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Abstract—The standard solution for short-haul fiber-
optic communications is to deploy noncoherent sys-
tems, i.e., to modulate and detect only the light in-
tensity. In such systems, the signal is corrupted with
optical noise from amplifiers and with thermal (elec-
trical) noise. The capacity of noncoherent optical links
has been studied extensively in the presence of either
optical noise or thermal noise. In this paper, for the first
time, we characterize the capacity under an average
power constraint with both noise sources by establish-
ing upper and lower bounds. In the two extreme cases
of zero optical noise or zero thermal noise, we assess
our bounds against some well-known results in the
literature; improvements in both cases are observed.
Next, for amplified fiber-optic systems, we study the
trade-off between boosting signal energy (mitigating
the effects of thermal noise) and adding optical noise.
For a wide spectrum of system parameters and received
power levels, we determine the optimal amplification
gain. While mostly either no amplification or high-gain
amplification is optimal, the best performance is for
some parameter intervals achieved at finite gains.

Index Terms—Channel capacity, noncoherent optics,
optical amplification, passive optical network, phase-
noise channel.

I. Introduction

NONCOHERENT transmission systems have been
extensively investigated as a low-cost solution to

short-haul optical communication. These systems are gen-
erally based on intensity modulation and direct detec-
tion (IMDD), where the information is conveyed via the
optical signal intensity. At the transmitter, information
bits are mapped to a nonnegative signal, which modulates
the light intensity. At the receiver, the demodulation is
performed by transforming the optical intensity to an
electrical current via a photodetector. IMDD systems
have applications in both wireless optical communications
[1] and fiber optics (e.g., passive optical networks and
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optical interconnection). The focus of this paper is on the
latter one; however, we use some relevant literature from
the wireless optical field to assess our results, which are
relevant also for some free-space optical scenarios [2].

In many practical cases, the performance of IMDD
systems is ultimately limited by the thermal (electrical)
noise of the receiver. This is the case, for instance, when
shot noise is negligible (e.g., with PIN photodetectors
[3]) and the main effect of channel propagation is sig-
nal attenuation (e.g., short-haul or long-haul dispersion-
managed optical fiber links and free-space optical links
with quasi-static fading [2]). In such a scenario, optical
amplification can be used to boost the optical power before
photodetection, hence increasing the signal-to-thermal-
noise ratio. However, besides its additional cost, optical
amplification also introduces some optical noise, whose
impact depends in general on the amplification gain.
Therefore, it is essential to quantify the actual benefits
(if any) of using optical amplification and to determine
what is the optimal amplification gain.

While both the electrical and optical noise are com-
monly modeled as additive white Gaussian noise (AWGN)
in their respective domains, the presence of a square-
law detector (the photodetector) between the two noise
sources makes the overall channel non-AWGN. Thus, the
optimization of the amplification gain cannot be based
on a simple analysis of the overall signal-to-noise ratio
(SNR), as the system performance depends in a non-
trivial way on the actual noise statistics (which change
with the gain) and on the adopted modulation format
and detection strategy. In fact, in the current era of low-
cost and nearly-ubiquitous digital signal processing [4], it
makes more sense to consider an optimal scenario, in which
both modulation and detection are tailored to the channel
statistics.

In this work, we base the aforementioned analysis on
information-theoretic grounds, studying channel capacity
in the presence of both optical and thermal noise and
investigating its dependence on the amplifier gain. We
consider a discrete-time channel model derived under the
assumptions of symbol-time sampling and no intersymbol
interference (ISI). As discussed above, this model is of
practical relevance when a direct-detection thermal-noise-
limited receiver is considered and the main effect of chan-
nel propagation is signal attenuation, which may apply
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to both optical fiber and free-space optics scenarios. The
impact of ISI and the potential benefits of oversampling
[5] in this scenario are left for future research.

In the most general case of IMDD systems, the received
signal is corrupted with amplification noise in the optical
domain and with thermal noise in the electrical one.
Furthermore, optical and electrical filters as well as fiber
dispersion can induce ISI. The performance analyses of
such systems (with ISI) are limited to numerical calcula-
tion of either bit error rate [6] or achievable information
rate (AIR) [7]. In this paper, we consider ISI-free com-
munication using advanced signaling [8]–[11] over a fiber-
optical system with negligible dispersion (due to short
fiber length or the use of dispersion-compensation fibers).

