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Abstract

We consider computation offloading for Internet-of-things (IoT) applications in multiple-input-

multiple-output (MIMO) cloud-radio-access-network (C-RAN). Due to the limited battery life and

computational capability in the IoT devices (IoTDs), the computational tasks of the IoTDs are offloaded

to a MIMO C-RAN, where a MIMO radio resource head (RRH) is connected to a baseband unit

(BBU) through a capacity-limited fronthaul link, facilitated by the spatial filtering and uniform scalar

quantization. We formulate a computation offloading optimization problem to minimize the total transmit

power of the IoTDs while satisfying the latency requirement of the computational tasks, and find that

the problem is non-convex. To obtain a feasible solution, firstly the spatial filtering matrix is locally

optimized at the MIMO RRH. Subsequently, we leverage the alternating optimization framework for

joint optimization on the residual variables at the BBU, where the baseband combiner is obtained in

a closed-form, the resource allocation sub-problem is solved through successive inner convexification,

and the number of quantization bits is obtained by a line-search method. As a low-complexity approach,

we deploy a supervised deep learning method, which is trained with the solutions to our optimization

algorithm. Numerical results validate the effectiveness of the proposed algorithm and the deep learning

method.
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I. INTRODUCTION

Internet-of-things (IoT) has a great potential to impact our lives in the future by providing

solutions related to multiple sectors of industry, smart homes, transportation, etc. It is predicted

that there will be about 50 billion IoT devices by 2020 [1], [2]. The deployment of a large-scale

IoT ecosystem requires the IoT devices (IoTDs) with a small physical size to be built from cost-

efficient hardware components, which results in major challenges due to their limited battery life

and computational capability. More importantly, IoT applications require flexibility in handling

diverse latency requirements [1]. To address the limited battery life and computational capability,

the computational task in an IoTD can be migrated to a more powerful server [3], which is

known as computation offloading [3], [4]. Furthermore, technologies like massive multiple-

input-multiple-output (MIMO) [5]–[7] and cloud-radio-access-network (C-RAN) [8]–[14] can

be exploited to augment the process of computation offloading and manage the corresponding

latency requirement imposed by the IoT applications.

Massive MIMO, characterized by the deployment of a huge number of antennas, is a key

enabling technique for 5G wireless systems [5], [6]. More recently, extra-large scale MIMO

(xL-MIMO) as a step further has received increasing research attention [7], [15]–[17]. In XL-

MIMO, a large antenna array in the order of hundreds and thousands is integrated into a large

man-made structure, for example, walls of buildings in the residential rooms, airports, or large

shopping malls, as a scaled-up version of the massive MIMO systems where the spatial dimension

provides an additional degree of freedom to further enhance the performance of the massive

MIMO systems [15], [18]. In addition, xL-MIMO systems provide a better coverage with a

line-of-sight (LOS) channel, which also simplifies the corresponding channel estimation [7],

[16], [17]. However, the implementation of such xL-MIMO systems is challenging due to the

deployment complexity along with the increasing requirement for the baseband signal processing,

which is proportional to the number of antenna elements.

C-RAN can be a potential technique to overcome the above challenges for the xL-MIMO sys-

tems. Specifically, C-RAN migrates the baseband signal processing to a baseband unit (BBU) that

is equipped with a powerful server in the “cloud”, while the radio frequency (RF) functionalities

are implemented at the remote radio head (RRH) [19]. By combining massive MIMO with C-

RAN, the deployment complexity of the conventional massive MIMO systems can be greatly

alleviated, since only analog components such as antennas and RF chains with a limited signal
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processing capability are required [8], [12]. However, moving the signal processing of a massive

MIMO system from the RRH to the central BBU requires a huge amount of digitally sampled

data to be transmitted over the fronthaul link. Therefore, it is necessary to compress the uplink

data at the RRH to satisfy the capacity limit of the fronthaul link. Accordingly, in [8], the authors

proposed a data compression method which reduces the dimension of the signals received across

the multiple antennas through spatial filtering, followed by a uniform scalar quantization across

the reduced dimension. To further reduce the cost and power consumption of the hardware

components in a C-RAN system, hybrid analog-digital designs have subsequently been applied

to the massive MIMO C-RANs [11], [12], [20], [21], where the number of RF chains at the

RRH can be reduced.

Different from the wireless systems in [8] and [12] where the uplink communication has a high

spectral efficiency requirement, the latency-constrained IoT applications pursue low data rates

with a higher energy efficiency performance while meeting their stringent latency constraints.

In this regard, computation offloading with the massive MIMO C-RAN can be leveraged by

allocating the transmit power and computational resource at the BBU server to each IoTD while

satisfying their latency requirement. While there have been studies on admission control and

offloading strategies for computation offloading in a single-antenna wireless network in [22],

[23] and references therein, there are only a limited number of works in the literature that study

the joint communication and computational resource allocation for computation offloading in

a MIMO C-RAN [9], [10], [13]. In [9] and [10], the offloading problems were formulated to

minimize the total transmit power and energy consumption of the devices, respectively, while

meeting the latency constraints. The computation offloading method proposed in [13] aimed to

minimize the maximum latency of all the devices. Nevertheless, these works did not consider the

compression and quantization of the received signal at the RRH as in [8], [12], which can lead to

infeasible data traffic for a capacity-limited fronthaul link. Moreover, the latency incurred at the

capacity-limited fronthaul link in transferring the data from the RRH to the BBU can critically

impede the execution of the computational tasks. Accordingly, the above mentioned drawbacks

call for the joint design of the resource allocations, the compression and quantization strategies,

especially for the latency-critical IoT applications.

Furthermore, the iterative nature of the solutions proposed in [8]–[10], [12], [13] are com-

putationally demanding for real-time implementation, especially when the computational tasks

have a stringent latency requirement. Recently, deep learning has become a promising tool
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in solving difficult wireless communication problems, such as resource allocation [24], [25],

channel decoding [26] and channel estimation [27], [28], which can return a near-optimal

solution with a low-complexity implementation. The main idea of deep learning is to treat a

given computationally expensive algorithm as a “black box”, and try to learn the policy obtained

with the algorithm by using a deep neural network (DNN) [29], [30]. Specifically, the authors

in [29] have shown that the DNN can be trained to learn the non-linear mapping between the

input and output of an algorithm, where the outputs obtained from running the algorithm offline

can be used as labeled samples to train the DNN. Accordingly, the trained DNN only requires

simple operations such as matrix-vector multiplications to obtain near-optimal solutions.

