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Abstract

In this paper, we study the resource allocation and trajectory design for secure unmanned aerial

vehicle (UAV)-enabled communication systems, where multiple multi-purpose UAV base stations

are dispatched to provide secure communications to multiple legitimate ground users (GUs) in the

existence of multiple eavesdroppers (Eves). Specifically, by leveraging orthogonal frequency division

multiple access (OFDMA), active UAV base stations can communicate to their desired ground users

via the assigned subcarriers while idle UAV base stations can serve as jammer simultaneously for

communication security provisioning. To achieve fairness in secure communication, we maximize

the average minimum secrecy rate per user by jointly optimizing the communication/jamming

subcarrier allocation policy and the trajectory of UAVs, while taking into account the constraints on

the minimum safety distance among multiple UAVs, the maximum cruising speed, the initial/final

locations, and the existence of cylindrical no-fly zones (NFZs). The design is formulated as a

mixed integer non-convex optimization problem which is generally intractable. Subsequently, a

computationally-efficient iterative algorithm is proposed to obtain a suboptimal solution. Simulation

results illustrate that the performance of the proposed iterative algorithm can significantly improve

the average minimum secrecy rate compared to various baseline schemes.

I. INTRODUCTION

The rapid growing demand on wireless communication services, e.g. ultra-high data rates

and massive connectivity [2], has fueled the development of wireless networks and the mass

productions of wireless devices. Despite the fruitful research in the literature for providing

ubiquitous services, the performance of wireless systems is limited by the users with poor

channel conditions [3], [4]. Fortunately, owing to the high flexibility and low cost in deploy-

ment of unmanned aerial vehicles (UAVs), UAV-enabled communication offers a promising
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solution to tackle these challenges [5]. In particular, the high mobility of UAVs facilitates

the establishment of strong line-of-sight (LoS) links to ground users (GUs). Hence, in recent

years, numerous applications of UAV-enabled communication have emerged dramatically

not only in the military domain, but also in the civilian and commercial domains, such as

disaster relief, archeology, pollution monitoring, commodity delivery, etc. [6]. Besides, several

world-leading industrial companies, such as Facebook, Google, and Qualcomm, have made

advancements on their journey to deliver high-speed internet from the air by UAVs [1]. As

a result, the investigation of deploying UAVs for assisting wireless networks has recently

received significant attention from the academia, such as mobile relays [7], [8], aerial mobile

base stations [9], [10], and UAV-enabled information dissemination and data collection [1],

[11].

In practical systems, although the nature of strong LoS link grants UAV-based commu-

nication as an appealing approach to provide ubiquitous high-data rate wireless service, it

also makes the communication between a UAV and ground users more susceptible to be

intercepted by potential eavesdroppers (Eves) [12]. Therefore, it imposes various fundamental

challenges for secure UAV communication provisioning [13]. To meet this emerging need,

secure UAV communication systems with a single-UAV was studied in [8], [14]–[16] with

different system settings. However, due to the stringent requirements on UAV’s size, weight,

and power (SWAP), the performance achieved by deploying a single-UAV is still limited

[6]. To achieve a higher efficiency in secure communications, multi-UAV cooperation was

adopted in [17]–[20]. In particular, a jammer UAV can fly close to a potential eavesdropper

based on demand by leveraging its mobility and opportunistically transmits artificial noise

signal deliberately to combat the eavesdropping channels [17]. To improve the system security

performance, [18] and [19] presented a cooperative jamming approach to safeguard the UAV’s

communication by exploiting artificial jamming transmission from other friend UAVs in the

existence of a single-eavesdropper. With the consideration of fairness in two-UAV secure

communications, [20] investigated the joint power allocation and trajectory design for the

maximization of the minimum secrecy rate per user when one UAV is dispatched to convey

confidential messages to a ground user where another cooperative UAV transmits a jamming

signal. However, in [17]–[20], the role of the UAV is fixed where a communication/jamming

UAV can only provide either communication/jamming signal during the whole time horizon.

In contrast, a multi-purpose UAV, which can dynamically serve as a communication UAV or a

jamming UAV, provides a high flexibility in trajectory design for secure UAV communications.
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For instance, when a communication UAV flies closer to an eavesdropper, it can switch its

role from a communication UAV to a jamming UAV for improving the system performance

of secure communication. However, an efficient algorithm for optimizing resource allocation

and the trajectory of multi-purpose UAVs has not been reported, yet. Moreover, [8], [14],

[17], [18] only considered the scenario of a single-user and one eavesdropper. On the other

hand, although a single-user with the existence of multiple eavesdroppers in UAV-enabled

communication systems was investigated in [15], [16], [19], [20], these results are not

applicable to most of practical and important scenarios in the present of multiple desired

users. To the best of our knowledge, secure communication problem in a more general

scenario, the coexistence of multiple users and multiple eavesdroppers, is very challenging

and still remained to be explored.

To unleash the potential performance of UAV-enabled communications, trajectory design

or path planning has been a major research area in the existing literature. For example,

[7] optimized the trajectory of a UAV to maximize the system throughput of a single-

user while taking into account its maximum mobility. Authors in [21] investigated the

UAV’s trajectory design to guarantee secure air-to-ground communications. Although the

UAV trajectory has been designed with different practical considerations [15]–[20], e.g.

UAV’s velocity, initial/final locations, and energy efficiency, physical geometric restriction

is remained to be investigated in UAV trajectory design. For example, due to regulations

for military, security, safety or privacy reasons, there are some no-fly zones (NFZs) where

the flight of UAVs over those regions is prohibited [22]–[24]. Therefore, the authors of [22]

proposed a control mechanism based on the geometrical tangential method of control theory

to avoid a UAV flying into the NFZ. However, their proposed method only focused on the

cruise constraint of the UAV due to NFZ which did not take into account any security

concerns of air-to-ground data communication. Thus, with the consideration of NFZs, in

our previous works [1], [25], we investigated the designs of resource allocation algorithm for

UAV-enabled communication systems, where a UAV is dispatched to provide communications

to multiple ground users in the present of multiple NFZs. Also, with the consideration of

NFZs, the authors in [24] studied the UAV secure communication system design to serve a

single-legitimate user with the presence of a malicious eavesdropper. However, the existence

of NFZs complicates the design of resource allocation and the results from [1], [22]–[25] are

not applicable to role switching design among UAVs.

Based on the aforementioned observations, in this paper, we consider a multi-UAV-enabled
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orthogonal frequency division multiple access (OFDMA) communication systems, where

multiple rotary-wing UAVs base stations are dispatched to provide communications to mul-

tiple ground users with the existence of multi-eavesdropper and NFZs. We jointly design

the resource allocation, trajectory design, and role selection for secure communication. In

particular, the role of each UAV can be switched dynamically between serving as a jamming

UAV or information UAV in each time slot and subcarrier. The design optimization problem is

non-convex and generally intractable. To handle the above challenges, we first transform the

original problem into its equivalent problem, which facilitates the application of alternating

optimization for obtaining a suboptimal solution. In particular, the original optimization

problem is divided into three subproblems, i.e., communication resource allocation, jamming

policy, and UAVs’ trajectories design, which to be solved iteratively. In each iteration, the

communication resource allocation is designed by solving its Lagrangian dual problem. To

derive jamming policy and UAVs’ trajectories, a suboptimal iterative algorithm is proposed

by utilizing successive convex approximation (SCA) techniques [18]–[20] with a fast con-

vergence.

The remainder of this paper is organized as follows. Section II introduces the system model

and the problem formulation for the considered cooperative multi-UAV enabled wireless

system. In Section III, we propose an efficient iterative algorithm based on the Lagrange

dual problem and SCA techniques which can obtain a suboptimal solution of the design

problem at hand. Section V provides numerical results to demonstrate the performance of

the proposed algorithms. Finally, the paper is concluded in Section VI.

Notations: ‖ · ‖ denotes the vector norm. [x]+ = max{0, x}. [·]T denotes the transpose

operation. For a vector a, ‖a‖ represents its Euclidean norm.

II. SYSTEM MODEL

We consider a wireless communication system consisting of KU downlink users, KE

eavesdroppers, M rotary-wing UAVs denoted by set kU ∈ KU , {1, · · · , KU}, kE ∈ KE ,

{1, · · · , KE}, and m ∈M , {1, · · · ,M}, respectively. In the system, we adopt the OFDMA

scheme for serving multiple downlink users with different subcarriers at the same time [1],

[26]. Besides, the system bandwidth is divided equally into NF orthogonal subcarriers,

which is denoted by set i ∈ NF , {1, · · · , NF}. As there are multiple eavesdroppers in the

system, we exploit the geometrically distributed nature of UAVs and advocate the use of

their dynamical role switching for guaranteeing secure communication. To be more specific,
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Fig. 1. Secure multi-UAV communication systems with the existence of multi-eavesdropper and a NFZ.

on each subcarrier, at a given time if a UAV1 is selected for information transmission, the

other UAVs can serve as jamming UAVs for protecting the communication via artificial

noise transmission, as shown in Fig. 1. The policy adapts the communication and jamming

roles of UAVs which enables a highly flexible resource allocation for improving the system

performance2.

A. Signal Model

We express the locations of all users, eavesdroppers, and UAVs in a three-dimensional (3D)

Cartesian coordinate system. For the ease of design, the total time T is discretized into N

time slots with equal-duration, i.e., δt = T/N , which is small enough such that the distance

between the UAV and the ground user within each time slot can be treated as a constant3.