The capacity of ISI-free IMDD fiber-optic channel mod-
els has been extensively studied in the literature in two
main cases [12, Ch. 11], namely, optical-noise-dominated
and thermal-noise-dominated systems. With the former
class, the thermal noise is neglected and the optical noise is
added to the signal before the photodetector. The resulting
discrete-time channel model is [12, Eq. (11.23)] [13]–[15]

y = |x + no|2 (1)

where x and y denote the real, nonnegative transmit-
ted and received symbols, respectively. The optical noise
no ∈ C follows a circularly-symmetric Gaussian distribu-
tion. The capacity is lower-bounded in [13] using a half-
normal distribution and is approximated via numerical
optimization in [15]. Furthermore, the channel (1) has
been studied in the context of a phase-noise channel in
[16]–[18], where upper and lower bounds on the capacity
have been established.

With thermal-noise-dominated IMDD fiber-optic sys-
tems, the optical noise is assumed negligible and the
input–output relation can be described as [12, Eq. (11.53)]
[11], [19]–[22]

y = x2 + nt (2)

where the thermal noise nt is modeled as a zero-mean real
Gaussian random variable. The input symbol x is positive
but the channel output y may take negative values. In
the context of wireless optics, bounds on the capacity of
(2) were developed in [23], which are tight in the high
and low power regimes. In [24], [25], the capacity was
numerically evaluated and capacity bounds were derived.
The capacity of multi-subcarrier systems was studied in
[19], [21]. Also, the capacity of multiple-input multiple-
output and multiple-input single-output wireless optical
channels was studied in [26]–[29].

In this paper, we study the capacity of an IMDD channel
with both optical and thermal noises, whose input–output
relation is described as

y = |x + no|2 + nt (3)

under an average power constraint. To the best of our
knowledge, this capacity has not been investigated before.

The channel model (3) applies to all optical links with
optical amplifiers, with some caveats. For example, optical

noise–noise beating from the polarization orthogonal to
the signal is neglected. Even if it, in principle, can be
included in nt at the expense of making nt non-Gaussian,
it is small relative to the copolarized noise–signal beating
in most systems of practical interest. Shot noise is assumed
to be negligible relative to thermal noise, which applies
to most practical systems as well. Intersymbol inteference
from, e.g., chromatic or polarization-mode dispersion is
assumed to be negligible or optically compensated, which
is reasonable and applies to most IMDD links based on
single-mode fiber. Other practical impairments such as
channel crosstalk, bandwidth limitations and nonlinear
distortions from, e.g., lasers, detectors, amplifiers, and
fibers are less fundamental, and are neglected for simplic-
ity. Thus, the model (3) does account for the relevant fun-
damental noise sources in most IMDD links, including free-
space optical links with optically preamplified receivers.

This paper comprises two parts. In the first part, we
derive a lower bound on the capacity of (3) by numerically
calculating the mutual information (MI). Also, an upper
bound is derived based on the duality technique, which
was proposed in [30] and used in a number of subsequent
papers, e.g., [17], [23], [26], [27]. For the two special cases
of optical-noise-dominated (nt = 0) and thermal-noise-
dominated (no = 0) systems, we compare our bounds
to the ones in [16] and [23], respectively. We show that
at the cost of increased computational complexity, our
bounds improve on the results of [16], [23]. Furthermore,
we characterize the capacity of the general case (3) with
nonzero thermal and optical noises using our upper and
lower bounds. By calculating capacity approximations
using the Blahut–Arimoto algorithm (BAA) [31], [32] we
show that our lower bound follows the capacity closely.

In IMDD systems, at low received signal powers, optical
amplification is deployed to mitigate the effects of thermal
noise. At high powers, however, amplifying the signal
degrades the SNR. In the second part of the paper, for a
large spectrum of channel parameters and received signal
powers, we use our capacity lower bound to determine
whether optical amplification improves the capacity or
not. We observed that while for a wide range of parameters
either no amplification or high-gain amplification is opti-
mal, within some parameter intervals and received powers,
amplification with finite gains maximizes the capacity. We
also study the AIRs using pulse-amplitude modulation
(PAM) and compare the results with our capacity lower
bound.

The remainder of this paper is organized as follows.
In Section II, we investigate the optical and thermal
noise variances in the channel model (3). Upper and
lower bounds are presented and numerically evaluated in
Section III. Section IV studies the capacity of amplified
noncoherent systems, where optimal amplification gains
for a large spectrum of channel parameters are determined.
Finally, conclusions are drawn in Section V.

