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Transmit Power Policy and Ergodic Multicast Rate
Analysis of Cognitive Radio Networks in

Generalized Fading
Athira Subhash∗, Muralikrishnan Srinivasan∗, Sheetal Kalyani, Lajos Hanzo

Abstract—This paper determines the optimum secondary user
(SU) power allocation and ergodic multicast rate of point-to-
multipoint communication in a cognitive radio network (CRN)
in the presence of various quality of service (QoS) constraints
for the primary users (PUs). Using tools from extreme value
theory (EVT), it is first proved that the limiting distribution of
the minimum of independent and identically distributed (i.i.d.)
signal-to-interference ratio (SIR) random variables (RVs) is a
Weibull distribution, when the user signal and the interferer sig-
nals undergo independent and non-identically distributed (i.n.i.d.)
κ−µ shadowed fading. Also, the rate of convergence of the actual
minimum distribution to the Weibull distribution is derived. This
limiting distribution is then used for determining the optimum
transmit power of a secondary network in an underlay CRN
subject to three different QoS constraints at the primary network
in a generalized fading scenario. Furthermore, the optimum
transmit power and the asymptotic ergodic multicast rate of SUs
is analyzed for varying channel fading parameters.

Index Terms—extreme value theory, κ − µ shadowed fading,
cognitive radio, outage probability, queuing delay, secrecy outage

I. INTRODUCTION

With the advances in wireless technology, the presence of
wireless devices has become ubiquitous. Furthermore, with
the advent of the Internet of Things (IoT), the number of
connected devices accessing the spectrum is set to increase in
the upcoming times. With this increase in devices and hence
increasing traffic, it will be very hard to find free spectrum.
Cognitive radio (CR) is one of the promising techniques mit-
igating spectrum scarcity in wireless communication systems
[1]–[5]. In cognitive radio networks (CRNs), there are three
popular modes of spectrum sharing between primary users
(PUs) and secondary users (SUs) - underlay, overlay and
interweave [6]–[9]. As a further development, the authors of
[10], [11] have studied the security aspects of a CR system in
the presence of eavesdroppers.

Throughout this paper, we consider the underlay mode,
where the secondary network accesses the same spectrum as
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the primary network. An important problem in CRNs is the
choice of power policy at the SU-Tx (transmitter), so that
the interference at the PU-Rx (receiver) remains below an
affordable threshold. Several authors [12]–[18] have studied
the performance of underlay CRNs under various interference
constraints. Similarly, recent contributions [19], [20] have
also considered the performance of an interference-limited
underlay CRN relying on continuous power adaptation at the
SU. In [20], the SU-Tx is assumed to transmit information to
the specific SU-Rx (receiver), having the kth highest signal-to-
interference ratio (SIR). The authors of [5] study the optimal
power allocation, the effective number of SU-Tx antennas, the
trade-off between transmit-and-harvest secondary antennas,
and the average channel capacity of an energy harvesting
(EH)-aided secondary system in a massive multiple input
multiple output (MIMO) CRN.

Most of the above contributions concentrate on maintaining
a minimum outage or rate at the PUs. However, in delay-
sensitive applications satisfying the delay constraint at the PU
is of paramount importance. The delay constraints of PUs are
not captured explicitly by the outage constraints, since the
relationship between the delay imposed by the PU’s queue
and its outage probability is not explicit. Moreover, for delay-
sensitive devices, a simple outage or rate constraint cannot
ensure that the data is not accumulated or overflowing in the
output buffer. Therefore, it becomes necessary to incorporate
some delay-based quality of service (QoS) constraint in our
resource allocation problems [21], [22]. Hence we also solve
the SU-Tx power allocation problem under a delay constraint
at the PU-Rxs.

Another typical concern in wireless networks is the
physical-layer security and protection of important nodes
from eavesdroppers. The security of cognitive radio networks
(CRNs) from attacks by eavesdroppers at the primary or
secondary nodes is of high interest and has been studied in
[23]–[25]. If the statistical information regarding the links
between the eavesdropper and any critical node is available,
then optimal power allocation can be performed for ensuring
that the security of the link is not compromised. This is
mathematically captured by the secrecy outage probability of
the critical node. In this treatise we also discuss results that
can be used for maintaining the required secrecy constraints
at the PU-Rxs).

The authors of [19], [20] consider the analysis of transmit
power policy at the SU and the ergodic capacity of the SU
in Rayleigh fading channels. Our focus in this treatise is on



2

extending these results to general fading scenarios. At the
time of writing, generalized multipath fading models such as
the κ − µ and the η − µ fading distributions are generating
significant research interests [26]. They model the small-scale
variations in the fading channel in line of sight (LOS) and
non-line of sight (NLOS) conditions respectively [27]. To
investigate the effects of shadowing on the dominant LOS
component, the authors of [27] and [28] have developed a
generalization of the shadowed Rician fading called the κ−µ
shadowed fading model. The κ−µ shadowed fading has been
shown to unify the κ − µ and η − µ fading models [29] and
to have a wide variety of applications ranging from land-
mobile satellite systems to device-to-device communication
[28]. Performance metrics conceived for generalized fading
have been studied extensively in [30]–[45]. Recently, the
authors of [46] studied the exact outage and rate expressions
in an interference-limited scenario.

Calculating the outage/secrecy/queuing delay constraints
over several PU-Rx requires the knowledge of the cumulative
distribution function (CDF) of the minimum SIR among the
mulicast users [19], [20]. Furthermore, the ergodic rate of
the multicast scheme in the secondary network is determined
directly by the SIR of the weakest user. Now, if we have
to evaluate the exact expression for the complementary cu-
mulative distribution function (CCDF) of minimum of say
L random variables (RVs), we have to evaluate the product
of the CCDF of L such RVs. Note that the expressions for
the probability distribution function (PDF)/CDF of signal to
interference ratio (SIR)/signal to noise ratio (SNR)/signal to
interference plus noise ratio (SINR) in generalized fading
scenarios have complicated expressions [32], [37]–[41], [43],
[44], [46]. Hence, evaluating the exact expression of the
statistics of extremes is difficult, particularly for moderate to
large values of L [51]. Thus, it is imperative that a simple
limiting distribution is found for the minimum of SIR RVs in
generalized fading scenarios.

Tools from Extreme Value Theory (EVT) are commonly
used for characterizing the distributions of extremes and the
peaks over thresholds. A brief list of some of the key literature
using EVT for studying the limiting distribution of SIR in
wireless systems is available in [51]. Against this backdrop,
in this contribution we use EVT to determine the power
adaptation at the SU underlay in an CRN, subject to specific
QoS constraints for the PUs. We also use EVT for determining
the ergodic multicast rate of the SUs. In Table I, we provide
a bold summary and comparison of the seminal literature
relying on system models similar to our scenario. Our main
contributions in this paper are as follows:
• Assuming that the user signal and the interferer sig-

nal undergo independent and non-identically distributed
(i.n.i.d.) κ−µ shadowed fading, we prove that the limiting
distribution of the minimum of L such independent
and identically distributed (i.i.d.) SIR RVs is a Weibull
distribution.

• We also derive the rate of convergence of the actual dis-
tribution of the minimum SIR to the derived asymptotic
distribution.

• Using the limiting distribution derived, we determine a

closed form expression for the optimum power to be used
at the SU-Txs while the PU-Rx are subjected to three
different QoS constraints.

• Furthermore, we derive expressions for the ergodic mul-
ticast rate of point-to-multipoint communications in the
secondary network.

Note that the results presented above can be readily used for
the analysis of many other common channel fading models,
which are special cases of the κ− µ shadowed fading.

