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Abstract—Although the hybrid of cell-free (CF) massive
multiple-input multiple-output (MIMO) and non-orthogonal mul-
tiple access (NOMA) promises massive spectral efficiency gains,
the type of precoders employed at the access points (APs) impacts
the gains. In this paper, we thus comprehensively evaluate the sys-
tem performance with maximum ratio transmission (MRT), full-
pilot zero-forcing (fpZF) and modified regularized ZF (mRZF)
precoders. We derive their closed-form sum rate expressions by
considering Rayleigh fading channels, the effects of intra-cluster
pilot contamination, inter-cluster interference, and imperfect
successive interference cancellation (SIC). Our results reveal that
this system supports significantly more users simultaneously at
the same coherence interval compared to its OMA equivalent.
However, intra-cluster pilot contamination and imperfect SIC
degrade the system performance when the number of users is
low. Moreover, with perfect SIC, mRZF and fpZF significantly
outperform MRT. Also, we show that this system with either
mRZF or fpZF precoding outperforms OMA systems with MRT.
The analytical findings are verified by numerical results.

Index Terms—NOMA, cell-free massive MIMO, MRT, fpZF,
modified RZF, achievable sum rate.

I. INTRODUCTION

A. Background and Scope

INTERNATIONAL mobile telecommunications (IMT)-
2020 standard is envisioned to support peak data rates

up to 10 Gb/s for low mobility users and 1 Gb/s for high
mobility users, 1 ms over-the-air latency, and a network
energy efficiency improvement of 100× of 4G networks [1].
These requirements have necessitated the development of new
wireless technologies that will offer higher data rates, higher
energy efficiency, and ultra low latency.

One such technology is the use of distributed large antenna
arrays, which have the ability to increase ergodic sum rate [2],
extend coverage [3], and improve energy efficiency [4]. Thus,
distributed access points (APs) in each cell of a cellular net-
work have been already studied [2], [5]. The use of distributed
APs enables the efficient utilization of spatial resources [6].
However, inter-cell interference is inherent in all cell-centric
systems and becomes a major performance limiting factor
[7]. To overcome this, while preserving the main benefits of
massive MIMO (m-MIMO), cell-free (CF) mMIMO has been
proposed [8], [9]. The basic premise of it is that a large number
of spatially-distributed APs serve many single-antenna users
in the same time-frequency resources [8]. Thus, each user is
served by all the APs it can reach, and hence, it does not
experience cell boundaries (cell-free). A central processing
unit (CPU) coordinates the APs, which are connected to it
through a fronthaul network. Locality of the operations of
each AP is another key idea, which minimizes the fronthaul
overhead. Thus, each AP performs precoding based on only

the estimates of the channels from itself to all the users.
These downlink channels can be estimated with the help of
pilots transmitted by the users in the uplink, thereby exploiting
the channel reciprocity inherent in time-division duplexing
(TDD). This architecture offers increased macro-diversity and
favorable propagation with negligible inter-user interference.
And it outperforms the conventional cellular counterparts by
exploiting the best of both collocated mMIMO and network
MIMO systems [8]–[12].

Precoder design, power control, hardware impairments and
other factors for CF mMIMO systems have been investigated.
For instance, [8] and [9] investigate conjugate beamform-
ing (CB) (which maximizes the signal gain at the intended
user), and zero-forcing (ZF) (which nulls the inter-user in-
terference at the expense of gain losses), and they show
that significant spectral efficiency gains are achievable over
conventional small-cell systems. The problem of joint power
control and load balancing using ZF and maximum ratio
combining (MRC) processing is investigated [13]. How the
spectral efficiency is impacted by hardware impairments at
both users and APs has also been studied [14]; the key insight
is that the negative effects of hardware impairment vanish as
the number of APs increases.

Non-orthogonal multiple access (NOMA) also achieves high
spectral efficiency gains [15], [16]. It however is a paradigm
shift from conventional orthogonal multiple access (OMA)
techniques such as time division multiple access and frequency
division multiple access, where an orthogonal channel must
be created for each different user. In contrast, NOMA serves
multiple users simultaneously on each orthogonal channel.
This can be done by exploiting channel gain disparities and
then performing individual user signal detection via successive
interference cancellation (SIC) [15].

The hybrid of co-located mMIMO and NOMA offers a
great potential to support low latency massive connectivity
requirements of the next-generation wireless networks while
further improving the spectral efficiency of NOMA-based
systems [17]–[19]. Thus, integrating NOMA with CF mMIMO
may reap further gains and is therefore a critically important
research topic.

B. Problem Statement and Contributions

Hybrid CF massive MIMO-NOMA offers tremendous po-
tential to improve the spectral efficiency. To achieve this goal,
two key factors are essential. First, precoding of superposition-
coded signals to multiple user-clusters is necessary. Second,
the user multiplexing in each cluster must be on the basis of
their channel power gain differentials. However, so far such



hybrid designs have been investigated by only few papers
[20]–[22]. Thus, the main objective of this paper is to add
to this literature and further investigate these systems.

In particular, for CF massive MIMO-NOMA systems, we
investigate three linear precoding schemes, with the same
front-hauling overhead. These are maximum ratio transmission
(MRT), full-pilot zero-forcing (fpZF) and modified regularized
ZF (mRZF). Of these three, while its performance in mMIMO
systems has been investigated [23]–[25], mRZF has not been
studied for CF massive MIMO before. The advantages of
mRZF include its ability to balance the interference sup-
pression and desired signal power and also having additional
parameters to be optimized.

Normal ZF and RZF precoders require exchanging instan-
taneous channel state information (CSI) among the APs – the
main benefit of mRZF and fpZF is the elimination of this
exchange and that each AP computes its precoder with only
its local CSI. This is a big advantage as mRZF and fpZF have
the same front-hauling overhead as MRT [26], [27]. Unlike
MRT which maximizes the signal gain at the intended cluster
and ignores the inter-cluster interference, fpZF sacrifices some
of the array gain to cancel the inter-cluster interference [26],
[27]. On the other hand, mRZF balances the inter-cluster
interference mitigation and intra-cluster power enhancement.
Note that the optimal precoding is nonlinear, so these linear
precoders are sub-optimal. But they offer high performance
with affordable computational complexity, making them ideal
for practical large MIMO systems [23].

The main contributions of this paper on CF massive MIMO-
NOMA systems can be summarized as follows:

1) We derive the closed-form downlink sum rate when the
APs employ MRT or fpZF precoders, considering the
effects of intra-cluster pilot contamination, and inter-
cluster interference. The users rely on the statistics
for their effective channels for decoding, and the SIC
process is imperfect.

2) We also analyze the performance when the APs employ
mRZF precoding. Since the closed-form analysis of it
with finite system parameters is difficult (if not impos-
sible), we analyze the achievable rate when the number
of clusters (N ) and the number of antennas at each AP
(L) grow infinitely large while L

N is a finite ratio.
3) We show that NOMA allows a significant number of

users to be supported simultaneously at the same co-
herence interval compared to its counterpart OMA. For
instance, with K users in each cluster, NOMA based CF
massive MIMO can support K times the users that of
OMA. Moreover, for a large number of users, NOMA
outperforms OMA; however, for low number of users,
the sum rate of NOMA is lower than that of OMA due
to the effects of intra-cluster pilot contamination and
imperfect SIC. It is further shown that given perfect
SIC, mRZF and fpZF significantly outperform MRT. We
also show that either mRZF or fpZF outperforms OMA
systems with MRT.