Motivated by the above, in this work we consider the computation offloading problem for the

IoTDs in a massive MIMO C-RAN deployed in an indoor environment, where multiple receive

antennas that are spread across one of the walls act as an xL-MIMO RRH. Specifically, the uplink

signals, encoding the computation bits from the IoTDs, are firstly received at the xL-MIMO

before spatial filtering. Subsequently, the filtered signals are quantized [31] and transmitted to

the BBU via a capacity-limited fronthaul link, where a baseband combiner corresponding to

each IoTD extracts and forwards the respective signal to the BBU server. We focus on the

minimization of the total transmit power of the IoTDs, while satisfying the latency requirement

of their corresponding computational task. We summarize the main contributions of the paper

below:

1) We establish a computation offloading optimization problem to minimize the total transmit

power of the IoTDs by jointly optimizing the communication and computational resource

allocation policy, the spatial filtering design at the xL-MIMO RRH, the number of quan-

tization bits, and the baseband combiner design at the BBU, while satisfying the latency

requirement of the corresponding computational tasks. Compared to [9] and [10] where

the latency requirement only includes the transmission latency and computational latency,

we further consider the fronthaul latency experienced in transferring the quantized bits

from the xL-MIMO RRH to the BBU. This additional fronthaul latency couples with the

transmission latency through the required number of quantization bits and makes our non-

convex optimization problem fundamentally different from the existing works [9], [10],

[13], which is more challenging to solve.

2) To obtain a near-optimal solution for the formulated optimization problem, we introduce a

two-stage design, where a hybrid spatial filtering (HSF) matrix at the xL-MIMO RRH is



5

firstly obtained purely based on the channel state information (CSI). Subsequently, based

on the effective channel and the obtained HSF matrix, a joint optimization on the residual

variables at the BBU is implemented. For the joint optimization at the BBU, the proposed

problem is divided into three sub-problems and solved via alternating optimization. To

be more specific, the baseband combiner is obtained in a closed-form, the communication

and computational resource allocation problem is solved by leveraging the successive inner

convexification, and the optimization on the number of quantization bits is solved through

a line-search method. Moreover, the proposed algorithm is shown to converge to a local

optimal solution.

3) For practical implementation, we resort to deep learning for a low-complexity solution for

the joint optimization at the BBU [25]–[28], [32]. Specifically, we deploy a supervised

learning method using the DNN, where the Adam optimizer [33] is used to train the

DNN with the solutions obtained from the complicated optimization algorithm. Finally, the

numerical results demonstrate the superiority of the proposed joint optimization algorithm

over the disjoint optimization procedures. Furthermore, the DNN based supervised learning

is shown to be an effective low-complexity approach, which reduces the execution time

by two orders of magnitudes.

The rest of the paper is organized as follows. Section II describes the system model and

introduces the formulated problem for the total transmit power minimization. In Section III, we

present the proposed solution for the formulated problem, where the hybrid spatial filtering matrix

at the xL-MIMO RRH is obtained locally followed by the joint optimization of the residual

parameters at the BBU via alternating optimization, and finally discuss the low-complexity

solution for the joint optimization based on the DNN method. Numerical results are presented

in Section IV, and we conclude the paper in Section V.

Notations: Bold upper-case letters Y, bold lower-case letters y and letters y denote matrices,

vectors and scalars, respectively; Yi,j is the entry on the i-th row and j-th column of Y; Transpose

and conjugate transpose of Y are represented by YT and YH , respectively; Y† is the Moore-

Penrose pseudo inverse of Y; diag
(

[y1, . . . , yn]T
)

denotes a diagonal matrix with elements

yi, i = 1, . . . , n on the diagonal; vec(Y) indicates vectorization; ‖y‖2 is the `2 norm of the

vector y; 1M is the M × 1 vector of ones;  is defined as  ,
√
−1, | · | returns the amplitude of

a complex number; �, � and ◦ denote the Hadamard product, division and power, respectively;

I is the identity matrix.
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II. SYSTEM MODEL AND PROBLEM FORMULATION
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Figure 1: System model of the uplink xL-MIMO C-RAN serving K IoTDS.

We consider the uplink of an xL-MIMO C-RAN that serves K single-antenna IoTDs, as shown

in Fig. 1. The xL-MIMO RRH consists of N antennas uniformly distributed in a two-dimensional

space along the xz-plane at y = 0 on the Cartesian coordinates. Accordingly, the locations of

the n-th antenna of the xL-MIMO RRH and the k-th IoTD are defined as
(
xMn , 0, z

M
n

)
and

(xk, yk, zk), respectively. In this paper, we assume that the xL-MIMO RRH is equipped with

R = K (� N) RF chains such that there are enough spatial degrees of freedom to serve all the K

IoTDs [12]. The xL-MIMO RRH is connected to the BBU1 via a digital error-free fronthaul link

with a capacity of CF bits per second (bps). The BBU makes the resource allocation decisions

and decodes the IoTDs symbols, followed by the processing of the computation bits at the BBU

server. We assume that all the IoTDs transmit over a quasi-static flat-fading channel, and the

received signal at the xL-MIMO RRH is expressed as

y =
K∑
k=1

hk
√
pksk + z, (1)

where sk is the transmitted symbol of the k-th IoTD such that |sk|2 = 1, pk is the corresponding

transmit power, hk ∈ CN×1 is the channel vector between the k-th IoTD and the xL-MIMO

RRH, and z ∼ CN (0, σ2IN) denotes the additive white Gaussian noise (AWGN).

1Note that the BBU can be shared among multiple xL-MIMO systems, thereby reducing the total cost of ownership (TCO)

[19].
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A. Channel Model

Given that the IoTDs are deployed in an indoor environment, the IoTDs are reasonably close

to the xL-MIMO RRH. Hence, the desired channel between an IoTD and each antenna of

the xL-MIMO RRH is composed of both the deterministic LOS and non-line-of-sight (NLOS)

components. Accordingly, the channel between the k-th IoTD and the xL-MIMO RRH is given

by [7]

hk = κLkhLk + κNLk hNLk , (2)

where hLk ∈ CN×1 is the deterministic LOS component between the k-th IoTD and the xL-MIMO

RRH, given by [7]

hLk =
[
lL1,kh1,k, . . . , l

L
N,khN,k

]T
, (3)

where lLn,k = 1√
4πd2

n,k

, hn,k = exp
(
−j2πdn,k

λ

)
and dn,k =

√
(xk − xMn )2 + y2

k + (zk − zMn )2 are

the attenuation factor in the free space, the channel gain and the distance between the k-th IoTD

and the n-th antenna of the xL-MIMO RRH, respectively, with λ denoting the carrier wavelength

of the transmitted signal. The NLOS component hNLk ∈ CN×1 between the k-th IoTD and the

xL-MIMO RRH is defined as [27]

hNLk = Λ
1
2
k gk, (4)

with Λk , diag

([
d−ξ1,kτ1,k, . . . , d

−ξ
N,kτN,k

]T)
∈ CN×N , where d−ξn,k and τn,k are the large-scale

fading and the log-normal shadow fading between the k-th IoTD and the n-th antenna of the

xL-MIMO RRH, respectively. ξ is the path loss exponent and gk ∈ CN×1 models the small-scale

fading, with each entry following CN (0, 1). Finally, κLk , diag

([√
κ1,k

κ1,k+1
, . . . ,

√
κN,k
κN,k+1

]T)
∈

RN×N and κNLk , diag

([√
1

κ1,k+1
, . . . ,

√
1

κN,k+1

]T)
∈ RN×N , where κn,k denotes the Rician

factor between the k-th IoTD and the n-th antenna of the xL-MIMO RRH.