Notation: We use bold-face letters to denote random
quantities. Expectation over the random variables x is
represented by Ex[·]. The imaginary unit is indicated by
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j =
√
−1. The probability distribution function of the

random variable x is denoted by px and its characteristic
function by Φx(t) = E[ejtx]. Entropy and differential
entropy are denoted by H(·) and h(·), respectively. I(x; y)
represents the MI between two random variable x and y.
The real Gaussian distribution with mean µ and variance
σ2 is denoted by N (µ, σ2) and the circularly symmetric
complex Gaussian distribution by CN (0, σ2). All loga-
rithms are in base two.

II. Description of the noise sources
As mentioned in Section I, in this paper, we investigate

the capacity of the noncoherent optical channel model in
(3). The capacity of this channel under the average power
constraint P can be determined by [33]

C = max
px

I(x; y) (4)

where the maximum is taken over all distributions px that
satisfy E[x2] ≤ P . Since MI is preserved under one-to-one
transformations of y, one can observe that the capacity
may be expressed as a function of two parameters, namely,
signal-to-thermal-noise ratio

η = P/
√
Pt (5)

and thermal-to-optical-noise ratio

ζ =
√
Pt/Po (6)

where Pt (in ampere-squared) and Po (in ampere) are
thermal and optical noise variances, respectively, which
will be further discussed below.

The receiver thermal noise nt ∼ N (0, Pt) originates
from the random movement of electrons at any nonzero
temperature [34, Sec. 4.4]. It has a variance of Pt =
2NtWt, where Nt denotes the noise two-sided spectral den-
sity, Wt the noise bandwidth or electrical filter bandwidth
(in hertz). The thermal noise spectral density is calculated
as [34, Eq. (4.4.7)] Nt = 2kbT/RL (in ampere-squared-
second), where kb = 1.38 · 10−23 (joule per kelvin) is
Boltzman’s constant, T is the temperature in kelvin, and
RL is the receiver resistance in ohms.

The main source of optical noise in systems with optical
amplification is the amplified spontaneous emission (ASE)
noise [35]. A lumped phase-insensitive fiber amplifier with
power gain G injects an optical noise to the signal. This
noise can be modeled as an additive circularly-symmetric
white Gaussian process. To model this noise properly as
in (3), its variance should be multiplied by the photodiode
responsivity R (in ampere per watt) to make its unit
consistent with the thermal noise1. Then, we have no ∼
CN (0, Po) with Po = (G − 1)P̃o, where P̃o = RhνnspWo
(in ampere). Here, hν is the optical photon energy (in
joule), nsp is the spontaneous emission factor, and Wo
is the optical noise (or filter) bandwidth (in hertz). The
photodiode responsivity can be written as [34, Eq. (4.1.3)]

1Also, the power constraint P (in ampere) is calculated by mul-
tiplying an optical power constraint (in watt) by R (in ampere per
watt).

R = ξq/hν, where ξ is quantum efficiency and q is
the electron’s charge. Therefore, P̃o can be rewritten as
P̃o = ξqnspWo. Note that with no amplification (G = 1),
no ASE noise is added to the signal.

The channel model (3) can be rewritten to account for
the amplification gain as

y =
∣∣∣√Gx̃ +

√
G− 1ño

∣∣∣2 + nt (7)

where ño ∼ CN (0, P̃o) and x̃ is the received signal
before amplification. The capacity of (7) under the power
constraint E[|x̃|2] ≤ P̃ is equal to the capacity of (3) with
P = GP̃ and Po = (G− 1)P̃o. Consequently, the capacity
can be expressed as a function of amplification gain G,
nonamplified signal-to-thermal-noise ratio

η̃ = P̃ /
√
Pt (8)

and thermal-to-nonamplified-optical-noise ratio

ζ̃ =
√
Pt/P̃o (9)

=
√

4kbTWt

ξqnspWo
√
RL

. (10)

In a generic noncoherent optical system, η (5) and ζ
(6) depend on many parameters, e.g., the transmitted
power, signal bandwidth, fiber loss, transmission length,
and parameters of the transmitter, receiver, and ampli-
fier. Apart from the description provided in this section,
nonlinear inter- and intrachannel crosstalk may contribute
to the optical noise; also insertion losses and electrical
amplification may influence η and ζ. In this paper, we take
η and ζ as free parameters and evaluate the capacity of
(3) for a large range of these parameters in Section III-C.
Also, to study the influence of amplification gain G on the
capacity, in Section IV we sweep over a large range of η̃
(8) and ζ̃ (9).