4) Numerical results are also presented to support our
findings.

C. Previous Contributions on CF massive MIMO-NOMA

As mentioned before, the investigation of CF massive
MIMO-NOMA systems has been sparse, except for [20]–[22].
In fact [20] is the first paper to study the design of such
systems. It considers single-antenna APs that use conjugate
beamforming precoders. It thus analyzes degradations due
to estimated/imperfect CSI at APs, SIC, and statistical CSI
at users. On the other hand, [21] generalizes to multiple-
antenna APs and derives minimum mean square error (MMSE)
uplink and downlink channel estimates, and for both these
cases, the achievable rate is derived. Reference [21] also
considers spatial correlation among the multiple antennas at
each AP and intra-cluster pilot contamination and quantifies
the adverse impact of intra-cluster pilot contamination and
error propagation due to imperfect SIC at the user nodes.
The only other work [22] deals with the max-min fairness
based bandwidth efficiency problem. It develops an optimal
algorithm and mode switching between NOMA and OMA for
maximum bandwidth efficiency.

The above paragraph clarifies the differences between this
paper and [20]–[22]. The focus of this paper is to compar-
atively evaluate the three types of practical precoders. We
believe that this paper is the first to do that in the context
of CF massive MIMO-NOMA.

D. General works on MIMO NOMA

Since the NOMA literature is vast, we mention only few
works here. NOMA outperforms OMA from user and sys-
tem throughput perspectives [28]. In [29], multi-user power
allocation, user scheduling, and error propagation in SIC for
NOMA are investigated. MIMO-NOMA outperforms con-
ventional MIMO-OMA systems [30], [31]. MIMO-NOMA
outperforms MIMO-OMA in terms of both sum channel
capacity and ergodic sum capacity [30]. Furthermore, the user
outage probability in a MIMO-NOMA cluster is studied in
[31]. Beamforming, user clustering, and power allocation for
MIMO-NOMA are further investigated in [32].

Hybrid massive MIMO-NOMA, which outperforms stan-
dalone mMIMO and NOMA schemes, has been studied in
[19], [33]. The outage probability with perfect user order-
ing and limited feedback is investigated in [34]. In [17], a
user pairing and pair scheduling algorithm is proposed to
enhance the spectral efficiency of massive MIMO-NOMA
systems. Moreover, in [18], user clustering and pilot as-
signment schemes for multi-cell massive MIMO-NOMA are
investigated by employing the characteristics of correlated
fading channels.

E. Structure and Notations

This paper is organized as follows. The system model is
introduced in Section II. In Section III, the achievable sum rate
with linear precoding techniques is derived. In Section IV, the
analytical results are confirmed through simulation examples.
Section V concludes the paper.

Notation: Lower-case bold and upper-case bold denote
vectors and matrices, respectively. In represents the n × n
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Fig. 1. (a) System model of cell-free massive MIMO-NOMA (b) An AP
transmits to four clusters {c1, . . . , c4}, each with three users.

identity matrix. AT, AH, tr[A], and [A](m,n) denote trans-
pose, Hermitian transpose, trace, and the (m,n)th element of
matrix A, respectively. E{·} denotes the statistical expectation.
Finally, CN (µ,R) is a complex Gaussian vector with mean
µ and co-variance matrix R.

II. SYSTEM MODEL AND PRELIMINARIES

Here, we describe the system model, channel model, and
transmission model in detail.

A. System and Channel Models

Consider the downlink transmission of CF massive MIMO-
NOMA. This system has M APs and KN single-antenna
users, which are grouped into N clusters with K (K ≥ 2)
users per cluster and NOMA is applied among the users
in the same cluster. Each AP is equipped with L antennas
(Fig. 1.a). The total M APs serve KN users in the same time-
frequency resource block, where KN � ML. All the APs
are connected to a CPU via an error-free fronthaul network
to achieve coherent processing [8]. This network carries only
the payload data, large-scale parameters and power control
coefficients that change slowly. Each AP computes its precoder
based on the estimates of the channel states between itself and
the users. Importantly, it does not need the knowledge of the
channel states between the users and other APs.

The downlink channel between the mth AP (m = 1, . . . ,M )
and the kth user (k = 1, . . . ,K) in the nth cluster (n =
1, . . . , N) is the complex Gaussian random vector

hmnk ∼ CN (0, βmnkIL) , (1)

where {βmnk} are the set of the large-scale fading coefficients.
Each AP is assumed to know its own set of large-scale
coefficients [8]. This assumption is justifiable because they are
quasi-static and hence only need to be estimated once about
every 40 coherence time intervals [35]. This model (1) also
presumes that small-scale fading is Rayleigh distributed.

B. Uplink Pilot Transmission

The users transmit pilot sequences in the uplink, and the
APs use them to estimate the downlink channels. In order
to minimize the channel estimation overhead in NOMA, the
same pilot sequence of length τ samples, is shared among the
users within each cluster, but different clusters are assigned
mutually orthogonal pilots1 [20]. Then, the pilot sequence for
the kth user in the nth cluster is

√
τφn ∈ Cτ×1 satisfying

‖φn‖2 = 1 where N ≤ τ . Accordingly, the pilot sequences
allocated to the N clusters are mutually orthogonal implying
that φH

nφj = 0 (n 6= j). The received pilot signal at the mth
AP (Yp

m ∈ CL×τ ) can then be expressed as

Yp
m =

√
τpp

N∑
n=1

K∑
k=1

hmnkφ
H
n + Nm, ∀m (2)

where pp is the pilot transmit power and Nm ∈ CL×τ is a
Gaussian noise matrix with i.i.d CN (0, 1) elements. Then, the
mth AP estimates hmnk using minimum mean square error
(MMSE) estimation. To do so, the received pilot signal at the
mth AP (2) is projected onto φn which yields

ỹpmn =
√
τpp

K∑
k=1

hmnk + ñmn, (3)

where ñmn = Nmφn ∼ CN (0, IL).
By using (3), the MMSE estimate of hmnk can be expressed

as ĥmnk = cmnkỹ
p
mn, where cmnk is given by

cmnk =

√
τppβmnk

1 + τpp
K∑
i=1

βmni

. (4)

Since ỹpmn is Gaussian distributed, ĥmnk can be written as,

ĥmnk =
√
θmnkνmn, (5)

where νmn ∼ CN (0, IL) and θmnk is equal to

θmnk =
1

L
E
{∥∥∥ĥmnk∥∥∥2} =

τppβ
2
mnk

1 + τpp
K∑
i=1

βmnk

. (6)

The channel estimation error can then be defined as εmnk =
hmnk−ĥmnk where εmnk ∼ CN (0, (βmnk−θmnk)IL). Since
the users in the same cluster use the same pilot sequence, their
channels are parallel as shown in (5). Mathematically, this can
be written as

ĥmnk =
βmnk
βmni

ĥmni, (7)

where βmnk is already given by (1).

C. Downlink Data Transmission Model

The superposition coded data signal for the K users in the
nth cluster is expressed as

sn =

K∑
k=1

√
pnksnk, ∀n. (8)

1It is different from OMA where all the users in all the clusters are assigned
with different mutually orthogonal pilots.