B. Uplink Signal Processing

At the xL-MIMO RRH, we consider the spatial-compression-and-forward (SCF) scheme pro-

posed in [8], [12], [31] to balance between the information conveyed to the BBU and the data

traffic over the fronthaul link. To reduce the hardware complexity, we employ the hybrid analog-

digital filtering, where each antenna is only equipped with a phase shifter and the signals from N

antennas are filtered using an analog spatial filtering matrix VA ∈ CN×R, followed by a digital
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spatial filtering matrix VD ∈ CR×R. Accordingly, the received signal after the hybrid spatial

filtering is given by

ȳ = Vy,

= V
K∑
k=1

hk
√
pksk + Vz,

(5)

where V , VH
DVH

A = [v1, . . . ,vR]T ∈ CR×N denotes the HSF matrix. With the use of

phase shifters, each entry of VA satisfies the element-wise constant-modulus constraint, i.e.,∣∣∣[VA](i,j)

∣∣∣ = 1, ∀i, j. In this paper, we assume that high-resolution ADCs are used at the xL-

MIMO RRH such that the quantization error due to ADCs is negligible [12]. Subsequently, a

uniform scalar quantization is applied to each element of ȳ = [ȳ1, . . . , ȳR]T , where each complex

symbol ȳr can be represented by its in-phase (I) and quadrature (Q) part as

ȳr = ȳIr +  ȳQr , ∀r, (6)

where the I-branch symbol ȳIr and Q-branch symbol ȳQr are both real Gaussian random variables

with zero mean and variance
(∑K

k=1 pk|vTr hk|2 + σ2‖vr‖2
)
/2 [31]. After the uniform scalar

quantization, the baseband quantized symbol of ȳ is given by

ỹ = ȳ + e,

= V
K∑
k=1

hk
√
pksk + Vz + e,

(7)

where e , [e1, . . . , eR]T denotes the additive quantization error vector for ȳ. Each er is Gaussian

distributed with zero mean and variance %r, with %r given by [31]

%r =

3
(∑K

k=1 pk
∣∣vTr hk

∣∣2 + σ2||vr||2
)

2−2$, if $ > 0,

∞, if $ = 0,
(8)

where $ denotes the number of bits that each RF chain uses to quantize ȳIr and ȳQr . As each

er is independent over r due to the independent scalar quantization for each element of ȳ, and

therefore the covariance matrix of e is a function of p , [p1, . . . , pK ]T , V and $, given by

Q(p,V, $) = E[eeH ] = diag
(

[%1, . . . , %r]
T
)
. (9)

Subsequently, the quantized symbols are forwarded to the BBU via the fronthaul link. To

mitigate the effects of the inter-IoTD interference and the quantization error, a linear baseband
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combiner wk ,
[
wk,1, . . . , wK,R

]T ∈ CR×1 is further applied to ỹ before demodulating the

symbol for the k-th IoTD, given by

ŝk = wH
k ỹ,

= wH
k Vhk

√
pksk +

K∑
j=1, j 6=k

wH
k Vhj

√
pjsj + wH

k Vz + wH
k e.

(10)

Accordingly, the SINR for the k-th IoTD is expressed as

γk (p,V,W, $) =
pk
∣∣wH

k Vhk
∣∣2∑K

j=1, j 6=k pj
∣∣wH

k Vhj
∣∣2 + σ2

∥∥wH
k V
∥∥2

+ wH
k Q(p,V, $)wk

, (11)

where W , [w1, . . . ,wK ].

C. Computation Offloading and Latency Model

We assume that due to the limited computational capability at the IoTDs, all the computa-

tional tasks of the IoTDs have to be offloaded to the BBU. Accordingly, let the k-th IoTD’s

computational task Ck be described by a tuple, defined as
(
ωk, bk, T thk

)
, where ωk denotes the

number of CPU cycles needed for computing Ck, bk represents the number of computation bits

needed for Ck and T thk is the maximum tolerable latency to execute Ck [10]. In the case of

offloading, the latency includes a) the transmission latency, b) the fronthaul latency, and c) the

computational latency.

1) Transmission latency (ξTLk ): Given γk (p,V,W, $) , ∀k, the transmission latency ξTLk is

incurred during the transmission of the computation bits bk from the k-th IoTD to the xL-MIMO

RRH. The latency for the transmission of log2

(
1 + γk (p,V,W, $)

)
bits per second per Hertz

is given by [9], [10], [13]

ξTLk =
bk

BW log2

(
1 + γk (p,V,W, $)

) , (12)

where BW is the total transmission bandwidth.

2) Fronthaul latency (ξFLk ): For bk computation bits corresponding to the k-th IoTD, we

assume that the bits are encoded using the M -PSK modulation. Accordingly, bk bits are encoded

into bk
log2(M)

symbols which are transmitted from the k-th IoTD to the BBU through the xL-MIMO

RRH. With $ bits used to quantize both the real and imaginary part of each entry in ȳ, a total of

2R$ quantized bits are required across R RF chains [8], [31]. Consequently, bk
log2(M)

transmitted

symbols of the k-th IoTD generate effective traffic of 2bkR$
log2(M)

bits for the fronthaul link. Hence,
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with a fronthaul link capacity of CF , expressed in terms of bits per second, the fronthaul latency

ξFLk for forwarding bk computation bits of the k-th IoTD from the xL-MIMO RRH to the BBU

is given by [13]

ξFLk =
2bkR$

CF log2(M)
. (13)

3) Computational latency (ξCLk ): The computational resources are shared among the K IoTDs

and are quantified by the computational rate FT , expressed in terms of the number of CPU cycles

per second [10], [13]. Let us denote by fk ≥ 0 the fraction of FT to be assigned to each IoTD.

The rates fk are subject to the computational budget constraint, i.e.,
K∑
k=1

fk ≤ FT . (14)

Given the resource assignment fk, the computational latency ξCLk incurred in executing ωk CPU

cycles for the computational task of the k-th IoTD is given by [9], [10], [13]

ξCLk =
ωk
fk
,∀k. (15)

Finally, the expression for the overall latency ξk is given by

ξk = ξTLk + ξFLk + ξCLk ,

=
bk

BW log2

(
1 + γk (p,V,W, $)

) +
2bkR$

CF log2(M)
+
ωk
fk
.

(16)

(16) clearly shows the interplay between the wireless transmission part and the computational part

via the transmission and computational latency. Furthermore, a coupling between the transmission

and fronthaul latency through the number of quantization bits $ can also be observed from

(16). For example, an increase in the quantization bits decreases the quantization error which

reduces the transmission latency, while on the other hand, it increases the required number

of bits transmitted to the BBU, thereby increasing the fronthaul latency. Therefore, the joint

optimization of the communication and computational resource allocations along with the number

of quantization bits for the computation offloading task is essential.

