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Trajectory and Resource Allocation Design
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Abstract

In this paper, we investigate robust resource allocation algorithm design for multiuser downlink multiple-input

single-output (MISO) unmanned aerial vehicle (UAV) communication systems, where we account for the various

uncertainties that are unavoidable in such systems and, if left unattended, may severely degrade system performance.

We jointly optimize the two-dimensional (2-D) trajectory and the transmit beamforming vector of the UAV for

minimization of the total power consumption. The algorithm design is formulated as a non-convex optimization

problem taking into account the imperfect knowledge of the angle of departure (AoD) caused by UAV jittering,

user location uncertainty, wind speed uncertainty, and polygonal no-fly zones (NFZs). Despite the non-convexity

of the optimization problem, we solve it optimally by employing monotonic optimization theory and semidefinite

programming relaxation which yields the optimal 2-D trajectory and beamforming policy. Since the developed

optimal resource allocation algorithm entails a high computational complexity, we also propose a suboptimal

iterative low-complexity scheme based on successive convex approximation to strike a balance between optimality

and computational complexity. Our simulation results reveal not only the significant power savings enabled by

the proposed algorithms compared to two baseline schemes, but also confirm their robustness with respect to

UAV jittering, wind speed uncertainty, and user location uncertainty. Moreover, our results unveil that the joint

presence of wind speed uncertainty and NFZs has a considerable impact on the UAV trajectory. Nevertheless, by

counteracting the wind speed uncertainty with the proposed robust design, we can simultaneously minimize the

total UAV power consumption and ensure a secure trajectory that does not trespass any NFZ.

I. INTRODUCTION

Unmanned aerial vehicle (UAV) based wireless communication systems have received considerable

attention as a promising approach for offering real-time high data-rate communication services [1]–

[7]. Compared to conventional cellular systems relying on a fixed terrestrial infrastructure, UAV-assisted

communication systems can provide on-demand connectivity by flexibly deploying UAV-mounted wireless

transceivers over a target area. For instance, in the case of natural disasters and major accidents, UAVs can
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be employed as aerial base stations to offer temporary communication links in a timely and cost-effective

manner. Moreover, due to their high mobility and maneuverability, UAVs can adapt their trajectories based

on the actual environment and terrain which improves system performance [3]. As a result, UAV-assisted

communication systems have drawn significant attention from both academia and industry. For instance,

the authors of [4] studied suboptimal UAV trajectory design for maximization of the energy-efficiency of

UAV communication systems. The authors of [5] proposed a suboptimal joint trajectory, power allocation,

and user scheduling algorithm for maximization of the minimum user throughput in multi-UAV systems.

Secure UAV communications was investigated in [6] where the trajectory of a UAV and its transmit power

were jointly optimized to maximize the system secrecy rate. The authors of [7] proposed solar-powered

UAV communication systems and studied the jointly optimal resource allocation and UAV trajectory design

for maximization of the system sum throughput. In fact, the throughput of UAV communication systems

can be further improved by equipping multiple antennas at the wireless transceivers [8]. In particular,

the authors of [9] studied suboptimal beamforming design and UAV positioning for maximization of the

system sum throughput of wireless UAV relay networks. In [10], the authors studied the jointly suboptimal

beamforming and power allocation design for maximization of the achievable rate of a UAV-enabled

relaying system. However, the designs in [4]–[7], [9], [10] assume a perfectly stable flight and perfect

knowledge of the locations of the users which are overly idealistic assumptions for practical UAV-based

communication systems. In practice, the stability of the UAV is impaired by unavoidable body jittering

during the flight [11], [12], and in general, perfect knowledge of the user locations cannot be acquired due

to the limited accuracy of positioning modules [13]. Since their design is based on idealistic assumptions,

the existing resource allocation schemes cannot provide reliable high data-rate communication services

in the presence of UAV jittering and user location uncertainty.

In practical UAV communication systems, UAV-mounted transceivers flying in the sky commonly

encounter strong wind which leads to non-negligible body jittering [14]. It is reported in [15] that the

jittering angles of UAVs can assume values of up to 10 degrees. As a result, the estimation of the

angles of departure (AoDs) between the UAV and the ground users becomes inaccurate which leads to

increased AoD estimation errors [16]. In fact, the impact of AoD estimation errors cannot be neglected in

UAV-based communication systems, especially for multiple-input single-output (MISO) communication

systems. In particular, the gain introduced by multiple antennas cannot be fully exploited in the presence

of AoD estimation errors. Moreover, as the communication links between the UAV and the ground users

are typically line-of-sight (LoS) dominated [17], accurate AoD knowledge is essential for performing

efficient beamforming at the UAVs. In fact, in the presence of AoD estimation errors, UAVs cannot

perform accurate beamforming which can degrade the system performance significantly. Moreover, wind
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also affects the UAV ground speed and alters the planned trajectory, which may cause serious safety

issues such as speeding or crashing of UAVs [18]. Therefore, taking into account the impact of wind is

of utmost importance for the design of practical UAV communication systems. In addition, the impact of

the weather conditions and electromagnetic interference may cause large user location estimation errors

[13]. The additional path loss resulting from user location uncertainty may impair the communication

links between the UAV and the ground users. Furthermore, the schemes in [4]–[7], [9], [10] do not

consider any geometrical constraints on the UAV trajectory, which may be imposed in practical UAV-

based communication systems. For example, flying UAVs above areas such as military bases, government

agencies, strategic facilities, and civil aviation airports is strictly prohibited [19], [20]. As a result, for

security reason, no-fly zones (NFZs) are commonly imposed on UAVs, which makes the trajectory design

for UAV-assisted communications more challenging [21]. To tackle this issue, some initial efforts have been

made in the literature [19], [22]. In particular, the authors of [19] proposed a decision-making algorithm

based on Dubins path theory to prevent UAVs from cruising over NFZs. The authors in [22] investigated the

resource allocation design for UAV-enabled communication systems and proposed an iterative algorithm

to maximize the system sum throughput by jointly optimizing the subcarrier allocation policy and the

UAV trajectory taking into account NFZs. However, these works assumed cylindrical NFZs which is not

always justified. According to [23], practical NFZs can be modeled as polygons, and cylindrical NFZs

are only a subcase of polygonal NFZs. Hence, the algorithms developed in [19] and [22] cannot ensure

accurate trajectory design for realistic UAV communication systems. Indeed, UAV resource allocation and

trajectory optimization taking into account polygonal NFZs results in disjunctive programming problems

[24] which complicates the algorithm design. Furthermore, most of the existing trajectory and resource

allocation algorithms for UAV-assisted communication systems are based on suboptimal solutions of the

respective optimization problems [4]–[6], [22], and the performance gap between these algorithms and

the optimal solutions is not known. To the best of the authors’ knowledge, the optimal joint trajectory

and resource allocation algorithm design for multiuser UAV communication systems in the presence of

AoD estimation errors, user location uncertainty, wind speed uncertainty, and polygonal NFZs has not

been investigated in the literature, yet.

In this paper, we address the aforementioned issues. To this end, the joint trajectory and resource

allocation algorithm design for multiuser downlink UAV communication systems is formulated as a non-

convex optimization problem for minimization of the total UAV power consumption in each time slot. The

problem formulation takes into account the imperfect knowledge of the AoD caused by UAV jittering,

wind speed uncertainty, user location uncertainty, polygonal NFZs, and the quality-of-service (QoS)

requirements of the users. Although the considered optimization problem is non-convex and difficult
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to tackle, we solve it optimally by employing monotonic optimization theory [25] and semidefinite

programming (SDP) relaxation [26] to obtain the optimal 2-D trajectory and the optimal beamformer. Due

to its high computational complexity, the optimal scheme mostly serves as a performance benchmark for

low-complexity suboptimal schemes. Therefore, we also develop a low-complexity suboptimal iterative

algorithm based on successive convex approximation (SCA) [27], which is shown to achieve a close-

to-optimal performance. Our simulation results not only reveal the dramatic power savings enabled by

the proposed resource allocation algorithms compared to two baseline schemes but also confirm their

robustness with respect to UAV jittering, wind speed uncertainty, and user location uncertainty. Moreover,

our results show that the impact of NFZs and wind speed uncertainty on the power consumption of the

UAV can be efficiently mitigated by the proposed robust design.

The remainder of this paper is organized as follows. In Section II, we introduce the considered MISO

UAV communication system model and formulate the proposed optimization problem. The optimal and

suboptimal joint 2-D trajectory and beamforming algorithm designs are provided in Sections III and IV,

respectively. In Section V, simulation results are presented, and Section VI concludes the paper.

Notations: In this paper, matrices and vectors are denoted by boldface capital and lower case letters,

respectively. RN×M and CN×M denote the sets of all N ×M real-valued and complex-valued matrices,

respectively. HN denotes the set of all N×N Hermitian matrices. IN denotes the N-dimensional identity

matrix. | · | and || · || represent the absolute value of a complex scalar and the Euclidean norm of a

vector, respectively. arcsin and arccos denote the inverse sine and cosine functions, respectively. ∧ and

∨ denote the Boolean operations “AND” and “OR”, respectively. xT and xH denote the transpose and

conjugate transpose of vector x, respectively. diag(a1, · · · , an) returns a diagonal matrix with diagonal

entries a1, · · · , an. [A]i,i denotes the (i, i)-entry of matrix A. Rank(A) and Tr(A) are the rank and the

trace of square matrix A, respectively. A � 0 means matrix A is positive semidefinite. A⊗B denotes

the Kronecker product of two matrices A and B. E {·} denotes statistical expectation. x ∼ CN (µ, σ2)

indicates that random variable x is circularly symmetric complex Gaussian distributed with mean µ and

variance σ2.
∆
= means “defined as”. ∇xf(x) denotes the gradient vector of function f(x) with respect to

x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the communication system, UAV jittering, wind speed uncertainty,

user location uncertainty, polygonal NFZ, and aerodynamic power consumption models. Subsequently,

we formulate the proposed optimization problem.
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Fig. 1. A multiuser unmanned aerial vehicle (UAV) communication system with one UAV and K = 2 users. The UAV is equipped with a

3× 3 uniform planar array.