In (8), snk and pnk denote the data signal and the transmitted
power allocated to the kth user in the nth cluster. Also,
pnk = ptλnk where pt is the total transmit power of each
AP and {λnk} are the set of power coefficients that satisfies∑N
n=1

∑K
k=1 λnk = 1. Furthermore, the different data signals

are mutually uncorrelated:

E{snks∗mi} =

{
1, m = n & k = i
0, else

, (9)

where m,n ∈ {1, 2, . . . , N} and k, i ∈ {1, 2, . . . ,K}. There-
fore, E{|sn|2} =

∑K
k=1 pnk = ptλn, where λn =

∑K
k=1 λnk

accounts for the power allocation coefficient for the nth cluster.
The mth AP (m = 1, . . . ,M ) transmits the signal

xm =

N∑
n=1

wmnsn, (10)

where wmn ∈ CL represents the spatial directivity of the
signals sent to the users in the nth cluster. Note that each
AP precodes the transmitted signals for all the users in the
same cluster with the same beamforming vector wmn, i.e.,
each AP has N precoding vectors (Fig. 1.b).

Since the KN users are served simultaneously by M APs,
the received signal at the kth user in the nth cluster can be
expressed as

ynk =

M∑
m=1

√
pnkh

H
mnkwmnsnk︸ ︷︷ ︸

desired signal

+

M∑
m=1

hH
mnkwmn

K∑
i=1
i6=k

√
pnisni

︸ ︷︷ ︸
intra-cluster interference before SIC

+

M∑
m=1

hH
mnk

N∑
n′=1
n′ 6=n

wmn′sn′

︸ ︷︷ ︸
inter-cluster interference

+nnk. (11)

In (11), nnk ∼ CN (0, 1) while the first, second, and the third
terms are desired signal, intra-cluster interference before SIC
and inter-cluster interference, respectively.

In TDD CF massive MIMO systems, with sufficiently large
number antennas at each AP (e.g., 5 − 10 antennas per
AP [36]), the instantaneous channel coefficients can be well
approximated by their corresponding expected values. This
phenomenon is referred to as “channel hardening” which
substantially reduces the effective channel gain fluctuations;
thereby rendering the use of downlink pilot training unneces-
sary [8], [36]. To apply power domain NOMA, we thus assume
that the users in the nth cluster are ordered based on the mean
of the effective channel gains as follows [20], [21]:

Γn1 ≥ Γn2 ≥ · · · ≥ ΓnK , (12)

where Γnk = E
{∣∣∣∑M

m=1 ĥH
mnkwmn

∣∣∣2}.

The user ordering can be done by a central entity (e.g., the
CPU) that collects all information of the mean of effective
channel strengths and then feeds back the result of user
ordering and power allocation to the APs; higher powers
are allocated to the users with lower channel strength; i.e.,
pn1 ≤ pn2 ≤ · · · ≤ pnK . Hence, the kth user applies

SIC to decode its own signal. More precisely, it decodes the
signals of the users with higher powers and treats the others
as interference. In particular, the kth user decodes the signal
intended for the ith user (∀i ≥ k) and treats the signals of the
other users (∀i < k) as interference.

Using the statistical CSI knowledge of the effective channels
at users, i.e., E

{
hH
mnkwmn

}
(∀m,n, k), (11) can be rewritten

as follows:

ynk =

M∑
m=1

√
pnkE

{
hH
mnkwmn

}
snk︸ ︷︷ ︸

T0:desired signal

+

M∑
m=1

√
pnk

(
hH
mnkwmn − E

{
hH
mnkwmn

})
snk︸ ︷︷ ︸

T1:beamforming gain uncertainty

+

M∑
m=1

k−1∑
i=1

√
pnih

H
mnkwmnsni︸ ︷︷ ︸

T2:intra-cluster interference after SIC

+

M∑
m=1

K∑
i=k+1

√
pni
(
hH
mnkwmnsni − E

{
hH
mnkwmn

}
ŝni
)

︸ ︷︷ ︸
T3:residual interference due to imperfect SIC

+

M∑
m=1

hH
mnk

N∑
n′=1
n′ 6=n

wmn′sn′

︸ ︷︷ ︸
T4:Inter-cluster interference

+nnk, (13)

where the first term T0 is the desired signal and the second
term T1 is the beamforming gain uncertainty. The third term
T2 is intra-cluster interference caused by the signals of the
users which are considered as the interference at the kth user.
Note that because the users know statistical CSI only, intra-
cluster pilot contamination and channel estimation error, SIC
may not be perfect. The forth term T3 thus represents the
error propagation due to the imperfect SIC where ŝni is the
estimate of sni. Here, we adopt the linear MMSE estimation
[37] where sni and its estimate ŝni can be assumed as jointly
Gaussian distributed with a normalized correlation coefficient.
The relationship between sni and ŝni can then be written as

sni = ρniŝni + eni, (14)

where ŝni ∼ CN (0, 1), eni ∼ CN (0, σ2
eni
/[1 + σ2

eni
]) is the

estimation error, statistically independent of ŝni, and ρni =
1/
√

1 + σ2
eni

. The correlation coefficient 0 ≤ ρ ≤ 1 reflects
the quality of the estimation and quantify the severity of the
SIC imperfection. The value of ρ is determined by channel
related issues (fading and shadowing) and other factors [38];
the greater its value, the greater the correlation between ŝni
and sni and better the SIC performance [20].

III. DOWNLINK ACHIEVABLE RATE

Here, we analyze the downlink sum rates achievable with
MRT, fpZF, and mRZF. To this end, we first derive the
effective signal-to-interference-plus-noise ratio (SINR) at each
user. It then leads to the total downlink sum rate.



According to (13), since data signals intended to differ-
ent users are mutually uncorrelated and the white additive
noise is independent from the data symbols and the channel
coefficients, it is easy to check that Ti,∀i and nnk are
mutually uncorrelated. Therefore, by considering the first term
in (13) as the desired signal and the remaining terms as an
effective noise, invoking the argument in [39], the SINR at
the kth user in the nth cluster γnk can be derived as (15),
shown at the top of the next page, where ηnk is defined as
ηnk ,

∑M
m=1 hH

mnkwmn. The achievable rate for the kth user
in the nth cluster can then be computed as

Rnk = ζlog2(1 + γnk), (16)

where ζ = (τc − τ)/τc is the pre-log factor and τc is the
coherence interval.

The achievable rate Rnk in (16) depends on the precod-
ing process at the APs. In order to design the precoding
matrices at the APs, we first define H̄m , Yp

mΦ where
Φ = [φ1,φ2, . . . ,φN ] ∈ Cτ×N and Yp

m ∈ CL×τ is given
by (2). H̄m can be then written as

H̄m =

[
√
τpp

K∑
k=1

hm1k + ñm, . . . ,
√
τpp

K∑
k=1

hmNk + ñm

]
.

(17)
Therefore, H̄m has independent columns and h̄mn ∼

CN (0, (1 + τpp
k∑
k=1

βmnk)IL) is the nth column of H̄m i.e.,

h̄mn = H̄men where en denotes the nth column of IN . Then,
the channel estimate can be written as

ĥmnk = cmnkh̄mn. (18)

We next assume that the APs use either MRT, fpZF or
mRZF to precode data signals. For each precoder, we then
derive the closed-form achievable sum rate.

