel encoder and decoder.

Denoting the bit rate of the channel at local machine j by
Rj , the achievable bit rates for all machines are characterized
by [20]∑

k∈S
Rk ≤ lg det

(
p
σ2
z

HH
S HS + I |S |

)
, ∀ S ⊆ {1, · · · , d},

(12)
where HS is the sub-matrix of H that includes the rows and
columns indexed by S, HH is the Hermitian of H, I |S | is the
|S | × |S | identity matrix, and lg(·) is the logarithm function in
base 2. Throughout this section, we assume that Rj ≥ 1, for
all j = 1, · · · , d. Therefore, there exists a channel encoding to
transmit 1 bit per sample at each local machine.

At the central machine, our goal is to solve the optimization
problem (3) on the received binary data from all local ma-
chines. In order to obtain a solution that is close to the solution
obtained by the original data, we seek a suitable approximation
for the sample covariance matrix Sx in (3). Thus, our goal is to
estimate the sample covariance matrix as accurate as possible
using the received signs data. In this section, we propose an
estimator for the sample covariance matrix and theoretically
show its error decreases exponentially by the sample size n.

Let xj and xk be jointly normal with zero means, unit
variances and correlation coefficient ρjk . If x̂j and x̂k be the
corresponding sign variables, then the joint probability mass
function (pmf) of x̂j and x̂k is given by [21]

x̂j\x̂k −1 +1
−1 βjk/2 (1 − βjk)/2
+1 (1 − βjk)/2 βjk/2

(13)

where βjk ∈ [0, 1] and given by

βjk =
1
2
+

arcsin(ρjk)
π

. (14)

The equation (14) can be rewritten as

ρjk = sin(π(βjk −
1
2
)) = − cos(πβjk). (15)

Thus, by proposing an estimator for βjk , using (15) we can
obtain an estimator for ρjk . The following estimator for βjk
is optimal in the sense that it is unbiased and has minimum
variance (UMVE) [22],

β̂jk =
1
n

n∑
i=1
I(x̂(i)j x̂(i)

k
= 1), (16)
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where I(.) is the indicator function. β̂jk is indeed a binomial
random variable with success probability of βjk . By substitut-
ing β̂jk in (15), we use

ρ̂jk = − cos(πβ̂jk), (17)

as an estimator for ρjk . Although ρ̂jk is indeed biased, it is a
consistent estimator for ρjk . Following lemma gives an error
bound on this estimator.

Lemma 1. Let xj and xk be two jointly normal variables
with zero means, unit variances and correlation coefficient
ρjk . Then, for the estimator (17), we have

Pr
(��ρ̂jk − ρjk �� ≥ δ) ≤ 2 exp

(
− 2
π2 nδ2

)
, (18)

where δ ≥ 0.

Proof. Since the function cos(·) is a 1-Lipschitz function, i.e.
| cos(x) − cos(y)| ≤ |x − y |, we have

Pr
(
| ρ̂jk − ρjk | ≥ δ

)
= Pr

(
| − cos(πβ̂jk) + cos(πβjk)| ≥ δ

)
≤ Pr

(
π | β̂jk − βjk | ≥ δ

)
= Pr

(
| β̂jk − βjk | ≥

δ

π

)
.

Since β̂jk is sum of n independent Bernoulli random variables,
applying the Hoeffding inequality yields

Pr
(
| β̂jk − βjk | ≥

δ

π

)
≤ 2 exp

(
− 2
π2 nδ2

)
,

which completes the proof. �

Lemma 1 shows that the error of proposed estimator ρ̂jk
is controlled by the number of samples exponentially. Using
this estimator, we can obtain an estimator for the sample
covariance matrix as follows

Ŝx = − cos(π
2

B), (19)

where Bjk = β̂jk , and cos(.) function is applied on the input
matrix element wise, i.e. (Ŝx)i j = − cos(π

2
βi j). By substituting

the above sample covariance matrix into (3), we can solve the
regularized maximum likelihood problem.

Note that the sample covariance matrix Ŝx defined in (19)
is not necessarily positive semi-definite. But, it does not affect
the convexity and uniqueness solution of (3). Ravikumar et al.
[4] proved that the problem (3) is convex and has a unique
solution for any sample covariance matrix with strictly positive
diagonal elements which holds for Ŝx in (19).

By incorporating Lemma 1 and the theorems 1 and 2 in [4],
we can conclude that the precision matrix obtained by solving
(3) with the sample covariance matrix Ŝx in (28), recovers the
true structure with high probability. Moreover, the proposed
method correctly recovers the signs of the edges with high
probability.

