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Abstract

In this paper, we study joint antenna activity detection, channel estimation, and multiuser detection

for massive multiple-input multiple-output (MIMO) systems with general spatial modulation (GSM). We

first establish a double-sparsity massive MIMO model by considering the channel sparsity of the massive

MIMO channel and the signal sparsity of GSM. Based on the double-sparsity model, we formulate a

blind detection problem. To solve the blind detection problem, we develop message-passing based blind

channel-and-signal estimation (BCSE) algorithm. The BCSE algorithm basically follows the affine sparse

matrix factorization technique, but with critical modifications to handle the double-sparsity property of

the model. We show that the BCSE algorithm significantly outperforms the existing blind and training-

based algorithms, and is able to closely approach the genie bounds (with either known channel or

known signal). In the BCSE algorithm, short pilots are employed to remove the phase and permutation

ambiguities after sparse matrix factorization. To utilize the short pilots more efficiently, we further

develop the semi-blind channel-and-signal estimation (SBCSE) algorithm to incorporate the estimation

of the phase and permutation ambiguities into the iterative message-passing process. We show that the

SBCSE algorithm substantially outperforms the counterpart algorithms including the BCSE algorithm

in the short-pilot regime.
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I. INTRODUCTION

Wireless transceivers with large antenna arrays and powerful signal processing capabilities

have been proposed to accommodate the exponential growth of data traffics. The new wireless

infrastructures generally require a significant increase of energy consumption in establishing

communication links [2], [3]. As such, the energy efficiency (EE) of wireless transmission has

attracted intensive research interests in recent years. Advanced technologies, such as massive

multiple-input-multiple-output (MIMO) and spatial modulation (SM), have been developed to

meet the EE requirement of next-generation wireless communication systems [4]–[6].

Massive MIMO with spatial modulation is a new communication paradigm consisting of a

multi-antenna base station (BS) and multiple multi-antenna users, where the number of antennas

at the BS is typically much greater than that at a user. In each time instance, every user activates

only one antenna for signal transmission. Compared to conventional modulation techniques,

spatial modulation is a promising solution for multi-antenna transmissions to reduce the power

consumption, to relieve the burden of antenna synchronization, and to mitigate the inter-antenna

interference. Recently, to achieve high spectrum efficiency, generalized spatial modulation (GSM)

has been proposed to allow the activation of multiple antennas for simultaneous transmission of

multiple independent symbols at each user [7].

A key challenge for GSM-based massive MIMO is how to carry out antenna activity detection,

channel estimation, and mulituser detection at the BS. Most existing work assumes perfect

channel state information (CSI) (or assumes that the CSI can be acquired from channel training

in prior), and is focused on antenna activity detection and multiuser detection. For example, the

author in [8] proposed a two-step approach: In the first step, the indices of active antennas are

estimated using the ordered nearest minimum square-error detector; then in the second step, the

signals are recovered based on the knowledge of the active antennas. In contrast to the two-step

approach, the authors in [9] proposed a joint approach in which maximum likelihood (ML)

detection is used to estimate both the indices of active antennas and the signals transmitted by

these active antennas. However, the ML-based method suffers prohibitively high computational

complexity as the size of a MIMO system scales up. Several low-complexity detectors with

near-optimal performance was proposed in [9], [10].
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More recently, researchers have proposed to design GSM-based massive MIMO systems by

exploiting the signal sparsity inherent in spatial modulation [11]–[14]. Specifically, the authors

in [11] and [13] employed l1 regularization based compressed sensing techniques [15] for

the recovery of sparse signals. In [12], a message-passing algorithm was developed for joint

antenna activity detection and multiuser detection. In [14], the authors proposed a generalized

approximate message passing (GAMP) detector to deal with quantized measurements and spatial

correlation in a large-scale antenna array at the BS.

The above mentioned approaches, however, have the following two limitations. First, all these

approaches assume that the CSI is either a priori known to the receiver or estimated in a separate

training stage prior to antenna activity detection and signal detection. In practice, the channel

is unknown and the training-based method causes a significant pilot overhead when the MIMO

size becomes large. Second, the structure of the massive MIMO channel, such as the angular-

domain sparsity and the correlation in antenna arrays, has not been fully exploited in the existing

algorithms.

In this paper, we study the transceiver design of the GSM-based massive MIMO system to

address the above two limitations. We first establish a double-sparsity massive MIMO model by

considering the correlation between transmit/receive antennas [16], the clustered channel sparsity

in the angular domain [17], and the signal sparsity inherent in GSM. Specifically, the received

signal can be represented as Y = ARGAH
T X+N, where AR and AT are steering vector matrices

characterizing the receive and transmit correlations, respectively, G is a sparse angular-domain

channel matrix, X is a sparse signal matrix with GSM, and N is an ambient noise matrix. With

the knowledge of AR and AT, the joint estimation of the sparse matrices G and X from Y

is a bilinear recovery problem. It seems that the parametric bilinear generalized approximate

message passing (P-BiGAMP) algorithm [18] can be applied to this problem by vectorizing

Y, G, and X. However, we find that the P-BiGAMP algorithm does not work in our problem,

probably because the matrix product ARGAH
T X here does not satisfy the requirement of random

measurements by P-BiGAMP. To address this issue, we formulate a blind detection problem by

absorbing AH
T into the matrix either on the right or on the left in sparse matrix factorization. To

solve the blind detection problem, we develop a message passing based blind channel-and-signal

estimation (BCSE) algorithm that performs antenna activity activation, channel estimation, and

user detection simultaneously. We show that although the basic idea is borrowed from the affine

sparse matrix factorization (ASMF) algorithm developed in [19], new initialization and and re-
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initialization methods are necessary to ensure a good algorithm performance for the considered

double-sparsity model. We also show that our proposed scheme significantly outperforms the

other blind detection schemes [20], [21] (that exploit either the channel sparsity or the signal

sparsity, but not both) and the state-of-the-art training-based schemes for massive MIMO systems

with GSM [22]1.

Similar to the schemes developed in [19]–[21], sparse matrix factorization suffers from the so-

called phase and permutation ambiguities. In the BCSE algorithm, reference symbols and antenna

labels are used to eliminate the phase and permutation ambiguities after matrix factorization.

Similar to the pilot signals in a training-based scheme, the reference symbols and the antenna

labels are a priori known by the receiver. Therefore, they can be incorporated into the iterative

detection process for performance enhancement, rather than used for compensation afterwards.

As such, we develop a semi-blind channel-and-signal estimation (SBCSE) algorithm by treating

the reference symbols and the antenna labels as short pilots. Based on the framework of BCSE,

we introduce two extra steps in the SBCSE algorithm: We use the short pilots to eliminate the

phase and permutation ambiguities in the output of BCSE, and then use compressed sensing

techniques to further refine the channel estimate based on the structured sparsity of the massive

MIMO channel. Numerical results demonstrate that the proposed SBCSE algorithm substantially

outperforms the state-of-the-art counterpart algorithms including the BCSE algorithm in the

short-pilot regime.

To summarise, the main contributions of this paper are listed as follows:

• To the best of our knowledge, this is the first work to consider joint antenna activity

detection, channel estimation, and multiuser detection based on the double-sparsity model

for GSM-based massive MIMO systems. We establish a comprehensive probability model

to characterize the channel sparsity inherent in the massive MIMO channel and the signal

sparsity inherent in GSM, based on which the joint estimation problem is defined.

• We develop a message-passing based blind detection algorithm, termed the BCSE algorithm,

to efficiently exploit the channel sparsity and the signal sparsity. We show that the BCSE

algorithm significantly outperforms the existing blind and training-based algorithms, and is

able to closely approach the genie bounds (with either known channel or known signal).

1 The algorithm in [22] is designed to handle low-resolution ADCs for massive MIMO systems. With straightforward

modifications, it can be applied to systems with high-resolution ADCs (as assumed in this paper).
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TABLE I

FREQUENTLY USED SYMBOLS

n transmit-antenna index m receive-antenna index

k user index t time slot index

K number of users T coherence time

M number of antennas at receiver M
′

number of AoA bins

N number of antennas at each user N
′

number of AoD bins

θ collection of AoAs φ collection of AoDs

ϑ angular grid of AoAs ϕ angular grid of AoDs

aR steering vector at receiver aT steering vector at transmitter

AR steering-vector matrix at receiver AT steering-vector matrix at transmitter

λ sparsity level of the channel G ρ sparsity level of the signal

q index of AoA bins p index of AoD bins

• To utilize the pilot signals (including the reference symbols and the user labels) more

efficiently, we further develop a semi-blind detection algorithm, termed SBCSE. We show

that the SBCSE algorithm substantially outperforms the counterpart algorithms including

the BCSE algorithm in the short-pilot regime.