A. MRT beamforming

With MRT, the mth AP computes the following precoding
vector for the kth user in the nth cluster:

wmn =
h̄mn√

E
{
‖ h̄mn ‖2

} . (19)

This precoder (19) is used for all the users in the nth cluster.

Theorem 1. In the CF massive MIMO-NOMA system with
MRT precoding, γnk in (15), for finite values of M,L,N and
K, is given by (20), as shown at the top of the next page.

Proof. See Appendix A for derivations. �

Since (20) connects several factors together, it can be used
to provide several remarks and guidelines relevant for practical
NOMA-based CF mMIMO. We briefly describe them next.

Remark 1. With MRT precoding, the signal power increases
as the number of antennas at each AP, L, increases, thanks
to the array gain. On the other hand, the interference due to
the pilot contamination and imperfect SIC (the first term in
the denominator) proportionally increases as L increases.

Remark 2. Beamforming gain uncertainty and inter-cluster
interference (the second term in the denominator), are not
affected by L.

Remark 3. As opposed to the number of clusters N , which is
restricted by the maximum orthogonal pilot sequence length
(N ≤ τ ), the number of users K within each cluster can be
increased greatly. However, the downside is the increase of
pilot contamination and imperfect SIC.

B. Full-pilot ZF beamforming

In this case, the precoding vector at the mth AP for the
users in the nth cluster can be formulated as

wmn =
H̄m

(
H̄H
mH̄m

)−1
en√

E
{∥∥H̄m(H̄H

mH̄m)−1en
∥∥2} , (21)

where each AP has N precoding vectors, one per cluster
(pilot).

In order to find the effective SINR γnk given in (15), we
first need to derive the value of ηnk,∀n. To obtain ηnk,∀n,
we need to compute ĥH

mnkwmn′ . To this end, we first obtain
the normalization term in (21). By employing Lemma 2.10
of [40] and using the properties of N × N central complex
Wishart matrix with L (L ≥ N + 1) degrees of freedom, we
obtain

E
{
‖ H̄m(H̄H

mH̄m)−1en ‖2
}

= E
{

(H̄H
mH̄m)−1n,n

}
=

1

(L−N)(1 + τpp
∑K
k=1 βmnk)

. (22)

Finally, by employing (18), (21) and (22), we have

ĥH
mnkwmn′ = cmnke

H
nen′

√√√√(L−N)

(
1 + τpp

K∑
k=1

βmnk

)

=

{ √
θmnk(L−N), n = n′

0, n 6= n′
(23)

From (23), we find that fpZF precoder suppresses the inter-
cluster interference by only utilizing local CSI rather than CSI
shared among the APs, a big advantage. Moreover, fpZF has
the same front-hauling overhead as MRT.

Theorem 2. In the CF massive MIMO-NOMA system with
fpZF precoder, γnk in (15) , for any finite M,L,N and K, is
given by (24) as shown at the top of the next page.

Proof. See Appendix B for the derivations. �

Remark 4. Similar to MRT, by employing fpZF precoding,
the signal power increases as the number of antennas at
each AP L increases, thanks to the array gain (which is
L − N ). On the other hand, the interference due to the
pilot contamination and imperfect SIC (the first term in the
denominator) proportionally increases as L increases.

Remark 5. Unlike MRT which only aims to maximize the
signal-to-noise ratio (SNR) and ignores the inter-cluster in-
terference, fpZF aims to suppress the inter-cluster interference
by sacrificing array gain.



γnk =
pnk |E {ηnk}|2

pnkE
{
|(ηnk − E {ηnk})|2

}
+
k−1∑
i=1

pniE {|ηnk|2}+
K∑

i=k+1

pniE
{
|ηnksni − E {ηnk} ŝni|2

}
+

N∑
n′=1
n′ 6=n

pn′E
{
|ηn′k|2

}
+ 1

.

(15)

γMRT
nk =

Lpnk

(
M∑
m=1

√
θmnk

)2

L

(
M∑
m=1

√
θmnk

)2
(
k−1∑
i=1

pni +
K∑

i=k+1

pni(2− 2ρni)

)
+

(
N∑

n′=1

pn′

)
M∑
m=1

βmnk + 1

. (20)

γfpZFnk =

(L−N) pnk

(
M∑
m=1

√
θmnk

)2

(L−N)

(
M∑
m=1

√
θmnk

)2
(
k−1∑
i=1

pni +
K∑

i=k+1

pni(2− 2ρni)

)
+

(
N∑

n′=1

pn′

)
M∑
m=1

(βmnk − θmnk) + 1

. (24)

Remark 6. For a fixed number of clusters N , if the number
of antennas at each AP tends to infinity (L → ∞), the SINR
for both the MRT and fpZF precoding (20) and (24) can be
approximated as

lim
L→∞

γnk =

pnk

(
M∑
m=1

√
θmnk

)2

(
M∑
m=1

√
θmnk

)2
(
k−1∑
i=1

pni +
K∑

i=k+1

pni(2− 2ρni)

) .
(25)

which shows that, the gain of adding more antennas at each
AP disappears. Besides, for fixed values of L and N , by
increasing the number of users at each cluster, pilot contami-
nation and SIC become the dominant interferences. Therefore,
the performance of the CF massive MIMO-NOMA system is
limited by pilot contamination and imperfect SIC.

In contrast, in OMA, where each user is assigned with an
orthogonal pilot, SINR γnk for MRT and fpZF is given as

γMRT
nk,OMA =

Lpnk

(
M∑
m=1

√
θmnk

)2

(
N∑

n′=1

K∑
k′=1

pn′k′

)
M∑
m=1

βmnk + 1

(26)

and

γfpZFnk,OMA =

(L−KN) pnk

(
M∑
m=1

√
θmnk

)2

(
N∑

n′=1

K∑
k′=1

pn′k′

)
M∑
m=1

(βmnk − θmnk) + 1

.

(27)
Therefore, deploying more antennas at each AP is always
beneficial for OMA.

C. Modified RZF beamforming

The mRZF precoder tries to balance inter-cluster interfer-
ence mitigation and intra-cluster power enhancement. Since

closed-form analysis of it is difficult (if not impossible), we
analyze its achievable rate in the asymptotic regime, where
the number of clusters N and the number of antennas at each
AP L grows infinitely large while keeping a finite ratio; i.e.,
1 ≤ limL,N→∞

L
N ≤ ∞2. This asymptotic expression can

nevertheless be used with finite values of L and N [23], [24].
The precoding vector of mRZF at the mth AP for the users

in the nth cluster can be expressed as

wmn =

(
H̄mH̄H

m + LαIL
)−1

h̄mn√
E
{∥∥(H̄mH̄H

m + LαIL)−1h̄mn
∥∥2} , (28)

where H̄m is given in (17) and α > 0 is the regularization
parameter that can be optimized [41]. Finding optimal value
for α, however, is outside the scope of this paper and is left
for future work. Here, we assume that α is scaled with L to
ensure that it converges to a constant value as L and N tend
to infinity.

It can be seen from (28), in our design the precoder of each
AP only utilizes local CSI rather than global CSI knowledge
shared between the APs. Hence, mRZF has the same front-
hauling overhead as that of MRT and fpZF.