Furthermore, we adopt n as the time slot index where n ∈ N , {1, · · · , N}. Thus, the ground

projected trajectory of UAV m, qm(t) = [xm(t), ym(t)], 0 ≤ t ≤ T , over the time T can be

approximated by a sequence {qm[n] = [xm[n], ym[n]]T}Nn=1, where qm[n] , qm(nδt), ∀n,m,

denotes the horizontal location of UAV m in time slot n. Besides, the maximum speed of

each UAV are denoted as vmax in meters per second (m/s) and the UAV’s maximum aviation

distance in each time slot is V = vmaxδt in meters. In particular, without lost of generality,

we assume that the initial location and the final location for UAV m projected on the ground

1We assume that there are secure backhaul links for conveying a user’s data between UAV and a core network which

can be established by e.g. out-of-band links [9], [10].

2The cost of the proposed role switching is mainly on the required signaling overhead for the coordination between the

cooperative UAVs.

3The discretized model is commonly adopted in the literature which facilitates the design of resource allocation for

UAV-enabled communication systems [7], [8], [14]–[18], [20].
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is qm[0] = [xm[0], ym[0]]T and qm[N ] = [xm[N ], ym[N ]]T , and the horizontal coordinates for

user kU and Eve kE are denoted by wkU = [xkU , ykU ]T and wkE = [xkE , ykE ]T , respectively.

Then, the distance between UAV m and user kU in time slot n can be written as

dm,kU [n] =
»
||qm[n]−wkU ||2 +H2, ∀n,m, kU , (1)

where H in meters is the constant flying altitude of each UAV for satisfying some safety

regulations. Similarly, the distance between UAV m and Eve kE in time slot n is given by

dm,kE [n] =
»
||qm[n]−wkE ||2 +H2, ∀n,m, kE. (2)

B. No-Fly-Zone Model

In practice, UAVs flying over some specific regions, known as NFZ, such as airports, pris-

ons, military locations, and etc. are prohibited. Hence, a practical UAV-based communication

system should design the UAV trajectory with the consideration of NFZs. In this paper, we

assume that there are NNF non-overlapped NFZs. Specifically, to guarantee the effectiveness

of our UAV trajectory design, we define NFZ j ∈ {1, ..., NNF}, as a cylindrical volume with

a center coordinate wj
NF = [xjNF, y

j
NF]T projected on the ground, height Hj

NF, H < Hj
NF, ∀j,

and radius Qj
NF, ∀j, cf. Fig. 1. With the existence of NFZs, the trajectory of UAV m should

satisfy the following inequality in each time slot:

||qm[n]−wj
NF||2 ≥

Ä
Qj

NF

ä2
, ∀n,m, j. (3)

Remark 1: A reasonable UAV trajectory should be planed such that a UAV can follow

the desired path as tightly as possible. Based on the geometric and kinematics properties,

cylindrical volumn models for NFZ satisfy lateral guidance control law of UAVs which are

commonly adopted for the design of flight path, e.g. [27], [28]. When a UAV has to avoid

flying over NFZs, a centripetal acceleration on the UAV is generated to help the UAV change

its aviation direction. The centripetal acceleration is related to the UAV’s radial flying velocity

and radius of turning circle, which leads to a circular trajectory when the UAV turns steadily

[29]. Therefore, for the purpose to design a more practical NFZ model so that a UAV can

tightly follow its desired flight path, NFZs are modeled by cylindrical volume constraints in

this paper.
C. Channel Model

We assume that the wireless channels from a UAV to the ground user/Eve on each subcarrier

are LoS-dominated and we adopt the commonly used free-space path loss model4 as in [6]-

4We note that field measurements [30] suggest that air-to-ground links are almost guaranteed to be LoS channels in rural

areas when a UAV flies with an altitude of 100 meters or above to serve a cell with a radius of 500 meters. Furthermore, the

aviation altitude of a UAV can be adjusted according to the type of terrain and the scale of the cells, which can guarantee

that the air-to-ground channel LoS probability approaches one [31].
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[7]. Furthermore, we assume that the Doppler effect caused by the mobility of UAVs can

be well compensated by all the receivers5. Thus, the channel power gain from UAV m to

ground user kU in time slot n can be given by

hm,kU [n] = β0d
−2
m,kU

[n] =
β0

||qm[n]−wkU ||2 +H2
, ∀n,m, kU , (4)

where β0 denotes the channel power gain at the reference distance d0 = 1 m. Similarly,

channel power gains from UAV m to Eve kE in time slot n can be written as

hm,kE [n] = β0d
−2
m,kE

[n] =
β0

||qm[n]−wkE ||2 +H2
, ∀n,m, kE. (5)

D. Communication & Jamming Scheduling Model

To prevent multiple access interference from all the communication UAVs, in time slot n,

we assume that there is at most one UAV communicates with at most one user on subcarrier

i. On the other hand, since there are multiple Eves randomly distributed on the ground and

multiple UAVs in the sky, when subcarrier i is not assigned to UAV m for information

transmission, UAV m can act as a jammer on this subcarrier to combat the channel of Eves.

For the sake of presentation and to facilitate the solution design, we denote sm,kU ,i[n] ∈ {0, 1}

and sJm,i[n] ∈ {0, 1} as binary variables, which indicates that if UAV m communicates with

user kU , i.e., sm,kU ,i[n] = 1 or acts as a jammer, i.e., sJm,i[n] = 1 in time slot n on subcarrier

i, respectively. In particular, the binary variables satisfy the following constraints:

sm,kU ,i[n] ∈ {0, 1},∀n,m, kU , i, (6)

sJm,i[n] ∈ {0, 1},∀n,m, i, (7)

M∑
m=1

KU∑
kU=1

sm,kU ,i[n] ≤ 1, ∀n, i, (8)

KU∑
kU=1

sm,kU ,i[n] + sJm,i[n] ≤ 1, ∀n,m, i. (9)

III. PROBLEM FORMULATION

In this section, we first define the achievable rate and secrecy rate for the considered multi-

UAV system. Then, the multi-UAV secure communication system design is formulated as a

non-convex optimization problem.

5This assumption is commonly used in the research of UAV communications [18], [32]–[35], since the impact of frequency

offset caused by the high mobility of UAV has been well studied in the literature which can be well compensated by using

some Doppler effect compensation technologies [36]–[38].
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A. Achievable Rate & Secrecy Rate

Denote pm,kU ,i[n] ≥ 0 as the communication power from UAV m to user kU in time slot n

on subcarrier i, pJm,i[n] ≥ 0 as the jamming power from UAV m in time slot n on subcarrier

i, and Pm
peak the peak transmission power of UAV m. Then, we have

0 ≤
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n]

︸ ︷︷ ︸
Information power

+
NF∑
i=1

sJm,i[n]pJm,i[n]︸ ︷︷ ︸
Jamming power

≤ Pm
peak, ∀n,m. (10)

Thus, if UAV m is selected to communicate to user kU in time slot n on subcarrier i,

i.e., sm,kU ,i[n] = 1, the received signal-to-interference-plus-noise ratio (SINR) at user kU on

subcarrier i in time slot n can be written as

γm,kU ,i[n] =
pm,kU ,i[n]hm,kU [n]

Im,kU ,i[n] + σ2
, ∀n,m, kU , i, (11)

where σ2 denotes the additive white Gaussian noise (AWGN) power at ground users and

Im,kU ,i[n] =
M∑

m′=1,m′ 6=m
sJm′,i[n]pJm′,i[n]hm′,kU [n],∀n,m, kU , i, (12)

represents the co-channel interference caused by UAV m′ ∈ M,m′ 6= m, to user kU on

subcarrier i.

On the other hand, the received SINR at Eve kE from UAV m for attempting to decode

the signal of user kU in time slot n on subcarrier i can be written as

γ′m,kU ,kE ,i[n] =
pm,kU ,i[n]hm,kE [n]

Im,kE ,i[n] + σ2
, ∀n,m, kU , kE, i, (13)

where
Im,kE ,i[n] =

M∑
m′=1,m′ 6=m

sJm′,i[n]pJm′,i[n]hm′,kE [n], ∀n,m, kE, i, (14)

is the interference to Eve kE on subcarrier i in time slot n.

Thus, the communication rate Rm,kU ,i[n] from UAV m to user kU in time slot n on

subcarrier i in bits/second/Hertz (bps/Hz) is given by

Rm,kU ,i[n] = sm,kU ,i[n] log2 (1 + γm,kU ,i[n]) , ∀n,m, kU , i, (15)

while the corresponding leakage rate R′m,kE ,i[n] to Eve kE can be written as

R′m,kU ,kE ,i[n] = sm,kU ,i[n] log2

Ä
1 + γ′m,kU ,kE ,i[n]

ä
, ∀n,m, kU , kE, i. (16)

Then, the average secrecy rate R̄s
kU

in bps/Hz over N time slots for user kU considered

with KE eavesdroppers is given by

R̄s
kU

=
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

ñ
Rm,kU ,i[n]− max

kE∈KE

¶
R′m,kU ,kE ,i[n]

© ô+

, ∀kU . (17)
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B. Optimization Problem Formulation

For notational simplicity, we denote Q = {qm[n],∀n,m} as the set of all UAVs’ trajec-

tory variables, SU = {sm,kU ,i[n],∀n,m, kU , i} as the set of the communication scheduling

variables, SJ = {sJm,i[n],∀n,m, i} as the set of the jamming scheduling variables. Let

PU = {pm,kU ,i[n],∀n,m, kU , i} denote the set of all the communication UAVs’ transmit

power variables and PJ = {pJm,i[n],∀n,m, i} denote the set of the jamming power variables

from all jamming UAVs.