The rest of this paper is organized as follows. Section II describes the GSM-based massive

MIMO systems. Section III and Section IV present the proposed blind and semi-blind channel-

and-signal estimation algorithms, respectively. We discuss the parameter learning and the com-

plexity of the proposed algorithms in Section V. Numerical results are presented in Section VI.

Conclusions are drawn in Section VII.

Notation: Regular letters, lowercase bold letters, and capital bold letters represent scalars,

vectors, and matrices, respectively. The superscripts (·)H , (·)∗, (·)T , and (·)−1 represent the

conjugate transpose, the conjugate, the transpose, and the inverse of a matrix, respectively; | · |
represents the cardinality of a set; ‖ · ‖0 denotes the l0 norm; ‖ · ‖1 denotes the l1 norm; ‖ · ‖F
denotes the Frobenius norm. diag{a} represents the diagonal matrix with the diagonal entries

specified by a. ⊗ denotes the Kronecker product and δ(·) denotes the Dirac delta function. IN

denotes the identity matrix of size N×N . Some frequently used symbols are listed in the Table I.
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II. SYSTEM MODEL

A. GSM-Based Massive MIMO Systems

We consider a multiple access system, in which K users communicate with a single BS

equipped with M receive antennas. M is usually in the order of tens to hundreds. Each user is

equipped with N transmit antennas and employs GSM [7], [14]. That is, at any time slot and

for any user, each transmit antenna either transmits a symbol taken from a modulation alphabet

A or remains inactive (or in other words, transmits a zero symbol).2 Specifically, let ck,n,t be

the indicator of the activity state of antenna n of user k at time slot t, i.e.,

ck,n,t =

{

1, antenna n of user k is active

0, otherwise
(1)

and xk,n,t be the symbol transmitted by antenna n of user k at time slot t. Note that xk,n,t ∈ A
if ck,n,t = 1, and xk,n,t = 0 if ck,n,t = 0. We assume that {ck,n,t} are independently and

identically distributed, and so are {xk,n,t}. In particular, each xk,n,t is independently drawn from

the distribution of

p(x) =
ρ

|A|
∑

a∈A

δ(x− a) + (1− ρ)δ(x), (2)

where ρ ∈ (0, 1) is the signal sparsity level and |A| is the size of A. Note that both ρ and A are

known to the receiver. We assume that the average power of A is normalized, i.e.,
∑

a∈A |a|2

|A|
= 1.

Clearly, each antenna transmits Hρ bits per time slot, where

Hρ = −(1− ρ) log2(1− ρ)− ρ log2

(

ρ

|A|

)

. (3)

Denote by xk,t = [xk,1,t, · · · , xk,N,t]
T the k-th user’s symbol vector at time slot t. We stack all

the symbol vectors from the K users at time slot t as

xt = [xT
1,t,x

T
2,t, · · · ,xT

K,t]
T ∈ C

KN×1. (4)

Correspondingly, denote H , [h1, · · · ,hKN ] ∈ C
M×KN , where h(k−1)N+n = [h1,(k−1)N+n,

h2,(k−1)N+n, · · · , hM,(k−1)N+n]
T ∈ CM×1 is the flat fading channel coefficient vector from antenna

n of user k to the BS. At time slot t, the received signal at the BS is given by

yt = Hxt + nt, (5)

2 We assume that the alphabet A is rotationally invariant for any rotation angle ̟ ∈ Ω, i.e. A = ej̟A, where Ω =

{̟1, · · · ,̟|Ω|} is an angle set. For example, if the quadrature phase shift keying (QPSK) modulation is involved, then Ω =

{0, π
2
, π, 3π

2
}. The rotational invariance of A will be revisited when we discuss the ambiguity issue of sparse matrix factorization.
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where nt is the AWGN noise following the complex circularly symmetric Gaussian distribution

with mean zero and covariance σ2I with σ2 being the noise power and I being the identity

matrix of an appropriate size. We assume block fading with coherence time T , i.e., the channel

remains unchanged for time duration of T . Collecting all the received signals of T successive

time slots, we express the received signal at the BS as

Y = HX+N, (6)

where Y = [y1,y2, · · · ,yT ], X = [x1, · · · ,xT ], and N = [n1,n2, · · · ,nT ]. The system model

in (6) is illustrated in Fig. 1.

B. Angular-Domain Channel Model

We start with describing the channel representation in the angular domain. During coherence

time T , the uplink channel from user k to the BS can be modelled as

Hk =

Lk,c
∑

i=1

Lk,p
∑

j=1

αk(i, j)aR(θk(i, j))a
H
T (φk(i, j)), (7)

where Lk,c and Lk,p denote the number of scattering clusters and the number of physical paths

in each cluster between user k and the BS, respectively; αk(i, j) is the channel complex gain

of path j in cluster i for user k; aR(θk(i, j)) and aT(φk(i, j)) are the steering vectors with θk

being the angle of arrival (AoA) of BS and φk being the angle of departure (AoD) of user k,

respectively. For notational convenience, denote by θk = {θk(i, j)}∀i,j the collection of true AoAs

and φk = {φk(i, j)}∀i,j the collection of true AoDs of user k. In general, aR(θk) and aT(φk)

are determined by the geometry of the antenna arrays at the BS and the users, respectively. For

convenience of discussion, we focus on the case that both the BS and the users are equipped

with uniform linear arrays (ULAs). Let dR and dT denote the antenna spacing at the BS and at

each user, respectively. Then, the corresponding steering vectors are given by

aR(θk) =
1√
M

[

1, e−j2π
dR sin θk

̺ , · · · , e−j2π
(M−1)dR sin θk

̺

]T

aT(φk) =
1√
N

[

1, e−j2π
dT sinφk

̺ , · · · , e−j2π
(N−1)dT sin φk

̺

]T

, (8)

where ̺ is the wavelength of propagation, θk ∈
(

−π
2
, π
2

)

, and φk ∈
(

−π
2
, π
2

)

. Note that the

work in this paper can be readily extended to antenna arrays with other geometries, such as lens

antenna arrays (LAA) [19] and 2-dimensional antenna arrays [23].
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Fig. 1. The illustration of a massive MIMO system with GSM for K = 2 users.

The model parameters {θk,φk, Lk,c, Lk,p} are difficult to acquire in practice. To avoid this

difficulty, we introduce the so-called virtual channel representation of (7). Let ϑ = {ϑq}M
′

q=1

be a given grid that consists of M
′

discrete angular bins ranging from −π
2

to π
2
. Similarly, let

ϕk = {ϕk,p}N
′

p=1 be a given grid that consists of N
′

discrete angular bins ranging from −π
2

to

π
2
. For sufficiently large M

′
and N

′
, Hk can be well approximated in the virtual AoA and AoD

domain by

Hk =

M
′

∑

q=1

N
′

∑

p=1

gk(q, p)aR(ϑq)a
H
T (ϕk,p)

= AR(ϑ)GkA
H
T,k(ϕk), (9)

where Gk ∈ CM
′
×N

′

is the virtual angular-domain channel matrix with the (q, p)-th element given

by gk(q, p), AR(ϑ) , [aR(ϑ1), · · · , aR(ϑM ′ )] ∈ CM×M
′

, and AT,k(ϕk) , [aT(ϕk,1), · · · , aT(ϕk,N ′ )]

∈ CN×N
′

. With (9), the received signal at the BS in (6) can be represented as

Y = HX+N (10a)

= AR(ϑ)GAH
T (ϕ)X+N, (10b)

where G = [G1, · · · ,GK ] ∈ CM
′
×KN

′

, and AT(ϕ) = diag{AT,1(ϕ1), · · · ,AT,K(ϕK)} ∈
CKN×KN

′

. Note that the electromagnetic signal of a user usually impinges upon or departs

from an antenna array in a limited number of angular bins, implying that a large portion of the

elements of G are zero, i.e., G is a sparse matrix. Define the sparsity level of G as

λ =
‖G‖0

M
′
N

′
K

, (11)

where ‖ · ‖0 denotes the l0 norm. The system model in (10b) involves two sparse matrices X

and G, hence the name double-sparsity model.
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C. Probability Model of G

Let Dk ∈ CM
′
×N

′

be the channel support matrix of user k and dk,q,p be the (q, p)-th entry

of Dk, where dk,q,p = 0 (or 1) indicates that the corresponding entry gk,q,p of Gk is zero (or

non-zero). Following [24], we assume that the entries of Gk conditioned on Dk are independent

of each other, with the distribution given by

p(Gk|Dk) =

M
′

∏

q=1

N
′

∏

p=1

((1− dk,q,p)δ(gk,q,p) + dk,q,pCN (gk,q,p; 0, vpri)) , (12)

where vpri is the variance of the non-zero entries of Gk. Note that vpri is determined by the

large-scale fading of user k, and is generally unknown to the receiver.