A. Multiuser UAV Communication System

The considered multiuser UAV communication system model comprises one rotary-wing UAV-mounted

transmitter and K single-antenna users, indexed K ∆
= {1, · · · , K}, cf. Figure 1. The UAV-mounted

transmitter is equipped with M = MxMy antennas composing an Mx ×My uniform planar array (UPA)

[28]. For convenience, we define the set of all antenna elements as M ∆
= {1, · · · ,M}. In order to guarantee

flight safety, we assume that the UAV flies at constant altitude H0 which is higher than the tallest obstacles

in the service area [4]–[6]. Moreover, we define vu[n]
∆
= (vxu[n], v

y
u[n]) as the 2-D horizontal velocity of

the UAV in time slot n. To facilitate the UAV trajectory algorithm design, we employ the discrete path

planning approach [29]. In particular, we discretize the UAV trajectory during the operation time horizon

T into NT distinct waypoints, i.e., time horizon T is divided into NT sufficiently small time slots of equal

duration δT = T/NT.

In scheduling time slot n, the UAV transmits K independent signals simultaneously to the K users.

Specifically, the transmit signal to user k is given by xk[n] = wk[n]sk[n], where sk[n] ∈C and wk[n] ∈
CM×1 represent the information symbol for user k and the corresponding beamforming vector in time

slot n, respectively. Without loss of generality, we assume E{|sk[n]|2} = 1.

In this paper, we assume that the air-to-ground communication links between the UAV and the ground

users are LoS-channels. In particular, the channel vector between the UAV and user k in time slot n is

given by [30]

hk[n] =
√
̺ ‖r0[n]− rk‖−1

ak[n], (1)

where ̺ = (λc

4π
)2 is a constant with λc being the wavelength of the center frequency of the information

carrier. r0[n] = (x0[n], y0[n], H0) and rk = (xk, yk, 0) denote the 3-D Cartesian coordinates of the UAV

in time slot n and user k, respectively. Moreover,
√
̺ ‖r0[n]− rk‖−1

and ak[n] ∈ CM×1 are the average

channel power gain and the antenna array response (AAR) between the UAV and user k in time slot n,
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Fig. 2. Line-of-sight channel model for the link between an antenna element and user k. The blue beam points to user k, whereas the red

beam shows the actual beam direction caused by jittering. The left and right hand side figures illustrate the estimated AoDs θk and ϕk, the

actual AoDs θk and ϕk, and the AoD uncertainty ∆θk and ∆ϕk in the vertical and horizontal planes, respectively.

respectively. In particular, the AAR vector is given by [31],

ak[n] =

(
1, · · · , e−j 2πb

λc
sinθk[n]

(
mx−1)cosϕk[n], · · · , e−j 2πb

λc
sinθk[n]

(
Mx−1)cosϕk[n]

)

⊗
(
1, · · · , e−j 2πb

λc
sinθk[n]

(
my−1)sinϕk[n], · · · , e−j 2πb

λc
sinθk[n]

(
My−1)sinϕk[n]

)
,

∆
= a

(
θk[n], ϕk[n]

)
, (2)

where b is the distance between the antenna elements of the UPA, and mx and my index the rows and

columns of the UPA, respectively. θk[n] and ϕk[n] are the vertical and horizontal AoD of the path between

the UAV and user k in time slot n, respectively. The AoDs θk[n] and ϕk[n] are functions of the locations

of user k and the UAV and are given by

θk[n] = arcsin
H0

‖r0[n]− rk‖
and ϕk[n] = arccos

y0[n]− yk
‖r′0[n]− r′k‖

, (3)

respectively. Here, r′0[n] = (x0[n], y0[n])
T contains the horizontal coordinates of the UAV in time slot n,

and r′k = (xk, yk)
T contains the horizontal coordinates of user k.

The received signal at user k in time slot n is given by

dk [n] = hH

k
[n]wk [n]sk[n]︸ ︷︷ ︸
desired signal

+
∑

r∈K\{k}

hH

k
[n]wr [n]sr[n]

︸ ︷︷ ︸
multiuser interference

+ nk[n], (4)

where nk[n] ∼ CN (0, σ2
nk
) denotes the additive complex white Gaussian noise (AWGN) at user k in time

slot n. Considering (2) and (4), the received signal-to-interference-plus-noise ratio (SINR) of user k in

time slot n is given by

Γk[n] =

̺

‖r′0[n]−r′
k‖2

+H2
0

∣∣aH
k
[n]wk[n]

∣∣2

̺

‖r′0[n]−r′
k‖2

+H2
0

∑
r∈K\{k}

|aH
k
[n]wr[n]|2 + σ2

nk

. (5)

B. UAV Jittering Model

In practice, the stability of the UAV is impacted by the random nature of wind gusts. In particular,

in the presence of wind, UAVs suffer from unavoidable body jittering, leading to jittering angles [32].
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Impaired by the jittering angles, the onboard sensors of the UAV are unable to accurately measure the

AoD between the UAV and the users. Hence, AoD estimation errors occur which leads to imperfect AoD

knowledge at the UAV. To capture this effect, we adopt a deterministic model for the resulting AoD

uncertainty [8]. Specifically, the AoD between the UAV and user k in time slot n, i.e., θk[n] and ϕk[n],

are modeled as:

θk[n]= θk[n]+∆θk[n], ϕk[n]=ϕk[n]+∆ϕk[n], Ωk =
{
(θk[n], ϕk[n])

∣∣(∆θk[n])
2+(∆ϕk[n])

2≤α2
}
, ∀k, (6)

where (θk[n], ϕk[n]) and (∆θk[n],∆ϕk[n]) represent the estimated AoD between the UAV and user k and

the unknown AoD uncertainty, respectively, cf. Figure 2. Besides, continuous set Ωk contains all possible

AoD uncertainties with bounded maximum variation α.

Considering (6), we rewrite the AAR vector as

ak[n]=

(
1,· · · ,e−bsin

(
θk[n]+∆θk[n]

)
(mx−1)cos

(
ϕk[n]+∆ϕk[n]

)
,· · · ,e−bsin

(
θk[n]+∆θk[n]

)
(Mx−1)cos

(
ϕk[n]+∆ϕk[n]

))

⊗
(
1,· · · ,e−bsin

(
θk[n]+∆θk[n]

)
(my−1)sin

(
ϕk[n]+∆ϕk[n]

)
,· · · ,e−bsin

(
θk[n]+∆θk[n]

)
(My−1)sin

(
ϕk[n]+∆ϕk[n]

))
, (7)

where b = j2πb
λc

. We note that ak[n] is a nonlinear function with respect to ∆θk[n] and ∆ϕk[n], which

complicates the robust resource allocation algorithm design. To tackle this issue and since ∆θk[n] and

∆ϕk[n] are generally small, we approximate ak[n] by applying the first order Taylor series expansion. In

particular, for given θk[n] and ϕk[n], we have

ak[n] ≈ ak[n] +
∂ak[n]

∂θk[n]

∣∣∣
θk[n]=θk[n],ϕk[n]=ϕk [n]

∆θk[n] +
∂ak[n]

∂ϕk[n]

∣∣∣
θk[n]=θk[n],ϕk[n]=ϕk[n]

∆ϕk[n], (8)

where ak[n] ∈ CM×1 denotes the AAR estimate of user k given by

ak[n] = a
(
θk[n], ϕk[n]

)∣∣
θk[n]=θk[n],ϕk[n]=ϕk[n]

. (9)

For notational convenience, we rewrite the AAR between the UAV and user k in time slot n as

ak[n] = ak[n] +Dk[n]uk[n], (10)

where uk[n]
∆
=

[
∆θk[n],∆ϕk[n]

]T ∈ R
2 and Dk[n]

∆
=

(
∂ak[n]
∂θk[n]

, ∂ak[n]
∂ϕk[n]

)
∈ C

M×2. Besides, the AoD set Ωk

can be rewritten as

Ωk =
{
(θk[n], ϕk[n])

∣∣ uT
k [n]uk[n] ≤ α2

}
, ∀k. (11)

Remark 1: We note that the linearized AAR model in (10) is employed since ∆θk[n] and ∆ϕk[n] are

small in practice and to facilitate resource allocation design. In our simulations, we adopt the nonlinear

AAR model in (2) to evaluate the proposed resource allocation algorithm.
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C. Wind Speed Model

In practice, the UAV trajectory is influenced by wind [19]. In particular, the UAV ground speed1 is

affected by horizontal wind [33]. Without a careful design, the UAV is unable to operate along the desired

trajectory. According to [33], the UAV ground speed in time slot n is given by the vector sum of the

2-D horizontal UAV speed, vu[n], and the horizontal wind speed, vw[n], i.e.,vu[n] + vw[n]. However, in

practice, it is difficult to accurately estimate the instantaneous wind speed in each time slot due to the

limited estimation accuracy of wind sensors and the randomness of wind [34]. To capture this effect,

we adopt a deterministic model for the resulting wind speed uncertainty [8]. The horizontal wind speed

vw[n] in time slot n is modeled as [35]:

vw[n] = vw[n] + ∆vw[n], vw[n] ∈ Ξ
∆
=

{
vw[n] ∈ R

2 | ‖∆vw[n]‖ ≤ ∆V max
w

}
, (12)

where vw[n] and ∆vw[n] are the wind speed estimate and the wind speed uncertainty in time slot n,

respectively. Moreover, continuous set Ξ contains all possible wind speed uncertainties with bounded

maximum wind speed uncertainty magnitude ∆V max
w .

D. User Location Model

In this paper, we assume that user devices are equipped with global positioning system (GPS) modules

to obtain information regarding their own locations [36]. However, in general, the user location information

is imperfect due to the limited positioning accuracy of practical GPS modules, satellite shadowing,

and atmospheric impairments2. The resulting user location uncertainty should be taken into account for

resource allocation algorithm design. In particular, since we assume that all users are on the ground, their z

coordinates are set to 0. Moreover, we assume that all users are stationary. Then, the horizontal coordinates

of user k are given by xk = xk+∆xk and yk = yk+∆yk, where xk and yk are the user location estimates

available at the UAV, and ∆xk and ∆yk denote the corresponding user location estimation errors. On the

other hand, exploiting onboard multi-sensor systems and advanced positioning strategies, the positioning

accuracy of UAVs can be improved to centimeter level [37]. As a result, we assume that the UAV

perfectly knows its own location in each time slot. In particular, the estimated horizontal coordinates and

the horizontal location estimation error of user k are defined as r′k = (xk, yk)
T and ∆r′k = (∆xk, ∆yk)

T ,

respectively. Then, the distance between the UAV and user k can be rewritten as

‖r0[n]− rk‖ =

√
‖r′0[n]− (r′k +∆r′k)‖2 +H2

0 . (13)

Furthermore, we define set Ψk collecting the possible location uncertainties of user k as follows:

Ψk
∆
=

{
r′k ∈ R

2 | (∆r′k)
T∆r′k ≤ D2

k

}
, ∀k ∈ K, (14)

1Ground speed is the horizontal speed of an aircraft relative to the ground [33].