D. Problem Formulation

In this paper, we aim to minimize the total transmit power for the IoTDs, i.e., 1TKp, by jointly

optimizing the communication resource p, the HSF matrix V, the baseband combiner W at

the BBU, the number of quantization bits $ and the computational resource f , [f1, . . . , fK ]T .

Accordingly, we aim to solve the following optimization problem:
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P1 : min
{V,W,p,f ,$}

1TKp

s.t. C1 :
bk

BW log2

(
1 + γk (p,V,W, $)

) +
2bkR$

CF log2(M)
+
ωk
fk
≤ T thk , ∀k,

C2 : 1TKf ≤ FT , C3 : pk ≤ Pk,max, ∀k,

C4 : 2BWR$ ≤ CF , C5 : $ ∈ Z>0,

C6 :
∣∣∣[VA](i,j)

∣∣∣ = 1, ∀i, j

(17)

where C1 is the latency constraint for the k-th IoTD with the latency threshold denoted by T thk ,

C2 is the computational resource constraint, C3 is the maximum power limits of the IoTDs,

where Pk,max denotes the maximum transmit power of each IoTD, C4 is the fronthaul capacity

constraint [8], [10], [12], C5 is the integer constraint for the number of quantization bits, and

C6 is the element-wise constant-modulus constraint for the analog spatial filtering matrix.

III. PROPOSED SOLUTION FOR THE FORMULATED PROBLEM P1

In this section, we seek a feasible solution for P1, which is found to be non-convex due

to 1) the coupling of variables between the transmission latency, the fronthaul latency and the

computational latency, 2) the integer constraint for the quantization bit, and 3) the element-

wise constant-modulus constraint for the analog spatial filtering matrix. Accordingly, to solve

P1, we present a two-stage design, where the HSF matrix at the xL-MIMO RRH is obtained

locally2 based on the CSI, and a joint optimization on the residual variables at the BBU is

subsequently implemented based on the effective channel and the obtained HSF matrix. Finally,

we propose a low-complexity solution based on the deep learning framework to address the

practical implementation of the considered joint optimization at the BBU.

A. HSF Design at the xL-MIMO RRH

In this work, the HSF matrix is obtained by approximating the fully-digital spatial filtering

(FDSF) matrix. To pursue a low-complexity solution, we select the matched filtering (MF)

method as the FDSF, given by

VFD = HH , (18)

2Designing the HSF matrix locally at the xL-MIMO RRH reduces the signaling overhead between the the BBU and the

xL-MIMO RRH.
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where H , [h1, . . . ,hK ]T . Another advantage of employing the MF approach is that VFD tends

to eliminate the effect of small-scale fading, resulting in a less frequent update of the com-

munication and computational parameters at the BBU. Specifically, assuming the independence

of each individual propagation path of the IoTDs and by leveraging the concept of channel

hardening and law of large numbers [5], [7], it can be shown that the effective channel at the

BBU, given by VFDH, tends to be independent of the small-scale fading, i.e.,

VFDH
N→∞−−−→ diag

([
h1
eff , . . . , h

K
eff

]T)
, (19)

where hkeff ,
∑N

n=1
κn,k
κn,k+1

∣∣∣lLn,khn,k∣∣∣2 + 1
κn,k+1

∣∣∣d−ξn,k∣∣∣, ∀k. Accordingly, VFD asymptotically

decorrelates the signals from the IoTDs across the K output dimensions. Subsequently, for

a given FDSF matrix, the hybrid analog and digital spatial filtering matrix, i.e., VA and VD,

are obtained by [34]

VA = VFD � |VFD| , (20)

and

VD = V†AVFD. (21)

Consequently, the HSF matrix is given by V = VH
DVH

A .

B. Joint Optimization at the BBU

Next, we propose to solve a joint optimization on the residual variables at the BBU based

on the alternating optimization framework3, which effectively removes the coupling between the

transmission latency, the fronthaul latency and the computational latency. To be more specific,

given the HSF matrix V, P1 can be transformed into a joint optimization on W, p, f and $,

given by

P2 : min
{W,p,f ,$}

1TKp

s.t. C1 :
bk

BW log2

(
1 + γk (p,W, $)

) +
2bkR$

CF log2(M)
+
ωk
fk
≤ T thk , ∀k

C2 : 1TKf ≤ FT , C3 : pk ≤ Pk,max, ∀k,

C4 : 2BWR$ ≤ CF , C5 : $ ∈ Z>0.

(22)

3Alternating optimization has been extensively used in applications such as image processing [35], robust learning [36],

wireless signal processing [8], [12], etc, where the optimization problem concerning two or more variables are solved by fixing

one or group of the variables and optimizing over the others [37]–[39].
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It should be noted that the HSF matrix in (21) does not completely decorrelate the signals from

the IoTDs due to the finite number of antennas at the xL-MIMO RRH, resulting in the inter-IoTD

interference. This along with the quantization noise introduced by the subsequent quantizer may

degrade the demodulation performance of the signals at the BBU. Hence, we further adopt a

baseband combiner at the BBU to obtain the received symbols as close as possible to the original

symbols. Consequently, following the minimum-mean-squared-error (MMSE) metric and for a

given p, f and $, the optimal linear baseband combiner for P2 is given by [8], [12]

w̄k =

 K∑
j=1

pj
∣∣Vhj

∣∣2 + σ2I + Q(p,V, $)

−1

Vhk. (23)

Based on the fact that

w̄H
k Q(p,V, $)w̄k =

R∑
r=1

%r
∣∣w̄k,r∣∣2 = 2−2$

R∑
r=1

Ξr,k (p) , (24)

where w̄i,j denotes the j-th element of w̄i, 1 ≤ i ≤ K, 1 ≤ j ≤ R and

Ξr,k (p) = 3
∣∣w̄k,r∣∣2

 K∑
j=1

pj

∣∣∣vTr hj

∣∣∣2 + σ2||vr||2
 , ∀l, (25)

and by defining αk,j ,
∣∣w̄H

k Vhj
∣∣2, ηk , σ2

∥∥w̄H
k V
∥∥2, (12) can be expressed as a function of p

and $ as

ξTLk (p, $) ,
bk

BW log2

(
1 +

pkαk,k

ηk+
∑K
j=1, j 6=k pjαk,j+2−2$

∑R
l=1 Ξl,k(p)

) .
(26)

Accordingly, P2 is transformed into a joint optimization on p, f , and $, given by

P3 : min
{p,f ,$}

1TKp

s.t. C1 : ξTLk (p, $) +
2bkR$

CF log2(M)
+
ωk
fk
≤ T thk , ∀k

C2 : 1TKf ≤ FT , C3 : pk ≤ Pk,max, ∀k,

C4 : 2BWR$ ≤ CF , C5 : $ ∈ Z>0.