Theorem 3. In the CF massive MIMO-NOMA system with
mRZF precoder, γnk in (15) , when L and N grow large such
that 1 ≤ limL,N→∞ L

N ≤ ∞, , is given by (29) as shown at

the top of the next page, where Θmn = (1 + τpp
k∑
k=1

βmnk)IL,

amnk =
√

βmnk−θmnk

1+τpp
∑K

k=1 βmnk
and eomn = emn in which

emn =
1

L
tr [ΘmnTm] (30)

2This assumption implies that the coherence time of the channel τc scales
linearly with N . However, as it will be shown in Section IV, our analysis
provides a tight approximation for the achievable rate even for small values
of N or equivalently τc.



γmRZF
nk =

pnk

(
M∑
m=1

1√
ψo

mn

cmnke
o
mn

1+eomn

)2

(
M∑
m=1

1√
ψo

mn

cmnkeomn

1+eomn

)2
(
k−1∑
i=1

pni +
K∑

i=k+1

pni(2− 2ρni)

)
+

M∑
m=1

Υmn

(
c2mnk

(1+eomn)
2 + a2mnk

)
+ 1

. (29)

Tm =

 1

L

N∑
j=1

Θmj

1 + emj
+ αIL

−1 (31)

ψomn =
1

L

e′mn
(1 + emn)2

(32)

Υmn =
1

L

N∑
n′=1
n′ 6=n

pn′e′n′,mn

ψomn′(1 + emn′)2
(33)

in which e′m = [e′m1, . . . , e
′
mN ]T and e′mn =

[e′1,mn, . . . , e
′
N,mn]T are given by

e′m = (IN − Jm)
−1

vm, (34)

e′mn = (IN − Jm)
−1

vmn, (35)

and Jm, vm and vmn are derived as follows,

[Jm]ij =
1
L

tr [ΘmiTmΘmjTm]

L(1 + emj)2
(36)

vm =

[
1

L
tr
[
Θm1T

2
m

]
, . . . ,

1

L
tr
[
ΘmNT2

m

]]T
. (37)

vmn =

[
1

L
tr [Θm1TmΘmnTm] , . . . ,

1

L
tr [ΘmNTmΘmnTm]

]T
.

(38)

Besides, the initial values of emn;∀n to calculate (30) and (31) are
set to e0mn = 1

α
, n = 1, . . . , N [23].

Proof. See Appendix C for derivations. �

Remark 7. In order to reduce the amount of overhead
exchanged over the fronthaul network, channel estimation is
performed locally at each AP and MRT, fpZF and mRZF
precoders are designed based on the local CSI at each AP
(17) . In this case, pilot signals are not shared over the
fronthaul link. Indeed, only channel statistics (large scale
parameters which changes slowly [8]) are sent to the CPU for
user ordering and power allocation process. Thus, assuming
a given system parameters M , L, N , and K, all three
precoders have the same front-hauling overhead. In particular,
for each realization of the user locations, the number of
MNK statistical parameters need to be exchanged between
the CPU and the APs.

IV. SIMULATION RESULTS

Herein, we provide simulation results to evaluate the per-
formance of the CF massive MIMO with NOMA or OMA.
In NOMA, the same pilot sequence is shared among users
within each cluster, but different clusters are assigned mutually
orthogonal pilots. In OMA, all the users are assigned with
different mutually orthogonal pilots. Therefore, the minimum

pilot sequence lengths for NOMA and OMA are τNOMA = N
and τOMA = KN , respectively. The pre-log factor for NOMA
and OMA cases are also defined as ζNOMA = (τc−N)/τc and
ζOMA = (τc −KN)/τc, respectively.

In our simulations, the APs are uniformly distributed within
an area of size D×D m2. Furthermore, users are clustered
based on their spatial locations and all the clusters are uni-
formly distributed at random in the given area (the users in the
same cluster are also distributed uniformly at random around
the center point of the cluster).

A. Large-Scale Fading Model
Here, we assume that the large-scale fading coefficient βmnk

in (1) includes both the path-loss effect and shadowing. Thus,
βmnk can be wrtten as [8]

βmnk = PLmnk + zmnk dB, (39)
where PLmnk is the path loss, zmnk represents the shadow
fading generated from a log-normal distribution with standard
deviation σsh. A three-slope model is considered for the path
loss [42], the path loss exponent equals (i) 3.5 if the distance
between the mth AP and the kth user in the nth cluster (dmnk)
is greater than d1, (ii) equals 2 if d0 < dmnk ≤ d1, and (iii)
equals 0 if dmnk ≤ d0 for some d0 and d1. When dmnk >
d1, the Hata-COSTA231 propagation model is employed [8].
Therefore, the path loss can be written as

PLmnk =



−L− 35log10(dmnk),

dmnk > d1
−L− 15log10(d1)− 20log10(dmnk),

d0 < dmnk ≤ d1
−L− 15log10(d1)− 20log10(d0),

dmnk ≤ d0
(40)

where

L , 46.3 + 33.9log10(f)− 13.82log10(hAP )

− (1.1log10(f)− 0.7)hu + (1.56log10(f)− 0.8). (41)

In (41), f is the carrier frequency (in MHz). Also, hAP

and hu are the AP antenna and user antenna heights (in
m), respectively. Note that when dmnk ≤ d1, there is no
shadowing.

B. Parameters and Setup
The simulation parameters are reported in Table I. The noise

variance is given by σ2
w = 290 × kb× bandwidth × noise

figure, where kb is the Boltzmann constant. To each cluster,
the mth AP allocates power ptN . We further assume that K = 2;
i.e., each cluster has two users, and the total power allocated
for the nth cluster pn is divided between the two users within
a cluster based on a 3 : 7 ratio (∀n) implying that λn1 =
0.3λn, λn2 = 0.7λn. However, these power coefficients are
not necessarily optimal and can be further optimized.



TABLE I
SIMULATION SETTINGS

Parameter Value Parameter Value
Carrier frequency 1.9 GHz τc 56

Bandwidth 20 MHz pp 20 dBm
Noise figure 9 dB pt 23 dBm
D, d1, d0 1000, 50, 10 m σsh 8 dB
hAP, hu 65, 15 m ρni 0.1
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Fig. 2. The achievable sum rate versus the number of users for 25 APs (M =
25) and eight antennas per AP (L=8 with MRT precoding). P-SIC and I-SIC
stand for perfect SIC and imperfect SIC.

C. Performance Evaluation

Here, we first compare the performance of the CF massive
MIMO-NOMA and OMA systems for MRT, fpZF and mRZF
precoding in terms of sum rate given by [43]

R =

N∑
n=1

K∑
k=1

Rnk. (42)

Fig. 2 demonstrates the achievable sum rate (42) of NOMA
and OMA systems with MRT precoding as a function of
the number of users. We set τc = 56. We observe that the
maximum number of users simultaneously served in OMA in
the same resource block is KOMA

max = 56. In contrast, NOMA
doubles this. This is due to the fact that in OMA each user is
assigned with an orthogonal pilot while in NOMA same pilot
sequence is shared among users within each cluster. For a large
number of users, NOMA outperforms OMA; however, with
fewer users, NOMA achieves a lower sum rate than OMA due
to the effects of intra-cluster pilot contamination and imperfect
SIC. We also observe that, SIC imperfection considerably de-
grades the performance of NOMA; for instance, compared to
the perfect SIC, the residual interference caused by imperfect
SIC degrades the achievable sum rate by 4.9 bps/Hz for 40
simultaneously served users.