2The positioning errors of fourth-generation long-term evolution (4G LTE) network devices are typically in the range between 10 and 50

meters, depending on the adopted positioning protocol [36].
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where Dk is the bounded magnitude radius of the uncertainty region, whose value depends on the

positioning accuracy.

E. No-Fly Zone Model

In this paper, we take NFZs into account for trajectory design [22]. In particular, we assume that there

are J polygonal NFZs within the UAV service area, and the j-th NFZ is a polygon with Sj sides. Then,

we model the polygonal NFZs by applying analytic geometry theory. Specifically, each polygonal NFZ

is represented by the intersection of a finite number of half-spaces, and each half-space is defined as the

solution of a set of affine inequalities, i.e.,

Dij =
{
d ∈ R

2 | pT
ijd < qij , i ∈ Sj , j ∈ J

}
, (15)

where d are the 2-D coordinates of a horizontal plane with normal vector pij ∈ R2 and offset qij ∈ R,

cf. Figure 3. Moreover, Sj
∆
= {1, · · · , Sj} and J ∆

= {1, · · · , J} denote the set of the sides of polygonal

NFZ j and the set of polygonal NFZs, respectively. Besides, pij and qij can be determined in advance

since the location and the size of the NFZs are set by regulation and known to the public.

As a result, the UAV does not violate NFZ j in time slot n if r′0[n] /∈ Dij , ∀i ∈ Sj . In other words,

r′0[n] has to satisfy at least one of the following Sj inequalities:

pT
ijr

′
0[n] ≥ qij , ∀i ∈ Sj . (16)

To facilitate the trajectory design, we define an indicator function as follows [38]

Yij(r
′
0[n]) =




1, pT

ijr
′
0[n] ≥ qij

0, pT
ijr

′
0[n] < qij

, ∀i, ∀j. (17)

Therefore, the UAV does not trespass any NFZ in time slot n, if the following equality holds

∧
j∈J

∨
i∈Sj

Yij(r
′
0[n]) = 1, ∀j. (18)

In particular, the UAV is not in NFZ j if for any i ∈ Sj , function Yij(r
′
0[n]) is equal to 1. Moreover, the

UAV is able to bypass all NFZs, if ∨
i∈Sj

Yij(r
′
0[n]) is equal to 1 for all j ∈ J .
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F. Aerodynamic Power Consumption

We assume that the cruising speed is constant during each time slot [39]. According to the classic

aerodynamic theory for rotary-wing UAVs [40], the aerodynamic power consumption of level flight in

time slot n can be modeled as

Paero[n] = Pinduced[n] + Pprofile[n] + Pparasite[n], (19)

where Pinduced[n], Pprofile[n], and Pparasite[n] denote the induced power, profile power, and parasite power3,

respectively, and are given by [33], [40]:

Pinduced[n] =

√
2Wuc

2
1√

‖vu[n]‖2 +
√

‖vu[n]‖4 + 4c41

, (20)

Pprofile[n] = c2

[(
Wu − c3 ‖vu[n]‖2

)2
+ c4 ‖vu[n]‖4

] 3
4
, Pparasite[n] = c4 ‖vu[n]‖3 , (21)

respectively. Here, Wu = mug0 is the weight of the UAV, and mu and g0 denote the mass of the UAV and

the gravitational acceleration, respectively. c1, c2, c3, and c4 are UAV aerodynamic power consumption

parameters [33].

The aerodynamic power consumption of the UAV is a function of the horizontal velocity, cf. Figure

4. For Figure 4, we adopted the same parameter values as for the simulation results in Section V, see

Table I. From Figure 4, we observe that for rotary-wing UAVs, hovering is generally not the most power-

conserving state. The optimal UAV speed that minimizes the total aerodynamic power consumption of

the UAV is referred to as the maximum endurance speed, see Figure 4.

G. Optimization Problem Formulation

In practice, the endurance of the UAVs is restricted by the limited onboard battery capacity [41].

Hence, a power-efficient resource allocation is of utmost importance for UAV-assisted communication

systems. Therefore, in this paper, we adopt the minimization of the total power consumption as design

objective. Moreover, since the AoDs in (3) depend on the UAV location, designing the UAV trajectory

and beamforming policy jointly for all NT time slots is intractable. Therefore, in this paper, we develop

a greedy policy and optimize the trajectory and beamformers of the UAV for minimization of the total

power consumption in each time slot. Since the displacement of the UAV in each time slot is relatively

small, we assume that the AoDs remain unchanged during one time slot. Hence, the UAV trajectory and

the beamforming policy in time slot n are designed based on the AoDs at the end of time slot n − 1.

This procedure is repeated for time slots n = 1, · · · , NT, and the whole UAV trajectory is obtained by

3The induced power generates thrust by propeling air downwards. The profile power overcomes the rotational drag encountered by rotating

the propeller blades. The parasite power resists the body drag [19], [40].
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combining the respective time slot trajectories. The optimal trajectory and the beamforming vector in time

slot n are obtained by solving the following optimization problem4:

minimize
wk ,r

′
0,vu

η
∑

k∈K

wH
k
wk + Paero +M · Pcirc (22)

s.t. C1:

[
∑

k∈K

wkw
H
k

]

i,i

≤ Pi, ∀i, C2: min
r′
k
∈ Ψk,

uk ∈ Ωk

̺

‖r′0−r′
k‖2

2
+H2

0

∣∣aH
k
wk

∣∣2

̺

‖r′0−r′
k‖2

2
+H2

0

∑
r∈K\{k}

|aH
k
wr|2 + σ2

nk

≥ Γreqk , ∀k,

C3: ‖vu − vu[n− 1]‖ ≤ amaxδT , C4: min
vw∈Ξ

‖vu + vw‖ δT ≥ ‖r′0 − r′0[n− 1]‖ , C5: ‖vu‖ ≤ V max
u ,

C6: max
vw∈Ξ

‖vu + vw‖ ≤ V max
g , C7: ∧

j∈J
∨

i∈Sj

Yij(r
′
0) = 1, C8: ‖r′0‖2 ≤ Rp,

where η > 1 and Pcirc denote the power amplifier efficiency and the circuit power consumption of the

radio frequency (RF) chain of one antenna element, respectively. Constraint C1 limits the transmit power

of the i-th antenna element Pi, whose value is determined by the analog RF front-end. Γreqk in constraint

C2 is the minimum SINR required by user k and ensures that the QoS requirements of the user are

met. Constraint C3 restricts the change of the UAV speed from one time slot to the next, where amax

denotes the maximum acceleration of the UAV which is limited by its engines. Constraint C4 restricts

the maximum displacement of the UAV in each time slot in the presence of wind speed uncertainty.

Constraint C5 constrains the maximum UAV horizontal velocity V max
u . V max

g in constraint C6 limits the

maximum UAV speed for safety reasons. Constraint C7 ensures that the UAV does not pass through an

NFZ. Rp in constraint C8 denotes the radius of the circular service area. Since M · Pcirc is constant for

a given number of antenna elements, we omit it when solving (22) in the following.

We note that problem (22) is a non-convex optimization problem involving disjunctive programming

[24] and semi-infinite programming [42] which is generally intractable. In particular, the non-convex

objective function, the semi-infinite constraints C2, C4, and C6, and the disjunctive constraint C7 are

the main obstacles for solving the considered trajectory and resource allocation optimization problem.

Yet, despite these challenges, we will develop an algorithm for finding the optimal solution of (22) by

exploiting the unique properties of the problem in the next section.

III. OPTIMAL SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we develop an algorithm that finds a globally optimal solution for optimization problem

(22). In particular, we first transform the semi-infinite constraints in (22) into linear matrix inequalities

(LMIs). Then, we recast the disjunctive programming constraint into a mixed integer linear program-

ming constraint. Subsequently, we solve the optimization problem optimally by employing monotonic

optimization theory and SDP relaxation.

4Since the optimization problem in (22) is solved for each time slot, for convenience, we drop time slot index n for the optimization

variables.
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A. Transformation of the Semi-infinite Constraints

For the sake of notational simplicity, we define Wk = wkw
H

k
, Ak = aka

H

k
, ∀k, and rewrite (22) in

equivalent form as

minimize
Wk∈H

NT ,r′0,vu

η
∑

k∈K

Tr(Wk) + Paero (23)

s.t. C1:

[
∑

k∈K

Tr(Wk)

]

i,i

≤ Pi, ∀i, C2: min
r′
k
∈ Ψk,

uk ∈ Ωk

̺

‖r′0−r′
k‖2

+H2
0

Tr(WkAk)

∑
r∈K\{k}

̺

‖r′0−r′
k‖2

+H2
0

Tr(WrAk) + σ2
nk

≥ Γreqk , ∀k,

C3-C8, C9: Wk � 0, ∀k, C10: Rank(Wk) ≤ 1, ∀k.
We note that Wk � 0, Wk ∈ H

NT , and Rank(Wk) ≤ 1 in constraints C9 and C10 are imposed to ensure

that Wk = wkw
H

k
holds after optimization.

Constraints C2, C4, and C6 are intractable semi-infinite constraints, as variables r′k, uk, and vw are

continuous in sets Ψk, Ωk, and Ξ, respectively. To make problem (23) tractable, we transform constraints

C2, C4, and C6 into LMIs. Specifically, we first rewrite constraint C2 as

C2: min
r′
k
∈ Ψk,

uk ∈ Ωk

Tr(WkAk)
∑

r∈K\{k}

Tr(WrAk) +
‖r′0−r′

k‖2
+H2

0

̺
σ2
nk

≥ Γreqk , ∀k. (24)

Then, we define a slack optimization variable τk ∈ R and rewrite constraint C2 as

C2a: Tr(WkAk)− Γreqk

∑

r∈K\{k}

Tr(WrAk) ≥ τk, ∀uk ∈ Ωk, ∀k, (25)

C2b: τk ≥ Γreqk

σ2
nk
(‖r′0 − r′k‖2 +H2

0 )

̺
, ∀r′k ∈ Ψk, ∀k. (26)

Moreover, we take the square of both sides of the inequality in constraint C4 and define a slack variable

ζ ∈ R. Then, constraint C4 can be equivalently rewritten as

C4a: ζ ≥ 1

δ2T
‖r′0 − r′0[n− 1]‖2 , C4b: ‖vu + vw‖2 ≥ ζ, ∀vw ∈ Ξ. (27)

Similarly, we can rewrite constraint C6 as:

C6: ‖vu + vw‖2 ≤ (V max
g )2, ∀vw ∈ Ξ. (28)

Next, we introduce a lemma for transforming constraints C2a, C2b, C4b, and C6 into LMIs.