III. Capacity bounds

Since x ≥ 0, we have I(x; y) = I(x2; y). Therefore, the
capacity (4) can be expressed in terms of u = x2 as

C = max
pu

I(u; y) (11)

= max
pu

(h(y)− h(y|u)) (12)

with the power constraint E[u] ≤ P . In Sections III-A and
III-B, we present a lower bound and an upper bound on
the capacity, respectively. In Section III-C, we provide a
numerical evaluation of these bounds.

A. Gamma-distribution lower bound
A lower bound on the capacity can be obtained by

calculating h(y|u) and h(y) for a fixed pu. To do so, one
should obtain py|u=u for any u ≥ 0 and also py. The former
can be calculated by noting that Φy|u=u (the characteristic
function of y|u = u) is obtained by multiplying the
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characteristic function of a noncentral chi-squared random
variable with two degrees of freedom by Φnt . Specifically,

py|u=u(y) = 1
2π

∞∫
−∞

Φy|u=u(t)e−jtydt (13)

Φy|u=u(t) = Φ|√u+no|2(t)Φnt(t) (14)

= exp
(

jut

1− jPot
− Ptt

2

2

)
/ (1− jPot) (15)

where (14) follows from (3) and the fact that no and nt
are independent. To reduce the computational complexity,
(13) can be calculated via the fast Fourier transform
(FFT).

The output probability density function can be calcu-
lated as

py(y) =
∫
py|u=u(y)pu(u) du. (16)

By substituting (13) into (16), after some algebraic steps,

py(y) = 1
2π

∞∫
−∞

Φy(t)e−jty dt (17)

Φy(t) = e−Ptt
2/2

1− jPot
Φu

(
t

1− jPot

)
. (18)

Therefore, py can be calculated by (17) via the FFT.
The lower bound considered in this paper is based on the
gamma distribution with parameters α > 0 and β = α/P ,
whose characteristic function is

Φu(t) = (1− jtP/α)−α . (19)

The lower bound is obtained by maximizing I(u; y) =
h(y) − h(y|u) over the parameter α, where h(y|u) and
h(y) are numerically calculated based on (13)–(15) and
(17)–(18), respectively.

B. Generalized-gamma-distribution upper bound
In this section, we use the duality technique [30] with

a generalized-gamma-distribution auxiliary output distri-
bution to upper-bound the capacity. We begin by upper-
bounding h(y). Fix a constant a ∈ R and let ỹ = y + a.
Also, define r̃ = |ỹ| and θ̃θθ = sign(ỹ). Since differential
entropy is invariant to translations,

h(y) = h(ỹ) (20)
= h(r̃) +H(θ̃θθ|r̃) (21)
≤ h(r̃) +H(θ̃θθ) (22)

where (21) follows from substituting fỹ(ỹ) =
fr̃(|ỹ|)P

(
θ̃ = sign(ỹ)|r̃ = |ỹ|

)
into h(ỹ) = −E[log fỹ(ỹ)].

Using the nonnegativity of relative entropy [36,
Thm. 8.6.1] (see also [37, Eq. (92)]) we have

h(r̃) ≤ −E[log(qr̃(r̃))] (23)
= −Eu

[
E[log(qr̃(r̃))|u]]

]
(24)

where qr̃ is an arbitrary distribution over [0,∞) and (24)
follows from the tower rule of expectation. We let qr̃ be
the generalized gamma distribution, i.e.,

qr̃(r̃) = pr̃d−1e−(r̃/α)p

αdΓ(d/p) (25)

with parameters d > 0, p > 0, and α > 0. We select α
such that

∞∫
0

r̃qr̃(r̃) dr̃ = E
[
|x + no|2

]
+ E[|nt|] + |a| (26)

where the right hand side of (26) is an approximation of
E[|ỹ|]. This leads to

α = (P + Po +
√

2Pt/π + |a|) Γ(d/p)
Γ((d+ 1)/p) . (27)

Here, Γ(·) denotes the gamma function.
Similarly as in (24), for any qθ̃θθ ∈ [0, 1], the term H(θ̃θθ)

can be upper-bounded as

H(θ̃θθ) ≤ −Eu
[

Pr(θ̃θθ = 1|u) log(qθ̃θθ)
+ Pr(θ̃θθ = −1|u) log(1− qθ̃θθ)

]
. (28)

Therefore, by using (22), (24), (25), and (28), we obtain

h(y) ≤ Eu
[
g(a, p, d, qθ̃θθ,u)

]
(29)

where

g(a, p, d, qθ̃θθ,u)

= log
(
αdΓ(d/p)

p

)
+ Ey

[
|y + a|p

∣∣u] log e/αp

+ (1− d)Ey
[

log(|y + a|)
∣∣u]

− Pr(y > −a|u) log(qθ̃θθ)− Pr(y < −a|u) log(1− qθ̃θθ).
(30)

By (29), (12), and using the method of Lagrange multipli-
ers to include the power constraint, we obtain

C ≤ max
pu

Eu
[
g(a, p, d, qθ̃θθ,u)− h(y|u) + λ(P − u)

]
(31)

≤ max
u≥0

[
g(a, p, d, qθ̃θθ,u = u)− h(y|u = u) + λ(P − u)

]
.

