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Abstract— This paper studies the transmit power optimization
in multi-cell massive multiple-input multiple-output (MIMO) sys-
tems. Network-wide max-min fairness (NW-MMF) and network-
wide proportional fairness (NW-PF) are two well-known power
control schemes in the literature. The NW-MMF focus on
maximizing the fairness among users at the cost of penalizing
users with good channel conditions. On the other hand, the NW-
PF focuses on maximizing the sum SE, thereby ignoring fairness,
but gives some extra attention to the weakest users. However,
both of these schemes suffer from a scalability issue which means
that for large networks, it is highly probable that one user has
a very poor channel condition, pushing the spectral efficiency
(SE) of all users towards zero. To overcome the scalability issue
of NW-MMF and NW-PF, we propose a novel power control
scheme that is provably scalable. This scheme maximizes the
geometric mean (GM) of the per-cell max-min SE. To solve this
new optimization problem, we prove that it can be rewritten in a
convex optimization form and then solved using standard tools.
The simulation results highlight the benefits of our model which
is balancing between NW-PF and NW-MMF.

Index Terms— Power control, Massive MIMO, Fairness, Opti-
mization.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [2] is a
key technology in 5G [3], [4]. It refers to a system in
which the cellular base stations (BSs) are equipped with
very many antennas. Massive MIMO supports spatial mul-
tiplexing of many users, coherent beamforming, and spatial
interference mitigation. It enhances the spectral and energy
efficiency compared with conventional MIMO setups. Unlike
conventional cellular systems with one or a few antennas per
BS, the power control in massive MIMO systems benefits
from channel hardening, namely that the small-scale fading
average out when having many antennas per BS [5]. It means
that in massive MIMO, one can optimize the transmission
power based on only the large-scale fading coefficients and
spatial correlation, instead of optimizing with respect to the
small-scale fading coefficients, which changes rapidly and
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would require very rapid power control updates. Power control
schemes with different utility functions have been considered
in the massive MIMO literature [5]–[15]. In particular, max-
min fairness (MMF) is a classical utility function that has
been studied for different setups in [16]–[22]. It provides the
same quality of service at all user locations, which is a highly
desirable feature in future systems.

Unfortunately, applying a network-wide MMF (NW-MMF)
utility to a multi-cell massive MIMO network leads to a
scalability issue since the performance is limited by the
weakest user. When increasing the number of cells and active
users in the network, the probability of having a user with
an extremely poor channel gets higher due to shadow fading.
Therefore, NW-MMF optimization leads to the situation in
which all users in the network suffer from the weak channel of
the worst user. In other words, the larger the network, the lower
the per-user spectral efficiency (SE) becomes when optimizing
for NW-MMF. Increasing the number of cells to infinity will
eventually result in zero SE for all users in the network. This
is a major problem that was pointed out in the textbooks
[5], [23], but seldom discussed in scientific papers where the
simulation setups are often too small to observe overly small
SEs when considering the NW-MMF utility. In conclusion, the
NW-MMF schemes proposed in the literature are unsuitable
for providing fairness in practical cellular networks. The
network-wide proportional fairness (NW-PF) is another well-
known utility function for power control in multi-cell massive
MIMO [5]. It has the benefit of balancing between sum SE
optimization and MMF. In NW-PF, the optimization objective
is defined as the product of SINRs of all users in the network.
Therefore, this scheme suffers from the same scalability issue
as NW-MMF.

A. Related works and contributions

In this paper, we propose a rigorous optimization framework
that provides network-wide power control for multi-cell Mas-
sive MIMO in which per-cell max-min fairness is guaranteed.
A heuristic approach to resolve the scalability issue of NW-
MMF was considered in [23, Ch. 6]. The idea is to maximize
the minimum SE within each cell and let the cells have distinct
SEs. This is done by neglecting the coherent interference (i.e.
the interference from contaminating cells that are sharing the
same pilot sequence with the desired cell) and allowing all the
cells to utilize their full powers and applying MMF within the
cells and then compensate to the first order of approximation
for the effects of coherent interference. Hence, the weak users
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have a lower impact on the whole network performance and
mostly affect their own cells. The proposed algorithm in [23]
is computationally efficient, but relies on approximations and
there is no guarantee of optimality. Inspired by this algorithm,
we are proposing a new utility function that can be optimized
rigorously: maximization of the geometric mean (GM) of
the max-min SEs in each of the cells. We also generalize
the heuristic algorithm from [23] to handle correlated fading
channels. The NW-PF utility was considered in [5] to balance
between sum SE optimization and fairness. In simulations, it
outperforms NW-MMF in terms of SE for most users, but it
gives no fairness guarantees except for giving non-zero SE to
every user if we have non-zero channels for all users. Recall
that, NW-PF also gives nothing but zero SE for all users in
case one of the users suffers from deep fading with a zero-
valued channel.

The main contributions of this paper are:

• We formulate the novel GM per-cell MMF power control
problem, which is proved to be scalable in terms of
performance. We then reformulate the problem to reach a
convex formulation that can be solved to global optimal-
ity in an efficient way. The new scheme outperforms the
heuristic scheme in [23] in terms of per-user SE and sum
SE of the network in some cases and gives a comparable
performance in other cases.

• We provide a rigorous mathematical proof of that the
NW-MMF and NW-PF power control schemes are not
scalable for multi-cell Massive MIMO systems.

• To further investigate the benefits of the proposed power
control scheme, we define and solve two more power
control schemes for the problem at hand: NW-MMF and
NW-PF. The numerical results show that the proposed
power control scheme combines the benefits of NW-MMF
and NW-PF without suffering from the scalability issue
of NW-MMF and NW-PF.

• We consider correlated Rayleigh fading and also explain
how the framework can be used with other channel
models. We extended the heuristic scheme proposed in
[23] for correlated Rayleigh fading channels. This scheme
provides an approximate solution of the GM per-cell
MMF power control scheme.

• We investigate the effect of different pilot reuse factors on
the performance of our proposed power control scheme.

To illustrate the scalability issue of NW-MMF and NW-PF,
we provide the following example. We consider a simulation
setup consisting of 16 cells and 2 users per cell that are
communicating in the uplink (UL) with correlated Rayleigh
fading channels (for other simulation parameters please refer
to Section VI). For one of the users in the network (user A),
the large-scale fading coefficient is manually fixed to some
arbitrary values indicated in dB scale in Fig. 1. The figure
shows the sum SE achieved with NW-MMF, NW-PF, and our
proposed GM per-cell MMF power control problems. We can
see that when the large-scale fading coefficient value for user
A is very low, the sum SE for both NW-MMF and NW-PF is
zero (given the numerical precision in our computation) while
our approach still achieves a high sum SE.