Lemma 1 (S-Procedure [43]:) Let a function fm(x), m ∈ {1, 2}, x ∈ CN×1, be defined as

fm(x) = xHBmx+ 2Re
{
bH
mx

}
+ bm, (29)

where Bm ∈ HN , bm ∈ CN×1, and bm ∈ R1×1. Then, the implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if

and only if there exists a δ ≥ 0 such that

δ


B1 b1

bH
1 b1


−


B2 b2

bH
2 b2


 � 0, (30)

provided that there exists a point x̂ such that fm(x̂) < 0.
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Using Lemma 1, the following implication can be obtained: uT
k uk − α2 ≤ 0 ⇒ C2a holds if and only

if there exist ϑk ≥ 0 such that

C2a : SC2ak
(Wk , τk , ϑk) =


ϑkI2 0

0 −ϑkα
2 − τk


+UH

k


Wk − Γreqk

∑

r∈K\{k}

Wr


Uk � 0, ∀k, (31)

holds, where Uk =
[
Dk ak

]
. Similarly, we apply Lemma 1 to C2b, C4b, and C6 and obtain the

respective equivalent constraints

C2b : SC2bk
(r′0, τk , βk) =


(βk − 1)I2 r′0 − r′k

(r′0 − r′k)
T −βkD

2
k−‖r′0‖2+2(r′k)

T r′0−‖r′k‖2−H2
0 +

̺τk
Γreqk

σ2
nk


�0, ∀k,(32)

C4b : SC4bk
(vu, ζk , γk) =


 (γk + 1)I2 vu + vw

(vu + vw)
T −γk(∆V max

w )2+‖vu‖2 + 2vT
uvw+ ‖vw‖2− ζk


 � 0, ∀k, (33)

C6 : SC6(vu, ι) =


 (ι− 1)I2 −vu − vw

−(vu + vw)
T −ι(∆V max

w )2 − ‖vu‖2 − 2vT
uvw − ‖vw‖2 + (V max

g )2


 � 0, (34)

where βk, γk, ι ≥ 0. We note that constraints C2b, C4b, and C6 are still non-convex, due to the quadratic

terms ‖r′0‖2 and ‖vu‖2. For handling C2b, C4b, and C6, we define slack variables ̟k ∈ R, ε ∈ R, and

µ ∈ R and rewrite constraints C2b, C4b, and C6 as

C2c : SC2ck
(r′0, τk , βk, ̟k)=


(βk − 1)I2 r′0 − r′k

(r′0 − r′k)
T −βkD

2
k−R2

p+̟k+2(r′k)
T r′0−‖r′k‖2−H2

0 +
̺τk

Γreqk
σ2
nk


� 0, (35)

C2d : R2
p ≤ ̟k + (r′0)

Tr′0, ∀k, (36)

C4c : SC3ck
(vu, ζk , γk, ε) =


 (γk + 1)I2 vu + vw

(vu + vw)
T −γk(∆V max

w )2 + ε+ 2vT
uvw + ‖vw‖2 − ζk


 � 0, (37)

C4d : ε ≥ vT
uvu, ∀n, (38)

C6a : SĈ6a(vu, ι, µ)=


 (ι− 1)I2 −vu − vw

−(vu+ vw)
T −ι(∆V max

w )2−(V max
u )2+µ−2vT

uvw−‖vw‖2+(V max
g )2


�0, (39)

C6b : (V max
u )2 ≤ µ+ vT

uvu, (40)

respectively. We note that constraints C2c, C4c, C4d, and C6a are convex constraints, and constraints

C2d and C6b are monotonically increasing in ̟k and µ, respectively. For convenience, we define set A
to collect optimization variables τk, ϑk, βk, γk, and ι.

B. Transformation of the Disjunctive Constraint

The disjunctive programming in constraint C7 is an obstacle to solving problem (23). To overcome

this obstacle, we define auxiliary binary optimization variable lij ∈ {0, 1} and introduce the following

theorem.
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Theorem 1: The disjunctive programming in constraint C7 is equivalent to the following mixed integer

linear programming [44]:
pT
ijr

′
0 − qij +Glij ≥ 0, ∀i, ∀j, (41)

if binary variable lij satisfies inequality
∑
i∈Sj

lij ≤ Sj − 1, and G is a sufficiently large constant.

Proof: Please refer to Appendix A. �

Based on Theorem 1, we can rewrite constraint C7 as mixed integer linear constraints:

C7a: pT
ijr

′
0 − qij +Glij ≥ 0, ∀i, ∀j, C7b:

∑

i∈Sj

lij ≤ Sj − 1, ∀j, C7c: lij ∈ {0, 1} , ∀i, ∀j. (42)

We note that constraint C7c is a binary constraint which is difficult to handle. Hence, we further rewrite

C7c in the equivalent form as:

C7d:
∑

j∈J

∑

i∈Sj

(lij − l2ij) ≤ 0, C7e: 0 ≤ lij ≤ 1, ∀i, ∀j, (43)

Now, the optimization variable lij is a continuous variable between zero and one. Yet, we note that

constraint C7d is a non-convex and non-monotonic function. To tackle this problem, we define a slack

variable t ∈ R and rewrite constraint C7d as:

C7f:
∑

j∈J

∑

i∈Sj

l2ij + t ≥ S, C7g:
∑

j∈J

∑

i∈Sj

lij + t ≤ S, (44)

where S is a constant and defined as S
∆
=

∑
j∈J

Sj . We note that constraint C7f is monotonically increasing

in t and constraint C7g is a convex constraint.

C. Monotonic Optimization Framework

To facilitate the application of monotonic optimization, we transform (23) into the canonical form of

a monotonic optimization problem [25]. First, to transform the objective function into the maximization

of a monotonically increasing function, we define an auxiliary variable z ∈ R to denote the difference

between the actual total UAV power consumption and the maximum total UAV power consumption. In

particular, z satisfies the following constraint:

C11:z≤ P̂ −
∑

k∈K

Tr
(
Wk

)
+
√
2Wuc

2
1û+c2

[
W 2

u − Ê + v̂+(c23 + c4)‖vu‖4
] 3

4
+c4 ‖vu‖3 , (45)

where û ∈ R and v̂ ∈ R are slack variables which meet the following constraints

C12: û ≥ 1√
‖vu‖2 +

√
‖vu‖4 + 4c41

and C13: Ê ≤ v̂ + 2Wuc3 ‖vu‖2 , (46)

respectively, and Ê is a constant given by Ê
∆
= 2Wuc2(V

max
u )2. Moreover, P̂ is the maximum value of the

total UAV power consumption and is defined as P̂
∆
=

∑
i∈M

Pi +
√
2Wuc1 + c2

[
W 2

u + (c24 + c3)(V
max
u )4

] 3
4 +

c3(V
max
u )3. As C11, C12, and C13 are monotonically increasing functions in z, û, and v̂, respectively,

(23) can be equivalently rewritten as the following monotonic optimization problem:

maximize
Wk ,r

′
0,vu,lij ,

A,̟k,ε,µ,t,z,û,v̂

z − P̂ s.t. (̟k, ε, µ, t, z, û, v̂) ∈ F (47)
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Algorithm 1 Optimal Polyblock Approximation Based Algorithm

1: Set the initial UAV location r
′
0[0] = (0, 0) and initial UAV speed vu[0] = (0, 0). Initialize polyblock P(1)[n] with

vertex set T (1)[n] =
{
ν
(1)[n]

}
and vertex ν

(1)[n] =
(
̟(1)[n], ε(1)[n], µ(1)[n], t(1)[n], z(1)[n], û(1)[n], v̂(1)[n]

)
as follows:

(̟k[n])
(1) = 4R2

p, (ε[n])(1) = (V max
u )2, (µ[n])(1) = (V max

u )2, (t[n])(1) = S, (z[n])(1) = P̂ , (û[n])(1) = 1/(
√
2c1), and

(v̂[n])(1) = Ê, ∀k ∈ K. Set the error tolerance 0 ≤ εPOA ≪ 1 and the maximum number of iterations MPOA.

2: Set time slot index n = 1 and iteration index m = 1.

3: repeat

4: Calculate the AoDs via (3) based on the current location information of the UAV r
′
0[n− 1]

5: repeat

6: Calculate the projection of vertex ν
(m)[n] onto set G[n], i.e., π(ν(m)[n]), with Algorithm 2.

7: Generate K+6 new vertices T̂ (m)[n]=
{
ν̂
(m)
1 [n], · · · , ν̂(m)

K+6[n]
}

, where ν̂
(m)
i [n]= ν

(m)[n]−
(
ν
(1)
i [n]−πi(ν

(m)[n])
)
ei,

∀i ∈ {1, · · · ,K + 6}.

8: Construct a smaller polyblock P(m+1)[n] with new vertex set T (m+1)[n] =
(
T (m)[n]− ν

(m)[n]
)
∪ T̂ (m)[n].

9: Find ν
(m+1)[n] as that vertex of T (m+1)[n]∩H[n] whose projection maximizes the objective function of the problem,

i.e., ν(m+1)[n] = arg max
ν[n]∈T (m+1)[n]∩H[n]

{z[n]}.

10: Set m = m+ 1.

11: until
‖ν(m)[n]−π(ν(m)[n])‖

‖ν(m)[n]‖ ≤ ǫPOA

12: Store the optimal solution ν
∗[n] =

(
W

∗
k[n], (r

′
0)

∗[n],v∗
u[n], τ

∗[n], ζ∗[n], ϑ∗[n], β∗[n], γ∗[n], ι∗[n], l∗ij [n]
)
.

13: Set n = n+ 1

14: until n > NT

where set F = G ∩H is the intersection of a normal set G and a conormal set H [25], and G and H are

given by
G ∆
= {(t, z) | (t, z) ∈ U} , H ∆

= {(̟, ε, µ, t, û, v̂) | (̟, ε, µ, t, û, v̂) ∈ V} , (48)

where feasible set U is spanned by constraints C1, C2a, C2c, C3, C4a, C4c, C5, C6a, C7a, C7b, C7e,

C7g, C8-C10, and C11, and feasible set V is spanned by constraints C2d, C4d, C6b, C7f, C12, and C13.

Since P̂ is a constant and does not affect the optimal solution of the considered problem, we omit it in

the following for notational simplicity. We note that problem (47) is in the canonical form of a monotonic

optimization problem.