We aim to maximize the average minimum secrecy rate among all ground users via jointly

optimizing communication scheduling, communication power, jamming scheduling, jamming

power, and all UAVs’ trajectories. Define η as an auxiliary optimization variable and the max-

min fairness optimization problem can be formulated as

maximize
η,Q,SU ,SJ ,PU ,PJ

η (18)

s.t.C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

ñ
Rm,kU ,i[n]−R′m,kU ,kE ,i[n]

ô+

≥ η,∀kU , kE,

C2 : sm,kU ,i[n] ∈ {0, 1}, ∀n,m, kU , i,

C3 : sJm,i[n] ∈ {0, 1},∀n,m, i,

C4 :
M∑
m=1

KU∑
kU=1

sm,kU ,i[n] ≤ 1,∀n, i,

C5 :
KU∑
kU=1

sm,kU ,i[n] + sJm,i[n] ≤ 1,∀n,m, i,

C6a :
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n] +
NF∑
i=1

sJm,i[n]pJm,i[n] ≤ Pm
peak, ∀n,m,

C6b : pm,kU ,i[n] ≥ 0,∀n,m, kU , i, C6c : pJm,i[n] ≥ 0,∀n,m, i,

C7 : ||qm[n]− qm [n− 1] ||2 ≤ V 2,∀n,m,

C8 : ||qm[n]−wj
NF||2 ≥

Ä
Qj

NF

ä2
,∀n,m, j,

C9 : ||qm[n]− qm′ [n] ||2 ≥D2
S, ∀n,m,m 6=m′,

C10 : qm[0] = q0
m,∀m, C11 : qm[N ] = qFm,∀m,

where constraint C1 is imposed to guarantee an average minimum secrecy rate η for each user

over all time slots. C2 and C3 are the binary constraints to denote the UAV’s communication

and jamming subcarrier allocation, respectively. Constraint C4 is imposed to make sure that

in any time slot, each subcarrier can be allocated to at most one user for communication from
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Original Problem
(Resource allocation,trajectories,  )

Subproblem 1
(Comm. policy)

Subproblem 2
(Jamming policy)

Dual Decomposition

Alternating Optimization Approach

Subproblem 3
(Trajectory)

Successive 
Approximation 

(SCA)

Iteration



Successive 
Approximation 

(SCA)

Fig. 2. A flow chart of the proposed iterative algorithm.

all the UAVs. Constraint C5 is introduced such that a UAV can either transmit information or

jamming signal on each subcarrier. Constraints C6a−C6c are the UAV transmission power

constraints, Pm
peak in C6a denotes the maximum transmission power of UAV m, C6b and C6c

are the non-negative constraints on the power allocation variables. Constraint C7 is imposed

to ensure that each UAV should fly no faster than its maximum speed V in each time slot.

Constraint C8 states that a UAV is prohibited to fly over the NFZs. DS in constraint C9

is the minimum distance between any UAV pairs to avoid collision. Constraints C10 and

C11 indicate the fixed initial and final locations of the UAVs, q0
m = [xm[0], ym[0]]T and

qFm = [xm[N ], ym[N ]]T , respectively.

IV. JOINT TRAJECTORY AND RESOURCE ALLOCATION DESIGN

The formulated problem in (18) is a mixed-integer non-convex and generally intractable.

Specifically, the main obstacle in solving (18) arises from the binary constraints C2 and

C3 while the non-convexity originates from C1, C6a, C8, and C9. Besides, the problem is

further complicated by the coupling between binary and continuous variables in C1 and C6a.

Therefore, obtaining the globally optimal solution requires a prohibitively large computational

complexity which is not practical even for moderate system size. As a compromise approach,

in this section, we propose a series of transformation which facilitates the development of a
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low-complexity algorithm for achieving a suboptimal solution6. To this end, we first propose

Lemma 1 to handle the non-smoothness function due to the [·]+ operation in constraint C1

of problem (18).

Lemma 1: Problem (18) has the same optimal solution as the following problem:

maximize
η,Q,SU ,SJ ,PU ,PJ

η (19)

s.t. C2−C11,

C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

Rm,kU ,i[n]−R′m,kU ,kE ,i[n] ≥ η,∀kU , kE.

Proof 1: Please refer to Appendix A for a proof of Lemma 1.

Although problem (19) is easier to handle, it is still non-convex and challenging to solve.

Next, we divide problem (19) into three subproblems with three individual sets of opti-

mization variables, respectively, i.e., (η,SU ,PU), (η,SJ ,PJ), (η,Q), which facilitates the

design of a computationally efficient iterative alternating algorithm to achieve a suboptimal

solution, cf. Fig. 2. In particular, we first jointly optimize the average minimum secrecy data

rate, communication user scheduling, and communication power of each UAV. Then, with

fixed trajectories and obtained communication policy, we study the jamming scheduling and

jamming power allocation, for obtaining an intermediate optimized average minimum secrecy

data rate. In the last subproblem, we design all UAVs’ trajectories and update the average

minimum secrecy data rate with the above obtained resource allocation policy.

A. Subproblem 1: Communication Resource Allocation Optimization

In this section, we consider subproblem 1 for optimizing the communication user schedul-

ing and communication power by assuming that jamming policy (SJ ,PJ) and all UAVs’

6In fact, the designed suboptimal algorithm requires only a polynomial time computational complexity which is suitable

for realtime implementations [39]. In the considered system, the algorithm can be executed by the UAV-onboard computing

system or with the help of a ground station via computation offloading [40].
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trajectories Q are fixed. Thus, subproblem 1 can be written as:

maximize
η,SU ,PU

η (20)

s.t.C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

Rm,kU ,i[n]−R′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C2 : sm,kU ,i[n] ∈ {0, 1}, ∀n,m, kU , i, C4 :
M∑
m=1

KU∑
kU=1

sm,kU ,i[n] ≤ 1,∀n, i,

C5 :
KU∑
kU=1

sm,kU ,i[n] + sJm,i[n] ≤ 1,∀n,m, i,

C6a :
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n] +
NF∑
i=1

sJm,i[n]pJm,i[n] ≤ Pm
peak, ∀n,m,

C6b : pm,kU ,i[n] ≥ 0,∀n,m, kU , i.

In order to solve subproblem 1 in (20), by following a similar approach as [16], [41], we

introduce an auxiliary variable p̃m,kU ,i[n] = sm,kU ,i[n]pm,kU ,i[n], and the problem can be

equivalently written as

maximize
η,SU ,P̃U

η (21)

s.t.›C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

‹Rm,kU ,i[n]− ‹R′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C2 : sm,kU ,i[n] ∈ {0, 1}, ∀n,m, kU , i, C4 :
M∑
m=1

KU∑
kU=1

sm,kU ,i[n] ≤ 1,∀n, i,

C5 :
KU∑
kU=1

sm,kU ,i[n] + sJm,i[n] ≤ 1,∀n,m, i,fiC6a :
KU∑
kU=1

NF∑
i=1

p̃m,kU ,i[n] +
NF∑
i=1

sJm,i[n]pJm,i[n] ≤ Pm
peak, ∀n,m,fiC6b : p̃m,kU ,i[n] ≥ 0,∀n,m, kU , i,

where ‹PU = {p̃m,kU ,i[n],∀n,m, i, kU},‹Rm,kU ,i[n] = sm,kU ,i[n] log2

Ç
1 +

p̃m,kU ,i[n]Hm,kU ,i[n]

sm,kU ,i[n]

å
,∀n,m, kU , i, (22)‹R′m,kU ,kE ,i[n] = sm,kU ,i[n] log2

Ç
1 +

p̃m,kU ,i[n]H′m,kE ,i[n]

sm,kU ,i[n]

å
,∀n,m, kU , kE, i, (23)

Hm,kU ,i[n] =
hm,kU [n]

Im,kU ,i[n] + σ2
,∀n,m, kU , i, (24)

H′m,kE ,i[n] =
hm,kE [n]

Im,kE ,i[n] + σ2
,∀n,m, kE, i. (25)
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Next, we handle the binary user scheduling constraint C2 in (21). In particular, we follow

a similar approach as in [1], [41] and relax the binary subcarrier variable sm,kU ,i[n] as a real

value between 0 and 1, i.e.,›C2 : 0 ≤ sm,kU ,i[n] ≤ 1,∀n,m, kU , i. (26)

Meanwhile, the relaxed variable sm,kU ,i[n] serves as a time-sharing factor for user kU on

subcarrier i in time slot n.

After replacing C2 with ›C2 in (21), the problem can be written7 as

maximize
η,SU ,P̃U

η (27)

s.t. ›C1,C4−fiC6b,›C2 : 0 ≤ sm,kU ,i[n] ≤ 1,∀n,m, kU , i.

Then, before we derive the optimal communication resource allocation, we first verify the

convexity of constraint ›C1 jointly with respect to (w.r.t.) s̃m,kU ,i[n] and p̃m,kU ,i[n] via the

following lemma:

Lemma 2: For κ1 > κ2 ≥ 0, the function ψ(x, y) , x log2(1 + κ1y
x

) − x log2(1 + κ2y
x

) is

concave w.r.t. x ≥ 0 and y ≥ 0.

