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Abstract—In this paper, we investigate the statistics of the free
space optics (FSO) communication channel between a hovering
unmanned aerial vehicle (UAV) and a central unit. Two unique
characteristics make UAV-based FSO systems significantly dif-
ferent from conventional FSO systems with static transceivers.
First, for UAV-based FSO systems, the incident laser beam is
not always orthogonal to the receiver lens plane. Second, both
position and orientation of the UAV fluctuate over time due
to dynamic wind load, inherent random air fluctuations in the
atmosphere around the UAV, and internal vibrations of the UAV.
On the contrary, for conventional FSO systems, the laser beam is
always perpendicular to the receiver lens plane and the relative
movement of the transceivers is limited. In this paper, we develop
a novel channel model for UAV-based FSO systems by quantify-
ing the corresponding geometric and misalignment losses (GML),
while taking into account the non-orthogonality of the laser beam
and the random fluctuations of the position and orientation of the
UAV. In particular, for diverse weather conditions, we propose
different fluctuation models for the position and orientation of
the UAV and derive corresponding statistical models for the
GML. We further analyze the performance of a UAV-based FSO
link in terms of outage probability and ergodic rate and simplify
the resulting analytical expressions for the high signal-to-noise
ratio (SNR) regime. Finally, simulations validate the accuracy
of the presented analysis and provide important insights for
system design. For instance, we show that for a given variance
of the fluctuations, the beam width should be properly adjusted
to minimize the outage probability.

I. INTRODUCTION

Recently, there has been a growing interest in unmanned
aerial vehicles (UAVs) for civil applications, such as deliver-
ing wireless access to remote regions or areas where a large
number of users is temporarily gathered, e.g., for a football
match or a live concert, and permanent infrastructure is not
available or is costly to deploy [2], [3]. In particular, UAVs
may hover above the desired area and operate as mobile
remote radio heads to assist the communication between the
users and a central unit (CU) [2].

For these applications, free space optics (FSO) commu-
nication has been considered as a promising candidate for
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fronthauling of the data gathered by the UAVs to the CU
[2], [4], [5]. FSO systems offer the large bandwidth needed
for data fronthauling, while FSO transceivers are relatively
cheap compared to their radio frequency (RF) counterparts
and easy to deploy [5], [6]. However, the quality of the
FSO link between a hovering UAV and a CU is negatively
affected by variations (jitters) of the position and orientation
of the UAV, which originate from several sources including
dynamic wind load, inherent random air fluctuations in the
atmosphere around the UAV, and internal vibrations of the
UAV caused by the rotation of its propellers. These variations
directly affect the performance of the tracking system, which
is responsible for aligning the beam with the receiver lens at
the CU [7]–[11]. Therefore, one important question is: How
well (stable) does a UAV have to maintain its position and
orientation in order to achieve a certain FSO link quality?
In this paper, we develop a mathematical framework for
answering this question by statistically characterizing the
geometric and misalignment losses (GML)1 caused by the
random fluctuations of the position and orientation of UAVs.

We note that even for conventional FSO systems with im-
mobile transceivers fixed at building tops, random fluctuations
of the positions of the transceivers occur due to building
sway, which leads to random GML, known as pointing errors
[12]–[14]. For this case, corresponding statistical models were
derived in [12] and [13]. However, UAV-based FSO systems
introduce the following new challenges: i) For conventional
FSO links, it is typically assumed that the laser beam is
orthogonal with respect to (w.r.t.) the receiver lens plane, as
orthogonality maximizes the amount of laser power collected
by the photo-detector (PD) located behind the lens [12].
However, orthogonality may not hold for UAV-based FSO
communication systems. For example, the position of a UAV
may depend on the locations and traffic needs of the users,
while the CU may not be able to adjust the orientation of
the receiver lens due to limited mechanical capabilities. In
addition, using one receiver lens and multiple PDs [15], [16],
the CU may receive data from several UAVs having different
positions. Hence, it is not possible to orthogonally align the
laser beams of all UAVs with the receiver lens plane. ii) Unlike

1 The receiver can only capture the fraction of power that falls on its lens.
This phenomenon is known as geometric loss. Moreover, misalignment of the
center of the optical beam and the center of the receiver lens further increases
the geometric loss. This phenomenon is known as misalignment loss [12].
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building sway, where the buildings exhibit limited movement
due to wind loads and thermal expansion, for UAV-based FSO
communication, both the position and orientation of the UAV
may fluctuate over time and have to be modeled as random
variables (RVs).

UAVs with FSO links have already been considered in the
literature [1]–[3], [17]–[22]. In particular, the authors of [2]
discussed the advantages and challenges of FSO fronthauling
in UAV-based networks. Moreover, the authors of [3], [17],
[18] studied a system consisting of several UAVs that were
connected with each other through FSO links. Specifically,
the authors of [17] presented a deterministic model for the
geometric loss, assuming that the laser beam is always orthog-
onal to the receiver’s lens plane. To the best of the authors’
knowledge, a statistical model for the GML of a UAV-
based FSO channel, which takes into account the fluctuations
of the UAV’s position and orientation as well as the non-
orthogonality of the laser beam w.r.t. the receiver lens plane,
has been reported first in the conference version of this paper
[1]. Later on, the authors of [19] derived a statistical model for
the GML assuming random UAV positions and orientations,
for the special case where the laser beam is orthogonal to the
receiver lens plane and the variances of the fluctuations of the
position (orientation) are identical for all directions. Moreover,
in recent work, the authors of [20]–[22] developed statistical
channel models for FSO links connecting different UAVs
assuming orthogonal beams. In particular, the authors of [20]
investigated the outage probability, which was defined as the
probability that the transmitting UAV falls out of the receiver’s
field-of-view (FoV) due to fluctuations of the orientation of
the receiving UAV. Moreover, in [21], [22], adaptive beam
control techniques were proposed to cope with the fluctu-
ations of the positions and orientations of the transmitting
and receiving UAVs. Unlike [2], [3], [17]–[22], we develop
statistical channel models for UAV-based FSO communication
systems that allow for non-orthogonal laser beams w.r.t. the
receiver lens plane and take into account various models for
the fluctuations of the position and orientation of the UAV. In
particular, this paper makes the following contributions:

• We derive the GML for a given position and orientation
of the UAV, which we refer to as conditional GML.
In particular, since obtaining a closed-form expression
for the conditional GML is difficult, if not impossible,
we first derive tight lower and upper bounds, and then
provide a closed-form approximation based on these
bounds.

• We consider the following three models for the random
fluctuations of the position and orientation of the UAV:
i) Independent Gaussian Fluctuations: Since the fluc-
tuations are in general the result of many contributing
factors, such as random air fluctuations in the atmosphere
around the UAV and internal vibrations of the UAV,
by invoking the central limit theorem, we model the
resulting fluctuations of the UAV as Gaussian distributed
random variables (RVs) [12], [13]. ii) Correlated Gaus-
sian Fluctuations: This more general model allows for

correlations that can be the result of e.g. wind causing
the UAV to have stronger fluctuations in a certain di-
rection. iii) Correlated Uniform Fluctuations: We also
consider uniformly distributed fluctuations which may
better model the characteristics of UAV fluctuations
with large variance than Gaussian distributed fluctuations
[23]–[25]. Independent Gaussian, correlated Gaussian,
and correlated uniform fluctuations are expected to be
suitable models for calm, weakly windy, and strongly
windy weather conditions, respectively.

• We derive novel statistical models for the GML for each
fluctuation scenario. Moreover, we simplify the derived
closed-form expressions for some special cases, e.g.,
when the beam is orthogonal to the receiver lens plane,
to obtain further insight.

• Based on the developed statistical GML models, we
analyze the performance of a UAV-based FSO link in
terms of outage probability and ergodic rate. In particu-
lar, we assume that the impact of the GML is dominant
compared to atmospheric turbulence induced fading. This
is a valid assumption when the distance between the UAV
and the CU is on the order of several hundred meters, as
is validated by simulations in Section VI, cf. Figs. 9 and
10. Next, we derive analytical expressions for the outage
probability and ergodic rate of the considered system
and analyze their asymptotic behavior for high signal-to-
noise ratios (SNRs) for the three statistical GML models.

• Simulations are used to validate our derivations and
show the impact of the system parameters, e.g., the non-
orthogonality of the optical beam, the variance of the
fluctuations, and the beam width, on system performance.
Our results reveal the existence of a trade-off between the
outage probability and the amount of the average (and
the maximum) power collected by the receiver. More
specifically, when the variance of the fluctuations is large,
a wider beam is preferable to avoid outages although
this decreases the average (and the maximum) power
collected at the receiver. On the other hand, when the
variance of the fluctuations is small, a narrower beam
is preferable since this increases the amount of power
collected by the receiver lens, see Fig. 8.

The remainder of this paper is organized as follows: The
system and channel models are presented in Section II. In
Section III, we develop the conditional GML model, and
in Section IV, we derive statistical GML models for three
different fluctuation scenarios. In Section V, we analyze the
performance of a UAV-based FSO link using the developed
channel models. In Section VI, we present simulation results,
and Section VII concludes the paper.