More precisely, the eventM(Θx ; Θ̂x) indicates that Θx and
Θ̂x do agree on the zero entries and for the nonzero entries
they have the same sign. Theorems 1 and 2 state that the event
M(Θx, Θ̂x) occurs with high probability. Before stating the

theorems we should define some properties of the underlying
GGM. We denote the maximum degree of the underlying
graph structure by ∆. The minimum absolute value of the
edges weighs in the precision matrix is denoted by θmin which
is

θmin = min
(i, j)∈E(Θx )

| (Θx)i j |. (20)

Theorem 1. Consider a normal distribution satisfying the
incoherence Assumption 1 and 2 with parameter α ∈ (0, 1].
Let Θ̂x be the solution of the log-determinant program (3) with
sample covariance Ŝx in (19) and regularization parameter

λn = (8π/α)
√

1
2n ln 2

ε for some 0 < ε ≤ d−2. Then,
(a) If the sample size is lower bounded as

n > C2
sign ∆

2
(
1 +

8
α

)2
ln

2
ε
, (21)

where
Csign = 3

√
2πmax{κΣκΓ, κ3

Σ
κ2
Γ},

then with probability at least 1−d2ε , the edge set specified
by Θ̂x is a subset of the true edge set.

(b) If the sample size satisfies the lower bound

n > T2
sign

(
1 +

8
α

)2
ln

2
ε
, (22)

where

Tsign =
√

2πmax{κΓθ−1
min, 3∆ max{κΣκΓ, κ3

Σ
κ2
Γ}},

then,
Pr

(
M(Θ̂x ;Θx)

)
≥ 1 − d2ε . (23)

Remark 1. Note that the proposed sign method is applicable
for any channel with capacity greater than or equal to 1 bit.

V. UNCODED METHOD

In this section, we assume that each local machine puts
its local data into the channel without any source or channel
coding. The central machine estimates the underlying graph
structure using received data from the channel. At the central
machine, no source or channel decoding is used. It infers the
structure directly from the output samples of the channel.

As described in Section III-A, we consider a SIMO-GMAC.
Each local machine can transmit two consequent samples by
each channel use. More precisely, denoting the channel input
symbol by s = sR + jsI , each local machine can put two
consequent samples as real and imaginary parts of the input
symbol. Therefore, at the central machine, n/2 vectors are
received that each one is 2d-dimensional.

In this way, the equation (11) can be decomposed as

y = (HR + jHI )(sR + jsI ) + (zR + jzI ), (24)

where j2 = −1. Hence, it can be rewritten in a block-matrix
form as [

yR

yI

]
=

[
HR −HI

HI HR

] [
sR
sI

]
+

[
zR
zI

]
, (25)

where HR,HI are d × d real matrices, and all the real and
imaginary part vectors are d-dimensional. In this way, two
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source samples can be transmitted per channel use: a sample
is put into the real part and the other is put into the imaginary
part. In particular, sR + jsI =

√
p
2 (xR + jxI ), where xR and xI

are two independent samples from the source. In this way, the
transmit power constraints are satisfied.

The central machine estimates the conditional dependencies
of the vectors x using the received vectors y.

A. Approximating the Sample Covariance

Defining matrix H̃ =
√

p
2

[
HR −HI

HI HR

]
, x̃ =

[
xR

xI

]
, and ỹ =[

yR

yI

]
. When transmitting samples through the channel, if we

put two independent samples as real and imaginary parts of
the vector x̃, then the covariance matrix of x̃ is

Q x̃ =

[
Qx 0
0 Qx

]
. (26)

On the other hand, according to equation (25), we have

Q x̃ = H̃−1Qỹ H̃−T − σ2
z H̃−1H̃−T , (27)

where Q x̃ and Qỹ is the covariance matrix of x̃ and ỹ,
respectively. By substituting the sample covariance matrix of
ỹ into the above expression, we obtain an approximation for
the sample covariance matrix of x̃, as

Sx̃ = H̃−1Sỹ H̃−T − σ2
z H̃−1H̃−T . (28)

Lemma 2. Given n i.i.d. samples of the vector ỹ. Then, for
the sample covariance matrix Sx̃ in (28) we have

Pr
(
|(Sx̃)jk − (Q x̃)jk | ≥ δ

)
≤ 4 exp

(
−nδ2

c

)
, (29)

where
c = 3200

(
1 + σ2

z /λ2
min(H̃)

)2
, (30)

and λmin(H̃) is the minimum eigenvalue of H̃.

Proof. We define the random variable w as follows

w = H̃−1y = x + H̃−1z.

It is clear that w ∼ N(0,Qw), where Qw = Qx + σ
2
z H̃−1H̃−T .