Proof 2: Please refer to Appendix B for a proof of Lemma 2.

In other words, with Hm,kU ,i[n] > H′m,kE ,i[n], constraint ›C1 is jointly concave w.r.t. SU and‹PU which satisfies Lemma 2. Next, we consider the communication resource allocation under

Hm,kU ,i[n] > H′m,kE ,i[n], and study the convexity of constraint ›C1 under such a condition.

Lemma 3: For the problem in (21), if Hm,kU ,i[n] ≤ H′m,kE ,i[n], UAV m would not allocate

any power for user kU on subcarrier i in time slot n, i.e., sm,kU ,i[n] = 0 and p̃m,kU ,i[n] = 0.

Proof 3: Please refer to Appendix C for a proof of Lemma 3.

Now, problem (27) is jointly convex w.r.t. η, s̃m,kU ,i[n], and p̃m,kU ,i[n]. Furthermore, prob-

lem (27) satisfies the Slater’s constraint qualification and thus the strong duality holds [42]–

[44]. Therefore, the duality gap is zero. In other words, the optimal solution of problem

(27) can be obtained by solving its dual problem. To shed lights on important system design

7We note that the adopted constraint relaxation is tight as will be shown in the following.
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insights, we solve the dual problem via deriving some semi-closed-form solutions. To this

end, we first derive the Lagrangian of problem (27):

L(η,α,β, ε,ϑ,SU , P̃U) (28)

=η−
KU∑
kU=1

KE∑
kE=1

αkU ,kE

Ñ
Nη−

N∑
n=1

M∑
m=1

NF∑
i=1

î
R̃m,kU ,i[n]−‹R′m,kU ,kE ,i[n]

óé
−
N∑
n=1

NF∑
i=1

βi[n]

Ñ
M∑
m=1

KU∑
kU=1

sm,kU ,i[n]−1

é
−

N∑
n=1

M∑
m=1

NF∑
i=1

εm,i[n]

Ñ
KU∑
kU=1

sm,kU ,i[n]+sJm,i[n]−1

é
−ϑm[n]

Ñ
KU∑
kU=1

NF∑
i=1

p̃m,kU,i[n]+
NF∑
i=1

sJm,ip
J
m,i[n]−Pmpeak

é ,
where α = {αkU ,kE ≥ 0,∀kU , kE}, β = {βi[n] ≥ 0,∀n, i}, ε = {εm,i[n] ≥ 0,∀n,m, i},

and ϑ = {ϑm[n] > 0,∀n,m}, denote the Lagrange multipliers for constraints ›C1, C4, C5,

and fiC6a, respectively. Constraints C2 and fiC6b will be considered when deriving the optimal

solution via examining the Karush-Kuhn-Tucker (KKT) conditions in the following. Thus,

the dual problem of (27) can be written as

D = minimize
α,β,ε,ϑ≥0

maximize
η,SU ,P̃U

L(η,α,β, ε,ϑ,SU , P̃U). (29)

Then, by using dual decomposition [45], the dual problem can be solved iteratively by

solving the two layers which is divided from the dual problem: Layer 1, maximizing the

Lagrangian over minimum secrecy rate η, user scheduling SU , and power allocation P̃U in

(29), for given Lagrange multipliers α,β, ε, and ϑ; Layer 2, minimizing the Lagrangian

function over α,β, ε, and ϑ in (29), for a fixed minimum secrecy rate η, user scheduling

SU , and power allocation P̃U .

Solution of Layer 1 (Power Allocation and User Scheduling): Denote s∗m,kU ,i[n], p∗m,kU ,i[n],

and p̃∗m,kU ,i[n] the optimal solutions of subproblem 1. Thus, the optimal power allocation for

user kU on subcarrier i in time slot n is given by

p̃∗m,kU ,i[n] = sm,kU ,i[n]p∗m,kU ,i[n] (30)

=
sm,kU,i[n]

2

[√
Γ2
m,kU ,kE ,i

[n] +
4αkU ,kE
ϑm[n] ln 2

Γm,kU ,kE ,i[n]−
(

1

H′m,kE ,i[n]
+

1

Hm,kU ,i[n]

)]+
,

where Γm,kU ,kE ,i[n] =
Å

1
H′
m,kE,i

[n]
− 1
Hm,kU ,i[n]

ã
.

We note that the solution derived in (30) coincides Lemma 3 where no power is allocated

on subcarrier i from UAV m if Hm,kU ,i[n] ≤ H′m,kE ,i[n]. Lagrange multipliers αkU ,kE and

ϑm[n] in (30) ensure that the average minimum secrecy rate constraint ›C1 and the maximum

transmission power constraint fiC6a are satisfied, respectively, when the optimal solution of

(27) is attained. In general, the water-level for user kU , i.e. 4αkU ,kE
ϑm[n] ln 2

Γm,kU ,kE ,i[n], is different
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from other users on subcarrier i in time slot n. According to the KKT conditions [42], the

following equality holds at the optimal point of the problem in (21):

αkU ,kE

Ñ
N∑
n=1

M∑
m=1

NF∑
i=1

ñ
Rm,kU ,i[n]− ‹R′m,kU ,kE ,i[n]

ô
−Nη

é
= 0,∀kU , kE. (31)

Therefore, Lagrange multiplier αkU ,kE is used to adjust the resource allocation such that

constraint C1 is satisfied with equality. In fact, it reallocates the resource from the stronger

users to weaker users to achieve certain fairness between users. On the other hand, Lagrange

multiplier ϑm[n] > 0 adjusts the water level to satisfy constraint fiC6a. Then, the optimal

subcarrier allocation can be obtained via the derivative of the Lagrangian function w.r.t.

sm,kU ,i[n], which yields

Sm,kU,i[n]=αkU ,kE

Ñ
log2

(
1+Λm,kU,i[n]

1+Λ′m,kU,kE,i[n]

)
− Λm,kU ,i[n]

(1+Λm,kU,i[n])ln 2
+

Λ′m,kU ,kE ,i[n]Ä
1+Λ′m,kU,kE,i[n]

ä
ln 2

é
−βi[n]−εm,i[n],

(32)

where Λm,kU ,i[n] = pm,kU ,i[n]Hm,kU ,i[n] and Λ′m,kU ,kE ,i[n] = pm,kU ,i[n]H′m,kE ,i[n]. Since (32) is

independent of sm,kU ,i[n], with the consideration of constraint C4, the optimal user scheduling

on subcarrier i for UAV m in each time slot n is given by

s∗m,kU ,i[n] =


1, m∗, k∗U = max

m,kU
(Sm,kU ,i[n]),

0, otherwise,
∀n, i, (33)

the solution is still binary, which means that the relaxation adopted in ›C2 is tight.

Solution of Layer 2 (Master Problem): To solve the master minimization problem in (29),

we adopt the gradient method to update the Lagrange multipliers which is given by

αkU ,kE(l1+1)=

ñ
αkU ,kE(l1)−δ1(l1)×

Ç
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

ñ
Rm,kU ,i[n]−R′m,kU ,kE ,i[n]

ô
−η
åô+
, ∀kU , kE,(34)

βi[n](l1+1)=

ñ
βi[n](l1)−δ2(l1)×

Ç
1−

M∑
m=1

KU∑
kU=1

sm,kU ,i[n]

åô+

,∀n, i, (35)

εm,i[n](l1+1)=

ñ
εm,i[n](l1)−δ3(l1)×

Ç
1−

KU∑
kU=1

sm,kU ,i[n]− sJm,i[n]

åô+

,∀n,m, i, (36)

ϑm[n](l1+1)=

ñ
ϑm[n](l1)−δ4(l1)×

Ç
Pm

peak−
KU∑
kU=1

NF∑
i=1

p̃m,kU ,i[n]−
NF∑
i=1

sJm,i[n]pJm,i[n]

åô+

,∀n,m, (37)

where l1 ≥ 0 is the iteration index for subproblem 1 and δu(l1), u ∈ {1, . . . , 4}, is the step

size [41]. Thus, subproblem Layer 1 in problem (29) can be solved by using the updated

Lagrangian multipliers in (34)-(37). The proposed Algorithm for solving subproblem 1 is

summarized in Algorithm 1. Specifically, we solve the power allocation and user scheduling

via the semi-closed-form solutions in (30) and (33), respectively, with a given Lagrange
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Algorithm 1 Optimal User Scheduling and Power Allocation for Subproblem 1
1: Initialize the maximum number of iterations Ll1max inner, L

l1
max outer, and the maximum tolerance εl1inner, ε

l1
outer for inner

loop and outer loop, respectively.

2: Set intermediate average minimum secrecy rate η(0) = 0, iteration index linner1 = 0, and l1 = 0 for inner loop and

outer loop, respectively.

3: repeat {Power Allocation and User Scheduling}

4: Maximize the Lagrangian over the minimum secrecy rate η, user scheduling SU , and power allocation P̃U in (29)

with the given Lagrange multipliers α,β, ε,ϑ.

5: repeat {Master Problem}

6: Minimize the Lagrangian function in (29) over the Lagrange multipliers α,β, ε,ϑ, for a fixed minimum secrecy

rate η, user scheduling SU , and power allocation P̃U .