Due to the limited number of scatterers in the propagation environment, the massive MIMO

channels exhibit the property of clustered sparsity, i.e., the non-zero entries of G usually gather

in clusters, with each cluster corresponding to a scatterer, as illustrated in Fig. 1. To exploit the

clustered sparsity, we shall introduce Markov model to capture the scattering structure at the

transmitter and the receiver [24].

III. BLIND CHANNEL-AND-SIGNAL ESTIMATION

A. Problem Formulation

Blind channel-and-signal estimation aims to estimate H and X from the observed data matrix

Y in (10), without using any pilot signals. This problem can be formulated as

(Ĥ, X̂) = argmax
H,X

p(X,H|Y). (13)

To solve (13), our previous work proposed to factorize the noisy product Y by exploiting either

the channel sparsity [19], [20] or the signal sparsity [21]. Sparse matrix factorization techniques,

such as the K-SVD algorithm [25], the SPAMS algorithm [26], the ER-SpUD algorithm [27],

and the bilinear generalized approximate message passing (BiG-AMP) algorithm [28], can be

used to produce the estimates of H and X simultaneously. It has been shown in [19], [20],

and [21] that the blind estimation approach suffers from phase and permutation ambiguities.

More specifically, denote by Σ a unitary diagonal matrix with the phases of the diagonal entries

randomly selected from Ω (see footnote 2 for the definition of Ω). Denote by Π an arbitrary

permutation matrix. The phase and permutation ambiguities are due to the fact that if (Ĥ, X̂) is

a solution to (13), then (H̃ = ĤΠ−1Σ−1,ΣΠX̂) is also a valid solution to (13). The ambiguity

issue has the following two consequences for blind detection. On the one hand, the solution
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of (13) is not unique, and thus extra resources (such as reference signals and user labels) are

required to eliminate the ambiguities after performing matrix factorization. On the other hand, the

existence of the ambiguities facilitates the design of efficient iterative algorithms to find equally

good solutions. In fact, it has been shown in [29] that gradient-based iterative algorithms can

find a globally optimal solution of the non-convex sparse matrix factorization problem, provided

that certain regularity conditions are satisfied.

The approaches in [19], [20], and [21], however, fail to exploit the double-sparsity property

of the model in (10). With this regard, we aim to design an efficient blind channel-and-signal

estimation algorithm that can simultaneously exploit the sparsity of both channel matrix G and

signal matrix X. Rewrite Y in (10) in its vectorized form as

vec(Y) =
∑

q,p

∑

l

gq,pzq,p,lxl + vec(N), (14)

where gq,p is the (q, p)-th element of G, xl is the l-th element of vec(X), zq,p,l ∈ C
MT

is the l-th column of (IT ⊗ Bq,p), where Bq,p , aR,q(ϑq)a
H
T,p(ϕp) ∈ CM×KN , and aR,q(ϑq)

and aH
T,p(ϕp) are respectively the q-th column of AR(ϑ) and the p-th row of AH

T (ϕ). With

the measurements in (14), it seems that the joint estimation of G and X can be solved by

the parametric bilinear generalized approximate message passing (P-BiGAMP) algorithm [18].

However, through extensive simulations, we observe that the P-BiGAMP algorithm do not work

in factorizing the sparse matrices G and X. For the P-BiGAMP algorithm, we conjecture the

main reason as follows. Due to the existence of the known matrix AT(ϕ) between G and X

in (10b), the aforementioned phase and permutation ambiguities [20] no longer exist. In other

words, the solution to the factorization of G and X based on Y in (10) is unique up to a

scalar phase shift.3 With such uniqueness of the solution, the P-BiGAMP algorithm is prone to

be struck at a local optimum. One way to avoid the above difficulty is to absorb AT(ϕ) into

the matrix either on the right or on the left in sparse matrix factorization. Along this line, we

consider the following three approaches for blind channel-and-signal estimation.

1) We first consider a simplified DFT-based signal model. We project the received signal

3As a matter of fact, the factorization of GA
H
T X in (10b) generally suffers from scalar phase ambiguity, i.e., for any solution

of (Ĝ, X̂), (Ĝe−j̟, ej̟X̂) for ̟ ∈ Ω is still a valid solution, where Ω consists of the rotation-invariant angles of A.
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matrix to the angular domain by the inverse DFT unitary transform, i.e.

Y
′

= FHY

= FHAR(ϑ)GAH
T (ϕ)X+ FHN

= FHAR(ϑ)SX+N
′
, (15)

where S = GAH
T (ϕ), and N

′
= FHN. Suppose that the channel AoAs are located on a

uniform sampling grid for virtual spatial angles, i.e.

sinϑq =
q − 1

M
′ , for q = 1, · · · ,M ′

= M. (16)

Substituting (16) into (15), we see that AR(ϑ) is the normalized DFT matrix. Then

FHAR(ϑ) becomes the identity matrix. Thus, we can estimate both S and X by directly

factorizing Y
′
, which can be accomplished by using the BiGAMP algorithm. However,

the AoAs are generally not on the grid in practice. This DFT-based method (in which the

estimates of S and X are obtained by treating Y
′

modelled as Y
′
= SX + N

′
) always

suffers performance loss due to the unavoidable AoA mismatch, i.e. FHAR(ϑ) is actually

not the identity matrix.

2) Alternatively, we absorb AT(ϕ) into the right by letting X̃ , AH
T (ϕ)X ∈ CKN

′
×T . Then,

Y = AR(ϑ)GX̃+N. (17)

We follow the affine sparse matrix factorization approach in [19] to produce the estimates

of G and X̃ based on Y in (17) and the sparsity of G and X̃. However, due to the mixing

effect of AT(ϕ), the entries of X̃ are generally not constrained on the alphabet A. Such a

loss of constellation constraints leads to performance degradation in matrix factorization.

3) To avoid the loss of constellation information, we absorb AT(ϕ) into the left matrix. The

system model is given by

Y = AR(ϑ)SX+N. (18)

We still follow the affine sparse matrix factorization approach in [19] to estimate S and X

based on Y. The only differences are that here both S and X are sparse and that the entries

of X are constrained on A. These properties can be exploited to improve the performance

of matrix factorization.

It is clear that all the models in (15)-(18) involve the factorization of two sparse matrices. In

the following, we focus on the model in (18) to present the blind channel-and-signal estimation
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∑M

′
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(BCSE) algorithm. The BCSE algorithm can be applied to the models (15) and (17) with some

minor modifications. We will provide numerical evidences to show that the algorithm developed

based on (18) significantly outperform those based on (15) and (17).

The affine sparse matrix factorization (ASMF) problem described above can be formulated as

(Ŝ, X̂) = argmax
S,X

p(S,X|Y;ψ), (19)

where ψ , {ϑ, ρ, λS, p
S
01, p

S
10, vS, σ

2}, λS is the sparsity level of S, pS01 and pS10 are the transition

probabilities of the Markov chain characterizing the support structure of S, and vS is the variance

of the non-zero entries of S.4 Here, the parameters in ψ are assumed to be known when solving

(19). The estimation of these parameters will be discussed later in Section V. The problem in

(19) is generally difficult to solve. In the following, we present a low-complexity approximate

solution based on the message passing principle.