(27)

Based on the formulation, we discuss the feasibility of P3, as shown in Lemma 1 below.

Lemma 1: P3 admits a non-empty feasible set satisfying all the constraints in (27), if for

T thk > 0, ∀k, ∃ p ∈ Ψ ,
{
p̄ ∈ RK

+ : p̄ 4 Pmax

}
and $ ∈ D ,

{
$̄ ∈ Z>0 : $̄ ≤ CF

2RBW

}
,

where Pmax ,
[
P1,max, . . . , PK,max

]T , the following sufficient and necessary conditions are

satisfied:
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ξTLk (p, $) +
2bkR$

CF log2(M)
< T thk , ∀k, (28a)

K∑
k=1

ωk

T thk − ξTLk (p, $)− 2BWR$
CF

≤ FT . (28b)

Proof : The individual conditions in (28a) are necessary to ensure that each IoTD can transmit

the computation bits to the BBU within the maximum tolerable latency. Subsequently, (28b)

guarantees that the total computational resource available at the BBU is enough to assign the

computational resource to each IoTD to execute their computational tasks while satisfying the

corresponding latency requirement. �

In what follows, we assume that P3 is feasible4 and present the corresponding solution.

Accordingly, to solve P3, we first fix the number of quantization bits $ in P3 and optimize

p and f by solving the following sub-problem:

P4 : min
{p,f}

1TKp

s.t. C1 :
bk

BW log2

(
1 +

pkαk,k

ηk+
∑K
j=1, j 6=k pjαk,j+2−2$

∑R
l=1 Ξl,k(p)

) +
ωk
fk
≤ T̄ thk , ∀k

C2 : 1TKf ≤ FT , C3 : pk ≤ Pk,max, ∀k,

(29)

where T̄ thk , T thk −
2bkR$

CF log2(M)
. Subsequently, the number of quantized bits $ is obtained through

the following feasibility problem

P5 : Find {$}

s.t. C1 :
bk

BW log2

(
1 +

pkαk,k

η̃k+2−2$
∑R
r=1 Ξr,k(p)

) +
2bkR$

CF log2(M)
≤ T̃ thk , ∀k,

C2 : 2BWR$ ≤ CF , C3 : $ ∈ Z>0.

(30)

where T̃ thk , T thk −
ωk
fk

and η̃k , ηk +
∑K

j=1, j 6=k pjαk,j .

1) Solution for the problem P4: P4 is still non-convex and difficult to solve due to its constraint

C1, which can be expressed as

4The conditions in (28) can be enforced by a proper admission control strategy [9], [22], or an appropriate choice of the

fronthaul capacity or the BBU computational capability [23].
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bk

BW log2

(
1 +

pkαk,k

ηk+
∑K
j=1, j 6=k pjαk,j+2−2$

∑R
r=1 Ξr,k(p)

) +
ωk
fk
− T̄ thk

︸ ︷︷ ︸
gk(p,fk)

≤ 0,

⇒− log2

1 +
pkαk,k

ηk +
∑K

j=1, j 6=k pjαk,j + 2−2$
∑R

r=1 Ξr,k (p)


︸ ︷︷ ︸

g
′
k(p): non-convex

+
fkbk

BWfkT̄ thk − ωk︸ ︷︷ ︸
g
′
k(fk): convex

≤ 0,

(31)

such that gk (p, fk) = g
′

k (p) + g
′

k (fk). C1 is non-convex due to gk (p, fk). To overcome this

difficulty, we exploit the framework of successive inner convexification for gk(p, fk) [40]. The

successive inner convexification optimizes a sequence of approximate convex problems, denoted

by ACP , which allows the development of a computationally-efficient algorithm converging to

a first-order optimal solution [40], [41]. As the non-convexity of gk(p, fk) stems from g
′

k(p), in

the following we obtain a convex approximation for g′k(p). To be more specific, letting pk = 2qk ,

we have

g
′

k(q) = − log2

1 +
2qkαk,k

ηk +
∑K

j=1, j 6=k 2qjαk,j + 2−2$
∑R

r=1 Ξr,k (q)

 , (32)

where q , [q1, . . . , qK ]T . In the t-th sequence of convexification, denoted by g̃′k(q
(t); q(t−1)), we

require the following three properties to be satisfied for the convex approximation of g′k(q
(t))

[40]:
g
′

k

(
q(t)
)
≤ g̃

′

k

(
q(t); q(t−1)

)
, ∀t, k, (33a)

g
′

k

(
q(t−1)

)
= g̃

′

k

(
q(t−1); q(t−1)

)
, ∀k, (33b)

∇g′k
(
q(t−1)

)
= ∇g̃′k

(
q(t−1); q(t−1)

)
, ∀k, (33c)

where q(t−1) is the optimal solution for A(t−1)
CP . The central step of this approach is to find a

suitable approximation for g′k
(
q(t)
)
, ∀k, which fulfills the requirements in (33), given by the

following lemma.

Lemma 2: For a given q(t−1) � 0, a g̃′k
(
q(t); q(t−1)

)
that satisfies (33) can be defined as

g̃
′

k

(
q(t); q(t−1)

)
, −ψ(t−1)

k

log2(αk,k) + q
(t)
k − log2

η̄k (q(t)
)

+
K∑

j=1, j 6=k

αk,j2
q
(t)
j


− β(t−1)

k ,

(34)

where
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ψ
(t−1)
k ,

ζ
(t−1)
k

1 + ζ
(t−1)
k

, β
(t−1)
k , log2

(
1 + ζ

(t−1)
k

)
− ζ

(t−1)
k

1 + ζ
(t−1)
k

log2

(
ζ

(t−1)
k

)
, (35)

ζ
(t−1)
k ,

2q
(t−1)
k αk,k

η̄k
(
q(t−1)

)
+
∑K

j=1, j 6=k 2q
(t−1)
j αk,j

, (36)

and

η̄k

(
q(t−1)

)
, ηk + 2−2$

R∑
r=1

Ξr,k

(
q(t−1)

)
. (37)

Proof : From (32), we have

g
′

k(q
(t))

(a)

≤ −ψ(t−1)
k

log2(αk,k) + q
(t)
k − log2

η̄k (q(t)
)

+
K∑

j=1, j 6=k

αk,j2
q
(t)
j


− β(t−1)

k ,

= g̃
′

k

(
q(t); q(t−1)

)
, ∀k,

(38)

where step (a) is obtained by leveraging the lower-bound of the logarithmic function [41], i.e.,

log2 (1 + ζ) ≥ ψ log2 (ζ) + β, where ψ = ζ̄
1+ζ̄

and β = log2

(
1 + ζ̄

)
− ζ̄

1+ζ̄
log2

(
ζ̄
)
. Hence,

g̃
′

k

(
q(t); q(t−1)