7: until Convergence = true or linner1 = Ll1max inner.

8: until Convergence = true or l1 = Ll1max outer.

9: η∗l1 = ηl1 , S∗U = Sl1U , and P̃∗U = P̃ l1U .

multipliers as shown in line 4 of Algorithm 1. Then, we update Lagrange multipliers via

the gradient method (34)-(37) as shown in line 6 of Algorithm 1.

B. Subproblem 2: Jamming Policy

In this section, we consider subproblem 2 for optimizing jamming scheduling and power

(SJ ,PJ) with the fixed communication policy and trajectories (SU ,PU ,Q). Thus, subproblem

2 can be written as

maximize
η,SJ ,PJ

η (38)

s.t.C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

Rm,kU ,i[n]−R′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C3 : sJm,i[n] ∈ {0, 1},∀n,m, i,

C5 :
KU∑
kU=1

sm,kU ,i[n] + sJm,i[n] ≤ 1,∀n,m, i,

C6a :
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n] +
NF∑
i=1

sJm,i[n]pJm,i[n] ≤ Pm
peak, ∀n,m,

C6c : pJm,i[n] ≥ 0,∀n,m, i.

First, we handle the coupling between binary variables sJm,i[n] and continuous variables

pJm,i[n] in (38). We introduce an auxiliary variable pJm,i[n] = sJm,i[n]pJm,i[n] and adopt the
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big-M formulation [46] to transform problem (38) equivalently as follows

maximize
η,SJ ,PJ ,PJ

η (39)

s.t. C3,C5,C6c,

C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

Rm,kU ,i[n]−R′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C6a :
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n] +
NF∑
i=1

pJm,i[n] ≤ Pm
peak, ∀n,m,

C12 : pJm,i[n] ≥ 0,∀n,m, i, C13 : pJm,i[n] ≤ pJm,i[n], ∀n,m, i,

C14 : pJm,i[n] ≤ sJm,i[n]PUm
peak[n],∀n,m, i,

C15 : pJm,i[n] ≥ pJm,i[n]− (1− sJm,i[n])PUm
peak[n],∀n,m, i,

where PJ = {pJm,i[n],∀n,m, i},

Rm,kU ,i[n]=sm,kU ,i[n]log2

Ç
1 +

pm,kU ,i[n]hm,kU [n]

Im,kU ,i[n] + σ2

å
,∀n,m, kU , i, (40)

R
′
m,kU ,kE,i[n]=sm,kU ,i[n]log2

Ç
1 +

pm,kU ,i[n]hm,kE [n]

Im,kE ,i[n] + σ2

å
,∀n,m, kU , kE, i, (41)

PUm
peak[n]=Pm

peak −
KU∑
kU=1

NF∑
i=1

sm,kU ,i[n]pm,kU ,i[n],∀n,m, (42)

Im,kU ,i[n] =
M∑

m′=1,m′ 6=m
pJm′,i[n]hm′,kU [n],∀n,m, kU , i, (43)

Im,kE ,i[n] =
M∑

m′=1,m′ 6=m
pJm′,i[n]hm′,kE [n],∀n,m, kE, i, (44)

and constraints C12-C15 are imposed additionally due to the application of the big-M for-

mulation [46]. Furthermore, the binary constraint C3 is another major obstacle for designing

a computationally-efficient jamming algorithm. Therefore, the binary constraint C3 can be

written in its equivalent form:

C3a : 0 ≤ sJm,i[n] ≤ 1 and

C3b :
N∑
n=1

M∑
m=1

NF∑
i=1

sJm,i[n]−
N∑
n=1

M∑
m=1

NF∑
i=1

Ä
sJm,i[n]

ä2 ≤ 0. (45)

However, the optimization problem is still hard to solve due to the non-convex constraints

C1 and C3b. Note that C1 and C3b are in the form of the difference of two convex functions

w.r.t. pJm,i[n] and sJm,i[n], respectively [17]. Thus, following a similar approach as in [46],

[47], we can augment the difference of convex (D.C.) constraints C1 and C3b into the

objective function with two penalty factors ζ and ϕ, which result in an equivalent problem.
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Hence, problem (39) can be rewritten in its equivalent canonical form of D.C. programming

as following

maximize
η,SJ ,PJ ,PJ

F1(η,SJ ,PJ)− F2(SJ ,PJ) (46)

s.t. C3a,C5,C6a,C6c,C12− C15,

where F1(η,SJ ,PJ) and F2(SJ ,PJ) are given by

F1(η,SJ ,PJ) =η−NKUKEζη−ϕ
N∑
n=1

M∑
m=1

NF∑
i=1

sJm,i [n]+ζ
∑
Υ

ï
sm,kU ,i [n] log2

Ä
Im,kE ,i[n]+σ2

äò
+ ζ

∑
Υ

ï
sm,kU ,i [n] log2

Ä
Im,kU ,i[n] + σ2 + pm,kU ,i [n]hm,kU [n]

ä ò
, (47)

F2(SJ ,PJ) =ζ
∑
Υ

ï
sm,kU ,i [n] log2

Ä
Im,kE ,i[n] + σ2 + pm,kU ,i [n]hm,kE [n]

äò
− ϕ

N∑
n=1

M∑
m=1

NF∑
i=1

Ä
sJm,i
ä2

[n] + ζ
∑
Υ

ï
sm,kU ,i [n] log2

Ä
Im,kU ,i[n] + σ2

äò
, (48)

and we define
∑
Υ

[·] as
N∑
n=1

M∑
m=1

KU∑
kU=1

KE∑
kE=1

NF∑
i=1

[·] for notational simplicity, where Υ , {N ,M,

KU ,KE,NF}. Although it is still hard to solve the non-convex problem (46) optimally,

by utilizing the technique of SCA, we can obtain a locally optimal solution for problem

(46) [48]. For the SCA technique, with a given feasible point at each iteration, the non-

convex constraints can be approximated by the corresponding convex constraints, such that

an approximated convex optimization problem can be obtained. Then, by iteratively solving

the sequence of approximated convex problems, an efficient solution to the original non-

convex optimization problem (38) can be obtained [48].

Note that F1(η,SJ ,PJ) and F2(SJ ,PJ) are differentiable concave functions w.r.t. η,SJ ,

and PJ . Thus, for any feasible point (ηl2 ,S l2J ,P
l2
J ), we can define a global upper estimator

for F2(SJ ,PJ) based on its first order Taylor’s expansion at (ηl2 ,S l2J ,P
l2
J ) as follows

F2(SJ,PJ) ≤ F2(S l2J ,P
l2
J )+∇SJF2(S l2J ,P

l2
J )T (SJ−S l2J ) +∇PJF2(S l2J ,P

l2
J )T (PJ−P

l2
J ), (49)

where∇PJF2(S l2J ,P
l2
J ) and∇SJF2(S l2J ,P

l2
J ) denote the gradient vectors of F2(SJ ,PJ) at (S l2J ,P

l2
J ).

Moreover, the right hand side of (49) is an affine function. Thus, we can obtain a lower

bound for the optimal value of problem (46) by solving the following concave maximization

problem:

maximize
η,SJ ,PJ ,PJ

F1(η,SJ,PJ)−F2(S l2J ,P
l2
J )−∇SJF2(S l2J ,P

l2
J )T (SJ−S l2J )−∇PJF2(S l2J ,P

l2
J )T (PJ−P

l2
J )

s.t. C3a,C5,C6a,C6c,C12− C15, (50)
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Algorithm 2 Jamming Policy Optimization Algorithm
1: Initialize the maximum number of iterations Ll2max, iteration index l2 = 0, penalty factors ζ and ϕ, and the maximum

tolerance εl2 .

2: Set the intermediate average minimum secrecy rate, jamming scheduling, jamming power, and relaxed jamming power

as η(0), S(0)
J , P(0)

J , and P(0)
J , respectively.

3: repeat

4: Solve (50) for a given communication resource allocation {SC ,PC} and UAVs’ trajectories {Q}.

5: Set l2 = l2 + 1, ηl2 = η, Sl2J = SJ , P l2J = PJ , and P l2J = PJ .

6: until convergence or l2 = Ll2max.