Notations: Boldface lower-case and upper-case letters are
reserved for vectors and matrices, respectively. E{·}, (·)T,
and ‖ · ‖ denote expectation, the transpose of a matrix, and
the l2-norm of a vector, respectively. R and R+ denote
the sets of real and positive real numbers, respectively. I
represents the identity matrix and diag{a1, . . . , an} denotes
a diagonal matrix with a1, . . . , an on its main diagonal. ln(·),
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UAV 1

UAV 2

Access Links
(e.g., sub-6 GHz)

Fronthaul Links (FSO) CU
Receiver Architecture

Receiver FoV

Receiver Lens

PD Array

Fig. 1. Proposed UAV-based communication system where the UAVs communicate with the mobile users via an RF multiple-access link and with the CU
via FSO fronthaul links. The CU is equipped with a lens placed in front of an array of PDs. This architecture yields a large FoV and enables the CU to
separate signals coming from different spatial angles (i.e., from one moving UAV at different positions or multiple UAVs at different locations).

erf(·), Q(·), and Q(·, ·) denote the natural logarithm, the error
function, the Gaussian Q-function, and the first-order Marcum
Q-function, respectively. a ∼ N (µ,Σ) is used to indicate
that a is a multivariate Gaussian random vector with mean
vector µ and covariance matrix Σ and b ∼ U(a, b) means
that RV b is uniformly distributed in interval [a, b]. Finally,
a · b and a× b denote the dot and cross products of vectors
a and b, respectively.

II. SYSTEM AND CHANNEL MODELS

A. System Model
We consider a UAV-based uplink transmission where the

UAV communicates with mobile users via an RF multiple-
access link (e.g., using sub-6 GHz bands) and with the CU
via an FSO fronthaul link, see Fig. 1. The focus of this paper
is on the fronthaul communication between the UAV and the
CU. In particular, we assume that the UAV is equipped with
an aperture FSO transmitter pointing towards the CU, which
detects the received optical power. To avoid the requirement
of a mechanical adjustment of the orientation of the receiver
at the CU, we assume that the receiver is equipped with a lens
placed in front of an array of PDs [15], [16], [26], cf. Fig. 1.
The lens separates the signals coming from different spatial
angles and focuses them on corresponding PDs, respectively.
The large overall FoV of the PD array enables the CU to
receive data when a moving UAV is at different positions.
Moreover, this architecture allows the CU to simultaneously
receive data from multiple UAVs which are spatially separated
but are still within the receiver FoV [16]. The overall receiver
FoV and the FoV of the individual PDs are design parameters
which depend on the specific implementation [15], [16]. As
mentioned before, the main goal of this paper is to develop
a mathematical framework that models the impact of the
fluctuations of the position and orientation of a hovering UAV
on the FSO channel quality. Therefore, we assume an ideal
PD array where one of the PDs is able to collect the entire
optical power flux into the receiver lens (albeit with a fixed
efficiency/responsivity factor, see Section II-B).

To characterize an object in three dimensions, at most six
independent variables are needed: three variables to specify

the position of a reference point of the object and another
three to quantify its orientation. Next, we define the position
and orientation of the UAV and the CU.

1) CU: The CU is a fixed node located at the top of a
building2. Without loss of generality, we choose the center
of the receiver lens as the reference point, which is located
in the origin of the Cartesian coordinate system (x, y, z) =
(0, 0, 0). This coordinate system is referred to as Coordinate
System 1, cf. Fig. 2. Moreover, we assume a circular lens of
radius r0. Note that it suffices to characterize the plane where
the receiver lens lies in order to specify its orientation. Here,
without loss of generality, we assume that the lens lies in the
y − z plane at x = 0.

2) UAV: For the communication system under considera-
tion, the parameters that directly affect the FSO channel are
the position of the laser source of the UAV and the direction
of the laser beam. Therefore, without loss of generality, we
refer to them as the position and orientation of the UAV,
respectively. Furthermore, we assume that the UAV is in the
hovering state. However, in practice, the position and orienta-
tion of the UAV are not perfectly constant in the hovering state
[27]–[29] and thus, they are modeled as RVs. In particular,
let r = (rx, ry, rz) and ω = (θ, φ, ℘) denote the vectors
containing the random position and orientation variables of
the UAV, respectively. Without loss of generality, in order
to simplify the analysis, we define vector r w.r.t. Coordinate
System 1, whereas we use the following coordinate system
for ω: For a given vector r, we define Coordinate System 2
with r as its origin and axes x′, y′, and z′ that are parallel to
the x, y, and z axes of Coordinate System 1, respectively, cf.
Fig. 2. We use variables θ and φ to determine the direction
of the laser beam in a spherical representation of Coordinate
System 2. In particular, θ ∈ [0, 2π] denotes the angle between
the projection of the beam vector onto the x′ − y′ plane and
the x′ axis; and φ ∈ [0, π] represents the angle between the

2The CU may not be stable due to building sway [12], [13]. Nevertheless,
since only the relative movement of UAV and CU affects the FSO channel
quality, we assume that the CU is fixed and only the UAV moves. Note that,
in practice, the movement of the CU is negligible compared to the movement
of the UAV.
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Fig. 2. CU and UAV coordinate systems.

beam vector and the z′ axis. The third orientation variable ℘
is used to quantify the rotation around the beam vector. This
representation of the orientation variables has two advantages.
First, variable ω does not change if position r changes, i.e., the
position and orientation variables are independent. Second, a
rotation around the beam line does not affect the signal at the
PD assuming rotational beam symmetry. Therefore, the value
of ℘ is irrelevant for the analysis, and hereafter, for simplicity,
we drop ℘ and use ω = (θ, φ) as the random vector of the
orientation variable.

B. FSO Channel Model

We assume an intensity modulation/direct detection
(IM/DD) FSO system, where the PD responds to changes in
the received optical signal power [4]. Moreover, we assume
that noise caused by background illumination is the dominant
noise source at the PD [4], [30]. Hence, in our model, the
noise is independent from the signal. The received signal at
the CU is given by

ys = hxs + n, (1)

where xs ∈ R+ is the transmitted optical symbol (intensity),
n ∈ R is the zero-mean real-valued additive white Gaussian
shot noise with variance σ2

n caused by background illumi-
nation at the CU, and h ∈ R+ denotes the FSO channel
coefficient. Moreover, we assume an average power constraint
E{xs} ≤ P . The FSO channel coefficient, h, is affected by
several phenomena and can be modeled as [12]

h = ηhphahg, (2)

where η is the responsivity of the PD and hp, ha, and
hg represent the atmospheric loss, atmospheric turbulence
induced fading, and GML, respectively. In particular, the
atmospheric loss, hp, is deterministic and represents the power
loss over a propagation path due to absorption and scattering

of the light by particles in the atmosphere. It is modeled as
[31], [32]

hp = 10−κL/10, (3)

where L is the distance between the UAV and the CU
and κ [m−1] denotes the weather-dependent attenuation
constant of the FSO link. For clear air, haze, light fog,
moderate fog, and heavy fog, the typical values of κ are
{0.43, 4.2, 20, 42.2, 125} × 10−3 m−1, respectively [32].

The atmospheric turbulence, ha, is an RV and induced by
inhomogeneities in the temperature and the pressure of the
atmosphere. It is typically modeled as log-normal (LN) and
Gamma-Gamma (GG) distributed RV for weak and moderate-
to-strong turbulence conditions [12], respectively. For the
considered system, the distance between the UAV and the
CU is typically on the order of several hundred meters. In
this regime, the atmospheric turbulence is moderate and its
impact is negligible compared to that of the GML. To verify
this claim, let us consider the pessimistic GG fading model,
i.e., ha ∼ GG(α, β), with fading parameters α and β [33].
In particular, for GG fading, ha is modeled as the product
of two independent Gamma random variables h(1)

a ∼ G(α, α)

and h
(2)
a ∼ G(β, β), which represent irradiance fluctuations

arising from large- and small-scale turbulences, respectively
[33]. Parameters α and β are the inverse of the variances of
h

(1)
a and h(2)

a , respectively, and are given by [13]

α =

[
exp

(
0.49σ2

R(
1+1.11σ

12/5
R

)7/6

)
− 1

]−1

,

β =

[
exp

(
0.51σ2

R(
1+0.69σ

12/5
R

)5/6

)
− 1

]−1

. (4)

In (4), σ2
R = 1.23C2

nk
7/6L11/6 is the Rytov variance,

k = 2π/λ, where λ [m] denotes the optical wavelength,
and C2

n ≈ C2
0 exp

(
− hd

100

)
[m−

2
3 ] is the index of refraction
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structure parameter, where hd is the operating height of the
UAV and C2

0 = 1.7 × 10−14 m−
2
3 is the nominal value of

the refractive index at the ground [13]. For typical system
parameters, the variance of ha, i.e., 1

α + 1
β + 1

αβ , is very
small (e.g., 3 × 10−2 for L = 500 m, hd = 120 m, and
λ = 1550 nm). Therefore, we approximate ha by its mean
value, i.e., ha ≈ E{ha} = E{h(1)

a }E{h(2)
a } = α

α ×
β
β = 1.

We verify this assumption by simulations in Section VI, cf.
Figs. 9 and 10.

The GML, hg , is caused by the divergence of the optical
beam between the transmitter and the receiver lens and the
misalignment of the laser beam line and the center of the
lens [4], [32]. Fluctuations of the position and orientation of
the UAV lead to a random GML, hg . In the following, we first
derive a conditional model for the GML and then, we develop
statistical models for independent Gaussian, correlated Gaus-
sian, and uniformly distributed fluctuations.

III. THE CONDITIONAL GML MODEL

In this section, we derive the channel parameter hg for a
given state of the UAV, i.e., for given r and ω.