Denoting w = [w1, · · · ,wp]T , wj/
√
(Qw)j j is a standard

normal variable which is sub-Gaussian with parameter 1. Thus,
according to Lemma 1 in [4], we have

Pr
(
|(Sw)jk − (Qw)jk | ≥ δ

)
≤ exp

{
− nδ2

3200 maxi(Qw)2ii

}
,

where Sw = H̃−1Sy H̃−T is the sample covariance over w(i) =
H̃−1y(i) samples. On the other hand, we have

Pr
(
| (Sx̃ −Q x̃)jk | ≥ δ

)
= Pr

(����(H̃−1 (
Sỹ −Qỹ

)
H̃−T

)
jk

���� ≥ δ)
= Pr

(
| (Sw −Qw)jk | ≥ δ

)
≤ exp

{
− nδ2

3200 maxi(Qw)2ii

}
(31)

By finding an upper bound on maxi(Qw)2ii , we can obtain an
upper bound on the above probability.

max
i
(Qw)ii = max

i
(Qx + σ

2
z H̃−1H̃−T )ii

≤ max
i
(|Qx | +

���σ2
z H̃−1H̃−T

���)ii
≤ max

i
(Qx)ii +max

j
(σ2

z H̃−1H̃−T )j j . (32)

By decomposing H̃−1H̃−T as UΛ2UT , we have

max
i
(σ2

z H̃−1H̃−T )ii = max
i
(σ2

z UΛ2UT )ii

≤ max
i
(σ2

z λ
2
max(H̃−1)UUT )ii

=
σ2
z

λ2
min(H̃)

.

By combining the above bound and (32), and substituting into
(31) we obtain the claimed bound in the lemma. �

Next, we define the approximate sample covariance matrix
of x as

Ŝx =
1
2

( [
Id 0d

]
Sx̃

[
Id
0d

]
+

[
0d Id

]
Sx̃

[
0d

Id

] )
, (33)

where 0d is a d × d zero matrix.

Lemma 3. For Ŝx defined in (33), we have

Pr
(
|(Sx)jk − (Qx)jk | ≥ δ

)
≤ 8 exp

(
−nδ2

2c

)
. (34)

Proof. From (33), it is clear that

(Ŝx)jk =
1
2

(
(Sx̃)jk + (Sx̃)(d+j)(d+k)

)
.

Thus, we have

Pr
(
|(Ŝx)jk − (Qx)jk | ≥ δ

)
= Pr

(
|(Sx̃)jk + (Sx̃)(d+j)(d+k) − 2(Q x̃)jk | ≥ 2δ

)
≤ Pr

(
|(Sx̃)jk − (Q x̃)jk | + |(Sx̃)(d+j)(d+k) − (Q x̃)jk | ≥ 2δ

)
≤ Pr

(
|(Sx̃)jk − (Q x̃)jk | ≥ δ

)
+

Pr
(
|(Sx̃)(d+j)(d+k) − (Q x̃)jk | ≥ δ

)
≤ 8 exp

(
−nδ2

2c

)
,

where the last inequality is obtained by the error bound of
Lemma 2 for the sample size n/2. �

Note that the matrix Ŝx in (33) is not necessarily positive
semi-definite. But this does not affect the convexity of the
optimization problem (3).

By substituting Ŝx from (33) into the (3), we can solve the `1
regularized maximum likelihood problem and obtain a sparse
solution for the precision matrix Θx . Similar to Theorem 1,
we can guarantee that Uncoded method can correctly recover
the underlying graph structure with high probability.

Theorem 2. Consider a normal distribution satisfying the
incoherence Assumption 1 and 2 with parameter α ∈ (0, 1].
Let Θ̂x be the solution of the log-determinant program (3) with
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sample covariance Ŝx in (33) and regularization parameter

λn = (8π/α)
√

1
2n ln 2

ε for some 0 < ε ≤ d−2.
(a) If the sample size is lower bounded as

n > C2
uncoded ∆

2
(
1 +

8
α

)2
ln

8
ε
, (35)

where
Cuncoded = 6

√
2c max{κΣκΓ, κ3

Σ
κ2
Γ}.

then with probability at least 1−d2ε , the edge set specified
by Θ̂x is a subset of the true edge set.

(b) If the sample size satisfies the lower bound

n > T2
uncoded

(
1 +

8
α

)2
ln

8
ε
, (36)

where

Tuncoded = 2
√

2c max{κΓθ−1
min, 3∆ max{κΣκΓ, κ3

Σ
κ2
Γ}}

then,
Pr

(
M(Θ̂x ;Θx)

)
≥ 1 − d2ε . (37)

Remark 2. Since the channel has real and imaginary parts, 2
samples can be transmitted by each channel access (i.e. each
local machine can transmit n samples by n/2 channel uses).
Therefore, if the sample generation rate at the source is less
than or equal to twice of the channel’s rate, the machines can
transmit all samples without any sample loss.