II. SYSTEM MODEL

We consider a CR scenario where the PU network consists
of a PUTx serving M multicast PU-Rxs and a SU network
that consists of a SU-Tx serving L multicast SURxs. Here, all
the devices have a single antenna for transmission/reception.
Furthermore, here we assume that the SUTx sends common
multicast information to all the SU-Rxs in the underlay mode.
Since an underlay mode is considered, the SU-Tx has to rely
on continuous power adaptation strategy for satisfying the QoS
constraints at the PU-Rxs. The channel power gains of the
links PUTx → PURxm, for m = 1, 2, ,M and SUTx →
SURxl, for l = 1, 2, , L are denoted by hm, for m = 1, 2, ,M
and gl, for l = 1, 2, , L, respectively. Similarly, αm and
βl are the channel power gains of the interference links
SUTx→PURxm and PUTx → SURxl, respectively. All the
channels are considered to undergo κ − µ shadowed fad-
ing. Furthermore, we consider an interference-limited system,
where the noise power at each of the SU-Rx (or PU-Rx) is
negligible compared to the interference power received from
the PU-Tx (or SU-Tx). The authors of [19], [20] consider
a similar system model except for the fact that they assume
Rayleigh faded channels. Furthermore, the authors of [20]
consider only one PU-Rx. The instantaneous SIRs at the mth
PURx and lth SURx are

γm,p =
Pphm
Psαm

, m = 1, ...,M, (1)

and

γl,s =
Psgl
Ppβl

, l = 1, ..., L, (2)

respectively. Here, Pp is the PUTx transmit power, Ps is the
instantaneous SUTx transmit power and {hm, αm, gl, βl;m =
1, 2, ,M, l = 1, 2, , L} are κ − µ shadowed random variables
(RVs). A κ−µ shadowed RV X with parameters (κ, µ,m, x̄)
has the following pdf [27]:

fX(x) =
xµ−1

θµ−mλmΓ[µ]
e−

x
θ 1F1

(
m,µ,

x

θ
− x

λ

)
, x ≥ 0

(3)
where 1F1(.) is the confluent hypergeometric function, Γ[.]

is the gamma function, θ =
x̄

µ(1 + κ)
, λ =

(µκ+m)x̄

µ(1 + κ)m
and

x̄ = E[X]. Here, E[.] represents the expectation of a RV.
Throughout this paper we assume that the CSIs of the links
are not estimated frequently, but the statistics of the signal and
interference links are known at the transmitters.
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Our model [20]-2019 [47]-2018 [19]-2016 [48]-2015 [15]-2011 [49]-2016 [50]-2015
No of PU-Rx Multiple Single Single Multiple Multiple Single Single Single
No of SU-Rx Multiple Multiple Single Multiple Single Single Single Single
I/S1 S Su-Tx to

Pu-Rx:I,
Rest of the
links:S

both S I I I S

Channel
Fading

κ− µ shad-
owed

Nakagami Rayleigh Rayleigh Nakagami - - Rayleigh

I-Pu-Tx2 3 3 7 3 7 3 3 3
QoS
constraints

Probability
of outage
at Pu-Rx,
secrecy
outage,
Delay QoS

Interference
to Pu-Rx

7 Interference
to Pu-Rx

- Interference
to Pu-Rx

Secrecy
outage

Delay QoS

Usage of
EVT

3 3 7 7 7 7 7 7

Expression
for
secondary
capacity

3 7 7 3 7 7 7 7

TABLE I: Comparison with existing literature.

III. SECONDARY USER POWER CONTROL POLICY

In the underlay mode, the SU-Tx transmits over the same
frequency as the PU-Tx, even when the PU-Tx is active.
Simultaneous transmission occurs as long as the QoS degrada-
tion at the PU-Rx due to the interference imposed by the SU-
Tx is tolerable. This QoS degradation in the primary network
is quantified by means of different constraints at the PU-
Rxs. In this contribution, we consider the following three QoS
constraints :

- Outage constraint at the PU-Rxs,
- Queuing delay constraint at the PU-Rxs,
- Secrecy outage constraint at the PU-Rx.

In the subsequent subsections we discuss each of these con-
straints separately.

A. Outage constraint at the PU-Rx

Here, the SU-Tx must transmit at a power that keeps the
outage at each of the PU-Rx below a predetermined level.
Thus, transmit power policy at the SU-Tx can be mathemati-
cally formulated as follows [19], [20],

max Ps, (4a)
s.t. P{γm,p(Ps) ≤ γ0} ≤ p0, ∀ m = 1, ...,M (4b)

Ps ≤ Ps,max, (4c)

where p0 is the maximum tolerable outage at each of the PU-
Rx and γ0 is the minimum desired SIR at the PU-Rx for a
fixed PU transmit power Pp. The outage constraint in (4b) is
equivalent to the condition where PU-Rxm with the lowest
SIR satisfy the outage constraint. Hence, the power policy of
SU-Tx can be alternatively formulated as

max Ps (5a)
s.t. P{ min

1≤m≤M
γm,p(Ps) ≤ γ0} ≤ p0 (5b)

Ps ≤ Ps,max. (5c)

Substituting the fading coefficients from (1) into (5b), we
obtain

max Ps (6a)

s.t. P
{

min
1≤m≤M

hm
αm
≤ γ0

Ps
Pp

}
≤ p0. (6b)

Ps ≤ Ps,max. (6c)

Here, {hm;m = 1, · · · ,M} and {αm;m = 1, · · · ,M}
are sets of i.i.d. κ − µ shadowed RVs with fading parame-
ters (κp, µp,mp, h̄p) and (κp,s, µp,s, mp,s, ᾱp,s) respectively.
Note that a more realistic model would rely on non-identical
links between the transmitter and multiple receivers. However,
analyzing this scenario is intractable due to the complex
nature of the CCDF in generalized fading scenarios. The
assumption of identical links holds true in scenarios where
the users are in a stationary environment, such as ad-hoc
networks in buildings or in case of slowly moving users [19].
Similar, simplified models are widely used for the performance
analysis of CR systems [19], [20], [52]–[54]. The above-
mentioned contributions analyze the performance of different
CR systems assuming identical links between the transmitters
and receivers. Therefore, even the study of the statistics of the
minimum SIR over i.i.d. links is relevant and will hopefully
serve as a spring-board for more general analysis.

To determine the optimum value of Ps that satisfies the
outage constraint in (5b), we have to determine the CDF of the
minimum of SIR RVs in a κ−µ shadowed fading environment.
Note that, we can evaluate this using the CDF of the minimum
of ratio of two κ−µ shadowed RVs as given in (6b). The exact
distribution of the minimum of any set of i.i.d. RVs γmin =
min{γ1, γ2, · · · , γM}, where γi ∼ Fγ(z);∀ i ∈ {1, · · · ,M}
is given by

Fγmin
(z) = 1− (1− Fγ(z))

M
. (7)

Hence, to evaluate the CDF in (6b), we have to evaluate the
M th power of the CCDF of ratio of κ−µ shadowed RVs. The
exact expression for the CDF of ratio of κ−µ shadowed RVs
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is given in terms of an infinite sum of the Lauricellas function
of the fourth kind in [55, Eq. 3], [46]. The complex nature of
the CDF Fγ(z) makes the evaluation of the M th power of the
CDF difficult. Now, even if we find an approximation for the
CDF of γ, any small error in the computation of Fγ(z) will
become amplified due to the exponent to which it is raised and
hence it will make the corresponding distribution function less
accurate. Note that even if we compute the exact distribution
for large values of M , it will not be possible to derive any
meaningful inference from them owing to the complex nature
of those expressions.
On the other hand, if we have a simple limiting distribution for
(7), which closely approximates the CDF values for moderate
and large values of M , we can obtain a closed-form expression
for the optimum Ps that satisfies (6b). For small values of M
we can still use the exact CDF of the minimum. Therefore,
using tools from EVT, we formulate the following theorem
to determine the limiting distribution of (7), when γ is the
SIR in an κ − µ shadowed fading environment. We then use
this theorem to evaluate the probability expression in (6b) and
hence obtain a closed-form expression for the optimum Ps. A
similar approach is used for determining the ergodic multicast
rate of the secondary users in [20] for Rayleigh faded channels.
To the best of our knowledge, no previous work has used EVT
to simplify the outage constraints at the PU-Rx in a generalized
fading scenario.