NW-MMF
NW-PF
GM per-cell MMF

Fig. 1: Sum SE for UL data transmission with different large-scale
fading values for user A.

Note that in [1], which is the conference version of the
current paper, we proposed the novel GM per-cell MMF power
control for the case of uncorrelated Rayleigh fading channel
and assumed that the pilots are reused in every cell. In this
paper, we consider correlated Rayleigh fading and arbitrary
pilot reuse sets, and we also demonstrate that the optimization
framework can be used in many other scenarios.

Notation: We use boldface lower case to indicate column
vectors x, and boldface upper case is used for matrices,
X. An identity matrix with size M is denoted as IM . The
conjugate transpose of X is denoted as X

H. In addition, the
operator E{·} denotes the expectation of a random variable.
The notation ‖x‖ stands for the L2-norm of the vector x

and tr (A) is the trace of a square matrix A. The Hadamard
product of A and B is denoted by A ⊙ B. The notation
CN (0,R) is used to show the circularly symmetric complex
Gaussian distribution with zero mean and correlation matrix
R.

II. SYSTEM MODEL

In this paper, we consider a multi-cell massive MIMO setup
that consists of L cells, each associated with one BS. Each BS
is equipped with M antennas and is serving K single-antenna
users. In the considered setup, the channel response between
BS l and user k in cell l′ is defined as h

l
l′k ∼ CN (0,Rl

l′k),
where R

l
l′k ∈ CM×M is the positive semi-definite spatial

correlation matrix of the channel. We define βl
l′k =

tr(Rl
l′k)

M ,
where βl

l′k ≥ 0 is the corresponding average large-scale fading
coefficient among the antennas. We use conventional block
fading to model the randomness of the wireless channels over
time and frequency [23]. The coherence block of a channel is
defined as the time-frequency block in which the channel is
constant. The channels change independently from one block
to another according to a stationary ergodic random process.
The number of samples per coherence block is given by
τc = TcBc, where Tc is the coherence time and Bc is the
coherence bandwidth [23, Ch. 2], [5, Ch. 2]. Therefore, it is
assumed that channel estimation is carried out at each BS once
per coherence block. Each user transmits a pilot sequence
from a predefined set of mutually orthogonal pilots. It is
assumed that τp samples (with τp ≤ τc) are dedicated for pilot
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transmission and the remaining samples will be utilized for UL
and downlink (DL) data transmission. Since the complexity
of MMSE estimation is prohibitive [5, Ch. 3], we assume that
the BSs apply the element-wise MMSE (EW-MMSE) channel
estimator and the channel estimate of the channel response
between BS l and user k in cell l′ is [24]

ĥ
l
l′k ∼ CN (0,Σl

l′k), (1)

where Σ
l
l′k = pulτpD

l
l′kΛ

l
l′k

(

Ψ
l
l′k

)−1
Λ

l
l′kD

l
l′k. In addition,

Ψ
l
l′k, Dl

l′k and Λ
l
l′k are defined as

Ψ
l
l′k =





∑

j∈Pl′

pulτpR
l
jk + IM





−1

, (2)

D
l
l′k = R

l
l′k ⊙ IM , (3)

Λ
l
l′k =









∑

j∈Pl′

pulτpR
l
jk + IM



⊙ IM





−1

, (4)

where the set Pl′ ⊂ {j : j = 1, . . . , L} of all cells in the
network where the users have the same set of pilots as in cell
l′. If two cells use the same set of pilot sequences, then user
k in these cells use same pilot sequence. In addition, ρul is
the normalized UL transmit power and we have independent
additive noise at the BSs with i.i.d. elements distributed
by CN (0, 1). Note that each BS only needs to know the
diagonals of the spatial correlation matrices to apply the
EW-MMSE estimator. The diagonals are relatively easy to
estimate while the full correlation matrices that are needed for
the MMSE estimator are complicated to acquire [5, Ch. 3].
We further assume that each BS performs maximum ratio
(MR) processing during the data transmission phase. This
assumption is made to obtain closed-form SE expressions for
both UL and DL data transmission [5]. However, our method
can be generalized to arbitrary linear processing techniques
and channel models, which will be presented in Section V.
For the UL data transmission, the ergodic SE of user k in cell
l is given by [5, Th. 4.4]

SEul
lk =

(

1−
τp + τd

τc

)

log2

(

1 + SINRul
lk ({ηlk})

)

, (5)

where τd is the number of samples used for DL data transmis-
sion. In addition, ηlk ∈ [0, 1] is the power control coefficient
of user k in cell l and these will be optimization variables in
this paper. We let {ηlk} denote the set of all power control
coefficients. The UL effective SINR for user k in cell l is

denoted as SINRul
lk ({ηlk}) and provided in (6) at the top of

the next page [24].
Similar assumptions are made for the case of DL data

transmission, in which we have MR processing at the BSs
with correlated Rayleigh fading channel and assuming that
each BS uses the EW-MMSE estimator. The ergodic SE of
user k in cell l is

SEdl
lk =

(

1−
τp + τu

τc

)

log2

(

1 + SINRdl
lk ({ηlk})

)

, (8)

where τu is the number of samples used for UL data trans-
mission and SINRdl

lk is the effective SINR of user k in cell l
and given in (9) at the top of the next page [24], where ρdl
in (9) is DL normalized transmit powers and ηlk ∈ [0, 1] is
the power control coefficient of user k in cell l. Note that the
power control coefficients generally take different values in
the UL and DL.

Uncorrelated Rayleigh fading is a special case of this model
with R

l
l′k = βl

l′kIM . Therefore, the channel response between
BS l and user k in cell l′ becomes h

l
l′k ∼ CN (0, βl

l′kIM ).
Since the EW-MMSE and MMSE estimators coincide in
this case, the channel estimation phase follows the standard
minimum mean square error (MMSE) estimation approach
in the literature, e.g., [5], [23], [25] and the derivation is
omitted here. Hence, the MMSE estimate of h

l
l′k is denoted

as ĥ
l
l′k ∼ CN (0, γl

l′kIM ), where γl
l′k is the corresponding

variance:

γl
l′k =

τppul
(

βl
l′k

)2

1 + τpρul
∑

l′′∈Pl′

βl
l′′k

. (11)

Note that if two BSs are sharing pilots, user k in the respective
cells use identical pilots for k = 1, . . . ,K .