A. Center of the Beam Footprint

The line of the beam can be represented in Cartesian
Coordinate System 1 as

(x, y, z) = r + d, (5)

where  is an arbitrary real number and d = (dx, dy, dz)
denotes the beam direction, which can be written as a function
of θ and φ as

d =
(

sinφ cos θ, sinφ sin θ, cosφ
)
. (6)

The center of the beam footprint on the receiver lens can be
obtained as the intersection point of the line of the laser beam
and the lens plane, x = 0. Denoting the center of the footprint
of the beam on the lens as b = (bx, by, bz), then

b =
(

0, ry − rx tan θ, rz − rx
cotφ

cos θ

)
. (7)

B. Power Density on the Lens Plane

We assume a Gaussian beam, which dictates that the power
density distribution across any plane perpendicular to the
direction of the wave propagation follows a Gaussian profile
[4], [12]. In particular, we consider a perpendicular plane
where the distance between the center of the beam footprint
on the plane and the laser source is denoted by L. Then, the
power density for any point on this perpendicular plane with
distance l from the center of the beam footprint is given by
[12]

Iorth(l;L) =
2

πw2
L

exp

(
−2l2

w2
L

)
, (8)

where wL [m] is the beam width at distance L and can be
evaluated as

wL = w0

√
1 +

(
1 +

2w2
0

ρ2(L)

)(
λL

πw2
0

)2

. (9)

For the case where the beam propagates in the x direction,
l =

√
ỹ2 + z̃2 holds where ỹ = y − by and z̃ = z − bz .

In (9), w0 [m] denotes the beam waist radius and ρ(L) =
(0.55C2

nk
2L)−3/5 [m] is referred to as the coherence length.

Recall that for the problem at hand, the plane of the receiver
lens is not necessarily orthogonal to the beam direction. For
this case, the power density on the lens plane, denoted by
I(y, z), is given in the following lemma.

Lemma 1: Under the mild conditions ‖r‖ � ‖b‖ and
‖r‖ � ‖(y, z)‖, the power density at point (y, z) on the PD
plane is given by

I(y, z)= sinψIorth
(
l(ω, y, z);L(r)

)
=

2 sinψ

πw2
L

exp
(−2

w2
L

(ρy ỹ
2 + ρz z̃

2 + 2ρyz ỹz̃)
)
, (10)

where ψ = sin−1(sinφ cos θ) is the angle between the beam
line and the lens plane, l(ω, y, z) =

√
ρy ỹ2 + ρz z̃2 + 2ρyz ỹz̃,

L(r) = ‖r‖, and Iorth(·; ·) is given by (8). Moreover,
ρy = cos2 φ + sin2 φ cos2 θ, ρz = sin2 φ, and ρyz =
− cosφ sinφ sin θ.

Proof: The proof is given in Appendix A.
Note that the conditions under which (10) holds are met in

practice since, for typical FSO links, ‖r‖ is on the order of
several hundred meters, whereas ‖b‖ and ‖(y, z)‖ are on the
order of a few centimeters.

C. GML

The fraction of power collected by the receiver lens, de-
noted by hg(r,ω), can be obtained by integrating the power
density derived in Lemma 1 over the lens area. This leads to

hg(r,ω) =

∫∫
(y,z)∈A

I(y, z)dydz, (11)

where I(y, z) is given in (10) and A =
{

(y, z)|y2 + z2 ≤ r2
0

}
is the set of (y, z) within the lens area. The exact value of the
integral in (11) cannot be obtained in closed form. Instead,
in the following theorem, we provide an upper and a lower
bound on hg(r,ω).

Theorem 1: Using Lemma 1, hg(r,ω) can be lower and
upper bounded by

hlow
g (r,ω) =

2 sinψ

πw2
L

∫∫
(y,z)∈A

exp

(
− 2

w2
L

(
(y − u)2 + sin2 φ cos2 θz2

))
dydz (12a)

and

hupp
g (r,ω) =

2 sinψ

πw2
L

∫∫
(y,z)∈A
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Fig. 3. Beam footprint on the receiver lens plane and the footprints that are
used to derive the upper and lower bounds for the GML.

exp

(
− 2

w2
L

(
sin2 φ cos2 θ(y − u)2 + z2

))
dydz, (12b)

respectively. Here, u = ‖b‖ denotes the distance between
the origin and the center of the beam footprint, i.e., the
misalignment.

Proof: The proof is given in Appendix B.
Remark 1: We use Fig. 3 to illustrate the basic idea behind

the upper and lower bounds proposed in Theorem 1. In partic-
ular, unlike the case where the optical beam is orthogonal to
the lens plane and the power density contours are circles [12],
when the optical beam is non-orthogonal to the lens plane,
the power density contours are rotated ellipses, e.g., the red
ellipse in Fig. 3. We have derived the lower bound assuming
a footprint that is a rotated ellipse, whose major axis is
perpendicular to the line connecting the center of the footprint
and the origin, i.e., the green ellipse in Fig. 3. Moreover, for
the upper bound, the footprint is a rotated ellipse, whose minor
axis is perpendicular to the line connecting the center of the
footprint and the origin, i.e., the purple ellipse in Fig. 3. In
the special case where the major (minor) axis of the original
power density contour is perpendicular to the line connecting
the center of the footprint and the origin, the lower (upper)
bound is identical to the exact GML.

The integrals in (12) cannot be evaluated in closed-form.
Even for the case where the beam line is orthogonal to the
lens plane (as is the case for conventional FSO systems [12]),
the exact value of hg(r,ω) is cumbersome and provides
little insight. Therefore, in [12], the authors proposed an
approximation for conventional FSO systems, which was
shown to be very accurate for wL

r0
≥ 6 and has been widely

used by other authors subsequently [13], [14], [19], [34]. The
proposed bounds in Theorem 1 have two main advantages.
First, for the special case where the beam line is orthogonal
to the lens plane, the upper and lower bounds coincide with
the exact hg(r,ω). Second, the form of the integrals in (12)
allows to employ the same technique as in [12, Appendix]
in order to obtain accurate approximations. In particular, as
shown in detail in Appendix C, we approximate hlow

g (r,ω)

and hupp
g (r,ω) in (12) with h̃low

g (r,ω) and h̃upp
g (r,ω), re-

spectively, as follows

h̃low
g (r,ω) = A0 exp

(
− 2u2

t1w2
L

)
(13a)

h̃upp
g (r,ω) = A0 exp

(
− 2u2

t2w2
L

)
, (13b)

where t1 =
√
πerf(ν1)

2ν1 exp(−ν2
1 )

, ν1 = r0
wL

√
π
2 , t2 =

√
πerf(ν2)

2ν2 exp(−ν2
2 ) sin2 φ cos2 θ

, and ν2 = ν1| sinφ cos θ|. Moreover,
A0 denotes the maximum fraction of optical power captured
by the receiver lens at u = 0 and is given by

A0 = erf(ν1)erf(ν2). (14)

Note that A0 is inversely proportional to wL
r0

, which means
that, as expected, the wider the beam footprint w.r.t. the lens is,
the smaller the amount of power that can be collected by the
lens. The only difference between the approximated lower and
upper bounds in (13) are the factors t1 and t2. This motivates
us to propose the following approximation for the GML

hg(r,ω) ≈ A0 exp

(
− 2u2

tw2
L

)
, (15)

where t ∈ [t1, t2]. In (15), hg(r,ω) comprises two
parts, namely A0, which affects the geometric loss and
exp

(
− 2u2

tw2
L

)
, which represents the misalignment attenuation

when u 6= 0.
In the following, instead of considering the approximate

upper and lower bounds in (13), we employ the general
approximation in (15) for statistical analysis. One can choose
t in (15) equal to t1 and t2 to obtain the lower and upper
bounds, respectively. Alternatively, t can be chosen as the
arithmetic mean t1+t2

2 or the geometric mean
√
t1t2 to

compromise between the lower and upper bounds. Our results
in Section VI show that the approximation in (15) yields an
accurate approximation of hg(r,ω) for both t = t1+t2

2 and
t =
√
t1t2 for the practical range of system parameters, cf.

Fig. 4.

IV. STATISTICAL MODELS FOR THE GML

In (15), we provided an approximate closed-form expres-
sion for the GML hg(r,ω) for given values of r and ω. How-
ever, in practice, the position and orientation of a hovering
UAV fluctuate randomly, and hence, r and ω are RVs. In the
following, we first present three fluctuation scenarios for RVs
r and ω and then derive the corresponding statistical GML
models.

A. Models for the Random Position and Orientation Fluctu-
ations of the UAV

As mentioned above, the position and orientation of the
UAV randomly fluctuate over time. In other words, a hovering
UAV is not perfectly stable [17]. Therefore, an active control
mechanism is needed to persistently keep the laser beam and
the receiver lens aligned (see [7]–[9], [11]). For ideal tracking,
the center of the beam footprint coincides with the center
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of the receiver lens, i.e., u = 0. Nevertheless, in practical
systems, misalignment due to tracking errors exists for several
reasons. For instance, the control system requires some time to
compensate for a misalignment or this system is not perfectly
accurate, while compensating for a misalignment. Moreover,
in UAVs, there is an error associated with wind estimation,
i.e., the power and direction of wind [28], and therefore, the
impact of wind cannot be fully compensated. In fact, tracking
errors exist even in conventional FSO systems, where the
transceivers are mounted on top of buildings and misalignment
originates from building sway. However, for UAV-based FSO
links, such tracking errors are expected to be more severe,
due to the inherent instability of hovering UAVs. Therefore,
for the development of a channel model for UAV-based FSO
links, statistical models for the position and orientation of the
UAV are needed.