D. Optimal Algorithm Design

In this section, we design an iterative algorithm based on polyblock outer approximation [25] to solve

the considered problem. Due to the monotonicity of the objective function, the optimal solution of (47) is

on the upper boundary of feasible set F . In general, the upper boundary of feasible set F is not known

in advance. Hence, we approach the boundary by iteratively pruning a polyblock P , simultaneously

ensuring P always contains feasible set F . In particular, in time slot n, based on vertex ν
(1), we initially

construct a polyblock P(1) that includes feasible set F . Moreover, the vertex ν
(1) is defined as ν

(1) ∆
=

(
̟(1), ε(1), µ(1), t(1), z(1), û(1), v̂(1)

)
and the vertex set of P(1) is denoted as T (1) =

{
ν
(1)
}

. Based on

vertex ν
(1), we generate K + 6 new vertices in the vertex set T̂ (1) =

{
ν̂
(1)
1 , · · · , ν̂(1)

Q

}
. Specifically,
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we calculate ν̂
(1)
i = ν

(1) − (ν
(1)
i − πi(ν

(1)))ei, ∀i ∈ {1, · · · , K + 6}, where ν
(1)
i and πi(ν

(1)) are the

i-th elements of ν
(1) and π(ν(1)) in time slot n, respectively. Moreover, π(ν(1)) ∈ RK+6 denotes the

projection of ν
(1) onto set G, and ei is a unit vector with the i-th element equal to 1. Then, we shrink

P(1) by replacing ν
(1) by K+6 new vertices in T̂ (1) and obtain a new polyblock P(2) which still satisfies

P(2) ⊃ F . The vertex set of P(2) is updated by setting T (2) =
(
T (1) \

{
ν
(1)
)}

∪ T̂ (1). Subsequently,

for each vertex in set T (2) ∩ H, we calculate the projections onto the upper boundary of G. Then, the

vertex whose projection maximizes the objective function of problem (47) is chosen as the optimal vertex

ν
(2) in T (2) ∩ H, i.e., ν

(2) = arg max
ν∈T (2)∩H

{z}. The aforementioned procedure is applied repeatedly to

shrink P(2) based on vertex ν
(2). As a result, a smaller polyblock is constructed in each iteration, leading

to P(1) ⊃ P(2) ⊃ · · · ⊃ F . The algorithm terminates if
‖ν(m)−π(ν(m))‖

‖ν(m)‖ ≤ ǫPOA or index m ≥ MPOA,

where the error tolerance constant ǫPOA > 0 specifies the accuracy of the approximation and the maximum

number of iterations MPOA guarantees that the algorithm terminates in finite time. The proposed polyblock

outer approximation algorithm is summarized in Algorithm 1.

We note that the projection of the vertex ν
(m) onto the upper boundary of set G, i.e., π(ν(m)), is

required in each iteration of Algorithm 1. In particular, in the m-th iteration of the n-th time slot, the

projection of the vertex ν
(m) onto set G is given by π(ν(m)) = λ̂ν(m). Moreover, the projection parameter

λ̂ is obtained as λ̂ = max
{
α̂ | α̂ν(m) ∈ G

}
where λ̂ ∈ [0, 1]. Hence, λ̂ can be obtained by employing

the bisection search method [25]. Specifically, in the m-th iteration, for a given projection parameter λ̂

and vertex ν
(m), we have λ̂ν(m) ∈ G if the following problem is feasible:

minimize
Wk,r

′
0,vu,

lij ,A

1 (49)

s.t. C2c: SC2ck
(r′0, τk , βk, ̟k)=


(βk − 1)I2 r′0 − r′k

(r′0 − r′k)
T −βkD

2
k−R2

p+λ̂(̟k)
(m)+2(r′k)

T r′0+‖r′0‖2−H2
0+

̺τk
Γreqk

σ2
nk


�0,

C4c: SC4ck
(vu, ζk , γk, ε)=


 (γk + 1)I2 vu + vw

(vu + vw)
T −γk(V

max
w )2+λ̂(ε)(m)+2vT

uvw+‖vw‖2−ζk


 � 0, ∀k,

C6a: SC6a(vu, ι, µ)=


 (ι− 1)I2 −vu− vw

−(vu+ vw)
T −ι(V max

w )2−(V max
w )2+λ̂(µ)(m)−2vT

uvw−‖vw‖2+(V max
g )2


�0,

C7g:
∑

j∈J

∑

i∈Sj

lij + λ̂(t)(m) ≤ S,

C11: λ̂(z)(m)+
∑

k∈K

Tr(Wk)+
√
2Wuc

2
1 λ̂ û(m)+c4 ‖vu‖3+c2

[
W 2

u−Ê +λ̂(v̂)(m)+(c23 + c4) ‖vu‖4
] 3

4≤P̂ ,

C1,C2a,C3,C4a,C5,C7a,C7b,C7e,C8-C10.

We note that feasible set G is spanned by the constraints of (49). The proposed projection bisection
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Algorithm 2 Bisection Projection Search Algorithm

1: Initialize λmin = 0, λmax = 1, and set error tolerance 0 < δBS ≪ 1.

2: repeat

3: Let λ̂[n] = (λmin + λmax)/2.

4: Check the feasibility of λ̂[n] by solving (49), i.e., whether λ̂[n]ν(m)[n] ∈ G[n]. If feasible, λmin = λ̂[n]; else λmax = λ̂[n]

5: until λmax − λmin < δBS.

6: Obtain λ̂[n] = λmin and the projection of vertex ν
(m)[n] onto set G[n], i.e., π(ν(m)[n]) = λ̂[n]ν(m)[n]. The corresponding

optimization variables (Wk[n], r
′
0[n],vu[n], τ [n], ζ[n], ϑ[n], β[n], γ[n], ι[n], lij [n]) are obtained by solving (49) for λ̂[n] =

λmin.

search algorithm is summarized in Algorithm 2. We note that problem (49) is non-convex due to rank-

one constraint C10. To tackle this problem, we employ SDP relaxation by removing constraint C10 from

the problem formulation. Then, (49) is a convex problem and can be solved efficiently by standard convex

optimization solvers such as CVX [45]. In addition, the tightness of the SDP relaxation of optimization

problem (49) is revealed in the following theorem.

Theorem 2: If Γreqk > 0, a rank-one beamforming matrix Wk can always be obtained.

Proof: Problem (49) is similar to [46, Problem (46)] and the proof of Theorem 2 closely follows [46,

Appendix B]. Hence, we omit the details of the proof due to space constraints. �

The globally optimal UAV trajectory and beamforming policy of the considered system can be obtained

by Algorithm 1. However, the computational complexity of Algorithm 1 increases exponentially with

the number of users which is prohibitive for real-time operation of UAV-based communication systems.

In order to strike a balance between complexity and optimality, in the next section, we propose a sub-

optimal scheme which finds a locally optimal solution with low computational complexity. Nevertheless,

Algorithm 1 provides a valuable benchmark for any suboptimal design.

IV. SUBOPTIMAL SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we propose a suboptimal algorithm based on SCA to strike a balance between compu-

tational complexity and optimality. To start with, we rewrite problem (23) as:

minimize
Wk,r

′
0,vu,

lij ,A,g

η
∑

k∈K

Tr(Wk)+ g (50)

s.t. C1,C2a,C2b,C3,C4a,C4b,C5,C6,C7a,C7b,C7d,C7e,C8-C10,

C12: û≥ 1√
‖vu‖2+

√
‖vu‖4+4c41

, C14: g≥
√
2Wuc

2
1û+c2

[(
Wu−c3 ‖vu‖2

)2
+c4 ‖vu‖4

] 3
4
+c4 ‖vu‖3 ,

where g ∈ R is an auxiliary variable. We note that (50) is a non-convex problem due to non-convex

constraints C2b, C4b, C6, C7d, C10, C12, and C14. Specifically, constraints C2b, C4b, C6 are non-convex
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due to the quadratic terms ‖r′0‖2 and ‖vu‖2. For handling this, we construct a global underestimator [47]

of ‖r′0‖2 at point (x
(m)
0 , y

(m)
0 ) to approximate ‖r′0‖2. In particular, we rewrite constraint C2b as:

C̃2b: SC̃2bk
(r′0, τk , βk) =


(βk − 1)I2 r′0 − r′k

(r′0 − r′k)
T −βkD

2
k−c̃1+ 2(r′k)

T r′0 − ‖r′k‖2−H2
0 +

̺τk
Γreqk

σ2
nk


 � 0, ∀k, (51)

where c̃1 is a linear function of (x0, y0) defined as:

c̃1
∆
= 2x0x

(m)
0 + 2y0y

(m)
0 − (x

(m)
0 )2 − (y

(m)
0 )2. (52)

Similarly, for point
(
(vxu)

(m), (vyu)
(m)

)
, constraints C4b and C6 can be rewritten as follows:

C̃4b: SC̃4bk
(vu, ζk , γk) =


 (γk + 1)I2 vu + vw

(vu + vw)
T −γk(V

max
w )2 + c̃2 + 2vT

uvw+ ‖vw‖2− ζk


 � 0, ∀k, (53)

C̃6: SC̃6(vu, ι) =


 (ι− 1)I2 −vu − vw

−(vu + vw)
T −ι(V max

w )2 − c̃2 − 2vT
uvw− ‖vw‖2+ (V max

g )2


 � 0, (54)

respectively, where c̃2 is a global underestimator of ‖vu‖2 at point
(
(vxu)

(m), (vyu)
(m)

)
defined as:

c̃2
∆
= 2(vxu)

(m)vxu + 2(vyu)
(m)vyu −

[
(vxu)

(m)
]2 −

[
(vyu)

(m)
]2
. (55)

We note that constraints C̃2b, C̃4b, and C̃6 are convex. However, non-convex constraint C7d in problem

(50) is still an obstacle for the design of a computationally efficient algorithm. To resolve this issue, we

introduce the following theorem:

Theorem 3: The optimization problem in (50) can be equivalently recast as follows

minimize
Wk,r

′
0,vu,

lij ,A,g

∑

k∈K

Tr(Wk)+ g + χ
∑

j∈J

∑

i∈Sj

(
lij − l2ij

)
(56)

s.t. C1,C2a, C̃2b,C3,C4a, C̃4b,C5, C̃6,C7a,C7b,C7e,C8-C10,C14,

if χ is a sufficiently large constant that penalizes the objective function for any lij not equal to 0 or 1.