Theorem 1. Consider K i.i.d. SIR RVs of the form

γk =
dk

N∑
j=1

cj,k

, (8)

where {dk; 1 ≤ k ≤ K, } are i.i.d. κ − µ shadowed RVs
with parameters (κ, µ,m, x̄) and {cj,k; 1 ≤ j ≤ N} are
i.n.i.d. κ−µ shadowed RVs, with parameters (κj , µj ,mj , x̄j)
∀ k ∈ {1, · · · ,K}, for j ∈ {1, · · · , N}. Here, N is
the number of interferers. The asymptotic distribution of
γKmin = min{gamma1, γ2, ..., γK} is a Weibull distribution
having the shape parameter υ = µ and scale parameter
aK = F−1

γ

(
1
K

)
, where Fγ(z) is the common CDF of i.i.d.

RVs γk. Let, γmin = lim
K→∞

γKmin, then we have,

Fγmin
(z) =

{
1− exp(−(z/aK)υ), z ≥ 0,

0, z < 0.
(9)

Proof. Please refer to Appendix A for the proof.

To evaluate aK , an approximation of the CDF Fγ(z)
relying on the Lauricella function of the forth kind given by
[46, Eqn 8] is used. Furthermore, [46] gives bounds on the
truncation error and shows that the CDF is well approximated
by the proposed expression. Finally, the MATLAB code for
evaluating Lauricellas function of the fourth kind is available
in [56].
Note that the above expression is simpler to evaluate than
the actual CDF of the minimum as given in (7). Fig.1 shows
the simulated and theoretical asymptotic CDF of minimum
over K = 20 SIR RVs for different system parameters. Here,
cases 1, 2 and 3 correspond to the channel fading parameters

as given in Table II. The results indicate that the asymptotic
results are close to the true minimum distribution even for the
cases where the minimum is evaluated over moderate-length
sequences, such as K = 20.

Case # κ µ m N {κi} {µi} {mi}
1 2 3 1 3 {2, 2, 2} {2, 2, 2} {1, 1, 1}
2 2 3 1 2 {2, 2} {2, 1} {1, 1}
3 2 2 1 1 {2} {1} {1}

TABLE II: Simulation parameters used for Fig.1.

Further, to better quantify mathematically the decrease in
gap between the theoretical and simulated values of CDF as
K increases, we have derived the rate of convergence of the
asymptotic minimum distribution to the corresponding Weibull
distribution. We now give the rate of convergence for our case
through the following theorem.

Theorem 2. The rate of convergence of FγKmin
(z) to the

Weibull distribution is
O
(
K−µ

−1

+K−1
)

where γKmin = min{γ1, · · · , γK} .

Proof. Please refer to Appendix B for the proof.

From this result, we observe that the rate of convergence
depends on the length of the sequence K and the source
fading parameter µ. The simulated and theoretical distribution
are expected to be closer for large values of K. Further, the
convergence will be faster for smaller values of µ, the number
of multi paths in the source to desired receiver link.

Using this asymptotic distribution, we can now deter-
mine the optimum Ps, when the number of PU-Rxs M ,
is moderate to large. To evaluate the CDF of γmin,p :=

lim
M→∞

min
m

{
hm
αm

;m = 1, · · · ,M
}

(to approximate (6b)), we
now substitute N = 1, K = M , (κ, µ,m, x̄) =
(κp, µp,mp, h̄p), (κ1, µ1,m1, x̄1) = (κp,s, µp,s,mp,s, ᾱp,s),
aK = aM = F−1

γ

(
1
M

)
and υ = µp in Theorem 13. Hence,

we have (5b) is equivalent to the following,

1− exp

(
−
(
γ0Ps
PpaM

)µp)
≤ p0. (10)

Further rearrangement of (10) gives,

Ps ≤
PpaM
γ0

[−ln(1− p0)]
1/µp . (11)

The largest Ps that satisfies the above constraint is given by

P+
s =

PpaM
γ0

[−ln(1− p0)]
1/µp . (12)

3Here, Fγ(z) is evaluated using (??) for N = 1. Even if we consider
multiple primary interferers, note that Theorem 1 gives the asymptotic
distribution of the minimum SIR for a case where the receiver suffers from
the interference of N other transmitters. Therefore, the theoretical framework
developed is applicable for a much broader framework. However, when
we consider (N − 1) primary interferers having known transmit powers,
the expression of the outage probability will be different and we will not
have a closed form expression for the secondary user’s power allocation.
Furthermore, in cells having large cell radius, the interference arising from
other primary transmitters can be neglected due to the associated high path
loss.
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Fig. 1: CDF of γKmin (simulated) and γmin (using (9)) for
different fading scenarios.

Now, using (32) and (28d), the optimal Ps for the SU-Tx
power policy is given by

P̄s = min{P+
s , Ps,max}. (13)

To the best of our knowledge, there is no literature
presenting the limiting distribution of the minimum SIR
over a set of i.n.i.d RVs. However, if the i.n.i.d. RVs can be
approximated by a set of i.i.d. RVs, then we can use our
asymptotic results for the analysis. The effect of the i.i.d.
assumption also depends on the way we replace the set of
i.n.i.d. RVs by a set of i.i.d. RVs.

Now that we have derived the optimal SU-Tx power, we
will analyze the impact of fading parameters on this power
policy. From (31), we can observe that the optimum power
at the SU-Tx, P̄s, is dependent on P+

s given in (32). The
variations in P+

s are in turn governed by PP , γ0, p0, µp and
aM .
Observation 1: From (32), it is plausible that an increase in
either Pp or p0 or alternatively a decrease in γ0 leads to an
increase in P+

s .

Note that, the variation in the SU transmit power P+
s

with respect to the variations in the desired channel’s fading
conditions can be studied by analyzing the variations in aM
and µp. Since analyzing the effect of channel conditions on
aM would mean analyzing the inverse CDF of SIR, which
is difficult, we proceed by approximating each of the κ − µ
shadowed RV by a Gamma RV. This approach is same as the
approximations used in [45] Section III. Following analysis
similar to [51], we can use stochastic ordering to make
inferences about the approximate variation in Fγ(z), with
respect to the changes in κp, µp, mp, κp,s, µp,s and mp,s. The
corresponding observations are presented below. Since these
observations can be easily derived by repeating steps similar
to the derivation in [51] we do not repeat the details here.

Observation 2 : P+
s increases upon increasing µp or

mp or decreasing µp,s or mp,s .

Observation 3 : P+
s increases upon increasing κp if

mp − µp ≥ 0 and decreases otherwise. Alternatively, P+
s

increases upon decreasing κp,s if mp,s − µp,s ≥ 0 and
decreases otherwise.

Thus Observation 2 and Observation 3 offers inferences on
the variation of the maximum SU power P+

s with respect to
the changes in the source and interferer fading environment.