Let us define vectors µr = (µx, µy, µz) and µω =
(µθ, µφ), which denote the means of random vectors r and ω,
respectively. Furthermore, we define the zero-mean random
vectors εr = (εx, εy, εz) and εω = (εθ, εφ) to model the
fluctuations of the position and orientation of the UAV,
respectively. Therefore, the position and orientation of the
UAV are respectively given by

r = µr + εr and ω = µω + εω. (16)

Since the GML is a function of εr and εω , the distribution
of εr and εω determines the distribution of the GML. Hence,
adopting appropriate distributions for fluctuations εr and εω
is important for developing a realistic statistical model for
the GML. Hereby, independent Gaussian, correlated Gaussian,
and correlated uniformly distributed fluctuations may serve as
models for calm, weakly windy, and strongly windy weather
conditions, respectively. In the following, we discuss the first
and second moments of RVs r and ω.

1) First Moments of RVs: Since the UAV is supposed to
hover above the area where the users are located, µr depends
on the location of the users as well as the desired operating
height of the UAV. Given µr, the tracking system of the
UAV initially aims to determine µω such that the beam line
intersects with the center of the receiver lens, i.e., the origin,
such that the lens collects the maximum power. This leads to

µθ =

{
π + tan−1

(µy
µx

)
if µx > 0

tan−1
(µy
µx

)
otherwise,

and

µφ = π − cos−1

(
µz√

µ2
x + µ2

y + µ2
z

)
. (17)

In other words, E{b} = (0, 0, 0).
2) Second Moments of RVs: The second moments of r

and ω determine how well the UAV is able to maintain its
position and orientation around the mean values µr and µω ,
respectively. In particular, the smaller the variances of the
elements of vectors r and ω are, the more stable the UAV
is. Hence, we consider the variances of the position and
orientation of the UAV as a measure for the stability of the
UAV and subsequently evaluate the performance of the FSO

fronthaul link in terms of this measure.

B. Statistical GML Model for Independent Gaussian Fluctu-
ations

Position and orientation of a hovering UAV fluctuate around
their mean values even in calm weather conditions, i.e., in
the absence of wind. These fluctuations are the result of
many factors such as inherent random air fluctuations in the
atmosphere around the UAV and the internal vibrations of the
UAV due to e.g. the rotation of its propellers. Hence, invoking
the central limit theorem, we model the resulting position and
orientation fluctuations of the UAV as Gaussian distributed
RVs. Moreover, we assume that the fluctuations are indepen-
dent. We note that this is inline with the independent Gaussian
fluctuations assumed for derivation of the statistical model for
the geometric spread and pointing error due to building sway
for conventional FSO links [12], [13]. Fluctuations εr and εω
are modeled as zero-mean Gaussian random vectors, i.e.,

εr = εIG
r ∼ N (0,QIG

r ) and εω = εIG
ω ∼ N (0,QIG

ω ), (18)

where the elements of εIG
r = (εIGx , εIGy , εIGz ) and εIG

ω =
(εIGθ , εIGφ ) are independent Gaussian RVs. Moreover, co-
varinace matrices QIG

r and QIG
ω are defined as QIG

r =
diag{σ2

x, σ
2
y, σ

2
z} and QIG

ω = diag{σ2
θ , σ

2
φ}, where σ2

s , s ∈
{x, y, z, θ, φ}, is the variance of the fluctuation of component
s.

The PDF of the GML can be derived by combining (15)-
(18). Note that in (15), A0, t, and u are RVs since A0 and
t depend on RV ω, and u depends on both RVs r and ω.
However, the variances of A0 and t are several orders of
magnitude smaller than the variance of u. The reason for this
is that a small variation in ω, e.g., on the order of mrad,
has a significant impact on u =

√
b2y + b2z since the impact

of this variation on by and bz in (7) is scaled by rx which
typically has a comparatively large value (on the order of
several hundred meters). On the other hand, the impact of
variations in ω on A0 and t is not scaled by rx. Therefore, the
fluctuations of hg(r,ω) are mainly caused by the variations
of the misalignment, u. Hence, in the following, we assume
that the values of A0 and t are approximately constant and
obtained for the average values of the position and orientation
of the UAV, i.e., µr and µω . In Section VI, we confirm
this assumption via simulations, cf. Figs. 5-10. In addition,
as shown in Appendix D, u follows a Nakagami-q (Hoyt)
distribution. Based on (15), the relationship between the PDF
of hg and u, denoted by fhg (·) and fu(·), respectively,
is given by

fhg (h) =

√
tw2

L

2
√

2h
√

ln
(
A0

h

)fu
(√

tw2
L

2
ln

(
A0

h

))
. (19)

In the following theorem, we derive the distribution of hg for
small σ2

s , s ∈ {x, y, z, θ, φ}.
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Theorem 2: Assuming σs → 0, s ∈ {x, y, z, θ, φ}, the PDF
of hg is given by

fhg (h) =
$

A0

(
h

A0

) (1+q2)$
2q −1

×

I0

(
− (1− q2)$

2q
ln

(
h

A0

))
, 0 < h ≤ A0, (20)

where $ =
(1+q2)tw2

L

4qΩ is a constant and I0(·) is the zero-
order modified Bessel function of the first kind. Moreover,
q =

√
min{λ1,λ2}
max{λ1,λ2} and Ω = λ1 +λ2, where λ1 and λ2 are the

eigenvalues of matrix ΣIG, which is given by

ΣIG =

[
σ2
y + c21σ

2
x + c22σ

2
θ c1c5σ

2
x + c2c4σ

2
θ

c1c5σ
2
x + c2c4σ

2
θ σ2

z + c23σ
2
φ + c24σ

2
θ + c25σ

2
x

]
.(21)

In (21), c1 = − tanµθ, c2 = − µx
cos2 µθ

, c3 = µx
sin2 µφ cosµθ

,
c4 = −µx cotµφ tanµθ

cosµθ
, and c5 = − cotµφ

cosµθ
are constants.

Proof: The proof is given in Appendix D.
Note that the PDF of fhg (h) in (20) has an indeterminate
form at h = 0. Its value can be found for q 6= 1 as

lim
h→0

fhg (h)
(a)
= lim
h→0

√
q$√

π(1− q2)A0

[
ln

(
A0

h

)]− 1
2

×
(
h

A0

)q$−1

=

{
0, q$ ≥ 1

∞, q$ < 1,
(22)

where for equality (a), we used lim
z→∞

I0(z) = exp(z)√
2πz

[35,
Eq. (9.7.1)]. In fact, (22) shows that for a wider beam and
smaller variances of the fluctuations, for which q$ ≥ 1 is met,
the channel quality becomes better since the probability of
small channel coefficient values approaches zero. On the other
hand, having a wide beam reduces the maximum fraction of
power collected by the receiver lens, A0, cf. (14). Therefore,
there is a trade-off between A0 and q$ when choosing
the beam width (beam divergence angle). In the following
corollary, we investigate the special case when the beam is
perpendicular w.r.t. the lens plane.

Corollary 1: When the laser beam is perpendicular w.r.t.
the lens plane, i.e., µy = µz = 0, µθ = π, and µφ = π/2,
ΣIG is given by

ΣIG =

[
σ2
y + µ2

xσ
2
θ 0

0 σ2
z + µ2

xσ
2
φ

]
, (23)

which has eigenvalues λ1 = σ2
y +µ2

xσ
2
θ and λ2 = σ2

z +µ2
xσ

2
φ.

Hereby, assuming σ2
y = σ2

z , σ2
p and σ2

θ = σ2
φ , σ2

o leads to
q = 1 and RV u is Rayleigh distributed [12]. Therefore, the
PDF of hg simplifies to

fhg (h) =
$

A0

(
h

A0

)$−1

, 0 ≤ h ≤ A0, (24)

where $ =
tw2
L

4(σ2
p+µ2

xσ
2
o) .

Proof: The proof follows by substitution of q = 1 and
Ω = 2(σ2

p + µ2
xσ

2
o) into (20).

Depending on the value of $, the PDF of the GML in

(24) shows the following behavior. i) If $ > 1 holds, the
probability of small channel coefficients becomes very small,
i.e., lim

h→0
fhg (h) = 0. As a special case when the UAV is

fully stable, i.e., σp = σo = 0 leading to $ → ∞, random
fluctuations are not present anymore and the GML becomes
a deterministic function of the given position and orientation
of the UAV. In other words, the PDF of the GML becomes
a Dirac function at A0, i.e., fhg (h) = δ(h − A0). ii) If
$ = 1 holds, the GML is uniformly distributed in [0, A0],
i.e., fhg (h) = 1

A0
. iii) If $ < 1 holds, the channel quality

deteriorates and the probability of small channel coefficients
becomes very large, i.e., lim

h→0
fhg (h) = ∞. Recall that for

the non-orthogonal case in (22), when q 6= 1, we have two
cases lim

h→0
fhg (h) ∈ {0,∞} depending on the value of q$;

whereas for the orthogonal case, q = 1, we have three cases
lim
h→0

fhg (h) ∈ {0, 1
A0
,∞} depending on the value of $.