Proof: Please refer to Appendix B. �

The remaining non-convexity of problem (56) is due to the objective function and constraints C10,

C12, and C14. In particular, to tackle the non-convexity of constraint C12, we rewrite it in equivalent

form as follows:

C12a: û≥ 1

α̃
, C12b: (α̃)2≤ β̃+

√
γ̃, C12c: β̃≤‖vu‖2 , C12d: γ̃≤ (β̃)2+4c41, C12e: α̃, β̃, γ̃ ≥ 0, (57)

where α̃, β̃, and γ̃ ∈ R are auxiliary optimization variables. Similarly, we rewrite C14 in equivalent form

as follows:

C14a: g ≥
√
2Wuc

2
1û+ c2κ+ c4 ‖vu‖3 , C14b: (κ)

4
3 ≥ ς + c4 ‖vu‖4 , (58)

C14c: ς ≥ W 2
u − 2Wuc3λ+ c23 ‖vu‖4 , C14d: λ ≤ ‖vu‖2 , C14e: κ, ς, µ, λ ≥ 0, (59)

where κ, ς , and λ ∈ R are auxiliary optimization variables. We note that constraints C12c, C12d, C14b,

and C14d are still non-convex. However, the objective function and the constraint functions in C12c,

C12d, C14b, and C14d are differences of convex functions. Hence, problem (56) is a difference of
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Algorithm 3 Suboptimal Successive Convex Approximation-Based Algorithm

1: Set the initial UAV location r
′
0[0] = (0, 0) and UAV speed vu[0] = (0, 0). Set the initial point Υ̃(1) and error tolerance

ǫSCA.

2: Set time slot n = 1 and iteration index m = 1

3: repeat

4: Calculate the AoDs via (3) based on the current location information of the UAV r
′
0[n− 1]

5: repeat

6: For given Υ̃(m)[n], solve the convex problem in (63) and store the intermediate solution Υ̃[n] and Λ̃[n]

7: Set m = m+ 1 and Υ̃(m)[n] = Υ̃[n]

8: until
‖Υ̃(m)[n]−Υ̃(m−1)[n]‖

‖Υ̃(m−1)[n]‖
≤ ǫSCA

9: Store the UAV trajectory and resource allocation policy Υ̃∗[n] = Υ̃(m)[n] and Λ̃∗[n] = Λ̃(m)[n] for time slot n

10: Set n = n+ 1

11: until n > NT

convex programming problem [47]. We can obtain a locally optimal solution by employing SCA [27]. In

particular, considering the objective function, for any point l
(m)
ij , we have

l2ij ≥ 2lijl
(m)
ij − (l

(m)
ij )2, (60)

where the right hand side of (60) is a global underestimator of l2ij . Similarly, we can construct global

underestimators for constraints C12c, C12d, C14b, and C14d as follows:

C̃12c: β̃2(vxu)
(m)vxu+2(vyu)

(m)vyu−
[
(vxu)

(m)
]2−

[
(vyu)

(m)
]2≤ 0, C̃12d: γ̃ − 2β̃(m)β̃ + (β̃(m))2 ≤ 4c41, (61)

C̃14b: ς+µ−4

3
κ(m)(κ)

1
3+(κ(m))

4
3≤0, C̃14d: λ−2(vxu)

(m)vxu+2(vyu)
(m)vyu−

[
(vxu)

(m)
]2−

[
(vyu)

(m)
]2≤0. (62)

Moreover, we define Υ̃, Υ̃(m), Λ̃, and Λ̃(m) to collect {vu, r
′
0, lij , β̃, κ}, {v(m)

u , (r′0)
(m), l

(m)
ij , β̃(m), κ(m)},

{Wk,A, g, ς, µ, λ}, and {W(m)
k ,A(m), g(m), ς(m), µ(m), λ(m)}, respectively. Then, we can obtain an upper

bound for (56) by solving the following convex optimization problem:

minimize
W,r′,v,A,g,

κ,ς,µ,λ

∑

k∈K

Tr(Wk)+ g + χ
∑

j∈J

∑

i∈Sj

(
lij − 2lijl

(m)
ij + (l

(m)
ij )2

)
(63)

s.t. C1,C2a, C̃2b,C3,C4a, C̃4b,C5, C̃6,C7a,C7b,C7e,C8-C10,

C12a,C12b, C̃12c, C̃12d,C12e,C14a, C̃14b,C14c, C̃14d,C14e.

In problem (63), the remaining non-convex constraint is rank-one constraint C10. Similar to the optimal

algorithm, we apply SDP relaxation to problem (63) by removing constraint C10, and the tightness of the

SDP relaxation can be proved similar to Theorem 2. Then, we employ an iterative algorithm summarized

in Algorithm 3 to tighten the obtained upper bound. In each iteration, after dropping C10, the convex

problem (63) can be solved efficiently by standard convex program solvers such as CVX [45]. The

proposed suboptimal iterative algorithm converges to a locally optimal solution of (50) in polynomial

time [27].
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TABLE I

SYSTEM PARAMETERS

Carrier center frequency and bandwidth 2.4 GHz and 200 kHz

Number of users and number of antennas at the UAV, K and M 6 and 9

Mass of the UAV and the gravitational acceleration, mu and g0 6 kg and 9.8 m/s2 [33]

Time horizon and duration of each time slot, T and δT 10 minutes and 0.02 s

Antenna element separation and AWGN variance, b and σ2
nk

6.25 × 10−2 meter and −110 dBm

UAV maximum per-antenna transmit power and circuit power, Pi and Pcirc 2.5 W and 300 mW

UAV fixed flight altitude and maximum acceleration of UAV, H0 and amax 100 meters and 2 m/s2 [33]

Maximum UAV and maximum ground speed, V max
u and V max

g 15 m/s [33] and 18 m/s

Power amplifier efficiency and mean wind speed, η and vw 5 and 3 m/s, 110◦ clockwise from north

UAV aerodynamic power consumption coefficients, c1 and c2 3.071
√

m/kg and 0.358
√

m/kg [33]

UAV aerodynamic power consumption coefficients, c3 and c4 0.0439 kg/m and 0.0306 Ns/m [33], [40]

Minimum required SINR at user k, Γreqk 14 dB

Error tolerances ǫPOA, δBS, and ǫSCA for Algorithms 1, 2, and 3 0.01

Penalty factors, G and χ 1020

Remark 2: In this paper, to make the resource allocation design tractable, we design the beamforming

vectors based on the linearized AAR model in (10). This approximation may lead to a violation of the

original QoS constraint C2 for the actual nonlinear AAR model in (2). To circumvent this problem, we

solve (22) for a more stringent minimum SINR requirement, i.e., Γreqk + γ, where γ > 0 is a small

positive constant, which is chosen such that C2 is fulfilled also for the nonlinear AAR model.

V. SIMULATION RESULTS

In this section, the performance of the proposed resource allocation scheme is investigated via simula-

tions. Specifically, there are K users which are uniformly and randomly distributed within a single cell of

radius 600 meters. We assume that the K users are located within Dk = 20 meters from their respective

estimated locations. Moreover, we take into account the RF chain circuit power consumption Pcirc when

calculating the total UAV power consumption. For ease of presentation, in the sequel, we define the

maximum normalized estimation error of the AoD between the UAV and user k as ρk = α√
(θk)2+(ϕk)2

,

where ρi = ρj , ∀i, j ∈ K. Similarly, we define the maximum normalized wind speed uncertainty in

time slot n as ρw = ∆V max
w

‖vw‖
. Unless otherwise specified, we set ρk = 0.1, ∀k ∈ K, and ρw = 0.2.

Besides, in order to investigate the impact of wind, we assume that the magnitude of the wind speed

estimate |vw| is 3 m/s for all time slots. To evaluate the performance, we employ the nonlinear AAR

model in (2). We choose γ = 0.3 dB for all results shown, which ensures that the desired SINR Γreqk is

achieved for the proposed schemes in all considered cases. Furthermore, to study the impact of polygonal

NFZs, we consider a scenario with NFZ and a scenario without NFZ. In particular, for the scenario

with NFZs, we assume that there are several polygonal NFZs randomly distributed within the cell. In
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Fig. 5. Trajectory in the horizontal plane for a time horizon of

T = 10 minutes for different resource allocation schemes in the

absence of wind and NFZs.
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Fig. 6. Trajectory in the horizontal plane for a time horizon of

T = 10 minutes for different resource allocation schemes in the

presence of wind and three NFZs.

addition, we adopt the total UAV power consumption as the performance metric, which is calculated by
∑NT

n=1

(
η
∑
k∈K

wH
k
wk+Paero

)

NT
+M · Pcirc. The adopted parameter values are listed in Table I.

We also consider two baseline schemes for comparison. For baseline scheme 1, we jointly optimize

the beamformer and the 2-D positioning of the UAV for minimization of the UAV transmit power taking

into account transmit power constraint C1, QoS constraint C2, and NFZ constraint C7. In this case, the

UAV hovers at the obtained optimal position and employs the optimal beamforming policy. For baseline

scheme 2, the UAV hovers at the initial point (0, 0) and employs maximum ratio transmission (MRT)

for beamforming, i.e., the beamforming vector is set as wk =
√
pkhk ‖hk‖−1

, where pk is the power

allocated to the k-th user. We optimize pk to satisfy the QoS requirements of the users. In addition,

since for most channel realizations baseline scheme 2 cannot simultaneously fulfill the per-antenna power

constraint and the QoS requirements of all users, we omit constraint C1 for baseline scheme 2 to obtain

feasible solutions.

A. UAV Trajectory

Figure 5 and Figure 6 depict the 2-D trajectory of the UAV in the horizontal plane for different resource

allocation schemes. In Figure 5, we show the trajectories of the proposed optimal and suboptimal schemes

and the baseline schemes in the absence of wind and NFZs. In particular, the proposed optimal and

suboptimal schemes pursue similar aerial trajectories where the UAV first moves towards the centroid of

the region spanned by the majority of the users which facilitates power efficient data transmission. Then,

the UAV adopts a circling path around the centroid to reduce the aerodynamic power consumption. This

is due to the fact that for rotary-wing UAVs, cruising flight generally consumes less power than hovering

flight, cf. Figure 4. For baseline scheme 1, the UAV hovers at the centroid point and satisfies the QoS
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requirements of all users with an optimized beamforming policy. For baseline scheme 2, the UAV remains

stationary at the initial point (0, 0) during the whole time horizon.

In Figure 6, we illustrate the trajectories of the proposed optimal and suboptimal schemes and the

baseline schemes in the presence of wind and three polygonal NFZs. The direction of the wind speed

estimate is 110◦ clockwise from north. As can be seen from Figure 6, the addition of wind and three

polygonal NFZs changes the trajectory of the UAV. Specifically, for the proposed optimal and suboptimal

schemes, the UAV first detours to avoid flying over the pentagon shaped NFZ and then adapts its trajectory

by cruising around the rectangular NFZ. In fact, in order to save transmit power, the UAV prefers to fly as

close as possible to the majority of the users. Yet, due to the wind speed uncertainty, the UAV has to keep

a small safe distance from the boundary of the rectangular shaped NFZ, such that the trajectory does not

cross the boundary of the NFZ. For baseline scheme 1, the UAV hovers right outside the rectangular NFZ.