7: ηl2 = ηl2 , SJ = Sl2J , PJ = P l2J , and PJ = P l2J .

where

∇SJF2(S l2J ,P
l2
J )T (SJ−S l2J )=−2ϕ

N∑
n=1

M∑
m=1

NF∑
i=1

s
J(l2)
m,i [n]

(
sJm,i[n]−sJ(l2)

m,i [n]
)
, (51)

∇PJF2(S l2J ,P
l2
J )T(PJ−P

l2
J )=ζ

∑
Υ

ïsm,kU ,i[n]

ln 2

Ä
Al2m,kU ,i[n]+Bl2

m,kU ,kE ,i
[n]
ä(
pJm,i[n]−pJ(l2)

m,i [n]
)ò
, (52)

Al2m,kU ,i[n]=

M∑
m′=1,m′ 6=m

hm′,kU [n]

I
l2
m,kU ,i

[n] + σ2
, (53)

Bl2
m,kU ,kE ,i

[n]=

M∑
m′=1,m′ 6=m

hm′,kE [n]

I
l2
m,kE ,i

[n] + σ2 + pm,kU ,i[n]hm,kE [n]
. (54)

Now, the optimization problem in (50) is a convex optimization problem which can be

solved efficiently by standard convex problem solvers, such as CVX [42]. To tighten the

obtained lower bound, we adopt an iterative algorithm to generate a sequence of feasible

solutions successively, cf. Algorithm 2. The initial feasible solution with iteration index

l2 = 0 is obtained by solving the convex optimization problem in (50) with F1(η,SJ ,PJ) as

the objective function [46] which is shown in line 2 of Algorithm 2. Then, the intermediate

solution from the last iteration will be used to update the problem in (50) and it will generate

a feasible solution for the next iteration in l2 = l2 + 1, as shown in line 5 of Algorithm

2. The iterative procedure will stop either the changes of optimization variables are smaller

than a predefined convergence tolerance or the number of iteration reaches its maximum.
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C. Subproblem 3: Trajectory Optimization

In this section, we consider subproblem 3 for optimizing the trajectory design by assuming

that (SU ,SJ ,PU ,PJ) are fixed. Thus, subproblem 3 can be written as

maximize
η,Q

η (55)

s.t.C1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

Rm,kU ,i[n]−R′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C7 : ||qm[n]− qm [n− 1] ||2 ≤ V 2,∀n,m,

C8 : ||qm[n]−wj
NF||2 ≥

Ä
Qj

NF

ä2
,∀n,m, j,

C9 : ||qm[n]− qm′ [n] ||2 ≥D2
S,∀n,m,m 6=m′,

C10 : qm[0] = q0
m,∀m, C11 : qm[N ] = qFm,∀m.

However, the optimization problem is still non-convex due to constraints C1, C8, and

C9. To facilitate the development of solution, we first introduce four slack variables tU =

{tm,kU [n],∀n,m, kU}, t′U = {t′m,kU [n],∀n,m, kU}, tE = {tm,kE [n],∀n,m, kE}, and t′E =

{t′m,kE [n],∀n,m, kE}, which satisfy

C12 : tm,kU [n] ≥ d2
m,kU

[n], ∀n,m, kU , C13 : tm,kE [n] ≥ d2
m,kE

[n], ∀n,m, kE, (56)

C14 : t′m,kU [n] ≤ d2
m,kU

[n], ∀n,m, kU , C15 : t′m,kE [n] ≤ d2
m,kE

[n],∀n,m, kE. (57)

Then, communication rate Rm,kU ,i[n] in constraint C1 can be written as

Rm,kU ,i[n]=sm,kU ,i[n] log2

Ö
1 +

pm,kU ,i[n]β0

tm,kU [n]

Ωm,kU [n]

è
= R̂m,kU ,i[n]−Řm,kU ,i[n],∀n,m, kU , i, (58)

where

R̂m,kU ,i[n] = sm,kU ,i[n] log2

Ç
pm,kU ,i[n]β0

tm,kU [n]
+ Ωm,kU [n]

å
, (59)

Řm,kU ,i[n] = sm,kU ,i[n] log2 Ωm,kU [n], (60)

Ωm,kU [n] =
M∑

m′=1,m′ 6=m

sJm′,i[n]pJm′,i[n]β0

t′m,kU [n]
+ σ2. (61)

Similarly, the leakage rate in constraint C1 can be written as

R′m,kU,kE,i[n]=sm,kU ,i[n]log2

Ö
1+

pm,kU ,i[n]β0

tm,kE [n]

Ωm,kE [n]

è
=Ř′m,kU ,kE ,i[n]−R̂′m,kU ,kE ,i[n],∀n,m,kU,kE,i, (62)

March 17, 2020 DRAFT



21

where
Ř′m,kU ,kE ,i[n] = sm,kU ,i[n]log2

Ç
pm,kU ,i[n]β0

tm,kE [n]
+Ωm,kE [n]

å
, (63)

R̂′m,kU ,kE ,i[n] = sm,kU ,i[n]log2Ωm,kE [n], (64)

Ωm,kE [n] =
M∑

m′=1,m′ 6=m

sJm′,i[n]pJm′,i[n]β0

t′m,kE [n]
+ σ2. (65)

Therefore, the problem can be written as

maximize
η,Q,tU ,tE ,t′U ,t

′
E

η (66)

s.t. C7− C11,

Ĉ1 :
1

N

N∑
n=1

M∑
m=1

NF∑
i=1

R̂m,kU ,i[n] + R̂′m,kU ,kE ,i[n]− Řm,kU ,i[n]− Ř′m,kU ,kE ,i[n] ≥ η,∀kU , kE,

C12 : tm,kU [n] ≥ d2
m,kU

[n],∀n,m, kU , C13 : tm,kE [n] ≥ d2
m,kE

[n],∀n,m, kE,

C14 : t′m,kU [n] ≤ d2
m,kU

[n],∀n,m, kU , C15 : t′m,kE [n] ≤ d2
m,kE

[n],∀n,m, kE,

where tU = {tm,kU [n],∀n,m, kU}, tE = {tm,kE [n], ∀n,m, kE}, t′U = {t′m,kU [n],∀n,m, kU},

and t′E = {t′m,kE [n],∀n,m, kE}.

Since R̂m,kU ,i[n], Řm,kU ,i[n], R̂′m,kU ,kE ,i[n], and Ř′m,kU ,kE ,i[n] are convex functions w.r.t.

tm,kU [n], t′m,kU [n], tm,kE [n], and t′m,kE [n], respectively, problem (66) is equivalent to problem

(55), as constraints C12 - C15 hold with equalities at the optimal point of problem (66) [1],

[18].

However, problem (66) is still non-convex due to the non-convex constraints Ĉ1, C8, C9,

C14, C15, C16, and C18. Although it is hard to solve the non-convex problem (66) optimally,

similar to the case for solving subproblem 2, by utilizing the technique of SCA, we can obtain

a locally optimal solution for problem (66). To this end, we first handle constraint Ĉ1. Since

−Řm,kU ,i[n] is a convex functions w.r.t. {t′m,kU [n]}. We have the following inequalities by

applying the first order Taylor expansion at any given point {t′m,kU [n]}

−Řm,kU ,i[n] = −sm,kU ,i[n] log2 Ωm,kU [n]

≥ −Řl3
m,kU ,i

[n]−∇t′U
Řl3
m,kU ,i

[n]
(
t′m,kU [n]− t′l3m,kU [n]

)
, −Řlb

m,kU ,i
[n], ∀n,m, kU , i, (67)

where
Řl3
m,kU ,i

[n] = sm,kU ,i[n] log2 Ωl3
m,kU

[n], (68)

∇t′U
Řl3
m,kU ,i

[n] = −
M∑

m′=1,m′ 6=m

sm,kU ,i[n]sJm′,i[n]pJm′,i[n]β0Ä
t′l3m′,kU [n]

ä2
Ωl3
m,kU

[n] ln 2
. (69)
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Similarly, we approximate −Ř′m,kU ,kE ,i[n] by applying the first order Taylor expansion at

given points {tm,kE [n]} and {t′m,kE [n]}

−Ř′m,kU ,kE ,i[n]=−sm,kU ,i[n] log2

Ç
pm,kU ,i[n]β0

tm,kE [n]
+ Ωl3

m,kE
[n]

å
≥−Ř′l3m,kU ,kE ,i[n]−∇tEŘ

′l3
m,kU ,kE ,i

[n]
Ä
tm,kE[n]−tl3m,kE[n]

ä
−∇t′EŘ

′l3
m,kU ,kE ,i

[n]
(
t′m,kE[n]−t′l3m,kE[n]

)
,−Řlb

m,kU ,kE ,i
[n],∀n,m, kU , kE, i, (70)

where
Řl3
m,kU ,kE ,i

[n] = sm,kU ,i[n] log2

Ñ
pm,kU ,i[n]β0

tl3m,kE [n]
+ Ωl3

m,kE
[n]

é
, (71)

∇tEŘ
′l3
m,kU ,kE ,i

[n] =
−sm,kU ,i[n]pm,kU ,i[n]β0Ä

tl3m,kE [n]
ä2 Çpm,kU ,i[n]β0

t
l3
m,kE

[n]
+ Ωl3

m,kE
[n]

å
ln 2

, (72)

∇t′EŘ
′l3
m,kU ,kE ,i

[n] =
M∑

m′=1,m′ 6=m

−sm,kU ,i[n]sJm′,i[n]pJm′,i[n]β0Ä
t′l3m′,kE [n]

ä2 Çpm,kU ,i[n]β0

t
l3
m,kE

[n]
+ Ωl3

m,kE
[n]

å
ln 2

. (73)

By replacing −Řm,kU ,i[n]− Ř′m,kU ,kE ,i[n] in Ĉ1, constraint Ĉ1 can be written as

ˆ̂
C1 :

1

N

N∑
n=1

M∑
m=1

NF∑
i=1

R̂m,kU ,i[n]+R̂′m,kU ,kE ,i[n]−Řlb
m,kU ,i

[n]−Řlb
m,kU ,kE ,i

[n] ≥ η,∀kU , kE. (74)

Then, we handle the non-convex NFZ constraint C8

Ĉ8 : ||ql3m[n]−wj
NF||2 + 2

Ä
ql3m[n]−wj

NF

ä Ä
qm[n]− ql3m[n]

ä
≥
Ä
Qj

NF

ä2
,∀n,m, j. (75)

Similarly, we approximate the non-convex constraint C9, C14, and C15 as following