B. Power allocation associated with the PU’s statistical delay
provision

We assume that there is a queue at the PU-Tx, which is
populated by some data arrival process at a constant rate of
Ra and has a stochastic service rate of Rp. In the context of
CR, the PU’s delay requirement can be characterized either
by the delay bound violation probability (DBVP) constraint
or by the queue length bound violation probability constraint,
as discussed in [22], [50]. Here, the probability of the PUs
queuing-delay Dp violating the threshold Dth is constrained
to be less than Pth, for a fixed PU-Tx transmit power. The
transmit power policy at the SU-Tx can thus be mathematically
formulated as follows:

max Ps, (14a)
s.t. P{Dp ≥ Dth} ≤ Pth, (14b)

Ps ≤ Ps,max. (14c)

The authors of [22], [50] also considered constraint (14b)
for their optimal power allocation problems. However, they
maximized the ergodic rate of the secondary users in unicast
scenarios. In the following steps, we will consider how the
constraint in (14b) is evaluated for the multicast scenario.
The PU-Tx’s DBVP can be rendered more tractable by a
series of steps discussed in [50]. First of all, the DBVP can
be approximated by the following relationship that relates the
delay violation probability both to the arrival rate and to the
delay exponent θp:

P{Dp ≥ Dth} ≈ e−θpEBDth , (15)

where EB is the PU-Tx’s effective bandwidth for the constant
arrival process over a frame duration of Tf , which is given by

EB =
1

θp
log
[
E(eθpTfBRa)

]
, (16)

and the expectation is taken over the random channel fading
coefficients. Therefore, the DBVP constraint can be reformu-
lated in terms of a constraint on the delay exponent as

θp ≥ −
1

EBDth
log(Pth). (17)

Now, the effective capacity EC of the PU-Tx for a service
rate of Rp4, is given by [22], [57]

EC = − 1

θp
log
[
E(e−θpTfBRp)

]
. (18)

4Note that this is different from the arrival rate Ra and is discussed in
detail in [22]
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The expectation in (18) is also taken over the random channel
fading coefficients. According to the theory of statistical
queuing analysis, if the effective bandwidth EB is no higher
than the effective capacity EC , i.e., we have

EB ≤ EC , (19)

then the constraint (14b) is equivalent to the following for a
constant arrival process, [22], [50]

Ec ≥ TfBRa. (20)

Thus the power allocation policy becomes

max Ps, (21a)

s.t. − 1

θp
log
[
E
(
e−θpTfBRp

)]
≥ TfBRa, (21b)

Ps ≤ Ps,max. (21c)

Now in a multicast case, the service rate Rp would be limited
by the link having the lowest SIR. Therefore, we have:

Rp = log2

(
1 + min

1≤m≤M
γm,p(Ps)

)
= log2

(
1 +

Pp
Ps
γMmin,p

)
,

(22)
where γMmin,p = min

1≤m≤M
hm
αm

. Upon further rearrangement, the

constraint in (21b) can be rewritten as follows:

E

[(
1 +

Pp
Ps
γMmin,p

)−ξ]
≥ exp (−ξRa) , (23)

where ξ =
θpTfB
log 2 . Here, increasing Ps would decrease the

effective capacity and hence the solution to the above opti-
mization problem would correspond to the value of Ps, when
(21b) is satisfied with equality.5 This solution can be readily
found, for example using routines like FindRoot available in
Mathematica. Note that the statistics of Rp can be evaluated
for large M using the proposed asymptotic statistics of the
minimum SIR. Hence, we make use of the asymptotic statistics
from the previous sections to solve the power allocation
problem in (21).

To analyze the power allocation policy we observe that
when the constraint given in (23) is satisfied with equality,
it can be rewritten as follows :

∞∫
0

exp

(
−
(
P̄s(y

−1/ξ − 1)

aM

)µp)
dy = exp(−ξRa). (24)

Based on (24) we can make observations similar to the ones
in Section III.A of the revised manuscript. For example, the
increase in mp results in an increase in aM which require an
increase in the SU-Tx power Ps for satisfying the equality in
(24). Similar observations can be made with respect to other
channel fading parameters as well.

5Similar arguments to obtain the SU power allocation policy is discussed
in detail in [50].

C. Power allocation under primary user secrecy outage con-
straint

In this section, we consider a system model very similar
to the previous sub-section, except for the presence of a
passive eavesdropper node E trying to maliciously decode the
information intended for the PU-Rxs. In such a scenario, the
secrecy rate defined as the achievable rate of the legitimate
receiver minus the rate overheard by the eavesdropper is
considered as a reliable metric for evaluating the system’s
resilience to malicious attack [58]. Let, fe and θe represent
the channel gains of the PU-Tx to E and SU-TX to E links,
respectively. The SIR at the eavesdropper node E is hence
given by

γeve =
Ppfe
Psθe

=
Pp
Ps
γe. (25)

The corresponding rate is hence Ceve = log2(1+γeve). Thus,
the PU’s secrecy rate can be formulated as

Cscy = log2

(
1 +

Pp
Ps
γmin,p

)
− log2

(
1 +

Pp
Ps
γe

)
. (26)

Note that here we compute the secrecy rate with respect to
the ergodic multicast rate of the primary network. Hence, the
probability of secrecy outage is given by

P (Cscy < δscy) , (27)

where δscy represents the minimum secrecy rate. To ensure
secure communication for the primary network in the CR
scenario considered, the probability in (27) should remain
small. Furthermore, note that the SU-Tx transmission creates
interference for both the PU-Tx to PU-Rx link and PU-Tx to
E link. Hence, the power provided for the secondary network
should also ensure that the probability of secrecy outage is
sufficiently low. The secondary power allocation problem can
thus be formulated as follows:

max Ps (28a)
s.t. P{ min

1≤m≤M
γm,p(Ps) ≤ γ0} ≤ pout0 , (28b)

P (Cscy < δscy) ≤ pscy0 (28c)
Ps ≤ Ps,max. (28d)

Here, pscy0 is the maximum affordable secrecy outage proba-
bility of the primary network and (28b) is the interference con-
straint of the primary network. The authors of [49], [59], [60]
also consider secrecy constraints similar to (28c) for power
allocation in different cognitive radio scenarios. However,
neither of these contributions consider the case of multicast
primary or secondary receivers. We have already established
based on constraint (28b) that the maximum transmit power of
the SU-Tx is limited by Ps ≤ PpaM

γ0
[−ln(1− p0)]

1/µp . Next,
let us consider the implication of constraint (28c), which can
be re-written as follows:

P
(
Ps + Ppγmin,p

Ps + Ppγe
− 1 ≤ 2δscy − 1

)
≤ pscy0 . (29)

Upon further re-arrangement the above expression can be
equivalently expressed as

P

(
Pp
(
γmin,p − 2δscyγe

)
2δscy − 1

≤ Ps

)
≤ pscy0 . (30)
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From (30) it is clear that upon increasing Ps the probability
of secrecy outage increases. Hence, for maximizing Ps the
constraint in (28c) should be satisfied with equality. Let P̃s
be the solution corresponding to equation (30) satisfied with
equality. Thus, the optimal solution for the secondary power
allocation problem is given by

P̄s = min{P+
s , P̃s, Ps,max}, (31)

where we have

P+
s =

PpaM
γ0

[−ln(1− p0)]
1/µp and (32)

P

(
P̃s + Ppγmin,p

P̃s + Ppγe
≤ 2δscy

)
= pscy0 . (33)

From our statistical analysis of the distribution of the minimum
of SIR RVs, γmin,p follows the Weibull distribution. The
RV γe is a ratio of two κ − µ shadowed RVs and solving
(33) with the exact distribution of this ratio will be difficult.
Hence, we approximate each of the κ − µ shadowed RV by
a gamma RVs as justified in [41]. Thus, the distribution of
γe can be approximated by a Beta Prime distribution and
the resultant expression (33) can be readily evaluated using
common routines available in applications like Mathematica.
Note that this would not be easy if we were to use the exact
distribution of the minimum PU-SIR. Finally, observations
similar to Observations 1-5 of Section III.A can be derived
for this case as well.