The simplified matrix ΣIG in (23) reveals that the GML
is much more sensitive to the variance of the orientation, σ2

o ,
than to the variance of the position, σ2

p, since σ2
o is scaled

by the average distance between the UAV and the CU, i.e.,
E{‖r‖} = µx. Another interesting observation from (23) is
that the variation of the position and orientation of the UAV
along the x axis does not affect the GML since σ2

x does not
appear in (23). The reason for this is that, since the beam
is orthogonal to the receiver lens plane, the optical beam
propagates along the x axis, and therefore, small changes
of the position of the UAV in x direction do not affect the
power collected by the PD. Finally, we note that despite the
presence of both position and orientation fluctuations, (24) has
a similar form as the geometric spread and the pointing error
in conventional FSO systems where only position fluctuations
are present [12], [13].

C. Statistical GML Model for Correlated Gaussian Fluctua-
tions

Now, we consider the case where there is a weak wind
along a specific direction denoted by v = (vx, vy, vz). In this
scenario, it is expected that the wind causes larger fluctuations
of RV r along the direction of v. Similarly, depending on the
geometry of the UAV3, the wind may cause larger fluctuations
of ω in a certain direction, denoted by τ = (τθ, τφ). Hence,
we model the fluctuations of r and ω as correlated Gaussian
RVs. Note that the total fluctuations are the result of both
independent and correlated Gaussian distributed variations. In
particular, the fluctuations are modeled as

εr = εIG
r + εCG

r ∼ N (0,QIG
r + QCG

r ) and
εω = εIG

ω + εCG
ω ∼ N (0,QIG

ω + QCG
ω ). (25)

Here, εCG
r = (εCG

x , εCG
y , εCG

z ) denotes a random vector
with correlated Gaussian distributed elements that models the

3For a perfect spherical object, due to symmetry, the force applied on
its surface by wind does not create rotational forces. However, for practical
UAV geometries, the impact of the wind force will be dominant in a certain
direction which causes rotational forces. The exact direction of the rotational
force depends on the object geometry and the direction of the wind and
cannot be specified a priori.
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fluctuation of the position of the UAV due to the wind. In par-
ticular, we model εCG

r as εCG
r = δGv, where δG ∼ N (0, ζ2)

denotes a zero-mean normal RV with variance ζ2. Moreover,
QCG

r = ζ2vTv is the covariance matrix of εCG
r . Similarly,

we have εCG
ω = (εCG

θ , εCG
φ ) = δGτ and its covariance matrix

is given by QCG
ω = ζ2τTτ 4. We note that similar to the

independent Gaussian fluctuation model, for the correlated
Gaussian fluctuation model, u follows a Nakagami-q (Hoyt)
distribution, cf. Appendix E. In the following theorem, we
derive the PDF of hg .

Theorem 3: Assuming σs → 0, s ∈ {x, y, z, θ, φ} and ζ →
0, hg follows the PDF in (20) if matrix ΣIG is replaced by
ΣT = ΣIG + ΣCG, where ΣCG is given by

ΣCG = ζ2

[
c26 c6c7
c6c7 c27

]
. (26)

Here, c6 = vy + vxc1 + τθc2, c7 = vz + vxc5 + τφc3 + τθc4,
and constants c1-c5 are defined in Theorem 2.

Proof: The proof is given in Appendix E.
In the following, we consider the special case where the

impact of the wind on the fluctuations of r and ω is dominant,
i.e., Tr{ΣCG} ≥ Tr{ΣIG}. In this case, u follows a one-sided
Gaussian distribution given in Appendix F.

Corollary 2: For the special case, where the impact of wind
is dominant, the PDF of hg simplifies to

fhg (h) =

√
$√
πA0

[
ln

(
A0

h

)]− 1
2
(
h

A0

)$−1

, 0 ≤ h ≤ A0, (27)

where $ =
tw2
L

4ζ2(c26+c27)
.

Proof: The proof is given in Appendix F.
For small channel coefficients, i.e., h → 0, the PDF

in (27) has the following transient behavior: If $ ≥ 1,
lim
h→0

fhg (h) = 0 and if $ < 1, lim
h→0

fhg (h) = ∞ which is
similar to the behavior in the independent Gaussian case, cf.
(22). Moreover, lim

h→A0

fhg (h) = ∞ holds which is different

from the independent Gaussian and general correlated Gaus-
sian cases where lim

h→A0

fhg (h) = $
A0

is bounded for q 6= 0,

cf. (20).

D. Statistical GML Model for Correlated Uniform Fluctua-
tions

If strong wind is present, the fluctuations of the position
and orientation of the UAV are relatively large compared to
those for calm and weakly windy weather conditions. On the
other hand, for practical UAVs, it is reasonable to assume
that despite being large, the fluctuations are bounded. In this
case, assuming a Gaussian distribution for the fluctuations is
not appropriate. Instead, the uniform distribution is a better
model for the fluctuations of the position and orientation of the
UAV. Note that in the absence of prior knowledge, the uniform
distribution is a widely-adopted choice for bounded RVs, see
e.g., the application of the uniform distribution for robustness

4For notational consistency, we assume that the unit of δG is meter. This
implies that v is unitless and the unit of τ is rad.m−1.

analysis in [23], uncertainty analysis in [24], and worst-case
analysis in [25]. Similar to Section IV-C, we assume that
the UAV position and orientation fluctuations are stronger
in a certain direction which may be caused by e.g. wind.
Furthermore, we assume that the effect of the wind is the
dominant source of the fluctuations. More specifically, the
fluctuations of r and ω are modeled as

εr = εCU
r and εω = εCU

ω , (28)

where εCU
r = (εCU

x , εCU
y , εCU

z ) denotes the fluctuation of
position of the UAV due to strong wind and is given by
εCU
r = δUv, where δU ∼ U

(
−
√

3ξ,
√

3ξ
)

is a zero-mean
uniformly distributed RV with variance ξ. Similarly, εCU

ω =
(εCU
θ , εCU

φ ) = δUτ denotes the fluctuation of the orientation
of the UAV caused by wind in a specific direction τ . In
this case, the misalignment, u, follows a uniform distribution,
u ∼ U

(
0,
√

3(c26 + c27) ξ
)

, cf. Appendix G. The following
theorem provides the PDF of the GML for correlated uniform
fluctuations.

Theorem 4: Assuming ξ → 0, the PDF of hg is given by

fhg (h) =
α1

h
√

ln
(
A0

h

) , h1 ≤ h ≤ A0, (29)

where α1 =
√

tw2
L

24(c26+c27)ξ2 and h1 = A0 exp
(
− 6(c26+c27)ξ2

tw2
L

)
.

Proof: The proof is given in Appendix G.
We note that PDF fhg (h) assumes large values at h = A0,
i.e., lim

h→A0

fhg (h) =∞.

V. PERFORMANCE ANALYSIS

In this section, we analyze the outage probability and
ergodic rate of the considered UAV-based FSO system.

A. Outage Probability

The outage probability is defined as the probability that the
SNR, denoted by γ, falls below a predefined threshold, γthr.
For the channel model in (1), the SNR is defined as γ =
η2h2

ph
2
gγ̄ where γ̄ = P 2

σ2
n

is the transmit SNR. Therefore, the
outage probability is obtained as a function of the cumulative
distribution function (CDF) of the GML as follows

Pout= Pr{γ ≤ γthr} = Pr

{
hg ≤

√
γthr

ηhp
√
γ̄

}
= Fhg

( √
γthr

ηhp
√
γ̄

)
, 0 ≤

√
γthr

ηhp
√
γ̄
≤ A0, (30)

where Fhg (·) denotes the CDF of the GML. In the following,
we derive the outage probability for different fluctuation
scenarios.

1) Independent Gaussian Fluctuations: For the case of
independent Gaussian fluctuations, using (20), Pout can be
written as

Pout = 1−Q (a, b) +Q (b, a) , (31)
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for 0 ≤
√
γthr

ηhp
√
γ̄
≤ A0, where a = 1+q

2q g, b = 1−q
2q g, and g =√

1+q2

Ω

tw2
L

2 ln
(
ηhpA0

√
γ̄√

γthr

)
[36]. In the following, we simplify

(31) for some special cases.
Corollary 3: For independent Gaussian fluctuations, if the

beam is orthogonal to the lens plane, Pout can be obtained as

Pout =

( √
γthr

ηhpA0
√
γ̄

)$
, 0 ≤ x ≤ A0. (32)

Proof: After integrating the PDF of the GML for this
special case (see (24)), the CDF of the GML and hence, Pout

can be obtained as in (32).
Eq. (32) reveals that the diversity gain of the FSO link is

d = − lim
γ̄→∞

log(Pout)

log(γ̄)
=
$

2
=

tw2
L

8(σ2
p + µ2

xσ
2
o)
. (33)

Corollary 4: For high SNRs, i.e., for large values of
arguments a and b, (31) can be simplified as [37]

lim
γ̄→∞

Pout= lim
γ̄→∞

(√
a

b
+

√
b

a

)
Q (a− b)

= at

(
1

γ̄

) (1+q2)tw2
L

8Ω
[
ln

(
γ̄

b2t

)]− 1
2

, (34)

where at =
2
√

2Ωb

(1+q2)tw2
L

4Ω
t√

π(1−q4)tw2
L

and bt =
√
γthr

ηhpA0
.