Ĉ9 : ||ql3m[n]−ql3m′ [n]||2+2
Ä
ql3m[n]−ql3m′ [n]

äÄ
qm[n]−ql3m[n]

ä
≥ D2

S, ∀n,m,m′ 6= m, (76)

Ĉ14 : ||ql3m[n]−wkU ||2+2
Ä
ql3m[n]−wkU

äÄ
qm[n]−ql3m[n]

ä
+H2 ≥ t′m,kU [n],∀n,m, kU , (77)

Ĉ15 : ||ql3m[n]−wkE ||2+2
Ä
ql3m[n]−wkE

äÄ
qm[n]−ql3m[n]

ä
+H2 ≥ t′m,kE [n],∀n,m, kE. (78)

Now, with the more stringent constraints ˆ̂
C1, Ĉ8, Ĉ9, Ĉ14, and Ĉ15, a suboptimal solution

of (55) can be obtained by solving the following optimization problem

maximize
η,Q,tU ,tE ,t′U ,t

′
E

η (79)

s.t.
ˆ̂

C1,C7, Ĉ8, Ĉ9,C10− C13, Ĉ14, Ĉ15,

which is a convex optimization problem and can be solved efficiently by standard convex

problem solvers such as CVX [42], which is summarized in Algorithm 3.
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Algorithm 3 Trajectory Design Optimization Algorithm
1: Initialize the maximum number of iterations Ll3max, iteration index ll3 = 0, and the maximum tolerance εl3 .

2: Set the initial values as η(0), Q(0), t(0)U , t(0)E , t′(0)U , and t′
(0)
E , respectively.

3: repeat

4: Solve (79) for a given communication resource allocation {SC ,PC} and jammer policy {SJ ,PJ}.

5: Set l3 = l3 + 1, ηl3 = η, Ql3 = Q, tl3U = tU , tl3E = tE , t′l3U = t′U , and t′
l3
E = t′E .

6: until convergence or l3 = Ll3max.

7: ηl3 = ηl3 , Q = Ql3 , tU = tl3U , tE = tl3E , t′U = t′
l3
U , and t′E = t′

l3
E .

Algorithm 4 Iterative Resource Allocation and Trajectory Optimization Algorithm
1: Initialize the maximum number of iterations Ll4max, iteration index l4 = 0, and the maximum tolerance εl4 .

2: repeat

3: For the fixed jamming policy and trajectory, obtain the optimal communication resource allocation {S∗U ,P∗U} and

intermediate average minimum secrecy rate ηl1 by using Algorithm 1.

4: For the fixed communication resource allocation and trajectory, obtain the jamming policy {SJ ,PJ} and intermediate

average minimum secrecy rate ηl2 by using Algorithm 2.

5: For the fixed communication resource allocation and jamming policy, obtain the trajectory Q and intermediate

average minimum secrecy rate ηl3 by using Algorithm 3.

6: Set l4 = l4 + 1, ηl4 = ηl3 , {Sl4U ,P
l4
U } = {S∗U ,P∗U}, {Sl4J ,P

l4
J } = {SJ ,PJ}, and Ql4 = Q.

7: until convergence or iteration index reaches to the maximum number.

8: η = ηl4 , {SU ,PU} = {Sl4U ,P
l4
U }, {SJ ,PJ} = {Sl4J ,P

l4
J }, and Q = Ql4 .

D. Overall Algorithm

In summary, the proposed algorithm solves the three subproblems (20), (38), and (55) in

an alternating manner with a polynomial time computational complexity. The details of the

proposed algorithm are summarized in Algorithm 4. Since the objective value of (18) with

the solutions obtained by solving subproblems (20), (38), and (55) is non-decreasing over

iterations and feasible solution set is bounded, the solution obtained by the proposed algorithm

is guaranteed to converge to a suboptimal solution with a polynomial time computational

complexity [7], [46].

V. NUMERICAL RESULTS

In this section, we investigate the performance of the proposed UAV-enabled secure com-

munication scheme through simulations. Unless specified otherwise, the system parameters

are given as follows. All ground users are placed on the ground within the area of 500× 500

m2. Two UAVs are dispatched to provide communications to two ground users with the

existence with two potential eavesdroppers. Furthermore, we assume that the two UAVs’

initial locations and final locations in 2D area are q0
1 = (0, 0), qF1 = (500, 0), q0

2 = (0, 500),

and qF2 = (500, 500), respectively. The communication bandwidth is 2 MHz with a carrier

center frequency at 2 GHz, the number of subcarrier NF = 16, and the noise power on

each subcarrier is −100 dBm with channel gain β0 = −50 dB at the reference distance

d0 = 1 m. Therefore, the channel gain-to-noise ratio at the reference distance is γ0 = 80
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Fig. 3. The upper half of the figure shows the proposed algorithm trajectories with different mission time durations. The

lower half of the figure depicts the roles of the two UAVs for the case of T = 45 s.

dB [18]. All UAVs’ maximum transmission power are set as Ppeak = 30 dBm [20]. Both of

the UAV’s maximum flying speed is vmax = 20 m/s with a fixed altitude of H = 100 m,

and the safety distance between any two UAVs is DS = 50 m. The centres of two NFZs are

w1
NF = (150, 325) and w2

NF = (350, 325), respectively, and the radii of both NFZs are the

same with QNF = 60 m. In all considered scenarios, two users are located on wk1U = (50, 50)

and wk2U = (400, 450), respectively. Furthermore, as in [8], [17], [18], we assume that

three eavesdroppers’ locations are exactly known as w1E = (70, 70), w2E = (150, 250), and

w3E = (250, 150). For illustration, all the trajectories are sampled every second.

In our simulation, we compare the performance of the proposed algorithm, denoted as PA

with the other two baseline schemes: a) No jammer (NJ), which all UAVs serve as information

UAV and do not transmit artificial noise to eavesdroppers [14]–[16]. Since the problem for

PA subsumes the NJ scheme as a subcase, the average minimum secrecy rate per user in NJ

can be achieved by solving subproblem 1 and subproblem 3 with the settings of jamming

power as zero. (b) Single-purpose UAV (SP), which one UAV can provide communication

while the other is acting as a jammer at all time [17], [18], [20]. SP is also a subcase for

PA, and the average minimum secrecy rate in PA can be obtained by solving the problem in

(18) with fixing UAV 1 as a jammer and UAV 2 as a base station.

A. Proposed Trajectories with Different Mission Time Durations
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Fig. 3 illustrates UAVs’ trajectories of our proposed scheme with three different mission

time durations, T = 28 s, T = 45 s, and T = 60 s, respectively. The proposed trajectories in

this figure for UAV 1 and UAV 2 are denoted as PU 1 and PU 2, respectively. It is observed

that when T is relatively small (e.g. T = 28 s), UAV 1 first goes directly towards ground

user 1 (GU 1) and hovers over it before flying back straightly to the destination, whereas

the behavior of UAV 2 is totally different. This is because all three eavesdroppers are closer

to GU 1 compared to GU 2. Specifically, eavesdropper 1 is in close proximity to GU 1

which incurs a high risk in information leakage. Therefore, UAV 2 first acts as a jammer

and flies close to all the eavesdroppers as possible at the beginning to help UAV 1 for secure

communications. After UAV 1 conveys enough secure data to GU 1, UAV 1 switches its

role to a jamming UAV while on its way back to its final location. Concurrently, to achieve

fairness in resource allocation, UAV 2 flies towards GU 2 and transmits information to GU

2 when they are close enough to each other. In addition, both UAVs fly with the maximum

speed vmax = 20 m/s to establish a shorter LoS link to the user/eavesdropper as fast as

possible. Moreover, we can observe that with a sufficiently long time duration (e.g. T = 45

s), the behaviors of the UAVs alter to fully exploit the degrees of freedom brought by the

additional time. For the ease of illustration, the lower half of Fig. 3 shows the roles of UAVs

across time for the case of T = 45 s. In particular, for n ≤ 35, UAV 2 first cruises towards

eavesdropper 1 and serves as a jammer to assist the secure communications between UAV

1 and GU 1. Besides, with the help of UAV 2, UAV 1 also takes the shortest path cruising

towards GU 1 and hovers over it for efficient communication. From 35 < n < 38, both UAVs

prepare role switching by navigating themselves to their desired positions. During this short

period of time, the channels between UAVs and any of the eavesdroppers are better than

that of all users even if jamming is performed. To prevent information leakage, both UAVs

would not communicate to any ground user, as revealed in Lemma 3. Therefore, there is

neither communication nor jamming in the system in this period. Furthermore, when UAV 2

is close enough to GU 2 for efficient secure communication at n ≥ 38, UAV 1 starts serving

as a jammer on its journey to final destination to protect GU 2 against eavesdropping. It

is also observed that when the straight direction between a UAV and the desired location

is blocked by a NFZ, the UAV’s trajectory of the proposed scheme would take the shortest

path along the tangential line of the NFZ. Also, the roles of both the UAVs remain the same

before cruising back to their corresponding destinations. We can also observe that when the

mission time duration is sufficiently long (e.g. T = 60 s), UAV 2 would spend more time
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Fig. 4. Trajectories of single-purpose UAVs for different schemes.

and hover over at some locations close to eavesdropper 1 to fully exploit the additional time

as a jammer for efficient jamming. Moreover, UAV 2 keeps safety distance with UAV 1 and

there is no collision between them thanks to the collision avoidance constraint C9 in the

problem formulation.