IV. ERGODIC MUTICAST RATE OF SECONDARY USERS

For all the above optimization problems, once the optimum
SU-Tx power P̄s is determined, we can also obtain the ergodic
multicast rate of the secondary users with EVT. The ergodic
multicast rate of the secondary network is defined as [19], [61]

Csec = L× E[log2(1 + min
1≤l≤L

γl,s)]. (34)

Substituting the expression for γl,s from (2), we obtain

Csec = L× E[log2(1 + min
1≤l≤L

P̄sgl
Ppβl

)]. (35)

Given that the CDF of the ratio of κ−µ shadowed RVs itself is
complicated, it is a challenge to derive any simple expression
for (35). Therefore, we propose the following theorem to
evaluate the asymptotic ergodic multicast rate of SUs.

Theorem 3. Consider K i.i.d. SIR RVs of the form

γk =
|bk|2

N∑
j=1

|cj,k|2
, (36)

where {|bk|2; 1 ≤ k ≤ K, } are i.i.d. κ − µ shadowed RVs
with parameters (κ, µ,m, x̄) and {|cj,k|2; 1 ≤ j ≤ N} are
i.n.i.d. κ−µ shadowed RVs, with parameters (κj , µj ,mj , x̄j)
∀ k, for j = 1, .., N . If γKmin = min(γ1, γ2, ..., γK), then

lim
K→∞

E[log2(1 + γKmin)] = E[Rmin], (37)

where Rmin = log2(1 + γmin) and γmin is the asymptotic
distribution of γKmin as given in Theorem (1).

Proof. The proof is very similar to the proof in [51, Section
IV.2] and hence is omitted here.

The expectation in (34) can now be evaluated using the
pdf of the Weibull RV, whose CDF is given in (9), after
substituting N = 1, K = L, (κ, µ,m, x̄) := (κs, µs,ms, ḡs),
(κ1, µ1,m1, x̄1) := (κs,p, µs,p,ms,p, β̄s,p), aK = aL =
F−1
γ

(
1
L

)
and υ = µs. The asymptotic minimum ergodic

multicast rate of the secondary network is therefore given by

Csec
L
≈
∞∫

0

log2

(
1 +

Psx

Pp

)
υxυ−1

aυL
exp

(
−
(
x

aL

)υ)
dx.

(38)
To analyze the above expression with respect to aL, we again
use the theory of stochastic ordering similar to [51]. Thus we
have the following observations.

Observation 4 : Csec increases upon increasing ms or
decreasing ms,p or µs,p.
Observation 5 : Csec increases upon increasing κs if
ms − µs ≥ 0 and decreases otherwise. Alternatively, Csec
increases upon decreasing κs,p if ms,p − µs,p ≥ 0 and
decreases otherwise.
Observation 6 : Also, Csec is directly proportional to P+

s .
Hence, variation in Csec with respect to the variations in the
fading channel of the primary network can be directly extended
from Observation 2 and Observation 3.

V. NUMERICAL RESULTS AND SIMULATIONS

In this section we present simulations to validate the results
and observations. The PU-Tx’s target rate is chosen to be
R0 = 0.03 bps/Hz for all the simulations. This is to match
the performance target for the operational long-term evolution
(LTE) network, which requires the cell edge user throughput to
be higher than 0.02 bps/Hz/cell/user [19], [62], [63]. Similarly,
all the results are generated for the choice of Ps,max = 20 dB.
Here, Fig. 2 shows the SU-Tx power allocation for various
combinations of PU-Tx power Pp and PU-Rx outage con-
straint p0 computed using (13). Furthermore, we have chosen
(κp = 3, µp = 2,mp = 1), (κp,s = 2, µp,s = 2,mp,s = 1),
(κs = 2, µs = 2,ms = 1), (κs,p = 3, µs,p = 3,ms,p = 1),
M = 10 and L = 10 for generating Figs. 2-4. The re-
sults indicate that the optimum SU-Tx power P̄s increases
upon increasing the PU-Tx power Pp. This is because, upon
increasing Pp, the PU-Rxs become capable of handling a
higher interference arriving from the SU-Tx at the same outage
constraints. Furthermore, for constant Pp, P̄s decreases with
a reduction in p0. This is because a reduction in p0 results in
stricter outage constraints at the PU-Rxs. In order to satisfy
these stricter reliability conditions, the SU-Tx has to transmit
at a lower power for reducing the interference at the PU-Rx.
Note that the optimum transmit power P̄s is always limited
by Ps,max. For the power allocation considered in Fig. 2, we
show the simulated values of outage probabilities of both the
primary and of the secondary receiver having lowest SIR (P outp

and P outs ) in Fig. 3 and 4, respectively, for a threshold of
R0 = 0.03. Here, note that we are not constraining the outage
probability of the secondary users in the allocation scheme
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and hence the probability of outage of the secondary users
may change with the channel conditions or system model.

Fig. 5 shows plots of Pp versus P̄s for different channel
conditions to validate Observation 2. The channel parameters
corresponding to the cases shown in the figure are given in
Table III. From Cases 1,2 and 5 we can observe an increase
in P̄s with an increase in µp and mp. Similarly, we can observe
an decrease in P̄s with an increase in µp,s and mp,s from cases
2,3 and 4. Next, Observation 3 is validated using simulations
in Fig. 6. The fading channel parameters used for simulation
are given in Table IV. According to Observation 3, variation
in P̄s with changes in κp or κp,s depends upon the sign of
µp − mp and µp,s − mp,s respectively. We verify all such
variations possible using cases 1-8 in Fig. 6. The above figures
validate the claim that the proposed asymptotic results can be
readily used to derive inferences on the system performance.
Without the proposed simple distribution for the minimum SIR
RV, predicting the changes in the underlay CRN performance
with respect to variations in channel fading conditions would
have been non-trivial.

Next, we show power allocation results under our queu-
ing delay constraints. The following parameter values were
chosen for this simulation : (κp = 3, µp = 1,mp = 1),
(κp,s = 2, µp,s = 2,mp,s = 1), Tf = 2ms, B = 105

Hz, Ra = 1.5 and Ps,max = 15 dB. Here, Fig. 7 shows
the variation in SU-Tx power (computed using (23)) upon
increasing the delay exponent θp. Note that a smaller value
of θp corresponds to looser delay constraint and hence allows
SU-Tx to transmit at higher power as compared to larger
values of θp. Fig. 8 shows the corresponding values of effective
capacity. Note that constraint (21b) is satisfied in all the
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Fig. 5: Pp vs P̄s for M=20.

cases. Similarly, we show power allocation results (computed
using (31)) for the secrecy constraints in Fig. 9 to 10. Here,
(κp,e, µp,e,mp,e) and (κs,e, µs,e,ms,e) represent the κ − µ
shadowed parameters of RVs fe and θe respectively. Further-
more, the following parameters were chosen for simulation:
(κp = 3, µp = 2,mp = 3), (κp,s = 5, µp,s = 3,mp,s = 3),
(κp,e = 1, µp,e = 0.01,mp,e = 0.1), (κs,e = 1, µs,e =
2,ms,e = 2), δsyc = 1, p0 = 0.01 and γ0 = 0.02. Here, Fig. 9
and 10 shows the power allocation and the corresponding value
of secrecy outage for different values of psyc0 , respectively.