By using the mentioned information for uncorrelated
Rayleigh fading and the assumption of MR processing at each
BS for the UL data transmission, the ergodic SE of user k in
cell l is identical to (5) with a different SINR expression. In
this case, SINRul

lk is given as

SINRul
lk ({ηlk}) =

Mρulγ
l
lkηlk

1 +
L
∑

l′=1

K
∑

k′=1

ρulβl
l′k′ηl′k′ +

∑

l′∈Pl\{l}

Mρulγl
l′kηl′k

. (12)

For the DL data transmission with uncorrelated Rayleigh
fading channels, the effective DL SINR for the case of MR
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TABLE I: Explicit definition of parameters.

Uncorrelated Correlated
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processing at the BSs is [23, Ch. 4]

SINRdl
lk ({ηlk}) =

Mρdlγ
l
lkηlk

1 +
L
∑

l′=1

ρdlβl′
lk

(

K
∑

k′=1

ηl′k′

)

+
∑

l′∈Pl\{l}

Mρdlγl′
lkηl′k

, (13)

which can be plugged into (8) that provides the ergodic SE of
user k in cell l.

Note that, the SINR expressions for both cases of uncorre-
lated and correlated fading channel for both UL and DL data
transmission with MR processing at the BSs can be written in
a general form

SINRlk ({ηlk}) =
alkηlk

L
∑

l′=1

K
∑

k′=1

bl
′k′

lk ηl′k′ +
∑

l′∈Pl\{l}

cl
′

lkηl′k + dlk

,

(14)
where alk , bl

′k′

lk , cl
′

lk and dlk can be defined based on the cor-
responding channel model assumption and data transmission
direction. Table I summarizes the corresponding definitions
of the aforementioned parameters for both UL and DL data
transmission for correlated and uncorrelated Rayleigh fading
channels.

III. PROBLEM FORMULATION

This section motivates and defines the problem formulation.
Specifically, we formulate and solve a new multi-cell MMF
power control problem. In order to evaluate and compare our
proposed scheme with the state-of-the-art, we also define and
solve two additional optimization problems. In the following
subsection, we introduce our proposed method that is solving
the GM of per cell MMF problem. This method resolves the
scalability issue that happens when applying NW-MMF and

NW-PF. These methods and the scalability issue are explained
in detail in Subsections III-B and III-C.

A. Proposed: Geometric-mean per-cell max-min fairness

To solve the scalability issue of NW-MMF while keeping
the focus on user fairness, we formulate a new optimization
problem in which the optimization objective is the GM of
per-cell max-min SE 1. This optimization problem achieves
MMF locally in each cell and performs proportional fairness
between the cells in the network. Therefore, solving this
optimization problem offers the benefit that a user in deep
fading condition mainly affects the SE of its serving cell, but
not the whole network. Hence, this problem does not suffer
from the scalability issue. The optimization problem for the
UL data transmission is

maximize
{tl},{ηlk}

L
∏

l=1

log2 (1 + ǫ+ tl)

subject to 0 ≤ ηlk ≤ 1, ∀ l, k,

SINRul
lk ({ηlk}) ≥ tl, ∀ l, k,

(15)

where tl is the minimum SINR of cell l and ǫ > 0 is a
small control parameter. Note that SINRul

lk ({ηlk}) can be
expressed by either (6) or (12) depending on the channel model
assumption.

Lemma 1: The control parameter ǫ > 0 prevents the utility
function of (15) from being identically zero when at least one
cell l has a user with min

k
(βl

lk) = 0. Hence, the cells l′ with

min
k

(βl′

l′k) > 0 will have tl′ > 0 at the optimal point to (15).

Proof: Cells with min
k

(βl
lk) = 0 must have tl = 0 at the

optimal point, while all other cells can have tl′ > 0. Define
f∗ as

f∗ =

L′

∏

l′′=1

log2 (1 + ǫ+ tl′′)

L
∏

l=L′+1

log2 (1 + ǫ+ tl) .

(16)
Suppose tl = 0 for l = 1, . . . , L′ and tl > 0 otherwise.
Therefore, we have

f∗ = (log2 (1 + ǫ))
L′

L
∏

l=L′+1

log2 (1 + ǫ + tl) , (17)

1In this work, we provide fairness by using the product of SEs in the
objective function because the SEs are the operationally meaningful physical
quantities. Moreover, using SEs will benefits the users with weaker channels
as y = log2(1 + x) decreases slower than y = x. Therefore the users with
low SINRs are penalized less in the optimization procedure.
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where f∗ = 0 for ǫ = 0 and f∗ is non-zero for any ǫ >
0. When solving (15), the cells with tl = 0 are effectively
removed from the objective function, while the remaining cells
will have tl′ > 0 at the optimal point.

We define 1ǫ = 1 + ǫ to simplify the notation in the
remainder of the paper. Note that by using a very small ǫ, the
proposed optimization problem achieves scalability without af-
fecting the overall utility. The first constraint in (15) deals with
the power control coefficients for the UL data transmission of
the users in each cell, and the second constraint is to guarantee
a particular SINR tl to all K users in cell l. This constraint
guarantees to give the same SINR to every user within a
cell, but the SINR value can be different from other cells.
Therefore, a cell where all users have poor channels will not
prevent the users in other cells from achieving higher SINRs.
The GM utility of the per-cell MMF SEs provides proportional
fairness between cells. The following optimization problem is
the DL counterpart to (15):

maximize
{tl},{ηlk}

L
∏

l=1

log2 (1ǫ + tl)

subject to ηlk ≥ 0, ∀ l, k,
K
∑

k=1

ηlk ≤ 1, ∀ l,

SINRdl
lk ({ηlk}) ≥ tl, ∀ l, k.

(18)

The differences from the UL are the SINR expressions being
used and the power constraints, which are now reflecting the
fact that each BS can distribute its power arbitrarily between
its users in the cell. Note that we can use the corresponding
SINR expressions for DL data transmission with respect to the
channel model assumption provided in (9) and (13).

Note that the optimization problem formulations for UL
and DL that are given in (15) and (18) are different and
both are important to solve in practice. First of all, the SE
expressions are different since the interference comes from
different transmitters, which makes the objective functions
different. Moreover, the power constraints are different, which
makes the feasible sets different. There are individual power
constraints for each user in the UL, while in the DL there
are sum power constraints for each BS. However, we show
that our proposed optimization criterion is applicable for both
cases and there is not a significant difference between them in
terms of optimization methods for the proposed scheme, but
the simulation results in Section VI show that the actual SEs
are behaving very differently, which is why it is important to
study both cases.