Proof: The proof is given in Appendix H.
Based on (34), the diversity gain is

d =
(1 + q2)tw2

L

8Ω
(35)

since, as γ̄ → ∞, the impact of the logarithmic term[
ln
(
γ̄
b2t

)]− 1
2

in (34) becomes negligible compared to that of

the polynomial term
(

1
γ̄

) (1+q2)tw2
L

8Ω

.
2) Correlated Gaussian Fluctuations: In this case, if both

independent and correlated Gaussian fluctuations are present,
then the same expression for the outage probability holds, as
for the independent Gaussian scenario, cf. (31)-(35). If the
impact of wind on the fluctuations is dominant, we obtain

Pout = 2Q

(√
tw2

L

2ζ2(c26 + c27)
ln

(
ηhpA0

√
γ̄√

γthr

))
. (36)

Based on (36) and using the same approximation for the
Gaussian Q-function as in Appendix H, the diversity gain can
be obtained as

d =
tw2

L

8ζ2(c26 + c27)
. (37)

3) Correlated Uniform Fluctuations: For uniform dis-
tributed fluctuations,

Pout = 1−

√
tw2

L ln
(
ηhpA0

√
γ̄√

γthr

)
√

6(c26 + c27)ξ2
, h1 ≤

√
γthr

ηhp
√
γ̄
≤ A0. (38)

Note that, in this case, the outage probability is zero if the
transmit SNR is larger than a critical value, γ̄crt, i.e., γ̄ ≥ γ̄crt,
where

γ̄crt =
γthr

η2h2
ph

2
1

. (39)

B. Ergodic Rate
For an IM/DD FSO channel, the capacity is not known.

Nevertheless, in [38, Eq. 26], the following ergodic rate has
been shown to be achievable

R̄=
1

2
Eγ
{

log2

(
1 +

e

2π
γ
)}

=
1

2
Ehg

{
log2

(
1 + ch2

g

)}
, bits/symbol, (40)

where c = e
2πη

2h2
pγ̄. In the following, we analyze the ergodic

rate at high SNR. In particular, for high SNR, we have

lim
γ̄→∞

R̄=
1

2
Ehg

{
log2

(
ch2
g

)}

=

R̄max︷ ︸︸ ︷
1

2
log2(cA2

0)−

∆R̄g︷ ︸︸ ︷
2

tw2
L ln(2)

Eu{u2}, (41)

where R̄max is the maximum achievable ergodic rate without
misalignment, i.e., u = 0, ∆R̄g is the loss in ergodic rate due
misalignment, and Eu{u2} denotes the expected value of the
squared misalignment, i.e., u2. Note that ∆R̄g depends on
the distribution of the fluctuations but R̄max is independent
of it and only depends on mean value of the UAV’s position
and orientation, the beam width (beam divergence angle), the
transmit SNR, as well as the area and responsivity of the
PD. In the following, we evaluate ∆R̄g for the considered
independent/correlated Gaussian and correlated uniform fluc-
tuation models.

Corollary 5: For the considered fluctuation models, ∆R̄g
in bits/symbol is given by

∆R̄g =
2

tw2
L ln(2)

× (42)
λ1 + λ2, independent/correlated Gaussian
(c26 + c27)ζ2, correlated Gaussian (wind is dominant)
(c26 + c27)ξ2, uniform.

Proof: For both independent and correlated Gaussian
fluctuation models, u follows a Hoyt distribution. Hence,
its second moment is Eu{u2} = Ω [39, Eq. (2.12)] with
Ω = λ1 + λ2. For the correlated Gaussian case when the
effect of wind is dominant, i.e., Tr{ΣCG} ≥ Tr{ΣIG},
Ω = λ1 = (c26 + c27)ζ2, since λ2 = 0. On the other
hand, for the uniform fluctuation model, u follows a uniform
distribution with second-order moment Eu{u2} = (c26+c27)ξ2.
Substituting Eu{u2} into ∆R̄g in (41) leads to (42) and
concludes the proof.

As can be observed from (42), the rate loss due to mis-
alignment, ∆R̄g , depends on the stability of the UAV through
variables λ1, λ2, ζ or ξ. Thereby, ∆R̄g decreases and, as a
result, R̄ increases as the UAV becomes more stable.
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VI. SIMULATIONS AND DISCUSSIONS

In order to quantify the non-orthogonality of the beam
w.r.t. the lens plane, we express the mean position of the
UAV, µr, in spherical coordinates as (L,αd, βd), i.e., rx =
L sinβd cosαd, ry = L sinβd sinαd, and rz = L cosβd.
Recall that for a given µr, the µω can be obtained from
(17). Unless stated otherwise, the default values of the pa-
rameters used for the simulations are: (αd, βd) = (π8 ,

5π
8 ),

L = 500 m, hd = 120 m, λ = 1550 nm, r0 = 10 cm,
wL = 30 cm, v = (3,1,2)

‖(3,1,2)‖ = (0.8, 0.27, 0.53), and

τ = 1
L

(1,2)
‖(1,2)‖ = 1

L (0.44, 0.9) [12], [13]. Moreover, the
simulation results reported in Figs. 5-10 were obtained based
on Monte Carlo simulations and 106 realizations of RVs r and
ω. These simulation results are used to verify the accuracy of
the assumptions made throughout the paper.

First, we study the impact of non-orthogonality of the
beam on the conditional GML and investigate the accuracy
of the bounds proposed in Theorem 1, their corresponding
approximations in (13), and the proposed approximation for
the GML in (15). For Fig. 4, the UAV is located in the x− y
plane (βd = π/2) at distance L from the receiver lens and
its position on the perimeter of a semicircle with radius L
is varied via angle αd w.r.t. the x axis. In particular, in this
figure, we show the conditional GML hg vs. αd for two cases
of misalignment vector b, namely i) b = (0, 0, 0) cm which
implies that there is no misalignment, i.e., u = 0 cm, and ii)
b = (0, 10, 10) cm which implies that the center of the beam
footprint is outside the receiver lens, i.e., u ≈ 14 cm> r0. The
curve for u = 0 cm shows the maximum fraction of power,
A0, that is collected by the receiver lens for different values
of αd, and therefore, the bounds in (13) and the expression
proposed for the conditional GML in (15) become identi-
cal. Non-zero misalignment causes an additional attenuation
exp

(−2u2

tw2
L

)
to A0, cf. (15). In Fig. 4, this attenuation caused

by 14 cm misalignment is the gap between the curves for
u = 0 and u = 14 cm at any given αd. Moreover, the
differences between the maximum value of each curve and
any other point on that curve show the loss caused by non-
orthogonality of the beam w.r.t. the lens plane. Furthermore, as
the beam becomes more non-orthogonal w.r.t. the lens plane,
i.e., as |αd| increases, the channel coefficient hg decreases
and approaches zero when the beam is parallel to the lens,
i.e., |αd| = π/2. We note that for the practical operating
regime of the hovering UAV, |αd| ≤ π/4 holds. Interestingly,
in this regime, the proposed approximations for hg in (15),
using either the arithmetic or geometric means for t, are
in good agreement with the simulation results. Besides, in
this regime, the loss due to non-orthogonality is small (e.g.,
3× 10−2 ≈ −1.5 dB for u = 14 cm).

Next, in Figs. 5-8, we study the effect of the random
fluctuations of the position and orientation of the UAV on the
GML and investigate the accuracy of the statistical models
developed for different fluctuation scenarios. Specifically, in
Fig. 5, the PDF of the GML is plotted assuming indepen-
dent Gaussian fluctuations of the position and orientation

of the UAV with standard deviations (SDs) (σx, σy, σz) =
σr0(0.8, 0.27, 0.53) and (σθ, σφ) = σr0

L (0.44, 0.9). Thereby,
σ controls the SDs and 1

L normalizes the orientation fluctua-
tions w.r.t. the distance. In this figure, we plot the PDF of hg
for σ = 0.5 and σ = 1 and orthogonal ((αd, βd) = (0, π2 ))
and non-orthogonal ((αd, βd) = (π8 ,

5π
8 )) beams w.r.t. the lens

plane. As can be observed from Fig. 5, the analytical statistical
model proposed in (20) is in perfect agreement with the his-
togram obtained based on (11). This agreement also validates
our assumption in Section IV.B that the main cause of random-
ness in the GML is the misalignment u and variables A0 and
t are practically constant compared to u. Moreover, the PDFs
for the orthogonal beam, i.e., (αd, βd) = (0, π2 ), assume non-
zero values at larger hg(r,ω) compared to those for the non-
orthogonal beam, i.e., (αd, βd) = (π8 ,

5π
8 ), since an additional

attenuation is caused by the non-orthogonality of the beam.
In addition, for larger σ, the UAV becomes less stable and the
probability of smaller channel coefficients increases. Hence,
the corresponding PDFs become more heavy tailed.

Fig. 6 shows the PDF of the GML for the special case
considered in Corollary 1 and (24), where the beam is
orthogonal to the lens plane and σx = σy = σz = σp and
σθ = σφ = σo hold, for different variances of the position
and orientation fluctuations, i.e., σp = Lσo = r0( 3

4 , 1, 2).
It is observed from Fig. 6 that by increasing σp and σo,
the probability of smaller channel coefficients increases and
the PDF becomes more heavy tailed. More specifically, by
increasing σp and σo, the value of $ decreases (see the
values of $ for different σp and σo in the figure) and for
$ < 1, limh→0 fhg (h) =∞ occurs which is consistent with
our analytical results in (24).