B. Factor Graph Representation

To start with, we describe the factor graph representation of the probability distribution

involved in (19) as follows. Recall that the entries of Xk are independently and uniformly

drawn from the distribution in (2). Thus,

p(Xk) =

N
∏

n=1

T
∏

t=1

p(xk,n,t). (20)

4Due to the mixing effect of AT(ϕ), the sparsity level λS of S = GA
H
T (ϕ) generally satisfies λT ≥ λS ≥ λG. In addition,

pS10 is not an independent parameter in ψ, since pS10 can be obtained from λS and pS01 by using the equality λS =
pS01

pS
01

+pS
10

.
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Define Z , AR(ϑ)SX ∈ C
M×T . Since N is an AWGN, we have

p(Y|Z) =
M
∏

m=1

T
∏

t=1

CN (ym,t; zm,t, σ
2). (21)

Due to the mixing effect of AT(ϕ), the Markovity of the support of S = GAH
T (ϕ) cannot be

directly described by the AoD and AoA random vectors introduced in Section II-C. Instead, let

D
′

denote the support of S. We use an independent Markov chain to describe the probability

distribution of each column of D
′
, yielding

p(D
′
) =

KN
∏

p=1



p(d
′

1,p)
M

′

∏

q=2

p(d
′

q,p|d
′

q−1,p)



 , (22)

where the transition probabilities are given by p(d
′

q,p|d
′

q−1,p = 0) = pS10δ(d
′

q,p − 1) + (1 −
pS10)δ(d

′

q,p) and p(d
′

q,p|d
′

q−1,p = 1) = pS01δ(d
′

q,p) + (1 − pS01)δ(d
′

q,p − 1). The initial p(d
′

1,p) is set

as p(d
′

1,p) = λSδ(d
′

1,p − 1) + (1 − λS)δ(d
′

1,p). Then, the joint probability density distribution of

(S,X) conditioning on Y is given by

p(S,X,Z,W|Y) ∝ p(Y|Z)p(X)p(S|D′

)p(D
′

)δ(Z−AR(ϑ)W)δ(W− SX)

=





M
∏

m=1

T
∏

t=1

p(ym,t|zm,t)δ(zm,t −
M

′

∑

q=1

Am,qwq,t)δ(wq,t −
KN
∑

p=1

sq,pxp,t)





(

KN
∏

p=1

T
∏

t=1

pxp,t(xp,t)

)

×





M
′

∏

q=1

KN
∏

p=1

p(sq,p|d
′

q,p)









KN
∏

p=1



p(d
′

1,p)

M
′

∏

q=2

p(d
′

q,p|d
′

q−1,p)







 , (23)

where Am,q is the (m, q)-th element of AR(ϑ). The factor graph representation of (23) is depicted

in Fig. 2, where the variable nodes consist of {zm,t}, {wq,t}, {sq,p}, {d′

q,p}, {xp,t}, and the check

nodes consist of {fq,t}, {gm,t}, {p(xp,t)}, {p(sq,p)}, {p(ym,t|zm,t)}, and {p(d′

q,p|d
′

q−1,p)}.

C. Blind Channel-and-Signal Estimation Algorithm

The inference problem in Fig. 2 can be solved by the affine sparse matrix factorization method

in [19]. The resulting BCSE algorithm is summarized in Algorithm 1. Most derivation details

of Algorithm 1 can be found in [19], and thus are omitted for brevity. Here, we focus on the

difference and provide a brief explanation of the algorithm based on message passing over the

factor graph in Fig. 2. The other differences about new initialization and re-initialization methods

are presented in Section D.
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Algorithm 1 : BCSE algorithm

1: Input: received signal Y, parameters ψ , {ϑ, ρ, λS , p
S
01, p

S
10, vS , σ

2}, prior distributions p(xp,t) and p(sq,p).

2: Initialization: ŝq,p(1) = ŵq,t(1) = 0, vsq,p(1) = vwq,t(1) = vmax, x̂p,t(1) randomly chosen from A, vxp,t(1) = vmax, τ̂m,t(0) =

α̂q,t(0) = 0, ∀q, p, t

3: for i = 1, 2, 3, · · · , Imax do % outer iteration

4: for j = 1, 2, 3, · · · , Jmax do % inner iteration

5: ∀m, t: vum,t(j) =
∑M

′

q=1 |Am,q|2vwq,t(j); ûm,t(j) =
∑M

′

q=1 Am,qŵq,t(j)− vum,t(j)τ̂m,t(j − 1)

6: ∀m, t: vzm,t(j) =
vu
m,t(j)σ

2

vu
m,t(j)+σ2 ; ẑm,t(j) =

ûm,t(i)σ
2+ym,tv

u
m,t(j)

vu
m,t(j)+σ2

7: ∀m, t: vτm,t(j) =
vu
m,t(j)−vz

m,t(j)

|vu
m,t(j)|

2 ; τ̂m,t(j) =
ẑm,t(j)−ûm,t(j)

vu
m,t(j)

8: ∀q, t: vζq,t(j) =
(

∑M
m=1 |Am,q|2vτm,t(j)

)−1
; ζ̂q,t(j) = ŵq,t(j) + vζq,t(j)

∑M
m=1 Am,q τ̂m,t(j)

9: ∀q, t: vηq,t(j) =
∑KN

p=1 |ŝq,p(j)|
2vxp,t(j) + vsq,p(j)|x̂p,t(j)|2 + vsq,p(j)v

x
p,t(j)

10: ∀q, t: η̄q,t(j) =
∑KN

p=1 ŝq,p(j)x̂p,t(j)

11: ∀q, t: η̂q,t(j) = η̄q,t(j)− α̂q,t(j − 1)
(

vsq,p(j)|x̂p,t(j)|2 + |ŝq,p(j)|2vxp,t(j)
)

12: ∀q, t: ŵq,t(j) = vwq,t(j)

(

ζ̂q,t(j)

v
ζ
q,t(j)

+
η̂q,t(j)

v
η
q,t(j)

)

; vwq,t(j) =
v
η
q,t(j)v

ζ
q,t(j)

v
η
q,t(j)+v

ζ
q,t(j)

13: ∀q, t: vαq,t(j) =
vw
q,t(j)−v

η
q,t(j)

|vη
q,t(j)|

2 ; α̂q,t(j) =
ŵq,t(j)−η̂q,t(j)

v
η
q,t(j)

14: ∀p, t: vrp,t(j) =

(

∑M
′

q=1 |ŝq,p(j)|
2vαq,t(j)

)−1

15: ∀p, t: r̂p,t(j) = x̂p,t(j)

(

1− vrp,t(j)
∑M

′

q=1 v
s
q,p(j)v

α
q,t(j)

)

+ vrp,t(j)
∑M

′

q=1 ŝ
∗
q,p(j)α̂q,t(j)

16: ∀q, p: vςq,p(j) =
(

∑T
t=1 |x̂p,t(j)|2vαq,t(j)

)−1

17: ∀q, p: ς̂q,p(j) = ŝq,p(j)
(

1− vςq,p(j)
∑T

t=1 v
x
p,t(j)v

α
q,t

)

+ vςq,p(j)
∑T

t=1 x̂
∗
p,t(j)α̂q,t(j)

18: ∀q, p: χout
q,p =

(

1 +
CN (0;ς̂q,p(j),v

ς
q,p(j))∫

CN (sq,p ;0,σ2)CN (sq,p ;ς̂q,p(j),v
ς
q,p(j))

)−1

19: for q = 2, · · · ,M
′

do

20: λf
q,p =

pS01(1−χout
q−1,p)(1−λ

f
q−1,p

)+pS11χ
out
q−1,pλ

f
q−1,p

(1−χout
q−1,p

)(1−λ
f
q−1,p

)+χout
q−1,p

λ
f
q−1,p

, where λf
1,p = λS

21: end for

22: for q = M
′

− 1, · · · , 1 do

23: λb
q,p =

pS10(1−χout
q+1,p)(1−λb

q+1,p)+(1−pS10)χ
out
q+1,pλ

b
q+1,p

(1−χout
q+1,p

)(1−λb
q+1,p

)+πout
q+1,p

λb
q+1,p

, where λb

M
′
,p

= 1
2

24: end for

25: χin
q,p =

λf
q,pλ

b
q,p

(1−λ
f
q,p)(1−λb

q,p)+λ
f
q,pλ

b
q,p

26: ∀p, t: x̂p,t(j + 1) = Ep̃(xp,t)[xp,t|r̂p,t(j), vrp,t(j),ψ]

27: ∀p, t: vxp,t(j + 1) = Ep̃(xp,t)[|xp,t − x̂p,t(j + 1)|2|r̂p,t(j), vrp,t(j),ψ]

28: ∀q, p: ŝq,p(j + 1) = Ep̃(sq,p)[sq,p|ς̂q,p(j), v
ς
q,p(j), π

in
q,p,ψ]

29: ∀q, p: vsq,p(j + 1) = Ep̃(sq,p)[|sq,p − ŝq,p(j + 1)|2|ς̂q,p(j), vςq,p(j), π
in
q,p,ψ]

30: end for

31: Re-initialize x̂p,t(1), vxp,t(1), ŝq,p(1), and vsq,p(1), ∀p, q, t

32: end for

33: ∀p, t: x̂p,t = x̂p,t(j + 1)xref/x̂p,1(j + 1)

34: ∀q, p: ŝq,p = ŝq,p(j + 1)x̂p,1(j + 1)/xref

35: Output: X̂, Ŝ
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In lines 5-8 of Algorithm 1, we adopt the approximate message passing principle [30] to

calculate the messages from nodes {zm,t} to nodes {fq,t} based on the observations {ym,t}.