B. Network-wide max-min fairness

Here, we consider NW-MMF power control for multi-cell
massive MIMO network, which has been previously studied in
[16]–[20]. Notice that NW-MMF is the ideal utility function
in a network where everyone has the same demand for data. It
provides equal performance among all the users by prioritizing
the user with the weakest channel. The NW-MMF problem for

UL data transmission is defined as [5, Ch. 7]

maximize
{ηlk}

min
l,k

SINRul
lk ({ηlk})

subject to 0 ≤ ηlk ≤ 1, ∀ l, k.
(19)

Note that SINRul
lk ({ηlk}) in (19) can be defined based on the

channel model in which we can replace it with either (6) or
(12) for correlated and uncorrelated Rayleigh fading channel
model, respectively. The alternative models in Section V can
also be used.

However, the NW-MMF scheme is not scalable and by
increasing the number of cells in the network, we may end
up with zero SE for all users—uniform but bad performance
for everyone. It happens because the probability of having a
user in deep fade due to shadow fading increases and this
penalizes the whole network.

Lemma 2: We assume {βl
lk} to be a set of i.i.d. random

variables with βl
lk ∈ [0, 1] and their CDF is denoted by F (x) ∈

[0, 1]. In addition, we assume that F (ǫ) > 0, ∀ǫ > 0. In a
multi-cell massive MIMO system

min
l,k

{βl
lk} → 0 as L → ∞. (20)

Due to this fact and with the SINRs given by (14) and dlk > 0,
it follows that

min
l,k

SINRlk ({ηlk}) → 0 as L → ∞. (21)

Hence, SE→ 0 at the optimal solution of NW-MMF problem
for all the users as L → ∞.

Proof: Define B = min
l,k

{βl
lk}. We write the probability

of B ≤ ǫ (where ǫ is an arbitrary non-negative small number)
as

Pr (B ≤ ǫ) = 1− (1− F (ǫ))
LK

. (22)

By taking the limit when L → ∞

lim
L→∞

Pr (B ≤ ǫ) = 1. (23)

Therefore due to the assumption that ǫ is an arbitrary non-
negative small number, B converges in distribution to zero
when L → ∞. The SINR in (14) is upper bounded by alkηlk

dlk
.

Note that alk of the worst user goes to zero when min
l,k

{βl
lk} →

0 in all the considered models. This proves (21) and implies
that the utility function in (19) goes to zero. Therefore, an
optimal solution is to give zero SE for all the users.

The NW-MMF optimization problem for the DL data trans-
mission is similar to (19) but we use the corresponding SINR
expression for the DL data transmission by using (9) or (13)
to express SINRdl

lk ({ηlk}) depending on the channel model
assumption. The NW-MMF optimization problem is written
as

maximize
{ηlk}

min
l,k

SINRdl
lk ({ηlk})

subject to ηlk ≥ 0, ∀ l, k,
K
∑

k=1

ηlk ≤ 1, ∀l.

(24)

This optimization problem also suffers from the same scal-
ability issue as (19). This is due to the fact that Lemma 1
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applies to the general SINR expression in (14), which covers
DL data transmission as well. Note that adding a small ǫ > 0
to the objective functions of (19) and (24) is not solving the
scalability issue of NW-MMF. This is due to the fact that in
the case of zero SINR for any user in the network, the optimal
solution is to assign log2(1 + ǫ) as the SE for all the users.
Due to the small value of ǫ, log2(1+ǫ) is approximately equal
to zero. Therefore, one can say that the solution still provide
zero SE for all the users.

C. Network-wide proportional fairness

Next, we consider an alternative network utility function
with the product of the SINRs. Maximizing this objective
provides NW-PF with respect to the SINRs of the users in
the network. It is shown in [5, Sec. 7.1] that this objective is
a lower bound on the sum SE of the network, but with greater
emphasis on fairness since the utility is zero if any user gets
zero SE.

We can write the optimization problem for UL data trans-
mission as

maximize
{tlk},{ηlk}

L
∏

l=1

K
∏

k=1

tlk

subject to 0 ≤ ηlk ≤ 1, ∀l, k,

SINRul
lk ({ηlk}) ≥ tlk, ∀l, k,

(25)

where tlk indicates the effective SINR of user k located at cell
l. The corresponding DL optimization problem is formulated
as

maximize
{tlk},{ηlk}

L
∏

l=1

K
∏

k=1

tlk

subject to ηlk ≥ 0, k, ∀l
K
∑

k=1

ηlk ≤ 1, ∀l

SINRdl
lk ({ηlk}) ≥ tlk, ∀l, k.

(26)

The difference between this optimization problem and NW-
MMF is that this optimization problem deals with each user
individually, so there will be large SE differences within a cell.
The SINR expressions in (25) and (26) can be replaced with
the corresponding expression based on the data transmission
direction and channel model assumption.

However, similar to NW-MMF, this scheme is not scalable
and by increasing the number of cells in the network, we may
end up with zero SE for all users. This happens due to the fact
that increasing the number of cells in the network or increasing
the number of users, increases the probability of having a
user in deep fade due to shadow fading which corresponds
to βl

lk → 0 for some l, k. Note that SINR
ul/dl
lk → 0 if

βl
lk → 0 implies that

L
∏

l=1

K
∏

k=1

tlk → 0. In other words, if

one user has a zero SINR then the product of the SINRs
becomes zero as well. Hence, giving zero SINR to all users
will be an optimal solution to the NW-PF problem. One could
think of using a similar trick as provided in our proposed
method for solving this issue by introducing a new control

parameter ǫ > 0 and replacing the objective functions in (25)

and (26) by maximize
{tlk},{ηlk}

L
∏

l=1

K
∏

k=1

(tlk + ǫ). However, after adding

the ǫ, the problem becomes much harder to solve and cannot
be tackled using the approach described in the next section.
The complexity is basically the same as maximizing sum SE,
which is known to be an NP-hard problem. Therefore, the
same approach does not solve the scalability issue of NW-
PF problem. Hence, we can see that our proposed method is
a practical approach that provides scalable power control for
multi-cell massive MIMO systems. Note that, in the case of
NW-MMF and NW-PF, having a user with zero SINR in the
network will result in zero SINR for all the users in the whole
network. This happens due to the optimization objectives in
the problem formulations (19), (24), (25), and (26). In our
proposed optimization formulation, the SINR constraint in (15)
is given as SINRul

lk ({ηlk}) ≥ tl, ∀ l, k, which corresponds to
max-min fairness within each cell l. If we have one user that
can only get zero SINR, then that will affect the serving cell
of this user and lead to zero SINR to everyone located in that
cell. However, this does not apply to the users in other cells,
which operate as if the cell with the zero-SINR user does not
exist.