Next, in Figs. 11 we compare the simulated and theoretical
values of the ergodic multicast rate of secondary users, for
Pp = 14 dB. Fig. 11 shows the variation in Csec/L with
respect to variation in number of primary users M , for two
different values of p0. The fading channel parameters used
for simulation are as follows : (κp = 2,µp = 3,mp = 1),
(κp,s = 2,µp,s = 2,mp,s = 1), (κs = 2,µs = 2,ms = 1),
(κs,p = 3,µs,p = 3,ms,p = 1). Observations 4-5 can also be
verified via simulation. However, these are not provided here
due to space constraints.

VI. SUMMARY

To summarize, we make use of tools from EVT to char-
acterize the asymptotic distribution of the minimum of the
ratio of κ−µ shadowed random variables and hence derive a
simple expression for the distribution of the minimum SIR
of PU/SU in a multicast CR environment. We also derive
the rate of convergence of the actual distribution of the
minimum SIR to the derived distribution. These results are
further used to find the optimal SU power allocation and the
ergodic multicast rate of SUs under different QoS constraints.
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Case # κp µp mp κp,s µp,s mp,s
1 3 2 1 2 1 1
2 3 1 1 2 1 1
3 3 1 1 2 20 1
4 3 1 1 2 1 10
5 3 1 0.1 2 1 1

TABLE III: Channel parameters used for simulation of Fig.5.

Assuming all the links are undergoing κ−µ shadowed fading,
we have used results from stochastic ordering to analyze the
impact of various channel parameters on the SU performance
and have derivied analytical observations for the case of SU
power allocation subject to interference constraints at the
primary receivers. Conclusive observations were also made
for the cases of queuing delay constraints and secrecy outage
constraints at the primary receivers. Owing to space constraints
these observations are not included in the following table:6

APPENDIX A
PROOF FOR THEOREM 1

We know that γKmin = min{γ1, · · · , γK} =
−max{−γ1, · · · ,−γK}. Now, if we derive the
asymptotic distribution of the maximum of K i.i.d. RVs
γ̂Kmax = max{γ̂1, · · · , γ̂K} where γ̂l = −γl; l = 1, · · · ,K
and γ̂l ∼ Fγ̂(z) = 1 − Fγ(−z) then we can also derive
the asymptotic distribution of γKmin. Now, we invoke the
following theorem to derive the limiting distribution of γ̂Kmax.

Theorem 4. Fisher-Tippet Theorem, Limit Laws for Maxima:
Let z1, z2, · · · , zK be a sequence of K i.i.d. RVs and MK =
max {z1, z2, · · · , zK}; if ∃ constants that obey aK > 0 and
bK ∈ R and some non-degenerate CDF Gν so that when
K →∞ we have,

a−1
K (MK − bK)

D−→ Gν , (39)

where D−→ denotes convergence in distribution. Then the CDF
Gυ is one of the three CDFs:

Frechet [64] : Λ1(z) :=

{
0, z ≤ 0

exp(−z−υ), z > 0,
Reversed Weibull [64] : Λ2(z) :={
exp(−(−z)υ), z ≤ 0,

1, z > 0,
Gumbel [64] : Λ3(z) := exp(−exp(−z)), z ∈ R.

6Here, ↑ and ↓ are used to represent increase and decrease respectively.

Case # κp µp mp κp,s µp,s mp,s
1 3 2 1 2 1 1
2 10 2 1 2 1 1
3 3 1 10 2 1 2
4 3 1 10 10 1 2
5 10 1 2 2 1 1
6 3 1 2 2 1 1
7 3 1 1 30 2 1
8 3 1 1 2 2 1

TABLE IV: Channel parameters used for simulation of Fig.6
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Fig. 7: θp vs P̄s for M = 20.

Proof. Please refer to [65] for the proof.

To determine the limiting distribution among these three,
we first have to define the Maximum Domain of Attraction
(MDA).

Definition 1. Maximum Domain of Attraction [65]: The CDF
F of i.i.d. RVs z1, · · · , zK belongs to the MDA of the
extreme value distribution (EVD) Gυ , if and only if ∃ the
constants obeying aK > 0 and bK ∈ R, so that (39) holds.

Lemma 1. Let F be a distribution function and x∗ := sup{x :
F (x) < 1}. Let us assume that F

′′
(x) exists and F

′
(x) is

positive for all x in some left neighborhood of x∗. If

lim
x→x∗

(x∗ − x)f(x)

1− F (x)
= υ; υ > 0, (40)

then F (.) belongs to the MDA of the reversed Weibull distri-
bution.

Proof. Please refer to [65] for the proof.

Now, if we show that the CDF Fγ̂(z) satisfies the rela-
tionship in (40), then from the definition of the MDA of
an EVD, we may conclude that there exists aK and bK
satisfying (39). A choice for the corresponding constants of
the reversed Weibull distribution is given in [65] as bK = 0
and aK = −F−1

γ̂ (1−K−1).

Theorem 5. The CDF Fγ̂(z) is in the MDA of the reversed
Weibull distribution.

Proof. Here we would have to evaluate the following limit :

lim
z→0

(−z)fγ̂(z)

1− Fγ̂(z)
. (41)

Now, by exploiting the properties of the transformation of RVs,
we have fγ̂(z) = fγ(−z) and Fγ̂(z) = 1−Fγ(−z). Thus, (41)
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can be evaluated as

lim
z→0

(−z)fγ(−z)
Fγ(−z)

. (42)

The pdf fγ(z) is given by (43), where

K2 =
θ
(m+

N∑
i=1

µi)

Γ

[
µ+

N∑
i=1

µi

]
λmΓ[µ]Γ

[
N∑
i=1

µi

]
N∏
i=1

θ
µi−mi
i λ

mi
i

;

Similarly, from [46, Eqn. (6)], we have (44) where

K1 =
Γ

[
N∑

1=1
µi+µ

](
N∏
i=1

θ
−(µi−mi)
i λ

−mi
i

)
θ

N∑
i=1

µi+m

Γ

[
N∑

1=1
µi+1

]
z

N∑
i=1

µi
λmΓ[µ]

.

We now have to evaluate the limit of Fγ(−z) in the
denominator of (42), and the above expression of the CDF is
available in the [1−CCDF] form. For ease of further analysis
we reformulate the CDF as given in (45). 7

Now, we can make use of the following properties of the
limits to proceed with the evaluation of (42):

• lim
x→a

[f(x)g(x)] = lim
x→a

f(x). lim
x→a

g(x)

• lim
x→a

f(x)
g(x) =

lim
x→a

f(x)

lim
x→a

g(x) , if lim
x→a

g(x) 6= 0.