More specifically, in line 5, the messages from nodes {fq,t} are cumulated to obtain an estimate

of AR(ϑ)W with means {ûm,t} and variances {vum,t}, where W , SX and “Onsager” correction

is applied to generate the means {ûm,t}. Line 6 computes the means {ẑm,t} and variances {vzm,t}
based on {ûm,t}, {vum,t}, and observations {ym,t}. In line 7, we compute the scaled residuals

{τ̂m,t} and inverse-residual-variances {vτm,t}. Then in line 8, the messages from nodes {zm,t}
to nodes {fq,t} are combined to compute a estimate {wq,t} with means {ζ̂q,t} and variances

{vζq,t}. In lines 9-11, the messages from nodes {sq,p}, and {xp,t} are cumulated to obtain an

estimate of SX with means {η̂q,t} and variance {vηq,t}. Similar to line 7, line 13 computes scaled

residuals and inverse-residual-variances. In lines 14-15, the messages from {fq,t} to node {xk,t}
are combined to compute estimates of {xk,t}, with means {r̂k,t} and variances {vrk,t}. Then in

lines 26-27, each pair of r̂p,t and variance vxp,t are merged with the prior distribution p(xp,t) to

produce the posterior mean x̂p,t and variance vxp,t, where the expectation is taken with respect to

p̃(xp,t) =
p(xp,t)CN (xp,t; r̂p,t, v

r
p,t)

∫

p(xp,t)CN (xp,t; r̂p,t, vrp,t)
. (24)

We plug p(xp,t) in (2) into (24), yielding

p̃(xp,t)=

ρ
|A|

∑

a∈A δ(xp,t − a)CN
(

xp,t; r̂p,t, v
r
p,t

)

+(1− ρ)δ(xp,t)CN
(

xp,t; r̂p,t, v
r
p,t

)

∫

ρ
|A|

∑

a∈A δ(xp,t − a)CN
(

xp,t; r̂p,t, vrp,t
)

+(1− ρ)δ(xp,t)CN
(

xp,t; r̂p,t, vrp,t
) . (25)

Similar calculations are performed for {sq,p} in lines 16-17 and lines 28-29. In line 18, we

compute the messages from nodes {p(sq,p|d′

q,p)} to nodes {d′

q,p} given by {χout
q,p d

′

q,p + (1 −
χout
q,p )(1− d

′

q,p)}. In lines 19-24, forward and backward message passing [17] is applied. In line

25, the messages from nodes {d′

q,p} to nodes {p(sq,p|d′

q,p)} are calculated by {χin
q,pd

′

q,p + (1 −
χin
q,p)(1− d

′

q,p)}. In lines 28-29, the expectation is taken with respect to the distribution

p̃(sq,p) =
p(sq,p)CN (sq,p; ς̂q,p, v

ς
q,p)

∫

p(sq,p)CN (sq,p; ς̂q,p, vςq,p)
, (26)

with p(sq,p) = (1 − χin
q,p)δ(sq,p) + χin

q,pCN (sq,p; 0, vS) is the message from node p(sq,p|d′

q,p) to

node sq,p. Finally, since the first column of X is set as x1,1 = x2,1 = · · · = xKN,1 = xref (where

xref is a reference symbol), the phase ambiguity can be eliminated in lines 33-34.5

5Then the permutation ambiguity can be eliminated by inserting an antenna label in each row of X. To assign a unique label

for each transmit antenna, we need ⌈log2 KN⌉ bits, or equivalently, ⌈log|A| KN⌉ symbols, for each label.
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D. Initialization and Re-initialization

The matrix factorization problem in (19) is non-convex, and the iterative algorithm described

in Subsection C is prone to get stuck at a local optimum. To alleviate this issue, we introduce

inner and outer iterations in the algorithm (following [19], [20], and [21]), where multiple random

initializations in the outer iteration and re-initializations in the inner iteration are employed to

avoid local optima. For random initializations at the outer iteration, the means of the initial

signals are set as symbols randomly chosen from A, and the means of the initial channels are

set to zero. The variances of the signal and the channel are initialized to vmax.

We now discuss the re-initialization at the inner iteration. In [19]–[21], either the channel

or the signal is sparse, but not both. The re-initialization at the inner iteration is to reset the

means and variances of the sparse variables (the channel or the signal), while keeping the means

and variances of non-sparse variables the same as the previous round of inner iteration. This

re-initialization method cannot be directly applied in Algorithm 1 since here both the channel

matrix S and the signal matrix X are sparse. As such, we explore the following five candidate

methods for re-initialization:

(i) Reset channel mean and variance: The first method only resets the channel variables, i.e.,

line 31 of Algorithm 1 is replaced by “x̂p,t(1) = x̂p,t(j+1), vxp,t(1) = v̂xp,t(j+1), ŝq,p(1) = 0,

and vsq,p(1) = vmax, ∀p, t, q.”

(ii) Reset channel mean, channel variance, and signal variance: Line 31 of Algorithm 1 is

replaced by “x̂p,t(1) = x̂p,t(j + 1), vxp,t(1) = vmax, ŝq,p(1) = 0, and vsq,p(1) = vmax, ∀p, t, q.”

(iii) Reset signal mean and variance: Line 31 of Algorithm 1 is replaced by “x̂p,t(1) is randomly

chosen from A, vxp,t(1) = vmax, ŝq,p(1) = ŝq,p(j + 1), and vsq,p(1) = v̂sq,p(j + 1), ∀p, t, q.”

(iv) Reset signal mean, signal variance, and channel variance: Line 31 of Algorithm 1 is

replaced by “x̂p,t(1) is randomly chosen from A, vxp,t(1) = vmax, ŝq,p(1) = ŝq,p(j + 1) and

vsq,p(1) = vmax, ∀p, t, q.”

(v) Reset channel variance and signal variance: Line 31 of Algorithm 1 is replaced by “x̂p,t(1) =

x̂p,t(j + 1), ŝq,p(1) = ŝq,p(j + 1), and vxp,t(1) = vsq,p(1) = vmax, ∀p, t, q.”

In Section VI, we present simulation results to compare the above five methods. We show by

numerical simulations that the last method has the best performance among the five choices.
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IV. SEMI-BLIND CHANNEL-AND-SIGNAL ESTIMATION

In this section, we develop a semi-blind channel-and-signal estimation (SBCSE) algorithm, as

inspired by the following two reasons. First, as discussed in Section III, blind channel-and-signal

estimation suffers from the phase and permutation ambiguities inherent in matrix factorization.

One reference symbol and an antenna label are inserted into each row of Xk, k = 1, · · · , K
to eliminate the phase and permutation ambiguities. Yet, as the reference symbols and antenna

labels (similar to pilots) are a priori known by the receiver, such knowledge can be integrated into

the iterative process of sparse matrix factorization to improve the reliability of blind detection.

Second, recall that S = GAH
T (ϕ), where AH

T (ϕ) is a priori known by the receiver. Given an

estimate of S from the matrix factorization algorithm, we can enhance the estimation accuracy

of G (and hence S) by exploiting the fact that G is a sparse matrix (which is generally more

sparse than S). This can be accomplished by using compressed sensing methods.

In the following, we propose a semi-blind channel-and-signal estimation (SBCSE) approach.