IV. SOLUTIONS TO THE PROPOSED PROBLEMS

In this section, we provide solutions to the optimization
problems introduced in Section III. First, we solve the pro-
posed GM per-cell MMF power control for the UL data
transmission given in (15). We can rewrite the optimization
problem as

maximize
{tl},{ηlk}

L
∑

l=1

log (log2 (1ǫ + tl))

subject to 0 ≤ ηlk ≤ 1, ∀ l, k,

SINRul
lk ({ηlk}) ≥ tl, ∀ l, k,

(27)

since the logarithm is a monotonically increasing function.
The problems are equivalent in the sense that solving them
provides the same optimal solution. We will now prove that
(27) can be rewritten as a convex problem. By the change of
variables

tl = et̄l , ηlk = eη̄lk , (28)

we obtain the following equivalent problem:

maximize
{t̄l},{η̄lk}

L
∑

l=1

log
(

log2

(

1ǫ + et̄l
))

subject to eη̄lk ≤ 1, ∀ l, k

alke
η̄lk

L
∑

l′=1

K
∑

k′=1

bl
′k′

lk eη̄l′k′ +
∑

l′∈Pl\{l}

cl
′

lke
η̄l′k + dlk

≥ et̄l , ∀ l, k.

(29)
Note that, we used the general SINR expression of (14) in the
last constraint of (29), thus the problem formulation applies
to both correlated and uncorrelated fading or any of the other
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maximize
{t̄l},{η̄lk}

L
∑

l=1

log
(

log2

(

1ǫ + et̄l
))

subject to η̄lk ≤ 0, ∀ l, k

log





L
∑

l′=1

K
∑

k′=1

bl
′k′

lk eη̄l′k′+t̄l−η̄lk +
∑

l′∈Pl\{l}

cl
′

lke
η̄l′k+t̄l−η̄lk + dlke

t̄l−η̄lk+



 ≤ log (alk) , ∀ l, k.

(31)

maximize
{t̄l},{η̄lk}

L
∑

l=1

log
(

log2

(

1ǫ + et̄l
))

subject to
K
∑

k=1

η̄lk ≤ 0, ∀ l,

log





L
∑

l′=1

K
∑

k′=1

bl
′k′

lk eη̄l′k′+t̄l−η̄lk +
∑

l′∈Pl\{l}

cl
′

lke
η̄l′k+t̄l−η̄lk + dlke

t̄l−η̄lk



 ≤ log (alk) , ∀ l, k.

(32)

cases mentioned in Section V. We observe that the constraints
can be rewritten as

L
∑

l′=1

K
∑

k′=1

bl
′k′

lk eη̄l′k′+t̄l−η̄lk

+
∑

l′∈Pl\{l}

cl
′

lke
η̄l′k+t̄l−η̄lk + dlke

t̄l−η̄lk ≤ alk.

(30)

After taking the logarithm of both sides, we have a log-sum-
exponential function, which is a convex function less than or
equal to a constant. This is a convex constraint. In addition,
we take the logarithm of both sides in the other constraints
i.e., eη̄lk ≤ 1, ∀ l, k, which becomes η̄lk ≤ 0, ∀ l, k, and it
is a convex constraint as well. Hence, finally we have the
equivalent problem as given in (31).

Therefore the only remaining concern is whether the ob-
jective function in (29) is concave or not. We provide the
following theorem that shows that the objective function is a
concave function and thus (29) is a convex problem.

Lemma 3: The function log (log2 (1ǫ + ex)) is a concave
function with respect to x, ∀x.

Proof: The proof is provided in Appendix A.
As the objective is a sum of concave functions, it is also
jointly concave. Hence, we have shown that (15) is a convex
problem and it follows that every stationary point is also a
global optimum solution. Note that solving the optimization
problem for the DL case follows the same steps as UL,
hence the detailed derivation is omitted to avoid repetition.
For the DL data transmission, we use (18) and apply a
change of variables similar to the UL case. This provides
the equivalent convex problem provided in (32). We showed
that both (31) and (32) are convex. Therefore any algorithm
that converges to a stationary point can be applied to solve
these problems. In the simulation part, we use the interior
point algorithm within the fmincon solver in MATLAB.
The computational complexity of this approach is of the
order of O

(

max{(KL+ L)3, (KL+ L)2(2KL), F}
)

, where
F is the cost of calculating the first and second derivatives
of the objective and constraint functions [26]. Note that the

complexity is calculated as the number of operations required
in each iteration of the interior-point method.

A. Per-cell MMF approximate solution

Depending on the computational resources, the proposed
GM per-cell MMF power control algorithm can either be
implemented in real-time or used to benchmark and design
heuristic power control solutions. The authors in [23] pro-
posed an approximate solution for the per-cell max-min power
control problem with uncorrelated Rayleigh fading. In this
subsection, we generalize it to correlated Rayleigh fading
channels and the other cases mentioned in Section V. For the
UL data transmission, we first ignore the coherent interference
part (i.e., cl

′

lk) from the denominator of (14) and calculate the
data power coefficients as

η̂lk =
min
k′

{alk′}

alk
, ∀l, k. (33)

We use the power coefficients η̂lk to calculate the exact SINRs

using (14) and denote it as ŜINR
ul

lk. Then following the same
approach as in [23], the approximate SINR of user k in cell l
can be defined as

SINRul
lk = min

k′







ŜINR
ul

lk′

η̂lk′







. (34)

The power coefficients of DL data transmission of user k in
cell l when we neglect the coherent interference is defined as
[23]

η̂lk =

dlk +
L
∑

l′=1

bl
′

lk

alk
K
∑

k′=1

dlk+
L
∑

l′=1

bl
′

lk′

alk′

. (35)

Note that we write bl
′

lk = bl
′k′

lk due to the fact that in the DL
{bl

′k′

lk } do not depend on k′. Similar to the UL, first, we use
the power coefficients η̂lk to calculate the exact DL SINRs by

utilizing (14) which is denoted as ŜINR
dl

lk. Then, the per-cell
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SINRul
lk ({ηlk}) =