In Fig. 7, we investigate the case of correlated Gaussian
fluctuations. To study the impact of correlation, we use
identical variances for the positions (orientations), i.e., the
main diagonal entries of QIG

r and QCG
r (QIG

ω and QCG
ω ),

for the independent and correlated Gaussian scenarios are
identical. In other words, we set (σ2

x, σ
2
y, σ

2
z) = ζ2(v2

x, v
2
y, v

2
z)

and (σ2
θ , σ

2
φ) = ζ2(τ2

θ , τ
2
φ). In Fig. 7, we plot the PDF of

the GML for ζ = 2r0, v = (3,4,5)
‖(3,4,5)‖ = (0.42, 0.56, 0.7),

τ = (0, 0), and a non-orthogonal beam w.r.t. the lens plane.
It is observed from this figure that for correlated Gaussian
fluctuations (Crl. Gauss.), where only the effect of wind is
considered, the probabilities of both small and large values for
channel coefficient hg are higher compared to the case when
the fluctuations are independent (Ind. Gauss.). In particular,
the PDF assumes large values at A0, which is expected
based on our analytical results, cf. (27), and is also large
for small values of hg since $ < 1 holds for the set of
parameters adopted for this figure (see the value of $ in the
figure). Furthermore, combined independent and correlated
fluctuations (Ind. & Crl. Gauss.) cause the PDF to have larger
values for smaller channel coefficients, i.e., it becomes more
heavy tailed. Particularly, for the set of parameters adopted in
this figure, the PDF for combined independent and correlated
Gaussian fluctuations becomes very large at values close to
zero since q$ < 1 holds (see the value of q$ in the figure),
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Fig. 6. PDF of the GML for independent Gaussian fluctuations and an
orthogonal beam w.r.t. the lens plane.

cf. (22).

In Fig. 8, we show the CDF of the GML for correlated
uniformly distributed fluctuations for different beam widths,
wL ∈ {3r0, 4r0}, and ξ, ξ ∈ {3r0, 4r0}. We observe that
the simulation and analytical results are in perfect agreement.
Moreover, unlike for Gaussian fluctuations, for uniformly
distributed fluctuations, the probability of channel coefficients
that are smaller than a certain value, hg ≤ h1, is zero, which
is expected based on the analytical expression for the PDF
in (29). Comparing the curve for ξ = 3r0 and the respective

curve for ξ = 4r0 shows that for the larger ξ, since the UAV
becomes less stable, the channel quality deteriorates, i.e., the
value of h1 for the CDF for ξ = 4r0 is smaller than that for
ξ = 3r0. Comparing the curves for different beam widths and
a given ξ reveals that, for the wider beam, wL = 4r0, the
maximum fraction of power that is collected at the PD, A0,
is smaller than A0 for wL = 3r0. On the other hand, given
a threshold, the wider the beam is, the smaller the outage
probability becomes. For instance, for ξ = 4r0 in Fig. 8,
assuming that an outage occurs when hg ≤ 0.03, we have
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A0 = 0.16 and Pout = 0.1 for wL = 3r0 and A0 = 0.1 and
Pout = 0.02 for wL = 4r0. This observation illustrates the
trade-off between A0 and Pout for different beam widths.

In Figs. 9 and 10, we study the performance of a single
UAV-based FSO link in terms of its outage probability and
ergodic rate for clear weather conditions, i.e., κ = 0.43 ×
10−3 m−1. In particular, for Figs. 9 and 10, we assume a
non-orthogonal beam w.r.t. the lens plane and independent
Gaussian, correlated Gaussian, and correlated uniformly dis-
tributed fluctuations for the position and orientation of the
UAV. For the independent Gaussian fluctuations, we adopt
the same covariance matrices for the position and orientation
fluctuations as for Fig. 7. Moreover, we set ζ = ξ to
r0 and γthr is given by γthr = 2π

e 22Rthr−1, where Rthr

is the transmission rate. In Fig. 9, we depict the outage
probability vs. SNR (γ̄) assuming Rthr = 0.5 bit/symbol
in the presence and absence of GG distributed turbulence.
We observe that simulation results and analytical results are
in perfect agreement for all considered fluctuation models.
Furthermore, the gap between the curves with and without GG
turbulence is negligible for Gaussian fluctuations which was
expected for link lengths, L, on the order of several hundred
meters, see also the zoomed out part of the figure. The gap
is also small for uniform fluctuations for small and medium
SNRs but it becomes larger for high SNRs since in this case,
for γ̄ > γ̄crt, GG turbulence is the only fading left and the
GML is not present anymore, cf. (38). Finally, Fig. 9 confirms
the accuracy of the asymptotic outage expression given in (34)
for Gaussian fluctuations at high SNRs.

In Fig. 10, we plot the ergodic rate vs. SNR (γ̄) for the
same fluctuation models as considered in Fig. 9. First, the
difference between the ergodic rates obtained from simulation
with and without GG fading is very small, see also the
zoomed out part of the figure. This confirms that the impact

of GG turbulence on UAV-based FSO links with lengths on
the order of several hundred meters is negligible. Moreover,
it is observed that the simulated ergodic rates approach
the analytical asymptotic ergodic rates at high SNR for all
three fluctuation scenarios. Furthermore, since the asymptotic
ergodic rates for different fluctuation models differ only
in their constant rate losses ∆R̄g , cf. (41), they approach
one another at high SNR. For instance, for the considered
set of parameters, the rate losses for independent Gaussian,
correlated Gaussian, and correlated uniform fluctuations are
given by ∆R̄g ∈ {0.83, 0.9, 0.9} bits/symbol, respectively.
Moreover, since the ∆R̄g for the correlated Gaussian and
correlated uniform scenarios are identical (since ζ = ξ, cf.
(42)), the respective ergodic rates are equal.

VII. CONCLUSIONS

In this paper, we derived novel statistical models for the
FSO fronthaul channel of UAV-based communication systems,
by taking into account the non-orthogonality of the laser beam
and the random fluctuations of the position and orientation
of the UAV. We first modeled the GML as a function of
a given position and orientation of the UAV and derived
a conditional model. Next, we developed statistical models
for the GML assuming independent Gaussian, correlated
Gaussian, and correlated uniformly distributed fluctuations for
the position and orientation of the UAV which may reflect
calm, weakly windy, and strongly windy weather conditions,
respectively. Based on the aforementioned channel models,
we further analyzed the performance of the UAV-based FSO
link in terms of its outage probability and ergodic rate
and derived corresponding asymptotic expressions for the
high SNR regime. Simulation results validated the presented
analysis and revealed important insights for system design.
For example, for correlated fluctuations, the probabilities of
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both small and large values of the channel coefficient are
larger than for independent fluctuations. This characteristic
leads to a higher outage probability for correlated fluctuations
compared to independent fluctuations. Although the specific
requirements on the stability of the UAV depend on the
targeted application, our simulation results suggested that for
high quality FSO links, the standard deviations of the residual
fluctuations of the position and orientation of the UAV should
not exceed a few r0 (≈ tens of cm) and a few r0/L (≈ below
one mrad), respectively. We note that the requirements on the
permitable fluctuations can be relaxed at the cost of higher
power consumption if a wider beam is employed. In particular,
when the variance of the fluctuations is relatively large, e.g.,
due to windy weather conditions or a UAV with low stability, a
wider beam is preferable to avoid outages although this causes
the average (and the maximum) collected power to decrease.
On the other hand, when the variance of the fluctuations is
small, a narrower beam is preferable since it increases the
amount of power collected by the PD.

APPENDIX A

I(y, z)dydz is the fraction of power collected in the in-
finitesimally small area dydz, i.e., dy → 0 and dz → 0,
around the point (0, y, z). Moreover, we use the fact that
any point (0, y, z) in the lens plane is also located in an-
other plane which is perpendicular to the beam line. There-
fore, power I(y, z)dydz can be obtained as I(y, z)dydz =
Iorth(l;L) sinψdydz, where Iorth(l;L) is given in (8) and ψ
is the angle between the beam line and the lens plane which
is found from the inner product of the beam direction and a
vector orthonormal to the lens plane, i.e., (1, 0, 0) in the x
direction, as follows

sin(ψ) =
‖(1, 0, 0) · d‖
‖(1, 0, 0)‖‖d‖ = dx = sinφ cos θ. (43)

Here, d is the direction of the beam given in (6) and we
exploited ‖d‖ = 1. Next, we find distances L and l. In fact,
l is the distance between point (0, y, z) and the beam line in
(6). In general, the distance between a point, p, and a line
specified by direction vector u and a given point, q, on the
line can be obtained as l = ‖(p−q)×u‖

‖u‖ . For the problem at
hand, we choose p = (0, y, z), u = d, and q = b, which
leads to

l =
∥∥(ỹ cosφ− z̃ sinφ sin θ, z̃ sinφ cos θ, ỹ sinφ cos θ

)∥∥
=
√
ρy ỹ2 + ρz z̃2 + 2ρyz ỹz̃, (44)

where we exploited ‖d‖ = 1, replaced d with (5), introduced
ỹ = y − by and z̃ = z − bz , and used ρy , ρz , and ρyz
given in Lemma 1. Moreover, L, the distance between the
perpendicular plane w.r.t. the laser beam that contains point
(0, y, z) and the laser source can be bounded as

‖r− b‖ −
√
ỹ2 + z̃2 ≤ L ≤ ‖r− b‖+

√
ỹ2 + z̃2, (45)

where the extreme cases occur if the beam line is parallel
to the y − z plane. In particular, we can safely assume that
‖r−b‖±

√
ỹ2 + z̃2 ≈ ‖r‖ holds since the distance between

the UAV and the CU, i.e., ‖r‖, is much larger than ‖b‖ and√
ỹ2 + z̃2. Therefore, by substituting L ≈ ‖r‖ and (44) into

(8) and using I(y, z)dydz = Iorth(l;L) sinψdydz and (43),
we obtain (10) which completes the proof.