The SBCSE algorithm largely follows the framework of BCSE, except for two extra steps. In the

first step, we use short pilots to estimate the phase and permutation ambiguities. In the second

step, we use compressed sensing to improve the estimate of G after removing the phase and

permutation ambiguities.

A. Estimation of Phase and Permutation Ambiguities

We assume that the first TP symbols of each user packet are short pilots known by the receiver,

i.e., X = [XP,XD], where XP = [xP,1,xP,2, · · · ,xP,KN ]
T ∈ CKN×TP and data symbols XD =

[xD,1, · · · ,xD,KN ]
T ∈ CKN×(T−TP). Correspondingly, Y can be represented as Y = [YP,YD],

where YP ∈ C
M×TP . By “short pilots”, we mean TP ≪ KN so that the conventional training

based channel estimation methods (including those based on compressed sensing) cannot provide

a good estimate of the channel solely based on YP and XP. Meanwhile, TP ≥ ⌈log|A|KN⌉+16,

so that the phase and permutation ambiguities can be efficiently resolved.

The SBCSE algorithm is given as follows. Let Ŝ and X̂ be a pair of output estimates from the

inner iteration (at a certain round of outer iteration). Recall that BCSE suffers from the phase

and permutation ambiguities. Let Π = [π1,π2, · · · ,πKN ]
T ∈ CKN×KN be the permutation

6For the log|A| KN+1 symbols, one symbol is used to eliminate the phase ambiguity and the remaining log|A| KN symbols

are used to eliminate the permutation ambiguity.
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ambiguity matrix, where πp is a KN × 1 unit with only one non-zero entry. Likewise, let

Σ = diag{σ1, σ2, · · · , σKN} be the phase ambiguity matrix (with the diagonal elements being

σp = ej̟p , ̟p ∈ Ω, p = 1, · · · , KN) carried in Ŝ and X̂. Then, Ŝ and X̂ can be written as

Ŝ = S̃Π−1Σ−1 and X̂ = ΣΠX, (27)

where S̃ is the ambiguity-corrected estimate of S. Correspondingly, we write

X̂P = ΣΠXP, (28)

where X̂P consists of the first TP columns of X̂. Note that XP is known by the receiver.

Recall from Algorithm 1 that the distribution of xp,t at the end of a certain inner iteration is

given by p̃(xp,t) in (24). As xp,t is discrete, for any given p, t, k, we denote by P (x̂p,t = xk,t)

the probability of x̂p,t = xk,t specified by p̃(xp,t) in (24). Let uk be the k-th column of the

KN-by-KN identity matrix. Then, for any given p and t, the joint probability of σp = ej̟p and

πp = uk is given by

P (σp = ej̟p,πp = uk) =

TP
∏

t=1

P (x̂p,t = ej̟xk,t). (29)

The corresponding marginals are given by

P (σp = ej̟) =
∑

k∈I

TP
∏

t=1

P (x̂p,t = ej̟xk,t), ̟ ∈ Ω (30a)

P (πp = ul) =
∑

w∈Ω

TP
∏

t=1

P (x̂p,t = ej̟xl,t), l ∈ {1, · · · , KN} , I. (30b)

Based on (30a), an estimate of Σ is given by Σ̂ = diag{σ̂1, σ̂2, · · · , σ̂KN}, where σ̂p =

argmax̟∈Ω P (σp = ej̟). Similarly, an estimate of Π̂ is given by Π̂ = [π̂1, π̂2, · · · , π̂KN ],

where π̂p = argmaxl∈I P (πp = ul).

B. Estimation of G

In this subsection, we further exploit the channel sparsity of G to enhance the channel estimate.

With Σ̂ and Π̂, we eliminate the ambiguities in Ŝ as

S̃
′

= ŜΣ̂Π̂. (31)

Recall S = GAH
T (ϕ) in (18). We model S̃

′
as

S̃
′

= S+W
′

= GAH
T (ϕ) +W

′
, (32)
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Algorithm 2 : SBCSE algorithm

1: Input: received signal Y, parameters ψ , {ϑ, ρ, λS , p
S
01, p

S
10, vS , σ

2}, prior distributions p(xp,t) and p(sq,p).

2: Initialization: ŝq,p(1) = ŵq,t(1) = 0, vsq,p(1) = vwq,t(1) = vmax, x̂p,t(1) randomly chosen from A, vxp,t(1) = vmax, τ̂m,t(0) =

α̂q,t(0) = 0, ∀q, t, p

3: for i = 1, 2, 3, · · · , Imax do % outer iteration

4: for j = 1, 2, 3, · · · , Jmax do % inner iteration

5: Run lines 5-29 of Algorithm 1

6: end for

7: ∀p: P (σp = ej̟) = 1
|A|

∑

k∈I

∏TP

t=1 P (x̂p,t = ej̟xk,t), ̟ ∈ Ω

8: ∀p: P (πp = ul) =
1

|A|

∑

̟∈Ω
∏TP

t=1

P (x̂p,t = ej̟xl,t), l ∈ I

9: ∀p: σ̂p = argmax̟∈Ω P (σp = ej̟); π̂p = argmaxl∈I P (πp = ul)

10: Σ̂ = diag{σ̂1, σ̂2, · · · , σ̂KN}; Π̂ = [π̂1, π̂2, · · · , π̂KN ]

11: S̃
′

= ŜΣ̂Π̂; ϕ = ϕ1; [ĝ1
1, · · · , ĝ

1
M

′
] = AH

T
(ϕ1)(S̃

′

)H

12: for t = 1, 2, 3, · · · , Qmax do

13: ∀k : vt = ĝt
k + 1

β
(AH

T
(ϕt)((S̃

′

)H −AT(ϕ
t)ĝt

k))

14: ∀k : ĝt+1
k

= soft(vt, α)

15: Update ϕt+1 via (35)

16: end for

17: Ĝ = [ĝt+1
1 , · · · , ĝt+1

M
′
]H ; Ŝ = ĜAH

T
(ϕt+1)Π̂−1Σ̂−1

18: Re-initialize x̂p,t(1), vxp,t(1), ŝq,p(1), and vsq,p(1), ∀q, p, t

19: end for

20: X̃ = Π̂−1Σ̂−1X̂; S̃ = ŜΣ̂Π̂

21: Output: X̃; S̃

where W
′

is the additive noise contained in S̃
′
. We aim to recover G from S̃

′
. To alleviate

the possible angular mismatch for the AoDs, we propose to tune the angle grid at the user by

considering the following optimization problem:

argmin
ϕ,G

‖S̃′ −GAH
T (ϕ)‖22 + α

∥

∥W
′∥
∥

1
. (33)

where α > 0 is a regularization factor. To solve this problem, we alternately update the estimates

of G and ϕ. First, we aim to recover G from S̃
′

for given ϕ. Compressed sensing techniques

can be used for this purpose. Since here the probability model of W
′

is difficult to acquire, we

propose to use the iterative soft-thresholding algorithm to deal with the sparsity [31], which is

a robust estimator without requiring much knowledge of the statistical information of W
′
. For

the model in (32), the iterative soft thresholding algorithm is given by

vt = ĝt
k +

1

β
(AH

T (ϕt)((S̃
′

)H −AT(ϕ
t)ĝt

k))

ĝt+1
k = soft(vt, α), (34)

where t is the iteration number, β is the maximum eigenvalue of AH
T (ϕt)AT(ϕ

t), and soft(u, b) ≡
max{|u|−b,0}

max{|u|−b,0}+b
u. Note that in (34), soft(·) is applied to vector vt in a pointwise manner. Then, we
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aim to improve the resolution of AoDs, i.e., to reduce the mismatch between ϕ and true AoDs.

We develop a gradient descent method to solve (33) for given S̃
′
. Specifically, we compute

ϕt+1 = ϕt − ǫ
ϕ̄t

|ϕ̄t| , (35)

where ϕ̄t denotes the derivative of the objective in (33) with respect to ϕ, and ǫ is an appropriate

step size.

The SBCSE algorithm is summarized in Algorithm 2. Lines 4-6 compute the signal estimate

X̂ and the channel estimate Ŝ based on BCSE. In lines 7-11, we use short pilots to estimate

the phase and permutation ambiguities, i.e., Σ̂ and Π̂. In lines 12-17, we remove the phase

and permutation ambiguities in Ŝ, the compressed sensing technique is used to improve the

estimate of G, and a gradient descent method is used to improve the resolution of AoDs. Line

20 eliminates the phase and permutation ambiguities in X̂ and Ŝ.