In Fig. 3, the impact of deploying more antennas at the
APs is investigated. As expected, adding more antennas at
the APs results in better sum rate, thanks to the array gain.
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Fig. 3. The achievable sum rate versus the number of users for 25 APs
(M = 25, MRT, and imperfect SIC).

However, despite OMA, the gain of adding more antennas
diminishes for NOMA system since the interference due to the
pilot contamination and imperfect SIC proportionally increases
as L increases. This observation confirms Remarks 1 and 6.

Fig. 4 shows the achievable sum rate of NOMA and OMA
systems as a function of the number of users. Here, fpZF
precoding and at least N + 1 ≤ L antennas (24) per AP are
considered. We see that the residual interference caused by
imperfect SIC significantly degrades the achievable sum rate.
More specifically, for 40 users and 60 antennas per AP, the
gap between I-SIC and P-SIC curves is about 53 bps/Hz. For
imperfect SIC, the gain due to antennas at APs is almost negli-
gible. This is because, for a low number of users (clusters), the
SINR converges to (25), where imperfect SIC is the dominant
term. Furthermore, as the number of users increases, both the
desired power and interference power due to imperfect SIC
and pilot contamination increase proportionally to L−N .

For the mRZF precoder, the SINR asymptotic γmRZF
nk in (29)

must be validated. Thus, Fig. 5 shows the error of the sum rate
R computed based on (29) compared to the ergodic sum rate
via simulations of the SINR. Clearly, the SINR asymptotic
holds even for small values of L and becomes more accurate
as L increases.

Fig. 6 shows the achievable sum rate of NOMA and OMA
systems for different number of users with mRZF precoding
and finite system dimensions. In this scheme, we simply
consider α = 0.8; however, the optimal value of α that
accounts for the CSI imperfection could be further investigated
[23], [44]. As expected, with imperfect SIC, the resulting
error propagation and intra-cluster pilot contamination limit
the system performance. Just as in the case of MRT and
fpZF, for a large number of users, NOMA outperforms OMA;
however, with a few users, the converse is true.

In Fig. 7 and Fig. 8, we compare the performance of the
three precoders for perfect and imperfect SIC, respectively. We
observe that, mRZF achieves higher rates than fpZF and MRT,
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Fig. 4. The achievable sum rate as a function of the number of users for 25
APs (fpZF).
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Fig. 5. The mRZF precoder; the relative error of the sum rate R via (29)
compared to the ergodic sum rate; (R̄−R)/R̄ versus the number of antennas
per AP, L = KN , for 25 APs and α = 0.8.

since it tries to balance the inter-cluster interference mitigation
and intra-cluster power enhancement. As well, for perfect SIC,
fpZF and mRZF outperform MRT as they are able to cancel
the inter-cluster interference. Therefore, although fpZF and
mRZF have the same front-hauling overhead as MRT, they can
achieve higher rates. Furthermore, CF hybrid massive MIMO-
NOMA with either mRZF or fpZF outperforms OMA systems
with MRT as twice number of users could be served at the
price of a negligible performance loss for a lightly loaded
system. We also observe from Fig. 8, with imperfect SIC, MRT
and mRZF perform roughly the same for a large number of
users. This is because both fpZF and mRZF sacrifice much
of the array gain to suppress the inter-cluster interference;

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Fig. 6. The achievable sum rate versus the number of users for 25 APs and
60 antennas per AP and mRZF with α = 0.8.
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Fig. 7. The achievable sum rate versus the number of users for 25 APs and
60 antennas per AP and perfect SIC.

however mRZF outperforms fpZF since it also considers the
desired power. We also note that α may be optimized to
enhance the performance of mRZF precoding.

To further investigate these three precoders, we also plot
the cumulative distributions of their rates per-cluster in Fig. 9.
It shows that the per-cluster rate degrades due to imperfect
SIC. In particular, in 90%-likely performance, all the three
precoders behave almost the same and achieve low per-cluster
rate of ∼ 1 bps/Hz. In the case of perfect SIC, however, mRZF
and fpZF significantly outperform MRT. Thus, the rate loss
due to the imperfect SIC is more considerable for fpZF and
mRZF compared to that of MRT. More precisely, the 90%-
likely per-cluster rate loss is, respectively, about 1.8 bps/Hz
and 2.2 bps/Hz for fpZF and mRZF, which are more than
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Fig. 8. The achievable sum rate versus the number of users for 25 APs and
60 antennas per AP (Imperfect SIC).
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Fig. 9. Cumulative distribution of per-cluster achievable rate for 25 APs and
60 antennas per AP and twenty clusters (NOMA).

twice than that of MRT (0.8 bps/Hz).

V. CONCLUSION

In this paper, we analyzed the achievable rate of three
standard precoders for NOMA-aided CF massive MIMO. We
thus derived closed-form sum rates for MRT and fpZF by
considering joint effects of intra-cluster pilot contamination,
inter-cluster interference and imperfect SIC. However, since
a closed-form rate analysis is intractable for finite mRZF
precoder, we analyzed the asymptotic regime, where the
number of clusters and the number of antennas at each AP
grow extremely large while keeping a finite ratio.

We showed that NOMA based CF massive MIMO can
support significantly more users compared to the OMA-hybrid

at the same time-frequency resources. For a large number
of users, the NOMA-hybrid outperforms the OMA-hybrid;
however, for a few users, the former achieves lower sum
rate than the latter due to the effects of intra-cluster pilot
contamination and imperfect SIC. It was further shown that,
with perfect SIC, mRZF and fpZF significantly outperforms
MRT despite of having the same front-hauling overhead.
Finally, CF hybrid massive MIMO-NOMA with either fpZF
or mRZF outperforms the OMA systems with MRT.

Future research includes the optimization of α of mRZF
precoder, optimal user clustering and power allocations.

APPENDIX A
DERIVATION OF γMRT

nk (20)

By invoking (18) in (19), the MRT precoding vector can be
written as

wmn =
ĥmnk√
Lθmnk

. (43)

We first proceed to compute E{ηnk} as follows:

E{ηnk} = E

{
M∑
m=1

hH
mnkwmn

}

= E

{
M∑
m=1

(ĥH
mnk + εHmnk)wmn

}

=

M∑
m=1

√
Lθmnk. (44)

Since hH
mnkwmn are independent for different values of m

and the variance of a sum of independent random variables is
equal to the sum of the variances, we have

E {|(ηnk − E{ηnk})|2}

= E


∣∣∣∣∣
M∑
m=1

hH
mnkwmn − E

{
M∑
m=1

hH
mnkwmn

}∣∣∣∣∣
2


=

M∑
m=1

E
{
|hH
mnkwmn|2

}
−

M∑
m=1

∣∣∣E{hH
mnkwmn

}∣∣∣2
=

M∑
m=1

E

{∣∣∣∣∣(ĥH
mnk + εHmnk)

ĥmnk√
Lθmnk

∣∣∣∣∣
2}
−

M∑
m=1

Lθmnk

=
M∑
m=1

E

{∣∣∣∣∣ĥH
mnk

ĥmnk√
Lθmnk

∣∣∣∣∣
2}

+

M∑
m=1

E

{∣∣∣∣∣εHmnk ĥmnk√
Lθmnk

∣∣∣∣∣
2}

−
M∑
m=1

Lθmnk

(a)
= (L+ 1)

M∑
m=1

θmnk +

M∑
m=1

(βmnk − θmnk)− L
M∑
m=1

θmnk

=

M∑
m=1

βmnk, (45)

where (a) comes from the fact that, for any vector z ∼
CN (0, θIL), we have [40]

E
{
|zHz|2

}
= (L2 + L)θ2. (46)



To find E
{
|ηnk|2

}
, we use Var{X} = E{X2} − (E{X})2.