We first consider the ratio without the ED(.) terms. Here,
we have

7This proof is not included in this paper since it is derived by repeating
steps very similar to the derivation of CCDF in [46].
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lim
z→0

(−z)µθ
m+

N∑
i=1

µi
Γ

[
µ+

N∑
i=1

µi

]
θ
µ+

N∑
i=1

µi

1

λmΓ[µ]Γ[
N∑
i=1

µi]
N∏
i=1

θ
µi−mi
i λ

mi
i (θ−zθ1)

µ+[
N∑
i=1

µi

(−z)µθ
m+

N∑
i=1

µi
Γ

[
µ+

N∑
i=1

µi

]
θ
µ+

N∑
i=1

µi

1

λmΓ[µ+1]Γ[
N∑
i=1

µi]
N∏
i=1

θ
µi−mi
i λ

mi
i (θ−zθ1)

µ+[
N∑
i=1

µi

= lim
z→0

Γ[µ+ 1]

Γ[µ]
= µ. (46)

Now, if we analyze the ED(.) term in the numerator, we
have

(1)
(1)E

(2N)
D

[
µ+

N∑
i=1

µi,m, µ2 −m2, · · · , µN −mN ,m1,

· · · ,mN , µ,

N∑
i=1

µi,
−zθ1(λ− θ)
λ(θ − zθ1)

,
θ(θ2 − θ1)

θ2(θ − zθ1)
, · · · ,

θ(θN − θ1)

θN (θ − zθ1)
,
θ(λ1 − θ1)

λ1(θ − zθ1)
, · · · , θ(λN − θ1)

λN (θ − zθ1)

]
, (47)

and the ED(.) function has the following series expansion:
(k)
(1)E

(n)
D (a, b1, · · · , bn; c, c′;x1, · · · , xn) =
∞∑

i1···in=0

(a)i1+···+in(b1)(i1) · · · (bn)(in)x
i1
1 · · ·xinn

(c)(i1+···+ik)(c′)(ik+1+···+in)i1! · · · in!
. (48)
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fγ(z) = K2z
−(1+

N∑
i=1

µi)
(

1 +
θ

zθ1

)−(µ+
N∑
i=1

µi

)
×(1)

(1) E
(2N)
D

[
µ+

N∑
i=1

µi,m, µ2 −m2, · · · , µN −mN ,m1, · · · ,mN ,

µ,

N∑
i=1

µi,
zθ1(λ− θ)
λ(θ + zθ1)

,
θ(θ2 − θ1)

θ2(θ + zθ1)
, · · · , θ(θN − θ1)

θN (θ + zθ1)
,
θ(λ1 − θ1)

λ1(θ + zθ1)
, · · · , θ(λN − θ1)

λN (θ + zθ1)

]
.

(43)

Fγ(z) = 1−K1

(
zθ1

θ + zθ1

) N∑
i=1

µi+µ

×(1)
(1) E

(2N+1)
D

[
N∑
i=1

µi + µ,m, 1, µ2 −m2, · · · , µN −mN ,m1, · · · ,mN , µ, 1 +

N∑
i=1

µi;

(λ− θ)zθ1

(θ + zθ1)λ
,

θ

θ + zθ1
,
θθ2 − θθ1

θ2(θ + zθ1)
, · · · , θθN − θθ1

θN (θ + zθ1)
,
θλ1 − θθ1

λ1(θ + zθ1)
, · · · , θλN − θθ1

λN (θ + zθ1)

]
.

(44)

Fγ(z) =

z
−

N∑
i=1

µi
θ

N∑
i=1

µi+m
Γ

[
N∑
i=1

µi + µ

]
λ−m

Γ[µ+ 1]Γ

[
N∑
i=1

µi

]
N∏
i=1

θµi−mii λmii

(
θ1z

θ + θ1z

)µ+
N∑
i=1

µi
(2)
(1)E

2N+1
D

[
µ+

N∑
i=1

µi, 1,m, µ2 −m2, · · · ,

µN −mN ,m1, · · · ,mN , µ+ 1,

N∑
i=1

µi,
θ1z

θ + θ1z
,
θ(λ− θ)z
λ(θ + θ1z)

,
θ(θ2 − θ1)

θ2(θ + θ1z)
, · · · , θ(θN − θ1)

θN (θ + θ1z)
,
θ(λ1 − θ1)

λ1(θ + θ1z)
, · · · , θ(λN − θ1)

λN (θ + θ1z)

]
.

(45)

Increase in
system parameter

Optimum
SU-Tx power (P̄s)

Ergodic MC rate
of SU (Csec/L)

Pp ↑ ↑
p0 ↑ ↑
γ0 ↓ ↓
M ↓ ↓
L − ↓

κp, if mp − µp > 0 ↑ ↑
κp, if mp − µp < 0 ↓ ↓

µp ↑ ↑
mp ↑ ↑

κp,s, if mp,s − µp,s > 0 ↓ ↓
κp,s, if mp,s − µp,s < 0 ↑ ↑

µp,s ↓ ↓
mp,s ↓ ↓

κs, if ms − µs > 0 − ↑
κs, if ms − µs < 0 − ↓

µs − ↑
ms − ↑

κs,p, if ms,p − µs,p > 0 − ↓
κs,p, if ms,p − µs,p < 0 − ↑

µs,p − ↓
ms,p − ↓

TABLE V: Table of variation in P̄s and Csec/L with
increase in different system parameters

Thus, (47) can be expanded as

∞∑
p1,··· ,p2N=0

(
µ+

N∑
i=1

µi

)
p1+···+p2N

(m)p1 (µ2 −m2)p2 · · ·

(µ)p1

(µN −mN )pN (m1)pN+1
· · · (mN )p2N(∑N

i=1 µi

)
p2+···+p2N

×
2N∏
i=1

xpii
pi!

,

(49)

where x1 = −zθ1(λ−θ)
λ(θ−zθ1) , xi = θ(θi−θ1)

θi(θ−zθ1) ; i = 2 · · ·N and

xi = θ(λi−θ1)
λi(θ−zθ1) ; i = N + 1 · · · 2N . Note that, for p1 6= 0,

we have lim
z→0

x1 = 0. Hence, at lim z → 0, only the terms
corresponding to p1 = 0 will remain with xi; i = 2, · · · , 2N
evaluated at z → 0. Similarly, if we now consider the ED(.)
term in the denominator (from the CDF expression), it has the
following series expansion :

∞∑
p1,··· ,p2N+1=0

(
µ+

N∑
i=1

µi

)
p1+···+p2N

(1)p1(m)p2 (µ2 −m2)p2

(µ+ 1)p1+p2

×
· · · (µN −mN )pN (m1)pN+1

· · · (mN )p2N(∑N
i=1 µi

)
p3+···+p2N

2N+1∏
i=1

xpii
pi!

,

(50)

where x1 = −zθ1
(θ−zθ1) ,x2 = θ(λ−θ)(−z)

λ(θ−θ1z) xi = θ(θi−θ1)
θi(θ−zθ1) ; i =

3 · · ·N + 1 and xi = θ(λi−θ1)
λi(θ−zθ1) ; i = N + 2 · · · 2N + 1.

Note that whenever p1 6= 0, p2 6= 0, lim
z→0

x1 = 0 and
lim
z→0

x2 = 0, respectively. Hence, at lim z → 0, only the
terms corresponding to p1 = p2 = 0 will remain with
xi; i = 3, · · · , 2N + 1 evaluated at z → 0. Now, note that
this set of remaining terms is the same for both the ED terms
in the numerator as well as the denominator. Hence, the ratio
of these terms evaluates to one. Thus, we have

lim
z→0

(−z)fγ(−z)
Fγ(−z)

= lim
z→0

(−z)fγ̂(z)

1− Fγ̂(z)
= µ. (51)
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Now we know that the asymptotic distribution of γ̂Kmax is
a reversed Weibull distribution, hence we conclude that the
asymptotic distribution of the minimum of K SIR RVs (γKmin)
is a Weibull distribution with shape parameter υ = µ and the
shape parameter aK as given in (9).

APPENDIX B
DERIVATION OF RATE OF CONVERGENCE

To prove the result in Theorem 2, we first define the δ-
neighborhood of generalized pareto distribution (GPD) for a
Weibull RV. Let the δ-neighbourhood be denoted by Q2(δ) and
the GPD for a Weibull RV be denoted by W{2,ν}. The Extreme
Value Distributions (EVDs) lies in the δ neighbourhood of one
of three GPD W{i,ν}; i = 1, 2, 3 with δ = 1 .