V. FURTHER DISCUSSIONS

A. Parameter Learning

Recall from (19) that the model parameters ψ are assumed to be known by the receiver. In

practice, most of these parameters are unknown and need to be estimated. We now describe an

expectation maximization (EM) based approach for parameter learning [19], [28]. Specifically,

at the i-th outer iteration, we have the following updating rules for the parameters in ψ:7

σ2(i+ 1) = argmax
σ2

E
[

ln p(Y,S,X;ϑ(i), ρ(i), λS(i), p
S
01(i), vS(i), σ

2)
]

(36a)

ϑq(i+ 1) = argmax
ϑq

E [ln p(Y,S,X;ϑ1(i+ 1), · · · , ϑq−1(i+ 1),

ϑq, ϑq+1(i), · · · , ϑM
′ (i), ρ(i), λS(i), pS01(i), vS(i), σ

2(i+ 1))
]

(36b)

vS(i+ 1) = argmax
vS

E
[

ln p(Y,S,X;ϑ(i+ 1), ρ(i), λS(i), p
S
01(i), vS, σ

2(i+ 1))
]

(36c)

pS01(i+ 1) = argmax
pS01

E
[

ln p(Y,S,X;ϑ(i+ 1), ρ(i), λS(i), p
S
01, vS(i+ 1), σ2(i+ 1))

]

(36d)

λS(i+ 1) = argmax
λS

E
[

ln p(Y,S,X;ϑ(i+ 1), ρ(i), λS, p
S
01(i+ 1), vS(i+ 1), σ2(i+ 1))

]

(36e)

7Signal sparsity ρ is not updated in (36), since ρ is determined by the transmission protocol. In addition, pS10 is not included

in (36) since it can be updated by using the equality λS =
pS01

pS
01

+pS
10

once λS and pS01 are determined.
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where the expectations in (36) are taken over the distribution of p(S,X|Y;ψ(i)). However, the

exact form of p(S,X|Y;ψ(i)) is difficult to obtain. Here, we approximate the joint posterior

distribution p(S,X|Y;ψ(i)) by the product of its marginals, i.e.,

p(S,X|Y;ψ(i)) =

(

∏

q

∏

p

p(sq,p|Y;ψ(i))

)(

∏

t

∏

p

p(xp,t|Y;ψ(i))

)

, (37)

where p(xp,t|Y;ψ(i)) and p(sq,p|Y;ψ(i)) at the i-th outer iteration are approximated by (24)

and (26), respectively.

B. Complexity Analysis

We now compare the computational complexity of various sparse matrix factorization methods

for the system models in (10) and (15)-(18). We first consider the P-BiGAMP algorithm for

(10). Recall from (14) that the size of vec(G) ∈ CKN
′
M

′
×1 is KN

′
M

′ × 1, that of vec(X) ∈
CKNT×1 is KNT × 1, and that of zl is MT × 1. From [18], the complexity of P-BiGAMP is

O(ImaxJmaxMT 2NK2M
′
N

′
), which is prohibitive highly for massive MIMO systems. Note that

Imax and Jmax are the maximum numbers of outer iterations and inner iterations, respectively. Sec-

ond, we consider the matrix factorization problems in (10a) and (15), which can be solved by the

BiGAMP algorithm. From [28], the computational complexity is O(ImaxJmaxMTKN). Third,

we consider the matrix factorization problem in (18). For BCSE in Algorithm 1, the complexity

of lines 5-8 is O(MM
′
T ); the complexity of lines 9-17 is O(M

′
TKN); the complexity of lines

18-25 is O(M ). Thus, the overall complexity is O(ImaxJmax(M
′
TKN+MM

′
T )). For SBCSE in

Algorithm 2, the extra steps in lines 12-15 require complexity of O(K2NN
′
Qmax), where Qmax

is the maximum number of iterations for iterative soft thresholding. Thus, the overall complexity

of SBCSE is O(Imax(JmaxM
′
TKN + JmaxMM

′
T +K2NN

′
Qmax)). Finally, we consider the

model in (17). Note that the BCSE algorithm can be straightforwardly applied to (17), except

that the prior distributions of the elements of X̃ are replaced by Gaussian distributions. The

involved complexity is O(ImaxJmax(M
′
TKN

′
+MM

′
T )). Also note that the SBCSE algorithm

cannot be applied to (17), since it is difficult to estimate the phase and permutation ambiguities

in factorizing G and X̃ by using the pilots. The above discussions are summarized in Table II.

VI. NUMERICAL RESULTS

In this section, we present simulation results to evaluate the performance of the BCSE and

SBCSE algorithms. In the simulations, quadrature phase shift keying (QPSK) modulation with
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TABLE II

COMPUTATIONAL COMPLEXITY

Method Complexity

P-BiGAMP for (10b) O(ImaxJmaxMT 2NK2M
′

N
′

)

BiGAMP for (10a) and (15) O(ImaxJmaxMTKN)

BCSE for (17) O(ImaxJmax(M
′

TKN
′

+MM
′

T ))

BCSE for (18) O(ImaxJmax(M
′

TKN +MM
′

T ))

SBCSE for (18) O(Imax(JmaxM
′

TKN + JmaxMM
′

T +K2NN
′

Qmax))

Gray-mapping is employed. The signal-to-noise ratio (SNR) is defined as ρKN
σ2 . For both BCSE

and SBCSE algorithms, the maximum number of inner iterations Lmax is set to 200, and the

maximum number of outer iterations Mmax is set to 20. The number of random initializations

is set to 5.

We are now ready to compare the performance of different approaches, as listed below.

• BiGAMP for (10a): H and X in (10a) are recovered using the BiGAMP algorithm by

exploiting the signal sparsity [21].

• BiGAMP for (15): S and X in (15) are recovered using the BiGAMP algorithm. Both the

sparsity of S and the sparsity of X are exploited in the algorithm. Note that the sparsity

level ρ of X is known by the algorithm, whereas the sparsity level λS of S is learned using

the EM method described in Section V-A.

• Training-based: In the training-based scheme, we use the BiGAMP algorithm for sparse

matrix factorization, with the signal means and variances are initialized (and re-initialized)

by following the strategy in [22]. That is, the first TP columns of X are initialized as the

pilots XP, and the corresponding variances are set to zero.

• BCSE for (17): The proposed blind detection scheme (Algorithm 1) is applied to the

factorization of GX̃ in (17), except that the prior distributions of the elements of X̃ are

replaced by Gaussian distributions.

• BCSE for (18): The proposed blind detection scheme (Algorithm 1) is applied to the

factorization of SX in (18).

• SBCSE for (18): The proposed semi-blind detection scheme (Algorithm 2) is applied to the

factorization of SX in (18).

• Genie bound with S known: The proposed blind detection scheme (Algorithm 1) is applied
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to the factorization of S and X in (18), where S is known to the receiver.

• Genie bound with X known: The proposed blind detection scheme (Algorithm 1) is applied

to the factorization of S and X in (18), where X is known to the receiver.

We use the bit-error rate (BER) of the signal and the normalized mean square error (NMSE)

of the channel as the evaluation metrics. All the simulation results are obtained by taking average

over 100 random realizations.

A. Blind Channel-and-Signal Estimation

In the simulations, the true AoAs are generated by

sin(θq) = sin(ϑDFT
q ) + ςq,with ςq ∼ U

[

− 1

2M ′ ,
1

2M ′

]

(38)

where {ϑDFT
q } is the DFT sampling grids, and U[c, d] denotes the uniform distribution over

[c, d]. We assume that the receiver exactly knows the true AoAs, so that the grid {ϑq}M
′

q=1 used

at the receiver perfectly covers the true AoAs {θq}M
′

q=1. The entries of G are randomly and

independently drawn from the distribution p(gk,q,p) = (1−λ)δ(gk,q,p)+λCN (gk,q,p; 0, vpri) with

λ = 0.1 and vpri = 1. Other parameters are set as M = M
′
= 128, N = N

′
= 1, K = 20,

T = 100, ρ = 0.1, and vmax = 10. Fig. 3 shows the BER and NMSE performance of the

five different re-initialization methods (discussed in Section III-D) versus SNR. We see that the

method by resetting the channel mean and the channel variance (used in [19]) has a BER error

floor at around 10−2. Further resetting the signal variance does not work well either. The other

three resetting strategies have better performance. Among them, the best performance occurs

when only the signal variance and the channel variance are reset. Hence, we always use this

re-initialization method in the remaining simulation results.