Thus, we have

E
{
|ηnk|2

}
= E

{
|(ηnk − E {ηnk})|2

}
+ (E{ηnk})2

=

M∑
m=1

βmnk + L

(
M∑
m=1

√
θmnk

)2

. (47)

Furthermore,

E
{
|ηn′k|2

}
= E


∣∣∣∣∣
M∑
m=1

hH
mnkwmn′

∣∣∣∣∣
2


=

M∑
m=1

E
{∣∣hH

mnkwmn′
∣∣2}

+

M∑
m=1

M∑
m′=1
m′ 6=m

E
{∣∣hH

mnkwmn′
(
hH
m′nkwm′n′

)∣∣}

=

M∑
m=1

βmnk, (48)

where the second term in the second equality is discarded as
hH
mnkwmn′(∀m ∈ 1, . . . ,M) are independent of each other.
Moreover, since E{s∗niŝni} = E{sniŝ∗ni} = ρni , we have

E
{
|ηnksni − E {ηnk} ŝni|2

}
= E

{
|ηnk|2

}
+ (1− 2ρni)E2{ηnk}. (49)

Finally, by substituting the above formulations into (15), γMRT
nk

can be obtained as (20).

APPENDIX B
DERIVATION OF γZFnk (24)

For fpZF precoding, we first compute E{ηnk} as follows:

E{ηnk} = E

{
M∑
m=1

hH
mnkwmn

}

= E

{
M∑
m=1

(
ĥH
mnk + εHmnk

)
wmn

}

=

M∑
m=1

√
(L−N)θmnk. (50)

In the denominator, we have

E
{
|(ηnk − E{ηnk})|2

}
= E

{
|ηnk|2

}
− E2 {ηnk} . (51)

Referring to (49) and (51), we just need to calculate
E
{
|ηn′k|2

}
,∀n′. Employing the result in (23), we have

E
{
|ηn′k|2

}
= E


∣∣∣∣∣
M∑
m=1

hH
mnkwmn′

∣∣∣∣∣
2


= E
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(
ĥH
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)
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2


=


(L−N)

(
M∑
m=1

√
θmnk

)2

+
M∑
m=1

(βmnk − θmnk),

n = n′

M∑
m=1

(βmnk − θmnk), n 6= n′

(52)

By substituting (50) and (52) into (15), γfpZFnk is in (24).

APPENDIX C
DERIVATION OF γmRZF

nk (29)

To derive SINR γmRZF
nk , we need the following terms:

• Desired signal power

pd = pnk

(
M∑
m=1

E
{
hH
mnkwmn

})2

. (53)

• Variance of the beamforming gain uncertainty

pI1 = pnk

(
M∑
m=1

E
{
|hH
mnkwmn|2

}
−

M∑
m=1

∣∣∣E{hH
mnkwmn

}∣∣∣2) .
(54)

• Inter-cluster interference

pI2 =

N∑
n′=1
n′ 6=n

pn′E


∣∣∣∣∣
M∑
m=1

hH
mnkwmn′

∣∣∣∣∣
2
. (55)

In order to calculate the intra-cluster interference due
to the pilot contamination and imperfect SIC, we need
E{|

∑M
m=1 hH

mnkwmn|2}, which can be derived by exploiting
(54) and the definition of the variance.

We now proceed to calculate (53), (54) and (55) when
L,N →∞ while keeping a finite ratio.

Let

h̄mn =
√
LΘ1/2

mnḡmn, (56)

where ḡmn has i.i.d complex entries with zero mean and
variance of 1

L ( ḡmn ∼ CN (0, 1
LIL)) and Θmn =

(1 + τpp
k∑
k=1

βmnk)IL. Also, assume that Θmn; ∀m,n and

1
LH̄mH̄H

m =
∑N
n=1 Θ

1/2
mnḡmnḡH

mnΘ
1/2
mn; ∀m have uniformly

bounded spectral norms [23]. Moreover, we define

Σm ,
(
H̄mH̄H

m + LαIL
)
, (57)

Σmn ,
(
H̄mnH̄H

mn + LαIL
)
, (58)
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∥∥2}

= E
{
h̄H
mnΣ−2m h̄mn

}
. (59)

where H̄mn is equal to H̄m with the nth column removed.
• Desired signal power

Regarding (53), we derive E{hmnkwmn} as follows:

E {hmnkwmn}

=
1√
ψmn

E
{

hH
mnkΣ

−1
m h̄mn

}
(a)
=

1√
ψmn

E
{

hH
mnkΣ

−1
mnh̄mn

1 + h̄H
mnΣ−1

mnh̄mn

}
=

1√
ψmn

E

{(
cmnkh̄mn + εmnk

)H
Σ−1
mnh̄mn

1 + h̄H
mnΣ−1

mnh̄mn

}

=
1√
ψmn

E
{
cmnkh̄

H
mnΣ−1

mnh̄mn

1 + h̄H
mnΣ−1

mnh̄mn
+

εHmnkΣ
−1
mnh̄mn

1 + h̄H
mnΣ−1

mnh̄mn

}
,

(60)

where (a) comes from the matrix inversion Lemma [23],
[45]. In order to solve (60), we use the following Lemma.
Lemma 1. Let A ∈ CL×L and x,y ∼ CN (0, 1

LIL).
Assume that A has uniformly bounded spectral norm
(with respect to L) and that x and y are mutually
independent and independent of A. Now, as L −→∞,

a. xHAx
a.s.→ 1

L
tr [A] , b. xHAy

a.s.→ 0, (61)

where
a.s.→ denotes almost sure convergence as L −→∞.

By substituting h̄mn with (56) and applying Lemma 1.a
and Theorem 2 of [23] to the first term of (60), we have

cmnkh̄
H
mnΣ−1mnh̄mn

1 + h̄H
mnΣ−1mnh̄mn

=
cmnkLḡH

mnΘ
1/2
mnΣ−1mnΘ

1/2
mnḡmn

1 + LḡH
mnΘ

1/2
mnΣ−1mnΘ

1/2
mnḡmn

=
cmnkḡ

H
mnΘ

1/2
mnC−1mnΘ

1/2
mnḡmn

1 + ḡH
mnΘ

1/2
mnC−1mnΘ

1/2
mnḡmn

a.s.→ cmnke
o
mn

1 + eomn
, (62)

where Cmn = Γmn + αIL with Γmn = 1
LH̄mnH̄H

mn.
Besides, eomn is given in (30). Similarly, Since, ĥmnk =
cmnkh̄mn is independent of εmnk, by applying Lemma
1.b to the second term of (60), we have

εHmnkΣ
−1
mnh̄mn

a.s.→ 0. (63)

Regarding (59), to find the value of ψmn, we need to
calculate E

{
h̄H
mnΣ−2m h̄mn

}
.