In fact, this is a compromise between power-efficient transmission and safety requirements. Moreover, for

both baseline schemes, the UAV slightly moves around the desired hovering point due to the wind speed

uncertainty. Besides, we also show the trajectory of a non-robust scheme in Figure 6. In particular, for

non-robust scheme 1, an optimization problem similar to (22) is formulated and solved by employing the

proposed optimization algorithm without taking into account the wind and the NFZs. Compared to the

trajectory of the proposed optimal scheme, for non-robust scheme 1, the actual trajectory is significantly

altered. In particular, due to the wind, the ground speed varies over time and cannot be fully controlled

which leads to a spiral trajectory. Furthermore, the UAV flies over the trapezoid shaped NFZ which

violates the safety requirements. In other words, it is impossible to guarantee safety and reliable UAV-

assisted communication if the wind speed and the NFZs are not properly taken into account for UAV

trajectory design.

B. UAV Velocity

In Figure 7, we study the horizontal velocity of the UAV during a period of T = 4 minutes for

different resource allocation schemes and different scenarios. As can be observed, for the the scenario

without NFZs and wind, the UAV flies at a horizontal speed of 8 m/s during the entire period for both

the proposed optimal and suboptimal schemes. In fact, the UAV prefers a speed of 8 m/s rather than full

speed, since there is no restriction on the total time and cruising the UAV at |vu| = 8 m/s minimizes the

aerodynamic power consumption of the UAV, cf. Figure 4. For the baseline schemes, the UAV hovers at

the desired position and the initial point during the entire time horizon, respectively, cf. Figure 5. On the

other hand, for the scenario with NFZs and wind, for the proposed optimal and suboptimal schemes, the

UAV again starts with a speed of 8 m/s. Then, the UAV has to slightly increases its speed to compensate
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the negative impact of the wind. For the baseline schemes, the UAV operates with speeds around 3 m/s

to compensate the wind speed such that it remains static at the desired position. Besides, in Figure 7, we

also depict the ground speed of the UAV for the proposed optimal scheme in the presence of wind and

NFZs. In particular, it can be observed that the ground speed changes periodically. This is due to the fact

that the UAV circles around the rectangular shaped NFZ.

C. Average Total UAV Power Consumption versus Wind Speed Estimate

In Figure 8, we study the average total UAV power consumption versus wind speed estimate |vw| for

different resource allocation schemes and different maximum normalized wind speed uncertainties ρw. As

can be observed, when |vw| ≤ 8 m/s, the average total UAV power consumption of the proposed optimal

and suboptimal schemes slightly increases with |vw|. This is due to the fact that for wind speed estimates

of less than 8 m/s, a UAV with a speed of 8 m/s, which is preferable with respect to its aerodynamic

power consumption, can always compensate the wind. In contrast, when |vw| > 8 m/s, the UAV has to

increase its speed to a less favorable value to compensate the wind such that the desired trajectory can

be followed. This leads to a substantially higher aerodynamic power consumption, cf. Figure 4. On the

other hand, for the two baseline schemes, as |vw| increases, the total power consumption first dramatically

decreases and then rapidly increases. In particular, when |vw| increases from 0 to 8 m/s, the UAV has

to speed up to counteract the wind speed and maintain hovering at the desired position. According to

Figure 4, this is beneficial for the consumed aerodynamic power. As |vw| further increases, a higher

speed and thus, a higher aerodynamic power consumption is required for hovering. Furthermore, as can

be observed, for wind speed estimates of less than 6 m/s, the proposed optimal and suboptimal schemes

achieve substantial power savings compared to the two baseline schemes. In fact, for the proposed optimal
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and suboptimal schemes, trajectory design introduces extra degrees of freedom (DoFs), which provides

substantial power savings over the baseline schemes with their stationary UAVs.

D. Average Total UAV Power Consumption versus Number of Transmit Antennas

In Figure 9, we study the average total UAV power consumption versus the number of antennas equipped

at the UAV, M , for different resource allocation schemes. As can be observed, for the proposed schemes

and baseline scheme 1, the total UAV power consumption decreases as the number of transmit antennas

increases. This is due to the fact that the extra DoFs provided by the additional antennas facilitate a more

precise beamforming and can efficiently mitigate multiuser interference (MUI). In particular, a substantial

performance gain can be achieved when increasing the number of antennas, as the resulting beamforming

gain outweighs the additional incurred circuit power consumption. Yet, there is a diminishing return in the

performance gain for larger numbers of antennas due to channel hardening. Furthermore, we can observe

that the two baseline schemes consume considerable more power compared to the proposed optimal and

suboptimal schemes. In particular, for baseline scheme 1, a substantial amount of power is consumed to

maintain the hovering status. While for baseline scheme 2, in addition to the considerable power needed

for hovering, the fixed MRT beamforming policy also leads to a higher transmit power consumption. This

is because the fixed MRT beamforming vector is unable to fully exploit the extra DoFs introduced by

additional transmit antennas. As a result, the total UAV power consumption decreases only slightly as

the number of transmit antennas increases. In addition, we can also observe that the total UAV power

consumption increases with the number of users. Indeed, as the number of users increases the UAV-

mounted transmitter has to dedicate more DoFs to MUI suppression which decreases the flexibility in

beamforming leading to system performance degradation.
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E. Average Total UAV Power Consumption versus Maximum Normalized AoD Estimation Error

In Figure 10, we study the average total UAV power consumption versus the maximum normalized AoD

estimation error, ρk, for different resource allocation schemes and different user location uncertainties. As

expected, the total UAV power consumption for all schemes increases monotonically with ρk. This can

be explained by the fact that, as the AoD estimation error increases, the AAR uncertainty increases. As

a result, it becomes more difficult for the UAV-mounted transmitter to perform accurate beamforming.

Hence, the UAV-mounted transmitter is forced to transmit the information signal with a higher power to

meet the QoS requirements of the users. Moreover, we observe that the total UAV power consumption for

all schemes increases with increasing user location uncertainty radius Dk. In fact, for larger Dk, the UAV

has to employ a less focused beamformer to cover the whole user location uncertainty area which leads

to a higher transmit power for satisfying the users’ QoS requirements. Furthermore, the proposed optimal

and suboptimal schemes achieve considerable power savings compared to the two baseline schemes due

to the joint optimization of the 2-D trajectory and the beamforming policy. In fact, the optimal trajectory

and the optimal beamforming policy complement each other for efficient reduction of the total power

consumption. On the one hand, the trajectory design allows the UAV to perform beamforming at the most

favourable position. On the other hand, due to the precise beamforming, the UAV can follow its trajectory

at the most power-efficient speed.

F. Average Total UAV Power Consumption versus Minimum Required User SINRs

Figure 11 shows the average total UAV power consumption versus the minimum required user SINRs,

Γreqk , for different resource allocation schemes. As expected, the average total UAV power consumption

of all schemes is monotonically nondecreasing with respect to the minimum SINR threshold Γreq. To
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meet a more stringent minimum required SINR, the UAV has to increase its transmit power. Moreover,

compared to the scenario without NFZs, all considered schemes consume slightly more power in the

presence of NFZs. In fact, for the proposed optimal and suboptimal schemes, the UAV has to circle

around the NFZs, whereas for baseline scheme 1, the UAV has to adopt a suboptimal hovering position to

avoid trespassing the NFZs, which leads to a higher transmit power, cf. Figure 6. Besides, we also show

the average total power consumption of non-robust scheme 2 in Figure 11. In particular, for non-robust

scheme 2, an optimization problem similar to (22) is formulated and solved but the estimated AoD and

user locations are treated as the actual ones. Then, using the actual AoDs and user locations (which is

not possible in practice, of course), we loosen the power constraint in C1 until the resulting beamforming

vectors wk satisfy the QoS requirements of all users. As can be observed, non-robust scheme 2 results in

a higher total power consumption compared to the proposed robust scheme across the entire considered

range of Γreq. In fact, due to the AoD and user location uncertainties, the focused beamforming vector

of non-robust scheme 2 may point into a the wrong direction, cf. Figure 2, which degrades the system

performance.

VI. CONCLUSION

In this paper, we investigated the optimal robust trajectory and beamforming algorithm design for

multiuser MISO UAV communication systems. Since UAV jittering and user location uncertainty can

severely degrade the system performance while wind speed uncertainty and NFZs may lead to safety

concerns, we took these aspects into account to facilitate reliable and safe communication services for

ground users. In particular, we jointly optimized the 2-D trajectory and the downlink beamformer of a

UAV for minimization of the total UAV power consumption. The problem formulation took into account

AoD estimation errors caused by UAV jittering, user location uncertainty, wind speed uncertainty, and

polygonal NFZs. Since the coupling of the AoDs and the UAV trajectory makes joint resource allocation

design across multiple time slots intractable, we optimized the trajectory and the beamforming policy on

a time slot by time slot basis. Despite the non-convexity of the resulting problem, we solved the problem

optimally by employing monotonic optimization theory and SDP relaxation. To strike a balance between

optimality and computational complexity, we also proposed a suboptimal iterative low-complexity scheme

based on SCA. Our results reveal not only the significant power savings enabled by the proposed optimal

and suboptimal schemes compared to two baseline and two non-robust schemes, but also confirm their

robustness with respect to UAV jittering and user location uncertainty. Moreover, our results show that

the UAV can fly along the desired trajectory with the minimum possible aerodynamic power consumption

if the average wind speed is smaller than the maximum endurance speed of the UAV. Besides, our results
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unveil that a robust design is necessary to ensure safe operation of the UAV in the presence of wind

speed uncertainty and NFZs.

APPENDIX

A. Proof of Theorem 1

We start the proof by rewriting constraint C7 as ∨
i∈Sj

Yi(r
′
0) = 1, ∀j. In particular, we first assume

that equality ∨
i∈Sj

Yi(r
′
0) = 1, ∀j, holds. Then, there exist r′0 satisfying at least one of the Sj inequalities

pT
ijr

′
0 ≥ qij , ∀i, ∀j. Moreover, since lij ∈ {0, 1} and G ≫ 1, inequality pT

ijr
′
0 − qij + Glij ≥ 0, ∀i, ∀j,

holds.

On the other hand, assume that there exist r′0 satisfying the inequality pT
ijr

′
0 − qij +Glij ≥ 0, ∀i, ∀j.