ηlkρul
∣

∣E
{

v
H
lkh

l
lk

}∣

∣

2

L
∑

l′=1

K
∑

k′=1

ηl′k′ρulE
{

∣

∣vH
lkh

l
l′k′

∣

∣

2
}

− ηlkρul
∣

∣E
{

vH
lkh

l
lk

}∣

∣

2
+ σ2E

{

‖vlk‖
2
}

.
(37)

SINRul
lk ({ηlk}) =

ηlkρul

∣

∣

∣

∣

E

{

(

ĥ
l
lk

)H

h
l
lk

}∣

∣

∣

∣

2

L
∑

l′=1

K
∑

k′=1

ηl′k′ρulvar

{

(

ĥl
lk

)H

hl
l′k′

}

+
∑

l′∈Pl\{l}

ηlkρul

∣

∣

∣

∣

E

{

(

ĥl
lk

)H

hl
l′k

}∣

∣

∣

∣

2

+ σ2E

{

∥

∥

∥ĥlk

∥

∥

∥

2
}

. (38)

SINRdl
lk ({ηlk}) =

ηlkρdl
∣

∣E
{

w
H
lkh

l
lk

}∣

∣

2

L
∑

l′=1

K
∑

k′=1

ηl′k′ρdlE
{

∣

∣wH
l′k′h

l′
lk

∣

∣

2
}

− ηlkρdl
∣

∣E
{

wH
lkh

l
lk

}∣

∣

2
+ σ2

.
(39)

SINRdl
lk ({ηlk}) =

ηlkρdl

∣

∣

∣

∣

∣

E

{

(ĥl
lk)

H
h

l
lk

√

E{‖ĥl
lk
‖2}

}∣

∣

∣

∣

∣

2

L
∑

l′=1

K
∑

k′=1

ηl′k′ρdlvar

{

(ĥl′

l′k′)
H
hl′

lk
√

E{‖ĥl′

l′k′
‖2}

}

+
∑

l′∈Pl\{l}

ηlkρdl

∣

∣

∣

∣

∣

E

{

(ĥl′

l′k
)Hhl′

lk
√

E{‖ĥl′

l′k
‖2}

}∣

∣

∣

∣

∣

2

+ σ2

. (40)

MMF approximate SINR of user k in cell l for DL is defined
as [23]

SINRdl
lk =

1
K
∑

k′=1

η̂lk′

ŜINR
dl

lk′

.
(36)

We define and summarize the corresponding coefficients for
both UL and DL data transmission for uncorrelated and
correlated channel model in Table I.

B. Solution approach for NW-MMF and NW-PF

To solve the NW-MMF optimization problems given in (19)
and (24) one can write these problems on epigraph form
and solve linear feasibility optimization problems using the
bisection algorithm. The details of the bisection algorithm
can be found in [5, Ch. 7]. Note that solving the linear
feasibility optimization problems using the bisection algorithm
is sensitive to the optimality criteria of bisection algorithm.
Therefore, to guarantee the actual MMF optimal solution one
should select the minimum SE among all users as the optimal
solution for MMF problem.

The NW-PF problem for both UL and DL data transmission,
given in (25) and (26), are geometric programming problems
[27], [28]. The detailed proof is provided in [5, Th. 7.2].
These optimization problems can be solved efficiently by using
standard convex optimization solvers, for example, we used
CVX [29] in the simulation part.

V. OTHER CHANNEL MODELS

In this part, we introduce other channel models for which
the SINR expression follows the same structure as (14). The
main intention is to show that the solutions provided for the
power control problems in the previous sections are not limited
to correlated/uncorrelated Rayleigh fading channel models.
The problem formulations and the proposed solutions are
covering more general cases even though we just consider

correlated and uncorrelated Rayleigh fading channels for the
numerical evaluation, for brevity.

Assuming the same block fading model but a general
channel fading model and an arbitrary linear detection vector
vlk ∈ CM , the UL SINR expression is given in (37) [5,
Th. 4.4]. We can rewrite (37) as given in (38) for MR
processing at the BSs i.e., vlk = ĥ

l
lk. For this case, the

corresponding parameters to be used in the general SINR
expression (37) are defined as

alk = ρul

∣

∣

∣

∣

E

{

(

ĥ
l
lk

)H

h
l
lk

}∣

∣

∣

∣

2

,

bl
′k′

lk = ρulvar

{

(

ĥ
l
lk

)H

h
l
l′k′

}

,

cl
′

lk = ρul

∣

∣

∣

∣

E

{

(

ĥ
l
lk

)H

h
l
l′k

}∣

∣

∣

∣

2

,

dlk = σ2
E

{

∥

∥

∥ĥlk

∥

∥

∥

2
}

.

In the same case, the DL data transmission with arbitrary
linear detection vectors wlk ∈ CM leads to the general
SINR expression that is provided in (39). For the case of MR
processing at the BSs with arbitrary zero mean channel fading

model, we define wlk =
ĥ

l
l,k

√

E{‖ĥl
lk
‖2}

and plug it into (39). It

gives us the SINR expression which has same structure as (14)
which is given in (40). Similar to the UL case, we define the
corresponding parameters for the general SINR expression as
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SINRul
lk ({ηlk}) =

ηlkρul
∣

∣v
H
lkh̄

l
lk

∣

∣

2

K
∑

k′=1
k′ 6=k

ηlk′ρul
∣

∣vH
lkh̄

l
lk′

∣

∣

2
+

L
∑

l′=1
l′ 6=l

K
∑

k′=1

ηl′k′ρul
∣

∣vH
lkh̄

l
l′k′

∣

∣

2
+ σ2 ‖vlk‖

2

.
(42)

SINRdl
lk ({ηlk}) =

ηlkρdl
∣

∣w
H
lkh̄

l
lk

∣

∣

2

K
∑

k′=1
k′ 6=k

ηlkρdl
∣

∣wH
l′k′ h̄

l
lk

∣

∣

2
+

L
∑

l′=1
l′ 6=l

K
∑

k′=1

ηl′k′ρdl
∣

∣wH
l′k′ h̄

l′
lk

∣

∣

2
+ σ2

.
(43)

follows

alk = ρdl

∣

∣

∣

∣

∣

∣

∣

∣

E















(

ĥ
l
lk

)H

h
l
lk

√

E

{

‖ĥl
lk‖

2
}















∣

∣

∣

∣

∣

∣

∣

∣

2

,

bl
′k′

lk = ρdlvar















(

ĥ
l′

l′k′

)H

h
l′

lk
√

E

{

‖ĥl′
l′k′‖2

}















,

cl
′

lk = ρdl

∣

∣

∣

∣

∣

∣

∣

∣

E















(

ĥ
l′

l′k

)H

h
l′

lk
√

E

{

‖ĥl′
l′k‖

2
}















∣

∣

∣

∣

∣

∣

∣

∣

2

, dlk = σ2.