(32)
The upper bound is computed numerically by minimizing
(32) (through a brute-force search) over a ∈ R, p > 0,
d > 0, qθ̃θθ ∈ [0, 1], and λ ≥ 0 (α is calculated2 from (27)).

C. Numerical evaluation of capacity bounds
In this section, we first provide numerical evaluations of

the capacity bounds for the two special cases of nt = 0
and no = 0 and then we study the general case with both
noises. Fig. 1 represents some capacity bounds for the case
with zero thermal noise (nt = 0), which is a reasonable

2We used the following search space to calculate (32): −5 ≤ a ≤ 5
(100 equi-spaced values), 0 < p < 2 (100 equi-spaced values), 0 <
d < 1.1 (100 equi-spaced values), 0 < qθ̃θθ < 1 (20 equi-spaced values),
and −70 dB ≤ λ ≤ 70 dB (100 equi-spaced values).
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Fig. 1. Bounds on the capacity with Pt = 0. Our results are compared to the results of [16, Fig. 3]. The shaded area represents the region
between the best lower and upper bounds.

approximation for systems with high optical amplification.
We compare our bounds with the ones in [16, Fig. 3].
Our results include the gamma-distribution lower bound
(GD-LB) in Section III-A and the generalized-gamma-
distribution upper bound (GGD-UB) in Section III-B.
Furthermore, we present a capacity estimate using the
Blahut–Arimoto algorithm (BAA) with power constraint
[31]. To calculate the GGD-UB, based on our numerical
results, with nt = 0, the optimal values for a and qθ̃θθ are 0
and 1, respectively.

It can be concluded from Fig. 1 that the GD-LB
improves on the lower bounds in [16], which are based
on three distributions over x, namely, Rayleigh, half-
Gaussian, and geometric distributions. The first two are
special cases of the GD-LB with α = 1 and α = 1/2,
respectively. The GGD-UB improves on the upper bounds
in [16], which include a closed-form upper bound, a duality
upper bound with a geometric-induced distribution of y,
and a duality upper bound with a parametric distribution
of y. We note that our improvements on the capacity
bounds come at the price of increased numerical complex-
ity. The GD-LB needs optimization over the parameter α,
while no optimization is done with the lower bounds in
[16]. Also, the GGD-UB, for nt = 0, is minimized over
three parameters, which is one more than the parametric
upper bound in [16].

Fig. 2 demonstrates our bounds vs. η (5) for the case
with no = 0. Our bounds are compared with the results
in [23, Fig. 5]. Notable improvements for the lower bound
and slight improvements for the upper bound are obtained,
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Fig. 2. Bounds on the capacity with Po = 0. Our results are
compared to the results of [23, Fig. 5].

which are achieved at the cost of increased computational
complexity. Also, as can be observed, our lower bound
closely follows the capacity approximation obtained via
the BAA.

Fig. 3 provides the capacity bounds for three channels
with different values of ζ (6). As is evident, the capacity
can be well approximated by the lower and the upper
bound. Also, it can be seen that the GD-LB is almost
identical to the capacity approximation via the BAA;
therefore, it can be used to approximate the capacity with
less computational complexity than the BAA. Further-
more, since ηζ = P/Po, the optical signal-to-noise ratio
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Fig. 3. Bounds on the capacity for three values of thermal-to-optical-noise ratio ζ (6).
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Fig. 4. Capacity lower bounds (GD-LB) vs. the amplifier gain for several values of nonamplified-signal-to-thermal-noise ratio η̃ (8) and
thermal-to-nonamplified-optical-noise ratio ζ̃ (9).

increases with ζ if η is fixed, which increases the capacity;
this can be observed in Fig. 3.