Since the binary variable lij meets the inequality
∑
i∈Sj

lij ≤ Sj − 1, ∀j, at least one lij is equal to 0.

Consequently, at least one of the Sj inequalities pT
ijr

′
0 − qij +Glij ≥ 0 must hold for lij = 0. As a result,

r′0 satisfies at least one inequality pT
ijr

′
0 ≥ qij ∀i, ∀j. Hence, the logical equality ∨

i∈Sj

Yi(r
′
0) = 1, ∀j,

holds and the proof of Theorem 1 is complete.

B. Proof of Theorem 3

We start the proof by exploiting the abstract Lagrangian duality [48]. In particular, we define

L̃(Wk, g, lij, χ) =
∑

k∈K

Tr(Wk)+ g + χ
∑

j∈J

∑

i∈Sj

(
lij − l2ij

)
. (64)

We note that L̃(Wk, g, lij, χ) is upper bounded if χ ≥ 0 and
∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
≤ 0. Thus, we can rewrite

the optimization problem in (56) equivalently as

φ∗ = minimize
Wk,r

′
0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij, χ), (65)

where φ∗ denotes the optimal value of (56). On the other hand, the dual problem of (56) is given by

maximize
χ≥0

minimize
Wk,r

′
0,vu,

lij ,A,g

L̃(Wk, g, lij, χ) = maximize
χ≥0

Υ(χ), (66)

where Υ(χ) is defined as Υ(χ)
∆
= minimize

Wk,r
′
0,vu,

lij ,A,g

L̃(Wk, g, lij, χ) for notational simplicity. Then, the primal

problem (65) and the equivalent dual problem (66) meet the following inequalities:

maximize
χ≥0

Υ(χ) = maximize
χ≥0

minimize
Wk,r

′
0,vu,

lij ,A,g

L̃(Wk, g, lij, χ)
(a)

≤ minimize
Wk,r

′
0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij, χ)=φ∗, (67)



28

where (a) is due to the weak duality. We note that L̃(Wk, g, lij, χ) is monotonically increasing in variable

χ since
∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
≥ 0 for 0 ≤ lij ≤ 1, ∀i, ∀j. As a result, Υ(χ) is also increasing with χ.

Moreover, (67) implies that Υ(χ) is bounded from above by the optimal value of problem (56), i.e., φ∗.

Denote the optimal solution of the dual problem in (66) by χ∗ and Φ∗ ∆
= {W∗

k, (r
′
0)

∗,v∗
u, l

∗
ijA∗, g∗}. Then,

we study the solution structure of the dual problem (66) by considering the following two cases. For the

first case, we assume that
∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)
= 0 for the dual problem in (66). As a result, Φ∗ is also

a feasible solution to the primal problem in (56). Consequently, by substituting Φ∗ into the optimization

problem in (23), we have

φ∗ ≤
∑

k∈K

Tr(W∗
k)+ g∗

(b)
= L̃(W∗

k, g
∗, l∗ij, χ

∗) = Υ(χ∗), (68)

where (b) is due to the assumption of
∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)
= 0. By combining (67) and (68), we can

conclude that the gap between the equivalent primal problem (65) and the dual problem (66) is zero, i.e.,

maximize
χ≥0

minimize
Wk,r

′
0,vu,

lij ,A,g

L̃(Wk, g, lij, χ) = minimize
Wk,r

′
0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij, χ) (69)

must hold for
∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
= 0. Furthermore, the monotonicity of Υ(χ) with respect to χ implies

that Υ(χ) = φ∗, ∀χ ≥ χ∗, which proves the result in Theorem 3.

Next, we study the case of
∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)

> 0 for the dual problem in (66). In this case,

Υ(χ∗) = maximize
χ≥0

Υ(χ) → ∞ is unbounded from above since Υ(χ) is monotonically increasing in χ.

This contradicts the inequality in (67) as the primal problem in (56) has a finite objective value. Therefore,
∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)
= 0 holds for the optimal solution and the proof of Theorem 3 is complete. �
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[18] A.Birk, E. Wiggerich, H. Bülow, M. Pfingsthorn, and S. Schwertfeger, Safety, Security, and Rescue Missions with An Unmanned Aerial

Vehicle (UAV), in Journal of Intelligent and Robotic Systems, vol. 64, no. 1, pp. 57–76, Oct. 2011.

[19] K. P. Valavanis, and G. J. Vachtsevanos, Handbook of Unmanned Aerial Vehicles, Springer Publishing Company, 2014.

[20] P. Zhao, W. Chen, and W. Yu, “Guidance Law for Intercepting Target with Multiple No-Fly Zone Constraints,” The Aeronautical

Journal, vol. 121, no. 1244, pp. 1479–1501, Aug. 2017.

[21] T. Shima, and S. Rasmussen, UAV Cooperative Decision and Control: Challenges and Practical Approaches, Society for Industrial

and Applied Mathematics, 2009.

[22] R. Li, Z. Q. Wei, L. Yang, D. W. K. Ng, N. Yang, J. H. Yuan and J. P. An, “Joint Trajectory and Resource Allocation Design for

UAV Communication Systems,” in Proc. IEEE Global Commun. Conf. , Dec. 2018, pp. 1–6.

[23] Worldwide Aviation Database, “OpenAIP,” [Online] http://maps.openaip.net/.

[24] E. Balas, “Disjunctive Programming,” Annals of Discrete Mathematics, Elsevier, vol. 5, pp. 3–51, 1979.

[25] Y. J. A. Zhang, L. P. Qiang, and J. W. Huang, “Monotonic Optimization in Communication and Networking Systems,” Foundations

and Trends in Networking, vol. 7, no. 1, pp. 1–75, Now Publishers, Inc., 2013.

[26] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Multi-Objective Optimization for Robust Power Efficient and Secure Full-Duplex

Wireless Communication Systems,” IEEE Trans. Wireless Commun., vol. 15, no. 8, pp. 5511–5526, Aug. 2016.

[27] Q. T. Dinh and M. Diehl, “Local Convergence of Sequential Convex Programming for Nonconvex Optimization,” in Recent Advances

in Optimization and Its Applications in Engineering, Springer, 2010, pp. 93-102.

[28] F. Hodjat and S. Hovanessian, “Nonuniformly Spaced Linear and Planar Array Antennas for Sidelobe Reduction,” IEEE Trans.

Antennas Propag., vol. 26, no. 2, pp. 198–204, Mar. 1978.

[29] S. A. Bortoff, “Path Planning for UAVs,” in Proc. IEEE American Control Conf., vol. 1, no. 6, Sept. 2000, pp. 364–368.

[30] R. Y. Sun and D. W. Matolak, “Air-Ground Channel Characterization for Unmanned Aircraft Systems Part II: Hilly and Mountainous

Settings,” IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 1913–1925, Jun. 2017.

[31] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.

http://maps.openaip.net/


30

[32] A. Da Ronch, Advanced UAV Aerodynamics, Flight Stability and Control, John Wiley & Sons, 2017.

[33] Z. Liu, R. Sengupta, and A. Kurzhanskiy, “A Power Consumption Model for Multi-Rotor Small Unmanned Aircraft Systems,” in Proc.

Intern. Conf. on Unmanned Aircraft Systems, pp. 310–315, Jun. 2017.

[34] A. Cho, J. Kim, S. Lee, and C. Kee, “Wind Estimation and Airspeed Calibration Using A UAV with A Single-Antenna GPS Receiver

and Pitot Tube,” IEEE Trans. on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 109–117, Jan. 2011.

[35] B. Harper, J. Kepert, and J. Ginger, Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions,

World Meteorological Organization, 2010.

[36] An Overview of LTE Positioning (White Paper), Spirent, 2012.

[37] F. Zimmermann, C. Eling, L. Klingbeil, and H. Kuhlmann, “Precise Positioning of UAVs-dealing with Challenging RTK-GPS

Measurement Conditions During Automated UAV Flights,” Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences,

vol. 4, pp. 95–102, Aug. 2017.

[38] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, MIT Press, 2009.

[39] P. J. Enright, and B. A. Conway, “Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear

Programming,” in Journal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 994–1002, Aug. 1992.

[40] W. Johnson, Helicopter Theory, Courier Corporation, 2014.

[41] L. Gupta, R. Jain, and G. Vaszkun, “Survey of Important Issues in UAV Communication Networks, ” IEEE Commun. Surveys Tuts.,

vol. 18, pp.1123–1152, 2nd Quart. 2017.

[42] R. Hettich, and K. O. Kortanek, Semi-Infinite Programming: Theory, Methods, and Applications, vol. 35, no. 3, pp. 380–429, Society

for Industrial and Applied Mathematics, Sept. 1993.

[43] S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[44] A. Richards, and J. P. How, “Aircraft Trajectory Planning with Collision Avoidance Using Mixed Integer Linear Programming,” in

Proc. IEEE Cat. American Control Conf., vol. 3, no. 3, pp. 1936–1941, May 2002.

[45] M. Grant, and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[46] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Robust and Secure Resource Allocation for Full-duplex MISO Multicarrier NOMA

Systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 4119–4137, Sept. 2018.

[47] D. W. K. Ng, Y. Wu, and R. Schober, “Power Efficient Resource Allocation for Full-Duplex Radio Distributed Antenna Networks,”

IEEE Trans. Wireless Commun., vol. 15, no. 4, pp. 2896-2911, Jan. 2016.

[48] C. Goh, X. Q. Yang, Duality in Optimization and Variational Inequalities, London, CRC Press, 2002.

http://cvxr.com/cvx

	I Introduction
	II System Model and Problem Formulation
	II-A Multiuser UAV Communication System
	II-B UAV Jittering Model
	II-C Wind Speed Model
	II-D User Location Model
	II-E No-Fly Zone Model
	II-F Aerodynamic Power Consumption
	II-G Optimization Problem Formulation

	III Optimal Solution of the Optimization Problem
	III-A Transformation of the Semi-infinite Constraints
	III-B Transformation of the Disjunctive Constraint
	III-C Monotonic Optimization Framework
	III-D Optimal Algorithm Design

	IV Suboptimal Solution of the Optimization Problem
	V Simulation Results
	V-A UAV Trajectory
	V-B UAV Velocity
	V-C Average Total UAV Power Consumption versus Wind Speed Estimate
	V-D Average Total UAV Power Consumption versus Number of Transmit Antennas
	V-E Average Total UAV Power Consumption versus Maximum Normalized AoD Estimation Error
	V-F Average Total UAV Power Consumption versus Minimum Required User SINRs

	VI Conclusion
	VI-A Proof of Theorem 1
	VI-B Proof of Theorem 3

	References