)
, ∀k satisfies (33a), where (33b) and (33c) hold at q(t) = q(t−1). �

Accordingly from (31), for the t-th sequence, we have

gk

(
q(t), f

(t)
k

)
≤ g̃

′

k

(
q(t); q(t−1)

)
+ g

′

k

(
f

(t)
k

)
,

= −ψ(t−1)
k

(
Γk + q

(t)
k

)
− β(t−1)

k +
f

(t)
k bk

BWf
(t)
k T̄ thk − ωk

≤ 0,
(39)

where Γk ,

(
log2(αk,k)− log2

(
η̄k

(
q(t)
)

+
∑K

j=1, j 6=k αk,j2
q
(t)
j

))
. As the logarithm of the

sum of the exponentials is a convex function [42], gk
(
q(t), f

(t)
k

)
, ∀k is jointly convex in q(t)

and f
(t)
k . Consequently, ignoring the sequence index t, the approximate convex problem A(t)

CP

for the non-convex problem P4 is given by

P6 : min
{q,f}

1TK2◦q

s.t. C1 : −ψk (Γk + qk)− βk +
fkbk

BWfkT̄ thk − ωk
≤ 0, ∀k,

C2 : 1TKf ≤ FT , C3 : 2qk ≤ Pk,max, ∀k.

(40)

where 2◦q , [2q1 , . . . , 2qK ]T . Further, assuming q(t) 4 q(t−1)5 and ∃ q(t) such that (28) is

satisfied, i.e., 2q
(t)
k ≤ Pk,max, ∀t, k, we formulate the following problem based on P6:

5The subsequent derivations in Lemma 3 and Lemma 4 comply with this assumption.
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P7 : min
{q,f}

1TK2◦q

s.t. C1 : −ψk
(
Γ̄k + qk

)
− βk +

fkbk
BWfkT̄ thk − ωk

≤ 0, ∀k,

C2 : 1TKf ≤ FT ,

(41)

where Γ̄k ,

(
log2(αk,k)− log2

(
η̄k

(
q(t−1)

)
+
∑K

j=1, j 6=k αk,j2
q
(t−1)
j

))
≤ Γk. Therefore, any

feasible solution for P7 is a feasible solution for P6. Accordingly, in the following we focus on

P7 and resort to the KKT conditions to find the closed-form expressions for p(t), i.e., 2◦q
(t) and

f (t). Subsequently, the Lagrangian associated with P7 is given by

Υ (qk, fk, ϑk, µ) = 1TK2◦q +
K∑
k=1

ϑk

[
−ψk

(
Γ̄k + qk

)
− βk +

fkbk
BWfkT̄ thk − ωk

]
+ µ

(
1TKf − FT

)
,

(42)

where the variables ϑk and µ are the non-negative Lagrange multipliers. Accordingly, the KKT

conditions are given by

∂Υ

∂qk
= (log 2)2qk − ϑkψk = 0, ∀k, (43)

∂Υ

∂fk
= − ϑkbkωk(

BWfkT̄ thk −BWωk
)2 + µ = 0, ∀k, (44)

ϑk

[
−ψk

(
Γ̄k + qk

)
− βk +

fkbk
BWfkT̄ thk − ωk

]
= 0, ϑk ≥ 0,∀k, (45)

µ
(
1TKf − FT

)
= 0, µ ≥ 0. (46)

Since P7 satisfies (28), all the K IoTDs are served, i.e., qk > 0 and fk > 0, ∀k. Accordingly, the

conditions (43), (44) and (46) imply ϑk > 0, ∀k and µ > 0, which means that the computational

capability at the BBU server is fully utilized, i.e.,

1TKf = FT . (47)

From another perspective, we can also obtain that 1TKf < FT would be sub-optimal, since at

least the value of one pk can be further reduced by increasing the value of the corresponding

fk. Furthermore, ϑk > 0, ∀k implies that the latency constraint is always active, i.e.,

−ψk
(
Γ̄k + qk

)
− βk +

fkbk
BWfkT̄ thk − ωk

= 0. (48)
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This equation establishes a one-to-one relationship between the transmit power pk = 2qk and the

number of cycles per second fk at the BBU server assigned to the k-th IoTD. Consequently,

from (43) and (44), we obtain the expression for the optimal computational resource fk as

fk =
1

BW T̄ thk

√(log 2)bkωk2qk

µψk
+BWωk

 . (49)

By substituting (49) into (47) to obtain µ and by replacing 2qk with pk, fk is further transformed

into

fk =
1

BW T̄ thk

 FT −
∑K

k=1
ωk
T̄ thk∑K

k=1
1

BW T̄ thk

√
(log 2)bkωkpk

ak

√
(log 2)bkωkpk

ak
+BWωk

 . (50)

Finally, from (48), the optimal transmit power for the k-th IoTD is given by

pk = 2

 1
ψk

(
fkbk

BW T̄th
k
fk−BWωk

−βk

)
−Γ̄k


. (51)

Lemma 3: Under the assumption that ∃ p such that (28) is satisfied, pk,∀k obtained by (51)

will converge to an optimal solution to P6 for a given fk, ∀k.

Proof: Refer to Appendix.

Lemma 4: Under the assumption that ∃ p such that (28) is satisfied, fk,∀k given by (50)

converges to a KKT point of P6.

Proof: According to Lemma 3, when ∃ p such that (28) is satisfied, p obtained by (51)

converges, i.e, p(t) = p(t−1). Accordingly, upon convergence equality holds for Γ̄k ≤ Γk, ∀k,

which results in the equivalent KKT conditions for P6 and P7. Hence, fk, ∀k given by (50)

converge to KKT point of P6. �

For clarity, we summarize the above procedure in Algorithm 1, which describes the framework

to obtain the transmit power and computational resource for the K IoTDs. Since P6 satisfies

the conditions in (33), its solution will converge to the KKT point of P4, which accordingly

gives a local minimum of P4 [40, Corollary 1]. Hence, according to Lemma 3 and Lemma 4,

Algorithm 1 converges to a local minimum of P4.

2) Solution for the problem P5: P5 is a non-convex problem due to its constraints C1 and C3.

Noting that there is only a single integer variable to be optimized, we resort to the line-search

method to find the optimal $ over the feasible set. Accordingly, $ is given by

$ = argmax
$̃

{
$̃ ∈ Z>0 : ξTLk (p, $̃) +

2bkR$

CF log2(M)
≤ T̃ thk , ∀k, $̃ ≤ CF

2BWR

}
. (52)
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Algorithm 1 Iterative algorithm to solve P6

1: Input: p(0), $(0).

2: Initialize t← 1;

3: repeat

4: Update ψ(t−1)
k , β(t−1)

k using (35), ∀k;

5: Update f (t)
k using (50), ∀k;

6: Update p(t)
k using (51), ∀k;

7: t← t+ 1.

8: until convergence

9: Output: pk, fk, ∀k.

3) Overall algorithm for the problem P2: Algorithm 2 summarizes the overall algorithm to

solve P2. Specifically, for a given feasible p, f and $, the algorithm starts by obtaining W using

(23). Subsequently, for the obtained W and a fixed $, p and f are updated using Algorithm 1.