Fig. 4 shows the requirements on K, ρ, and λ for successful recovery with other parameters

fixed at M = M
′
= 128, N = N

′
= 1, T = 256, and SNR = 20 dB. We say that the recovery

is successful and the corresponding value of K, ρ, and λ are feasible if the BER of X < 10−3.

Fig. 4(a) shows the feasiable region of (K, λ) with the signal sparsity ρ = 0.4. We see that the

boundary is a monotonic function of the sparsity level λ, i.e., the sparser the channel is, the

greater the number of users can be supported. It is also interesting to see that the system is

able to perform successful recovery with K = 30, even for a relatively large λ. In this case, the

user signals are still separable due to the signal sparsity. Fig. 4(b) shows the available region
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Fig. 3. The performance comparison of different re-initialization methods, where M = M
′

= 128, K = 20, N = N
′

= 1,

T = 100, ρ = 0.1, and λ = 0.1.
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Fig. 4. The phase transition of the BCSE scheme for the model in (18), where M = M
′

= 128, N = N
′

= 1, and T = 256.

of (K, ρ) with the channel sparsity λ = 0.4. We observe that the boundary is also a monotonic

function of the sparsity level ρ, as expected.

Fig. 5 shows the blind detection performance versus SNR, where M = M
′
= 128, N = N

′
=

1, K = 30, T = 256, ρ = 0.4, and λ = λS = 0.1. TP = 1 + ⌈log4 30⌉ QPSK symbols are used

as pilots for each packet. For blind detection schemes, these pilots are used to remove phase

and permutation ambiguities. From Fig. 5, we see that the BiG-AMP method only exploiting the

signal sparsity in (10a) does not work well, neither does the training-based method. The BCSE for

(17) has obvious performance loss than the BCSE for (18) since a loss of constellation constraints.

The BiGAMP for (15) suffers from an error floor due to the unavoidable energy leakage problem

of using the DFT basis for grid sampling. Clearly, our proposed BCSE algorithm significantly

outperforms the counterpart schemes. Also, the proposed BCSE algorithm approaches the genie
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=32, K = 1, N =N
′

=4, T =50, ρ=0.2,

and λ=0.2.

bound in the high SNR regime.

The proposed BCSE algorithm can also compare with the other bilinear recovery algorithm,

such as BAd-VAMP in [32] and PBIGAMP in [18]. However, these algorithms will have high

complexity in the settings in Fig. 5, so we try to compare in a small setup. We reset simulation

settings as M = M
′
= 32, N = N

′
= 4, K = 1, T = 50, ρ = 0.2, and λ = 0.2. From

Fig. 6, we see that BAd-VAMP and PBiGAMP do not work well. The proposed BCSE algorithm

considerably outperforms BAd-VAMP and PBiGAMP.

B. Performance of Semi-Blind Channel-and-Signal Estimation

We still assume that the true AoAs generated by (38) and the AoA grid perfectly covers the

true AoAs. A uniform sampling grid is adopted to generate the AoDs, i.e., AT,k(ϕk) is a DFT

matrix for each user k. The parameter settings are M = M
′
= 128, N = N

′
= 8, K = 3,
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T = 100, ρ = 0.3, and λ = 0.1. Fig. 7 shows the BER performance versus SNR for various

schemes with the number of pilots TP = 4 and 8. From Fig. 7, we see that the SBCSE method

for TP = 4 significantly outperforms the training-based scheme and BiGAMP for (15). The

SBCSE scheme outperforms the BCSE scheme by about 1 dB at BER = 10−4 for TP = 8. We

also see that, as in contrast to Fig. 5, there is a performance gap of about 1 dB between the

SBCSE scheme and the genie bound with S known in the relatively high SNR regime. This is

caused by the suboptimal estimation for G using the iterative soft-thresholding algorithm.

We extend our algorithms to the LAA antenna array, with the corresponding steering vectors

given by

aR(θk) =

[

sinc

(

−M
′ − 1

2
− D

̺
sin θk

)

, sinc

(

−M
′ − 3

2
− D

̺
sin θk

)

, · · · , sinc

(

M
′ − 1

2
− D

̺
sin θk

)]T

aT(φk) =

[

sinc

(

−N
′ − 1

2
− D

̺
sinφk

)

, sinc

(

−N
′ − 3

2
− D

̺
sinφk

)

, · · · , sinc

(

N
′ − 1

2
− D

̺
sinφk

)]T

,

(39)

where sinc(·) denotes the nominalized “sinc” function, and D denotes the lens length along the

azimuth plane. We have added the simulation results in the LAA antenna geometry in Fig. 8.

We see a similar performance trend in Fig. 8 as the case of ULA in Fig. 7.

We further study the impact of large-scale fading on the system performance. The channel

powers vpri of the k-th user are randomly drawn from a uniform distribution over [vpri,min, 1].

Figure. 9 shows the performance of the various schemes in the presence of large-scale fading.

In simulations, we set −10 log 10(vpri,min) = 20 dB, and the EM algorithm in Section V is

employed for the tuning of of vpri. The other settings are the same as those in Fig. 7. From

Fig. 9, we see that the trends of the curves are very similar to those in Fig. 7.

Fig. 10 shows the transition diagrams for the BCSE and SBCSE schemes, where M = M
′
=

128, T = 100, TP = 8, KN = 24, N = N
′
, λ = 0.1, and SNR = 20 dB. Clearly, for fixed

KN , λS increases monotonically with N , or in other words, decreases with K.8 We see SBCSE

works well in a much broader region of the channel and the signal sparsity than BCSE does.

C. BCSE and SBCSE with Parameter Learning

We now assume that the AoAs are unknown to the BS. The channel is generated by the model

in (7). Specially, we generate the center angle of each scattering cluster uniformly from [−π
2
, π
2
],

8 In simulation, the value of λS is obtained by using the parameter learning technique described in Section V-A.
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and the AoA of each subpath θ(i, j) concentrates in a 20◦ angular spread. L1,c = · · · = LK,c = 3

and L1,p = · · · = LK,p = 50. For the AoDs, we assume that {φk(i, j)} fall on a uniform

sampling grid in the virtual angular domain. Fig. 11 shows the BER performance against SNR

with M = M
′
= 128, T = 100, TP = 8, K = 3, N = N

′
= 8, and ρ = 0.35. The Markov chain

model in (22) is used for characterising the clustering effect of the channel. The parameters in

ψ are tuned using the EM method in Section V-A. Similar trends as in Fig. 7 has been observed

in Fig. 11. Particularly, the SNR gap between SBCSE (TP = 8) and BCSE is enlarged to over

5 dB at BER = 10−3.

We further add the experiment in the spatial channel model (SCM) developed in 3GPP/3GPP2

for low frequency band (less than 6 GHz) [33]. The parameters of SCM used in the simulations
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ρ=0.4.

are listed in Table. III. Fig. 12 shows the BER performance of different schemes against SNR

with M = M
′
= 128, T = 100, TP = 8, K = 1, N = N

′
= 8, and ρ = 0.4. From Fig. 12, we

TABLE III

PARAMETER SETTINGS FOR THE CHANNEL MODEL

Parameter Settings for the SCM

Parameter name Value Parameter name Value

Scenario ‘urban macro’ CenterFrequency 2GHz

NumBsElements 128 NumMsElements 8

NumPaths 3 NumSubPathsPerPath 20

see that the BiGAMP method does not work well, neither does the training-based method. The

BCSE with AoAs and AoDs tuning outperforms the BCSE without angles tuning. Further, we

see that the SBCSE scheme with AoAs and AoDs tuning considerably outperforms the BCSE

scheme for TP= 8.

VII. CONCLUSIONS

In this paper, we have studied joint antenna activity detection, channel estimation, and mul-

tiuser detection for massive MIMO system with GSM. We first designed the BCSE algorithm by

exploiting the double-sparsity of the system model. We further developed the SBCSE algorithm,

where a short pilot sequence is first used to estimate the phase and permutation ambiguities and

then compressed sensing is adopted to enhance the estimation performance. Extensive numerical
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results have been provided to demonstrate the superior performance of the proposed BCSE and

SBCSE algorithms over the state-of-the-art blind detection and training-based algorithms.
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