Definition 2. δ-neighborhood Q2(δ) of the GPD W{2,ν} [66]
is defined as Q2(δ) := {F : ω(F ) < ∞ and F has a density
f on [z0, ω(F )] for some z0 < ω(F ) such that for some
shape parameter ν > 0 and some scale parameter a > 0 on
[z0, ω(F )], we have,

f(z) =
1

a
W ′2,ν

(
z − ω(F )

a

)
(1+O((1−W2,ν(z−ω(F )))δ)},

(52)
where ω(F ) := sup{z ∈ R : F (z) < 1}. In fact the
GPD for the Weibull distribution is defined in [66] as
W2,ν = 1− (−z)ν ; −1 ≤ z ≤ 0 and using this, (52) can be
rewritten as

f(z) =
ν

a

(
−z + ω(F )

a

)ν−1 (
1 +O(((−z + ω(F ))ν)δ)

)
.

(53)

This definition says that, if a PDF f on [z0, ω(F )] for some
z0 < ω(F ) can be written in the form of (53), then the corre-
sponding CDF F belongs to the δ-neighborhood Q2(δ) of the
Weibull distribution8. The PDF of the RV γ̂ = −γ from [51]

is given by (54) , where K1 =
θ
(m+

N∑
i=1

µi)

Γ

[
µ+

N∑
i=1

µi

]
λmΓ[µ]Γ

[
N∑
i=1

µi

]
N∏
i=1

θ
µi−mi
i λ

mi
i

.

The E(2N)
D (.) term in (54) has the following series expansion

from [67]:

(1)
(1)E

(N)
D [a, b1, · · · , bN ; c, c′;x1, · · · , xN ] =

∞∑
p1,··· ,pN=0

(a)p1+···+pN

N∏
i=1

(bi)pi
N∏
i=1

xpii

(c)p1(c′)p2+···+pN p1! · · · pN !
. (55)

Using the above series expansion, we rewrite (54) as

8For a real or complex valued function g1(x) and a strictly positive real
valued function g2(x) both defined on some unbounded subset of R+, we
say g1(x) = O(g2(x)), iff ∃ M ∈ R+ and x0 ∈ R such that, |g1(x)| ≤
Mg2(x) ∀x ≥ x0.

fγ(z) = K1(−z)−µ
(

θ1

θ − zθ1

)(µ+
N∑
i=1

µi

)

∞∑
p1,··· ,p2N=0

(
µ+

N∑
i=1

µi

)
p1+···+p2N

(µ)p1
×

(m)p1
N∏
i=2

(µi −mi)pi
2N∏

i=N+1

(mi)pi(
N∑
i=1

µi

)
p2+···+p2N

2N∏
i=1

zpii
pi!

, (56)

where z1 = (λ−θ)(−z)θ1
λ(θ−zθ1) , zi = θ(θi−θ1)

θi(θ−zθ1) for i ∈ {2, · · ·N} and

zi = θ(λi−θ1)
λi(θ−zθ1) for i ∈ {N + 1, · · · , 2N}. We then expand the

2N fold summation in (56) into three terms: the first term with
all the iterating variables p1, p2, ..., p2N taking the value zero,
the second term with exactly one non-zero iterating variable
and the third term with the rest. By expanding, (56) becomes

the expression given in (60) where ρ = µ +
N∑
i=1

µi. Now, the

term
(

θ
θ−zθ1

)pj
present in Term b of (60) has the following

series expansion:(
θ

θ − zθ1

)pj
=1 +

pjθ1

θ
z +

θ2
1

(
pj + p2

j

)
2θ2

z2+(
2pj + 3p2

j + p3
j

)
θ3

1

6θ3
z3 +O

(
z4
)
. (57)

Similarly, the term
(
−zθ1
θ−zθ1

)p1
has the following series expan-

sion :(
−zθ1

θ − zθ1

)p1
=

(
−zθ1

θ

)p1 {
1 +

p1θ1z

θ
+
θ2

1

(
p1 + p2

1

)
z2

2θ2

+
θ3

1

(
2p1 + 3p2

1 + p3
1

)
z3

6θ3
+O

(
z4
)}

.

(58)

Thus, Term (a) will have all powers of z ≥ 1 and Term (b)
will have all powers of z ≥ 0. Similarly, we can see that Term
3 will have all powers of z ≥ 2. Thus, we can rewrite the pdf
expression as follows :

fZ(z) = K1(−z)−µ
(
1 +K2(−z) +O(−z)2

)
(59)

where K2 will be a term independent of z. Comparing (59)
with (53) and substituting ω(F ) = 0, we can observe that the
pdf of γ̂ belongs to the domain of attraction of the reversed
Weibull distribution with ν × δ = 1. Thus, we have δ = µ−1.

Now that we have identified the δ neighbourhood for Fγ(z),
we make use of the following lemma from [66] to conclude
the proof.

Lemma 2. Suppose that the CDF F (of i.i.d. RVs z1, · · · , zK)
is in the δ neighborhood Q2(δ) of the GPD W2,ν then
there obviously exist constant a > 0 such that f(z) =
1
aW

′
2,ν

(
z−ω(F )

a

)
(1+O((1−W2,ν(z−ω(F )))δ)}W2,ν(z))δ)
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fγ(z) = K1(−z)−µ
(

θ1

θ − zθ1

)(µ+
N∑
i=1

µi

)
×(1)

(1) E
(2N)
D

[
µ+

N∑
i=1

µi,m, µ2 −m2, · · · , µN −mN ,m1, · · · ,mN ;

µ,

N∑
i=1

µi;
−zθ1(λ− θ)
λ(θ − zθ1)

,
θ(θ2 − θ1)

θ2(θ − zθ1)
, · · · , θ(θN − θ1)

θN (θ − zθ1)
,
θ(λ1 − θ1)

λ1(θ − zθ1)
, · · · , θ(λN − θ1)

λN (θ − zθ1)

]
. (54)

fγ(z) =

(
K1(−z)−µ

(
θ1

θ − zθ1

)ρ){
1︸︷︷︸

Term 1

+

∞∑
p1=0

(ρ)p1(m)p1
(µ)p1p1!

(
(λ− θ)zθ1

λ(zθ1 + θ)

)p1
︸ ︷︷ ︸

Term a

+

2N∑
j=2

∞∑
pj=0

N∑
k=2

(ρ)pj (µk −mk)pj(
N∑
i=1

µi

)
pj

(zk)
pj +

2N∑
k=N+1

(ρ)pj (mk)pj(
N∑
i=1

µi

)
pj

(zk)
pj

︸ ︷︷ ︸
Term b︸ ︷︷ ︸

Term 2

+

∞∑
p1,··· ,p2N=0;

∃ i1,i2s.t pi1
pi2
6=0 ∀ i1 6=i2

(ρ)p1+···+p2N
(µ)p1

(m)p1
N∏
i=2

(µi −mi)pi
2N∏

i=N+1

(mi)pi
2N∏
i=1

z
pi
i

pi!(
N∑
i=1

µi

)
p2+···+p2N︸ ︷︷ ︸

Term 3


.

(60)

for all z in the left neighborhood of ω(W2,ν). Consequently
we have,

sup
B∈B

∣∣∣∣P(((MK

a

)
/Kν

)
∈ B

)
−Gν(B)

∣∣∣∣ =

O

((
1

K

)δ
+

1

K

)
, (61)

where B denotes the Borel σ algebra on R and MK =
max{z1, · · · , zK}.

Since the CDF Fγ(z) belongs to the δ neighborhood of
Q2(δ), by the previous lemma, the rate of convergence is
O
((

1
K

)δ
+ 1

K

)
with δ = µ−1 .
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