Finally, for the obtained W,p, and f , we find a feasible $ using (52) for the next iteration. As

the objective of P2 is decreasing in each iteration owing to Algorithm 1, Algorithm 2 converges

to a local minimum.

Algorithm 2 Overall algorithm to solve P2

1: Input: p(0), $(0).

2: Initialize t← 1;

3: repeat

4: Update W(t) using (23);

5: Update p(t) and f (t) using Algorithm 1;

6: Update $(t) using (52);

7: t← t+ 1.

8: until convergence

9: Output: W, p, f , $.

C. Low-Complexity Implementation for the Joint Optimization based on Deep Learning

Although Algorithm 2 obtains near-optimal solutions for P2, it involves an interleaved loop

structure which can limit its practicability in terms of the real-time processing. Accordingly,



20

T
ra

in
in

g
/T

es
ti

n
g
 I

n
p

u
t 

F
ea

tu
re

: 
C

h
a
n

n
el

 

G
a

in
, 
In

p
u

t 
B

it
s,

 L
a
te

n
cy

 T
h

re
sh

o
ld

D
N

N
 O

u
tp

u
t:

 N
o

rm
a
li

ze
d

 p
o

w
er

, 

cy
cl

es
/s

ec
 a

n
d

 n
u

m
b

er
 o

f 
q

u
a

n
ti

ze
d

 b
it

Input layer Hidden layers Output layer

T
ra

in
in

g
 O

u
tp

u
t:

 N
o

rm
a
li

ze
d

 p
o

w
er

, 

cy
cl

es
/s

ec
 a

n
d

 n
u

m
b

er
 o

f 
q

u
a

n
ti

ze
d

 b
it

Adam Optimizer 

-

DNN Training

M
ea

n
 S

q
u

a
re

 E
rr

o
r 

(M
S

E
)

Close: Training Phase

Open: Testing Phase

Close: Training Phase

Open: Testing Phase

Figure 2: DNN architecture for the proposed supervised deep learning with the training and testing phase.

in this section, we present a supervised deep learning method using the DNN to approximate

the proposed Algorithm 2, such that by passing the input operating parameters of Algorithm

2 through a trained DNN gives a feasible output for the resource allocation for the C-RAN

network with much reduced execution time. Furthermore, training the DNN is fairly convenient

as the training samples can easily be obtained by running Algorithm 2 offline [29]. Next, we

describe the DNN architecture used in our work, as shown in Fig. 2. Specifically, the DNN

consists of a) one input layer of 3K neurons by aligning the computation bits, the latency

thresholds and the effective channel at BBU for K IoTDs into a column vector defined as

xD ,
[
bT ,TT

th,1
T
K (VDH� I)

]T , where b , [b1, . . . , bk]
T and Tth ,

[
T th1 , . . . , T thK

]T , b)

one output layer of 2K + 1 neurons corresponding to the transmit powers and computational

resources for the K IoTDs, and the quantization bit allocation, jointly defined by the column

vector yD ,
[
pT , fT , $

]T , and c) L − 1 fully connected hidden layers. Let L , {0, . . . , L}

represent the set of layers, where l = 0 and l = L denote the input and output layers, respectively.

The number of neurons in each layer l ∈ L is denoted by nl, and accordingly, we have n0 = 3K

and nL = 2K + 1. For each hidden layer l, the output yl ∈ Rnl×1 is calculated as

yl = ReLU (Qlyl−1 + bl) , l ∈ {1, . . . , L− 1} , (53)

where yl−1 ∈ Rnl−1×1 is the output of the (l − 1)-th layer with y0 = iD, Ql ∈ Rnl×nl−1 and

bl ∈ Rnl×1 are respectively the weight matrix and bias vector at the l-th layer, and ReLU (x) =
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max (x, 0) is the Rectified Linear Unit function, which introduces nonlinearity to the network.

Accordingly, the deep learning method involves

1) Obtaining the training data (TrainD), i.e., the training input xD and the training output yD

from Algorithm 2.

2) Normalizing TrainD such that TrainD ∈ [0, 1].

3) Deploying the mini-batch gradient descent based on Adam optimizer to train the DNN [28],

[28], [32], [33], [43] as shown in Fig. 2 (Training phase), which effectively minimizes the

mean square error (MSE) given by

MSE =

∑BM
b=1

∑2K+1
i=1

(
oL,i,b − oD,i,b

)2

BM (2K + 1)
, (54)

where BM is the number of mini-batches, oL,i,b and oD,i,b are the outputs at the i-th

neuron of the L-th layer and the corresponding training output, respectively, for the b-th

mini-batch.

4) After the training phase, the DNN is used to obtain the desired output based on the test

data, which can be real-time data from the C-RAN network, as shown in Fig. 2 (Testing

phase).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed approach via Monte-Carlo

simulations. Unless otherwise stated, we consider a network composed of N = 128 antennas

randomly deployed on a wall in a 10 m × 10 m × 10 m indoor room as shown in Fig. 3.

Furthermore, there are K = 10 single-antenna IoTDs uniformly distributed inside the room.

The number of bits bk and latency threshold T thk for each IoTD’s computational task Ck are

randomly assigned between 10 kbs to 20 kbs and 0.5 s to 1 s, respectively. The computation bits

are encoded using the QPSK modulation, i.e., M = 4. For the sake of simplicity, the number

of CPU cycles needed for completing Ck is set as a linear function of bk, i.e., ωk = ηbk, with

η = 50 [9]. The carrier frequency of the wireless links is taken to be fc = c
λ

= 1.5 GHz with a

transmission bandwidth of BW = 180 KHz, where c = 3 × 108 m/s. Furthermore, the channel

parameters are given as ξ = 3.7, κ =
(
13− 0.03 dn,k[m]

)
dB and τn,k = 6 dB, ∀n, k [7], [27],

[44]. The transmit power constraint for each user is Pk,max = 0 dBm. The power spectral density

of the background noise at the xL-MIMO RRH is assumed to be −169 dBM/Hz, and the noise

figure due to the receiver processing is 7 dB [8]. Lastly, it is assumed that the BBU server has a
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Figure 3: Simulation set-up with N antennas (blue circles) deployed on a wall and K IoTDs (red triangles)

distributed in an indoor room.

computational capability of FT = 15 MHz cycles/s with a fronthaul capacity of CF = 100 MHz.

The above choice of parameters guarantees the non-emptiness of the feasible set for P3, where

p
(0)
k , ∀k and $(0) are selected randomly within the feasible sets Ψ and D, respectively.