APPENDIX B

In the y−z plane, the contours of power density, I(y, z) =
Ī , form ellipsoids given by

ρy(y − by)2 + 2ρyz(y − by)(z − bz) + ρz(z − bz)2

=
w2
L

2
ln

(
2 sinψ

πw2
LĪ

)
. (46)
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These ellipsoids are centered at point (by, bz) and rotated by
angle 1

2 tan−1
( 2ρyz
ρy−ρz

)
counterclockwise. They have minor

and major axis lengths of 2
√
ρmind and 2

√
ρmaxd, respec-

tively, where

ρmin =
2

ρy + ρz +
√

(ρy − ρz)2 + 4ρ2
zy

,

ρmax =
2

ρy + ρz −
√

(ρy − ρz)2 + 4ρ2
zy

. (47)

ρmin and ρmax can be further simplified using the definition
of ρy , ρz , and ρyz in Lemma 1 as ρmin = 1 and ρmax =

1
sin2 φ cos2 θ

.
In order to obtain the lower and upper bounds for hg(r,ω)

in Theorem 1, we substitute the contour in (46) by two rotated
elliptic contours which have the same axis lengths ρmin = 1
and ρmax = 1

sin2 φ cos2 θ
; however, their main axes are either

perpendicular or parallel to the line connecting (by, bz) and
the origin, respectively, see Fig. 3. Moreover, without loss of
generality, we can define a new coordinate system by rotating
the y and z axes by angle tan−1( bzby ) such that the center of
the ellipsoid in (46) lies on the rotated y axis, i.e., the center
becomes (u, 0) in the new coordinate system, where u =√
b2y + b2z . Note that the circular lens has the same description

in the new and the old coordinate systems. This leads to lower
and upper bounds hlow

g (r,ω) and hupp
g (r,ω), respectively, as

given in Theorem 1 and completes the proof.

APPENDIX C
The following integral was approximated in [12, Appendix]

2

πw2
L

∫∫
(y,z)∈A

exp

(
− 2

w2
L

(
(y − u)2 + z2

))
dydz

(a)≈ 2

πw2
L

∫∫
(y,z)∈Ā

exp

(
− 2

w2
L

(
(y − u)2 + z2

))
dydz

(b)≈ A0 exp

(−2u2

tw2
L

)
, (48)

where A0 = [erf(ν)]2, t =
√
πerf(ν)√

2ν exp(−ν2)
, and ν =

√
πr0√
2wL

.
In (48), equality (a) follows from approximating the circular
PD, i.e., (y, z) ∈ A, by a square lens of equal area, i.e.,
(y, z) ∈ Ā ,

{
(y, z) | y, z ∈

[
−
√
πr0
2 ,

√
πr0
2

]}
and equality

(b) is obtained using the Taylor series of function exp(·). In
the following, we use (48) to approximate hlow

g and hupp
g in

(12) with h̃low
g and h̃upp

g , respectively. We derive h̃low
g since

obtaining h̃upp
g follows similar steps. By approximating A

with Ā and defining new variable ẑ = sinφ cos θz for hlow
g

in (12a), h̃low
g is obtained as

h̃low
g =

2 sinψ

π sinφ cos θw2
L

×∫∫
(y,ẑ)∈Â

exp

(
− 2

w2
L

(
(y − u)2 + ẑ2

))
dydẑ, (49)

where Â ,
{

(y, ẑ) | y ∈
[
−
√
πr0
2 ,

√
πr0
2

]
, ẑ ∈

[
−

√
π| sinφ cos θ|r0

2 ,
√
π| sinφ cos θ|r0

2

]}
. The integral in (49) is sim-

ilar to the second integral in (48) except that Â corresponds to
a rectangular area whereas Ā is a square area. Using a similar
technique as the one used in [12, Appendix], we approximate
(49) as in (13). This completes the proof.

APPENDIX D

In the following, we first determine the PDF of u and
subsequently obtain the PDF of hg from (19). To do so,
we first simplify the expressions for by and bz in (7) by
replacing tan θ, cotφ, and 1

cos θ by their respective Taylor
series (assuming εθ = θ − µθ and εφ = φ− µφ, cf. (16), are
very small) and then relating the PDF of u to that of by and
bz exploiting u =

√
b2y + b2z . In particular, we obtain

lim
r→µr,ω→µω

by = εy + c1εx + c2εθ and

lim
r→µr,ω→µω

bz = εz + c3εφ + c4εθ + c5εx, (50)

where constants c1-c5 are given in Theorem 2. To obtain
(50), we drop the terms with orders higher than one, e.g.,
εθεφ. We note that (50) is valid for all considered fluctuation
models. Now, assuming independent Gaussian fluctuations,
we add superscript IG to εs, s ∈ {x, y, z, θ, φ} and (by, bz)
in (50), cf. (18). Since bIGy and bIGz are sums of Gaussian
RVs, they are Gaussian distributed, too. However, bIGy and
bIGz are correlated since εIGx and εIGθ appear in the expressions
for both. The joint distribution of bIGy and bIGz is a bivariate
Gaussian distribution (bIGy , bIGz ) , bIG

yz ∼ N (0,ΣIG) where
ΣIG is given in (21). Let ΣIG = UΛUT be the eigenvalue
decomposition of ΣIG where Λ is a diagonal matrix with
elements λ1 and λ2 and U is a unitary matrix, i.e., UTU = I.
Using these definitions, it is easy to show that bIG

yz ∼ gUT

where g = (gy, gz) ∼ N (0,Λ). Now, we can express u in
terms of g as follows

u=
√

(bIGy )2 + (bIGz )2 =
√

bIG
yz (bIG

yz )T

∼
√

gUTUgT =
√
g2
y + g2

z . (51)

Since gy and gz are independent zero-mean
Gaussian RVs with non-identical variances, u
follows a Hoyt (Nakagami-q) distribution with PDF
fu(u) = 1+q2

qΩ u exp
(
− (1+q2)2

4q2Ω u2
)
I0

(
1−q4

4q2Ωu
2
)

, where

q =
√

min{λ1,λ2}
max{λ1,λ2} and Ω = λ1 + λ2 [13], [36]. Substituting

fu(u) into (19), the PDF of the GML can be obtained as in
(20). This completes the proof.

APPENDIX E

For correlated Gaussian fluctuations, we replace εs, s ∈
{x, y, z, θ, φ} in (50) with εIGs + εCG

s according to the def-
inition in (25). After eliminating the terms of order higher
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than one, similar to Appendix D, (by, bz) for the correlated
Gaussian scenario, denoted by (bCG

y , bCG
z ), is obtained as

lim
r→µr
ω→µω

bCG
y = εIGy + c1ε

IG
x + c2ε

IG
θ + c6δ

G and

lim
r→µr
ω→µω

bCG
z = εIGz + c3ε

IG
φ + c4ε

IG
θ + c5ε

IG
x + c7δ

G. (52)

Since bCG
y and bCG

z are again sums of Gaussian RVs, they are
also Gaussian RVs. Therefore, with the same reasoning as
in Appendix D, u follows a Hoyt (Nakagami-q) distribution
with parameters q =

√
min{λ1,λ2}
max{λ1,λ2} and Ω = λ1+λ2. Here, λ1

and λ2 are now the eigenvalues of ΣT given in Theorem 3.
Therefore, formally the same expression for the PDF of the
GML is obtained as for independent Gaussian fluctuations.
This completes the proof.

APPENDIX F

In this case, we obtain ΣT = ΣCG which has one non-zero
eigenvalue λ1 = ζ2(c26 + c27), i.e., q = 0, and (bCG

y , bCG
z ) =

(c6δ
G, c7δ

G) which results in u =
√
c26 + c27 |δG|, cf. (52)

in Appendix E. Since δG follows the Gaussian distribution,
u follows a single-sided Gaussian distribution with the PDF
given by fu(u) =

√
2√
πλ1

exp
(
− u2

2λ1

)
. Based on the distribu-

tion of u, the PDF of fhg (h) in (27) is obtained using (19),
which completes the proof.

APPENDIX G

We replace εs in (50) with εCU
s , s ∈ {x, y, z, θ, φ}, cf. (28).

Therefore, we have

lim
r→µr,ω→µω

bCU
y = c6δ

U and lim
r→µr,ω→µω

bCU
z = c7δ

U, (53)

where constants c6 and c7 are given in Theorem 3. Using (53),
u is obtained as

u=
√

(bCU
y )2 + (bCU

z )2

=
√
c26 + c27 |δU| ∼ U

(
0,
√

3(c26 + c27) ξ

)
. (54)

Substituting the uniform distribution in (54) into (19) leads to
(29) in Theorem 4. This completes the proof.

APPENDIX H

The symmetric difference of the first-order Marcum Q-
function is approximated by lim

(a,b)→∞
Q(a, b) − Q(b, a) =

1 −
(√

a
b +

√
b
a

)
Q (a− b) [37]. Hence, Pout in (31) is

simplified to Pout =

(√
a
b +

√
b
a

)
Q (a− b). Next, we use

Q(x) ≈ e−
1
2
x2

√
2πx

to approximate the Gaussian Q-function at
large values, which leads to the simplified expression for the
outage probability in (34). This completes the proof.
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