(41)

Note that these expressions for general channel fading model
can be applied for Rician and Nakagami fading channels,
and many other examples. Another example is the case of
line-of-sight communication in which we assume an arbitrary
deterministic channel vector denoted as h̄

l
lk. In addition, it is

assumed that each BS utilizes an arbitrary precoder/combiner.
For the case of UL data transmission vlk indicates the

combining vector. The SINR expression is given in (42)
provided at the top of this page. In the DL data transmission,
wlk is the precoder vector of BS l to user k and the SINR
is defined as it is written in (43) which is provided in the
top of this page. The SINR expression for both UL and DL
communication with line-of-sight channel model provided in
(42) and (43), respectively, follow the same structure as (14).
In which for the UL, we have

alk = ρul
∣

∣v
H
lkh̄

l
lk

∣

∣

2
,

bl
′k′

lk =

{

ρul
∣

∣v
H
lkh̄

l
l′k′

∣

∣

2
, (l′, k′) 6= (l, k)

0, (l′, k′) = (l, k),

cl
′k′

lk = 0, dlk = σ2 ‖vlk‖
2 .

In addition, for the DL data transmission case, the param-
eters are

alk = ρdl
∣

∣w
H
lkh̄

l
lk

∣

∣

2
,

bl
′k′

lk =







ρdl

∣

∣

∣w
H
l′k′ h̄

l′

lk

∣

∣

∣

2

, (l′, k′) 6= (l, k)

0, (l′, k′) = (l, k),

cl
′k′

lk = 0, dlk = σ2.

Therefore, we can apply our proposed power control scheme
for this case as well.

VI. NUMERICAL ANALYSIS

In this section, we provide a numerical comparison of the
four power control algorithms provided in Section III. We
consider a multi-cell massive MIMO setup consisting of 16
cells. The network uses wrap-around to avoid edge effects.
We assume a square grid layout where each square has a BS
in the center and all of the BSs are located in a 1 km2 area.
Furthermore, each BS serves K = 5 users that are randomly
distributed with uniform distribution in the coverage area of
the BS. In addition, it is assumed that each BS is equipped with
M = 100 antennas and ǫ = 0.001. In addition, to investigate
the effect of pilot contamination on the performance of power
control algorithms, we consider three different pilot reuse
factors f = {1, 2, 4} in the numerical analysis. The bandwidth
is 20MHz and each coherence block contains τc = 200
symbols. The large-scale fading coefficients are modeled as
[5]

βl
l′k [dB] = −35− 36.7 log10

(

dll′k/1m
)

+ F l
l′k, (44)

where dll′k is the distance between user k located in cell l′

to BS l. In addition, F l
l′k is shadow fading generated from a

log-normal distribution with standard deviation of 7 dB .
Note that in the implementation, whenever needed, we

regenerated the shadow fading realization to guarantee that
the home BS has the largest large-scale fading towards its
serving user. It means that βl

lk is the largest among all
βl
l′k, l′ = 1, . . . , L. The noise variance is set to −94 dBm

and the maximum transmit power of the users is 200mW for
UL data transmission (Note that with the current maximum
power settings for UL data transmission the median SNRs
for the cell-edge users is relatively low: around −3 dB). The
maximum transmit power of the BS is selected to be 40W.
The results are qualitatively the same if we change the power
budgets, as is shown in Appendix B. The simulations consider
1000 realizations, where the users are dropped uniformly and
randomly in each cell.

It is assumed that each BS has a horizontal uniform linear
array with half-wavelength antenna spacing. Furthermore, the
spatial correlation matrix from user k in cell l to the BS l′

is modeled using the approximate Gaussian local scattering
model provide in [5, Ch.2.6]

[

R
l
l′k

]

m,n
= βl

l′ke
πj(m−n) sin(ϕl

l′k
)e−

σ2
ϕ
2

π(m−n) cos(ϕ), (45)

where ϕl
l′k is the nominal angle of arrival (AoA) from user

k in cell l′ to the BS l. It is also assumed that the multipath
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(a) f = 1. (b) f = 2. (c) f = 4.

Fig. 2: SE of CU k for UL data transmission with correlated Rayleigh fading channel with different pilot reuse factors

components of a cluster have Gaussian distributed AoA around
nominal AoA with a standard deviation of 10 degree in the
simulations.

Figs.2a-2c, plot the cumulative distribution function (CDF)
of the SE of all the users for UL data transmission with pilot
reuse factor 1, 2 and 4, respectively. In these figures, it can
be seen that NW-PF offers higher SE than the proposed GM
of per-cell MMF SE for most users but not in the lower tail
which is the important part for delivering fairness and uniform
performance.

In the case of pilot reuse factor 1, 7% weakest users get
higher SE when using the proposed GM per-cell MMF. For
the reuse factor 2 and 4, less than 5% and 2% of the weakest
users get higher SE when using the proposed GM per-cell
MMF SE, respectively. Fig. 3 shows a bar diagram of the
98%-likely per user SE to clarify the mentioned observations.
In addition, our proposed algorithm mostly provides higher
SE in comparison with per-cell MMF approximation for pilot
reuse factor 1 and 2. However, for pilot reuse factor 4, in which
we have a lower pilot contamination effect, the approximate
solution has higher per user SE. The heuristic approach verifies
that the approximate solution is close to the optimal solution
provided by our proposed method and it can be used as a low
complexity approximate alternative solution.

NW-MMF
NW-PF
GM per-cell MMF
GM per-cell MMF approx

Fig. 3: 98%-likely SE of CU k for UL data transmission with
correlated Rayleigh fading channel with different pilot reuse factors.

In Figs.4a-4c, we provide the CDF of the SE of all the users
for DL data transmission with pilot reuse factors 1, 2 and 4,
respectively. As it can be seen from these figures, similar to
the UL, the proposed GM of per-cell MMF SE provides higher
SE for lower tail users and rest of the users are happier with
NW-PF.