VI. EXPERIMENTS

In this section, the performance of our proposed methods is
evaluated by performing several experiments. In our simula-
tions1, the glasso package [19] is used to solve `1-regularized
MLE of the precision matrix. This package is based on the
block coordinate descent algorithm proposed by [6].

In our experiments, a sparse random precision matrix is
generated as follows. First, we generate a random sparse graph
with a fixed probability of the edge presence, say 0.1, and
also set its maximum node degree to ∆ = 5. Then, we choose
edge weights uniformly in [−1, 1] for the symmetric precision
matrix Θ. Next, we make it positive definite matrix by adding
a scaled identity matrix. Finally, we normalize the precision
matrix to set the variances to 1. Also, we ensure that the
generated matrix satisfies Assumption 1.

We employ the True Positive and False Positive Rates (TPR
and FPR, respectively) as our performance measures. TPR is
defined as the percentage of the predicted edges (non-zero off-
diagonal entries in the precision matrix) that correctly detected.
Similarly, FPR is the percentage of the predicted non-edges
(zero entries in the precision matrix) that incorrectly detected.

We have experimentally observed that λ*signs
n ≈ 4λ*original

n

and λ*uncoded
n ≈ 2

3λ
*original
n , where λ*signs

n , λ*uncoded
n , and λ*original

n

are the best regularization parameter for the signs, uncoded,
and original data, respectively.

In order to have a fair comparison between Signs and
Uncoded methods, we have used identical parameters for the

1The source code is available at https://github.com/ArminKaramzade/
distributed-sparse-GGM.

channel. More precisely, we assume H = I which ensures
all the local machines have identical bit rates. We set the bit
rate of each local machine, i.e. Rj , to 2 bits. Thus, in the
proposed methods, each local machine can transmit n bits by
n/2 channel uses. According to (12), in order to achieve the
bit-rate of 2, the signal to noise ratio (SNR) should set to 3
(i.e. p

σ2
z
= 3).

In the first experiment, we evaluate the performance of our
methods with respect to the dimension d. Figure 2 shows TPR
and FPR as a function of d for sample sizes n = 1000 and
10, 000. In this experiment, the error curves are averaged over
20 different random graphs and for each graph the TPR and
FPR are averaged over 10 different random samples. As can
be seen from Figure 2, Signs method outperforms Uncoded
method. However, all three methods have approximately the
same FPR.

Figure 3 reflects the performance of the methods as a
function of the sample size n for d = 50 and d = 100. As can
be seen, by increasing the sample size n, the performance of
all methods increases. In this experiment again Signs method
outperforms the uncoded scheme.

In Figure 4, the probability of perfect structure recovery
for a star-shaped graph is depicted. In this experiment, the
underlying star graph consists of d = 70 nodes. The precision
matrix is generated as the inverse of a covariance matrix with
(Qx)i j = 1

4 for all (i, j) ∈ E which satisfies Assumption 1.
The probability of perfect recovery is estimated by running
the proposed methods 100 times and counting the number of
times that the structure is recovered exactly. As can be seen
from the figure, all methods recover the structure exactly for
large enough sample sizes as claimed by theorems 1 and 2.

In Figure 5, we measure the TPR of Uncoded method for
different values of the SNR. The experiment is performed on
a random graph with d = 40 nodes with maximum degree of
∆ = 5 and n = 10, 000. In this experiment, we have generated
the channel matrix H with entries drawn from i.i.d. standard
normal samples. The TPR curve is averaged over 100 different
channel matrices. As can be seen from Figure 5, for SNR
greater than 5, the performance of Uncoded method is very
close to the TPR of the original data.

The FPR curve is not plotted, since the error values were
negligible even for small SNR.

VII. CONCLUSION

In this paper, we have studied the sparse structure learning
of GGMs where the data are distributed across multiple local
machines. Two methods are proposed to send information from
the local machines to the central machine, namely, Signs and
Uncoded methods. We have analytically and experimentally
shown that the central machine can recover the underlying
graph if large enough sample sizes are transmitted to the
central machine.

Our experiments show that, under the same conditions,
Signs method outperforms the uncoded scheme. Both methods
have small FPR which is close to the FPR obtained by the
original data.

https://github.com/ArminKaramzade/distributed-sparse-GGM
https://github.com/ArminKaramzade/distributed-sparse-GGM
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Figure 2. TPR and FPR as a function of dimension d for sample sizes n = 1000 and n = 10, 000
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Figure 3. TPR and FPR as a function of the sample size n for random graphs with 50 and 100 nodes.
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Figure 4. Probability of perfect structure recovery for the star graph with
d = 70.
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Figure 5. TPR as a function of SNR in Uncoded method for a random graph
with d = 40 and maximum degree ∆ = 5.
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