IV. Dependence on optical amplification gain
In this section, we study the effects of the optical ampli-

fication gain on the capacity of amplified noncoherent links
(7). Fig. 4 represents the capacity lower bounds (GD-LB)
for amplification gains G between 0 and 20 dB, multiple
values of η̃ (8), and three values of ζ̃ (9). With ζ̃ = 5 dB,
it can be seen that for the considered values of η̃, the lower
bounds obtain a maximum at about G = 5 dB. However,
with both ζ̃ = 15 and ζ̃ = 25 dB, one can see that the lower
bounds have a maximum at G = 1 (no amplification) for
large values of η̃ or are monotonically increasing with G
for small η̃ values.

In Fig. 5, the optimal value of G is presented for a large
range of parameters η̃ and ζ̃. As can be seen, with low
values of nonamplified-signal-to-thermal-noise ratio η̃ and
thermal-to-nonamplified-optical-noise ratio ζ̃, amplifica-
tion with a finite value of G is optimal. However, for a large
range of parameters either no amplification (G = 0 dB) or
high-gain amplification maximizes the capacity. For high
values of ζ̃ (and high η̃), the borderline between these two
regions can be approximated by η̃(dB) ≈ ζ̃(dB) + 3, or
equivalently η̃ = 2ζ̃ (or P̃ = 2Pt/P̃o). As an example, if
we consider an erbium-doped fiber amplifier (EDFA) with
nsp = 2 and also assume ξ = 1, Wo = Wt/2 = 50 GHz,
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Amplification is
detrimental

0 5 10 15 20 25 30 350

10

20

30

0

5

10

15

20

ζ̃ (dB)

η̃
(d

B)

Fig. 5. Optimal amplification gains for different values of
nonamplified-signal-to-thermal-noise ratio η̃ (8) and thermal-to-
nonamplified-optical-noise ratio ζ̃ (9). An approximated borderline
η̃(dB) = ζ̃(dB) + 3 is also plotted (with “x” markers).

T = 300 K, and RL = 50 Ω, we obtain from (10) ζ̃ ≈ 25.6
dB. For such a system, optical amplification enhances the
capacity if P̃ is less than 6.2 dBmA (η̃ < 28.6 dB). In
general, the value of ζ̃ for typical systems with EDFA is
high (roughly 25–30 dB). Nonetheless, we consider the
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Fig. 6. Capacity lower bounds vs. amplifier gain for thermal-to-nonamplified-optical-noise ratio ζ̃ = 10 dB and three values of nonamplified-
signal-to-thermal-noise ratio: η̃ = 8 dB, η̃ = 10 dB, and η̃ = 12 dB. The lower bounds include AIR for 8-PAM and an AWGN auxiliary
channel, MI for 8-PAM, and GD-LB.

capacity for the whole range of ζ̃ in Fig. 5, since the
parameter range that is not relevant now or for a specific
application might become relevant in the future or for
other IMDD applications.

Finally, in Fig. 6, we compare the information rate ob-
tained based on an 8-PAM input with our lower bound for
three values of η̃. We assume transmission of equidistant
symbols (x ∈ {0, . . . , 7} ·

√
2P/35) with uniform proba-

bilities. The AIR calculation is based on 8-PAM and an
additive white Gaussian noise auxiliary channel (see [38,
Eq. (6)]), which corresponds to a suboptimal minimum-
distance receiver. The information rate for 8-PAM and the
optimal receiver is presented by calculating the MI I(x; y).
Furthermore, the GD-LB is provided for comparison. As
can be seen in Fig. 6, different performance behaviors are
observed for these three information rates. This indicates
that the optimal value of G can be different for suboptimal
receivers and/or suboptimal input distributions compared
to the one calculated based on the system capacity in
Fig. 5.

V. Conclusions

We quantified the optimal amplification gain, which
maximizes the capacity of short-haul noncoherent links,
for a wide range of channel parameters. Our results indi-
cate that with large values of the thermal-to-nonamplified-
optical-noise ratio ζ̃, either no amplification or high-gain
amplification is optimal. As a rule of thumb, systems that
work in this regime (e.g, typical IMDD fiber-optic systems
with EDFA amplification), should deploy optical amplifi-
cation at low received powers (η̃ < 2ζ̃ or P̃ < 2Pt/P̃o).
With relatively low values of ζ̃, it was illustrated that finite
optical amplification gains may maximize the capacity.
Furthermore, we show that the gain that maximizes the ca-
pacity may not be optimal for a system with a suboptimal
receiver or input distribution. These results were obtained
by establishing bounds that characterize the capacity in
the presence of both optical and thermal noises, which
generalizes known results that consider either optical or
thermal noise, but not both.
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