B. Baseline Trajectories with Fixed Mission Duration Time

Fig. 4 shows the trajectories of a single-purpose UAV system for a mission duration time of

T = 60 s. For baseline 1 (NJ), the trajectories of communication UAV 1 and communication

UAV 2 are denoted as CU1-NJ and CU2-NJ, respectively. For baseline 2 (SP), the trajectories

of communication UAV and jammer UAV are denoted as CU-SP and JU-SP, respectively.

It can be observed that for baseline 1, UAV 1 and UAV 2 fly directly to GU 1 and GU

2 with the maximum speed vmax = 20 m/s, respectively. Besides, each UAV hovers over

their corresponding desired GU as long as possible within the allowed mission duration

time. Then, both of the UAVs fly directly to the final location. Different from baseline 1,

the single purpose communication UAV CU-SP in baseline 2 just hovers over GU 1 for a

short period duration time and then flies directly to GU 2 from the left hand side of NFZ

2 for establishing efficient communication between them. This is because CU-SP needs to

fly towards and communicate to a far away user, i.e., GU 2, even if another single-purpose

jamming UAV JU-SP is closer to this remote user. In this scheme, the only communication

UAV has no choice but fly closer to the desired user to establish a strong LoS link to provide

secure communication. At the same time, the JU-SP UAV flies close to eavesdropper 1 for

jamming at the beginning to relieve the system bottleneck created by eavesdropper 1. Then,
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Fig. 5. Average minimum secrecy rate versus the mission time durations with different schemes.

the JU-SP UAV flies close to the centroid location formed by the three eavesdroppers to

improve secrecy rate communication. In particular, to avoid UAVs collision, JU-SP moves

away from its hovering location to give way for CU-SP. This is because in baseline 2, there is

only one communication UAV for serving all users which imposes a very stringent restriction

in utilizing the system resources for maximizing the average minimum secrecy rate.

C. Average Minimum Secrecy Rate versus Mission Duration Time

Fig. 5 depicts the average minimum secrecy rate versus the mission duration time T for

our proposed algorithm and the other two baselines with three eavesdroppers. It is observed

that for all the considered algorithms, the average minimum secrecy rate is virtually zero

when the mission time duration is less than 25 s. In fact, a small time duration would lead

to an infeasible result for all the algorithms, since both the UAVs cannot fly back to their

final locations even if there is no NFZ and they cruise with the maximum aviation speed

vmax = 20 m/s. Also, it can be observed that the average minimum secrecy rates achieved

by PA and NJ both increase with mission duration time T . However, for SP, the average

minimum secrecy rate is zero until the mission duration time T is longer than 53 s. This is

because the only communication UAV in SP has insufficient time to reach closer to GU 2 and

to provide secure communication. As a result, the UAV would not transmit anything to avoid

information leakage, as revealed in Lemma 3. Furthermore, we can observe that the system

performance of PA increases sharply from 30 s to 40 s while the average minimum secrecy

rate of NJ scales up slowly. In fact, a sufficiently long time duration grants a UAV more

time to reach and stay close to its desired location to enjoy a short distance communication.

Besides, the proposed role switching for UAVs grants the UAVs much higher flexibility to
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Fig. 6. Average minimum secrecy rate versus the maximum transmission power with different schemes.

provide communication or to act as a jammer, which can save considerable time for the UAVs

to fly to their desired destinations. However, the system performance gain brought by the

extra time is diminishing for both PA and NJ. In other words, for a given maximum transmit

power, the performance bottleneck created by limited time duration is relieved as each GU

can be served with a sufficiently long time while enjoying excellent channel conditions with

UAVs.

D. Average Minimum Secrecy Rate versus Maximum Transmission Power

Fig. 6 demonstrates the achieved average minimum secrecy rate versus the maximum

transmission power for all schemes for T = 60 s. It can be observed that the average

minimum secrecy rates achieved by all schemes increase with the maximum transmission

power at the beginning. Indeed, a higher data rate can be achieved with a higher power when

the UAVs are close to their desired users. However, the system performance of all three

algorithms is saturated when the maximum transmission power is sufficiently high. This is

because eavesdropper 1 is in the neighbourhood of GU 1, a higher transmission power may

incur a higher information leakage and the UAV would clip its transmit power at a certain

level despite there is still transmit power available. Moreover, it is interesting to see that

the performance gain achieved by our proposed algorithm PA are quite large at all times

compared to other two baselines which unveils that role switching among UAVs is the key

for improving the system performance. In addition, the average minimum secrecy rate of

both SP and NJ schemes scale slowly w.r.t. the available power compared to the proposed

scheme as they are less efficient in exploiting the extra transmission power for improving the

system performance. Also, despite a higher maximum transmission power grants all UAVs
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higher capabilities to improve secure communication system performance, single-purpose

UAVs perform the worst among all the considered schemes as they are not competent for

time-critical mission in secure communication systems due to the distributed nature of GUs.

VI. CONCLUSION

In this paper, we presented a new communication approach with multi-purpose UAVs which

can either provide communication to users or serve as jammers to transmit noise signal to

eavesdroppers. By exploiting the UAVs’ high mobility, we maximize the average minimum

secrecy rate by jointly optimizing the communication user scheduling, communication power

allocation, jamming policy, and the trajectories of UAVs, while taking into account the safety

distance between any two UAVs, restricted flight in NFZs, the maximum UAV cruising speed,

and initial/final UAV locations. A suboptimal solution of resource allocation for secure multi-

UAV communication systems was derived by utilizing dual decomposition and SCA with a

polynomial time computational complexity. Numerical results demonstrated that our proposed

design of multi-purpose UAV communication system can significantly increase the minimum

secrecy data rate compared to various baseline schemes enabled by dynamically switching

the roles of UAVs between communication and jamming.

APPENDIX
A. Proof of Lemma 1

Denote η∗1 and η∗2 as the optimal values of problems (18) and (19), respectively. Since

[x]+ ≥ x,∀x, we have η∗1 ≥ η∗2 .

Next, we prove that η∗2 ≥ η∗1 holds either. Denote (Q∗,S∗U ,S∗J ,P∗U ,P∗J) as the optimal

solution to (18), where P∗U = {p∗m,kU ,i[n],∀n,m, kU , i}. Define f(pm,kU ,i[n]) = Rm,kU ,i[n] −

R′m,kU ,kE ,i[n]. We construct a feasible solution (Q̂, ŜU , ŜJ , P̂U , P̂J) to (19), such that Q̂ = Q∗,

ŜU = S∗U , ŜJ = S∗J , P̂J = P∗J , and the elements of P̂U can be obtained as: if f(pm,kU ,i[n]) ≥ 0,

P̂m,kU ,i[n] = P ∗m,kU ,i[n]; otherwise P̂m,kU ,i[n] = 0. Denote η̂ as the objective value of (19)

attained at Q̂, ŜU , ŜJ , P̂U , P̂J . Therefore, the newly constructed solution (Q̂, ŜU , ŜJ , P̂U , P̂J)

ensures η̂ = η∗1 , but also is feasible to (19), which follows that η∗2 ≥ η̂ and thus η∗2 ≥ η∗1 .

Therefore, η∗2 = η∗1 , which completes the proof.

B. Proof of Lemma 2

The Hessian of ψ(x, y) , x log2(1 + κ1y
x

)− x log2(1 + κ2y
x

) is given by

52 ψ(x, y) =

 κ22y
2

x3(
κ2y

x
+1)2
− κ21y

2

x3(
κ1y

x
+1)2

κ21y

x2(
κ1y

x
+1)2
− κ22y

x2(
κ2y

x
+1)2

κ21y

x2(
κ1y

x
+1)2
− κ22y

x2(
κ2y

x
+1)2

κ22
x(
κ2y

x
+1)2
− κ21

x(
κ1y

x
+1)2

 . (80)
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For any t = [t1, t2]T , we have

tT 52 ψ(x, y)t =− 1

x

Ç
t1y

2

x
− t2

å2
Ñ

κ2
1Ä

κ1y
x

+ 1
ä2 − κ2

2Ä
κ2y
x

+ 1
ä2é . (81)

It is easy to verify that, for κ1 > κ2 ≥ 0, x ≥ 0, and y ≥ 0,
κ2

1Ä
κ1y
x

+ 1
ä2 − κ2

2Ä
κ2y
x

+ 1
ä2 ≥ 0, (82)

so that
tT 52 ψ(x, y)t ≤ 0, (83)

when κ1 > κ2 ≥ 0, x ≥ 0, and y ≥ 0. Therefore, the Hessian ψ(x, y) is a negative

semi-definite matric and ψ(x, y) is a concave function w.r.t. x and y.

C. Proof of Lemma 3

If UAV m allocates a non-negative power for user kU on subcarrier i in time slot n, i.e.,

sm,kU ,i[n] = 1 and p̃m,kU ,i[n] > 0, under the condition Hm,kU ,i[n] ≤ H′m,kE ,i[n], we haveñ
R̃m,kU ,i[n] − R̃′m,kU ,kE ,i[n]

ô
≤ 0, which leads to a smaller objective value in (21). Besides,

the solution set becomes smaller as some power is wasted without improving the objective

value. Hence, p̃m,kU ,i[n] > 0 for Hm,kU ,i[n] < H′m,kE ,i[n] is not an optimal solution.
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