In the case of reuse factor 1, the 10% weakest users get
higher SE when using the proposed GM per-cell MMF SE.
For the reuse factor 2 and 4, the 5% and 2% of weakest users
get higher SE when using the proposed GM per-cell MMF SE,
respectively. Fig. 5 shows a bar diagram of the 98%-likely SE
of user k for different reuse factors. It verifies the fairness
performance of our proposed approach. In addition, it can be
seen from the figures that per-cell MMF approximate results
are similar to our proposed GM per-cell MMF algorithm
but our algorithm generally provides higher SE. Table II,
provides the 95%-likely sum SE for UL data transmission
with correlated fading channel for pilot reuse factors 1, 2 and
4. It can be seen from the results that for all cases, NW-PF
scheme performs the best in terms of sum SE as it can be
seen as an approximation to the sum SE maximization in the
high SINR regime. In addition, per-cell MMF approximate
solution provides similar results as our proposed method. In
addition, we can see that the NW-MMF scheme has the lowest
sum SE among all the schemes as expected. In addition, we

TABLE II: The 95%-likely sum SE for UL data transmission with
correlated fading channel.

f = 1 f = 2 f = 4

NW-MMF 35.1 53.9 55.7
NW-PF 175.5 203.9 207.8

Per-cell MMF approx 102.3 146.4 162.2
GM per-cell MMF 106.5 140.6 144.1

can see the 95%-likely sum SE for DL data transmission with
correlated fading channel for pilot reuse factors 1, 2 and 4
in Table III. Similar to the UL case, the NW-PF provides the
highest sum SE. In addition, our proposed GM per-cell MMF
has similar performance as the approximate solution in which
both of them offer higher sum SE than NW-MMF.

We observe that the results of the proposed GM per-cell
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(a) f = 1 (b) f = 2. (c) f = 4.

Fig. 4: SE of CU k for DL data transmission with correlated Rayleigh fading channel with different pilot reuse factors.

NW-MMF
NW-PF
GM per-cell MMF
GM per-cell MMF approx

Fig. 5: 98%-likely SE of CU k for DL data transmission with
correlated Rayleigh fading channel with different pilot reuse factors.

MMF and the approximate solutions for UL and DL data
transmission are very similar. It indicates that the approximate
results are good approximates for our proposed scheme. In ad-
dition, the approximate solutions can be achieved by orders of
magnitude faster than the proposed GM per-cell MMF. There-
fore, the aforementioned discussions, highlight the potential
of using the approximate solution as the benchmark results
for comparison purposes. However, more accurate results are
offered via GM per-cell MMF power control scheme at the
cost of higher computational complexity.

TABLE III: The 95%-likely sum SE for DL data transmission with
correlated fading channel.

f = 1 f = 2 f = 4

NW-MMF 42.7 52.5 51.4
NW-PF 178.6 199.1 195.1

Per-cell MMF approx 110.6 143.6 146.7
GM per-cell MMF 124 149.4 146

If we do a one-to-one comparison for all the users and
calculate the percentage of users that get better SE with NW-
MMF than with NW-PF or the proposed scheme, we get the
results for the reuse factor 1 provided in Table IV. These
numbers show that roughly one tenth of the users get higher
SE, but we also see from the CDF curves that their SE gains
are tiny, thus percentage values like this need to be taken with

a grain of salt.

TABLE IV: Percentage of users getting better SE using NW-MMF.

NW-PF GM per-cell MMF
Uplink 10% 12%

Downlink 11% 8%

VII. CONCLUSION

In this paper, we analyzed different power control schemes
that target fairness in multi-cell massive MIMO systems. We
proposed to maximize the geometric mean of the per-cell max-
min SEs. This approach is not subject to the same scalability
issues as the conventional NW-MMF approach, which has
received much attention in the literature. We solved the new
problem formulation to global optimality and achieved better
or comparable performance as the previous heuristic scheme
in [23] that also targeted to resolve the scalability issue of NW-
MMF. Furthermore, our proposed approach provides more
fairness towards weak users in comparison with NW-PF. The
proposed solutions can be applied to many different channel
models.

APPENDIX

A. Proof of Lemma 3

The function log (log2 (1ǫ + ex)) is a concave function if
and only if f (x) = log (log (1ǫ + ex)) is a concave function,
since all logarithms are equal up to a scaling factor.

The first derivative of f (x) is

f ′(x) =
1

log (1ǫ + ex)

1

1ǫ + ex
ex =

ex

1ǫ + ex
1

log (1ǫ + ex)
,

(46)
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and the second derivative can be written as

f ′′(x) =

(

ex

1ǫ + ex

)′
1

log (1ǫ + ex)

+

(

1

log (1ǫ + ex)

)′
ex

1ǫ + ex

=
(1ǫ + ex) (ex)

′ − ex (1ǫ + ex)
′

(1ǫ + ex)
2

1

log (1ǫ + ex)

+
− ex

1ǫ+ex

(log (1ǫ + ex))
2

ex

1ǫ + ex

=
ex + (ex)

2 − (ex)
2

(1ǫ + ex)
2
log (1ǫ + ex)

−
(ex)

2

(1ǫ + ex)
2
(log (1ǫ + ex))

2

=

(

1−
ex

log (1ǫ + ex)

)

ex

(1ǫ + ex)
2
(log (1ǫ + ex))

.

(47)
Now we define g (x) = ex − log (1 + ex) and we have

g′ (x) = ex −
ex

1ǫ + ex
= ex

(

1−
1

1ǫ + ex

)

≥ 0. (48)

This means that g (x) is monotonically increasing in x, we
also have g (−∞) = 0. Therefore we have shown that g (x) ≥
0, ∀x. This implies f ′′ (x) ≤ 0, ∀x. Therefore, we have proved
that f (x) = log (log (1ǫ + ex)) is a concave function in x.

B. Power Budget Effects

Fig. 6 and Fig. 7 show bar diagrams of the 95%-likely
sum SE for different power budget for both UL and DL,
respectively. The power budgets are defined as the maximum
transmit power of users and the maximum transmit power of
BSs for UL and DL, respectively. The results are provided
for a setup consisting of 4 cells, one BS per cell, and there
are K = 2 users per cell. All other parameters have the same
values as in Section VI. The results are consistent with those
in Section VI, namely that NW-PF has the highest sum SE
performance for different power budgets for both UL and DL.
Our proposed approach is having higher performance than
NW-MMF which has the lowest sum SE. The results also show
that the power budget (max power of users in the UL case)
has a higher impact on the UL data transmission than on the
DL data transmission. Note that these results do not elaborate
on the fairness level of the power control approaches because
the individual SE performance of users is hidden. Hence, one
should not design the network utility only based on the sum
SE results.
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