By employing matrix inversion Lemma, Theorems 1 and
2 of [23], we obtain

h̄H
mnΣ−2m h̄mn

(a)
=

1

L

ḡH
mnΘ

1/2
mnC−2mnΘ

1/2
mnḡmn

(1 + ḡH
mnΘ

1/2
mnC−1mnΘ

1/2
mnḡmn)2

a.s.→ 1

L

1
L tr

[
ΘmnC−2mn

]
(1 + 1

L tr
[
ΘmnC−1mn

]
)2

a.s.→ 1

L

1
L tr [ΘmnT′m]

(1 + 1
L tr [ΘmnTm])2

, (64)

where (a) comes from the matrix inversion Lemma which
is applied twice, Tmn is defined in (31) and

T′m = Tm

 1

L

N∑
j=1

Θmje
′
mj

(1 + emj)2
+ IL

Tm, (65)

where

e′mj =
1

L
tr [ΘmjT

′
m] . (66)

By employing Theorem 2 of [23], we finally have

h̄H
mnΣ−2m h̄mn

a.s.→ ψomn, (67)

where ψom is given in (32). Therefore, by invoking (62)
and (67) in (53), desired signal power can be written as

pd
a.s.→ pn,k

(
M∑
m=1

1√
ψomn

cmnke
o
mn

1 + eomn

)2

. (68)

• Variance of the beamforming gain uncertainty
Regarding (54), We need to calculate the term
(E
{
|hH
mnkwmn|2

}
). By employing (60) and (62), we

have

|hH
mnkwmn|2

a.s.→ 1

ψomn

c2mnk(eomn)2

(1 + eomn)2
. (69)

Substituting (62), (67) and (69) in (54), we obtain

pI1

a.s.→ pnk

(
M∑
m=1

1

ψomn

c2mnk(eomn)2

(1 + eomn)2
−

M∑
m=1

1

ψomn

c2mnk(eomn)2

(1 + eomn)2

)
a.s.→ 0. (70)

We also find

E


∣∣∣∣∣
M∑
m=1

hH
mnkwmn

∣∣∣∣∣
2
 a.s.→

(
M∑
m=1

1√
ψomn

cmnke
o
mn

1 + eomn

)2

.

(71)

• Inter-cluster interference
In order to derive (55), we define

Pmn , Diag

(
p1
ψom1

, . . . ,
pn−1

ψom(n−1)
,

pn+1

ψom(n+1)

, . . . ,
pN
ψomN

)
.

(72)
By applying the matrix inversion Lemma, Lemma 1 and
(72), (55) can be written as

p
I2

=

N∑
n′=1
n′ 6=n

pn′

M∑
m=1

E
{∣∣hH

mnkwmn′
∣∣2}

=

M∑
m=1

E
{
hH
mnkΣ

−1
m H̄mnPmnH̄H

mnΣ−1m hmnk
}
.

(73)

Since hmnk = ĥmnk+εmnk and ĥmnk = cmnkh̄mn, we
find that the estimated channels of the users in the same
cluster are parallel. Accordingly, hmnk can be written as

hmnk =
√
LΘ1/2

mn[cmnkḡmn + amnkĝmnk], (74)



where amnk =
√

βmnk−θmnk

1+τpp
∑K

k=1 βmnk
and ĝmnk ∼

CN (0, 1
LIL) is independent of ḡmn. By substituting (74)

in (73), we find

hH
mnkΣ

−1
m H̄mnPmnH̄H

mnΣ−1
m hmnk

=
1

L
c2mnkḡ

H
mnΘ1/2

mnC−1
m H̄mnPmnH̄H

mnC−1
m Θ1/2

mnḡmn

+
1

L
a2mnkĝ

H
mnkΘ

1/2
mnC−1

m H̄mnPmnH̄H
mnC−1

m Θ1/2
mnĝmnk

+
1

L
cmnkamnkḡ

H
mnΘ1/2

mnC−1
m H̄mnPmnH̄H

mnC−1
m Θ1/2

mnĝmnk

+
1

L
cmnkamnkĝ

H
mnkΘ

1/2
mnC−1

m H̄mnPmnH̄H
mnC−1

m Θ1/2
mnḡmn.

(75)

where Cm = Γm + αIL with Γm = 1
L

H̄mH̄H
m. The

equation in (75) can be further written as (76). Employing
Lemma 2 of [23], C−1

m − C−1
mn = −C−1

m (Cm − Cmn)C−1
mn

with Cm − Cmn = Θ
1/2
mnḡmnḡH

mnΘ
1/2
mn. Then, (76) can be

written as (77) shown at the top of the next page, where
Bmn = Θ

1/2
mnC−1

mnH̄mnPmnH̄H
mnC−1

m Θ
1/2
mn and Amn =

Θ
1/2
mnC−1

m Θ
1/2
mn. Then, by applying Lemma 7 of [23] to each

quadratic form in (77), we obtain

a. ḡH
mnAmnḡmn

a.s.→ umn
1 + umn

,

b. ĝH
mnkAmnḡmn

a.s.→ 0,

c. ḡH
mnBmnḡmn

a.s.→ u′mn
1 + umn

,

d. ĝH
mnkBmnĝmnk

a.s.→ u′mn,

e. ĝH
mnkBmnḡmn

a.s.→ 0, (78)

where umn = 1
L

tr[ΘmnC−1
mn] and u′mn =

1
L

tr[PmnH̄H
mnC−1

mnΘmnC−1
mnH̄mn]. By substituting (78) in

(77), we obtain

hH
mnkΣ

−1
m H̄mnPmnH̄H

mnΣ−1
m hmnk

a.s.→ c2mnk

(
1

L

u′mn
1 + umn

− 1

L

umnu
′
mn

(1 + umn)2

)
+ a2mnk(

1

L
u′mn)

a.s.→ c2mnk
1

L

u′mn
(1 + umn)2

+ a2mnk
1

L
u′mn, (79)

By employing Lemma 6 of [23], we have

umn
a.s.→ 1

L
tr[ΘmnC−1

m ]

a.s.→ eomn
1

L
u′mn

a.s.→ Ῡmn, (80)

in which eomn is given in (30) and Ῡmn =
1
L2 tr[PmnH̄H

mnC−1
m ΘmnC−1

m H̄mn], which can be written as

Ῡmn =
1

L

N∑
n′=1
n′ 6=n

pmn′ ḡH
mn′Θ

1/2

mn′C
−1
m ΘmnC−1

m Θ
1/2

mn′ ḡmn′ .

(81)

Based on Theorem 2 of [23], we have

Ῡmn
a.s.→ Υmn, (82)

where Υmn is given in (33).

Inserting (79) and (80) in (55), we obtain

N∑
n′=1
n′ 6=n

pn′
M∑
m=1

E
{∣∣hH

mnkwmn′
∣∣2}

a.s.→
M∑
m=1

Υmn

(
c2mnk

(1+eomn)2
+ a2mnk

)
. (83)

Finally, by substituting (68), (70), (71) and (83) in (15), γmRZF
nk

is obtained as (29).
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mnḡmn

+
1

L
a2mnkĝ
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mnḡmn. (76)

hH
mnkΣmH̄mnPmnH̄H

mnΣmhmnk = c2mnk

(
1

L
ḡH
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