A. Performance per IoTDs’ Distribution

To gain insights from the communication and computational resource allocations by the

proposed algorithm, we firstly consider the resource allocation for a particular distribution of

the IoTDs and channel realization. In Fig. 4, we illustrate the obtained communication (transmit

power pk, ∀k, first sub-figure) and computational (normalized number of CPU cycles fk
FT
, ∀k,

second sub-figure) resources assigned to each IoTD with respect to the corresponding effective

channel gains at the BBU, i.e.,
∣∣hek∣∣ =

∣∣1TK (VDH� I)
∣∣ , ∀k (third sub-figure), the number of

computation bits (bk, ∀k, fourth sub-figure) and the latency thresholds (T thk , ∀k, fifth sub-figure).

In the fifth sub-figure, we also plot the overall latency ξk, ∀k computed using (16).

As observed, the proposed algorithm assigns a higher transmit power and CPU cycles to IoTDs

with a poor effective channel gain (IoTD 5,6), a larger number of computation bits (IoTD 1,4) or

a stringent latency constraint (IoTD 8,9). An interesting observation is that, with similar channel

gains, the latency constraint dominates over the number of computation bits in determining the

allocation of the communication and computational resources as observed for IoTD 7 and 8.

This demonstrates that the latency constraints play a crucial role in the computation offloading
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Figure 4: Optimal transmitted power pk, normalized CPU cycles fk/FT and overall latency ξk, with respect to

the effective channel gain he
k, the number of transmit bits bk and the latency threshold T th

k corresponding to each

IoTD.

for the IoTDs. Furthermore, it is seen that the computational tasks of all the IoTDs are executed

within the respective latency constraint.

B. Joint versus Disjoint Optimization
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Figure 5: Total transmit power Psum versus the number of antennas N and the computational

load η for the proposed joint optimization and the disjoint optimizations.
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In this section, we evaluate the merit of the proposed algorithm with two benchmark algo-

rithms: 1) Disjoint optimization with fixed f : Solving P2 with Algorithm 2 where pk, ∀k and

$ are optimized with fk = ωkFT∑K
k=1 ωk

, ∀k, which meets the computational rate constraint FT with

equality [10], and 2) Disjoint optimization with fixed $: Solving P2 with Algorithm 2 where

pk, ∀k and fk, ∀k are optimized with the number of quantization bits $ fixed at $ =
⌈

CF
4BWL

⌉
,

i.e., half of the maximum feasible $. We assess the usefulness of the algorithms with respect

to the number of antennas N at the xL-MIMO RRH and the computational load given by the

ratio η = ωk
bk

between the required number of CPU cycles ωk and number of computation bits

bk [10].

Fig. 5(a) shows the total transmit power of the IoTDs with respect to N for η = 50, obtained

using Algorithm 2 and the disjoint optimization algorithms, with both the HSF and the FDSF.

It can be observed that the proposed joint optimization algorithm yields a considerable gain

compared to the disjoint optimization algorithms, where deploying a large number of antennas

results in a decrease in the total transmit power. This decrease in the total trasmit power is

because of the array gain, which is proportional to N , resulting in a decrease in the required

transmit power of each IoTD [5]. Furthermore, this explains the use of the xL-MIMO with a

large N to minimize the power drainage of IoTDs and consequently, extend their battery life.

Next, Fig. 5(b) presents the total transmit power of the IoTDs with respect to η for N =

128 and ωk = ηbk, ∀k, obtained using the algorithms, with both the HSF and the FDSF.

Specifically, η is varied with bk and T thk randomly set between 10 kbs to 20 kbs and 0.5 s to

1 s, respectively. It can be observed that the proposed joint optimization algorithm outperforms

the disjoint optimization algorithms for the computational tasks with a stringent computational

requirement. Finally, it can be seen from Fig. 5 that there is a performance loss for the HSF

compared to the FDSF owing to a loss in the spectral efficiency for the hybrid architecture [11],

[20], [21].

C. Deep Neural Network Evaluation

1) Impact of small-scale fading on DNN training: We begin by evaluating the impact of the

small-scale fading on the resource allocation for the computation offloading. Accordingly, for a

fixed number of computation bits (bk, ∀k) and latency thresholds (T thk , ∀k), we ran the proposed

algorithm for 103 channel initializations for a fixed distribution of the IoTDs. In Fig. 6(a) and

6(b), we show the pdf for the optimal transmit power pk and normalized number of CPU cycles
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(a) pdf for pk (b) pdf for fk
FT

Figure 6: Probability density function of the optimal transmit power pk and the normalized CPU cycles fk
FT

assigned to an IoTD.

fk
FT

assigned to an IoTD across 103 channel realizations. It can be seen that for N = 128, pk6

and fk
FT

have a significantly lesser deviation compared to that for N = 20. Hence, for a fixed bk

and T thk , ∀k, these results demonstrate that the proposed HSF with a large number of antennas

at the xL-MIMO RRH reduces the impact of the small-scale fading on the resource allocation

for the IoTDs as explained in Section 3. Consequently, the BBU needs to update the operating

parameters depending only on the large-scale fading of the IoTDs. Additionally, this explains

the use of the effective channel at the BBU, representing the large-scale fading corresponding

to each IoTD as shown in (19), as an input parameter to train the proposed DNN along with bk

and T thk , ∀k.

2) DNN training and testing: We implemented the proposed DNN scheme with the Keras

machine learning toolkit where Adam optimizer was used for minimizing the MSE during the

training phase [28], [33], [43]. Accordingly, we consider three hidden layers with 128, 64 and

32 neurons for l = 1, 2 and 3, respectively. We collected 50000 TrainD sets, which are split in

the ratio of 9 : 1 for the training and testing of the DNN. Fig. 7 shows the training and testing

losses with respect to the number of epochs, which can be seen to converge within 20 epoch.

6As analyzed in [5], a larger number of antennas at the xL-MIMO RRH is seen to decrease the required transmit power of

the IoTD, thereby further minimizing the power consumption and the total transmit power as seen in Fig.5(a).
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Figure 7: Training and testing losses versus epoch for the DNN based learning.
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Figure 8: Transmitted power pk, normalized CPU cycles fk/FT and overall latency ξk obtained from the proposed

algorithm (elapsed time: 118 ms) and the DNN (elapsed time: 1 ms) with respect to the effective channel gain he
k,

the number of transmit bits bk and the latency threshold T th
k corresponding to each IoTD.

Next, in Fig. 8, we show the communication (transmit power pk, ∀k, first sub-figure) and

computational (normalized number of CPU cycles fk
FT
, ∀k, second sub-figure) resources, and the

overall latency along with the respective latency thresholds (ξk and T thk , ∀k, third sub-figure)

obtained from the proposed joint optimization through Algorithm 2 and the trained DNN for

an IoTDs’ distribution and channel realization. As observed, although the transmit power of the

IoTDs obtained from the DNN is marginally higher than that obtained from Algorithm 2, the
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Figure 9: CDF for Psum achieved by the proposed joint optimization, the DNN and the disjoint optimizations.

DNN is able to emulate the performance of Algorithm 2 in allocating the resources to the IoTDs,

while satisfying the latency requirement. Finally, in Fig. 9, we evaluate the total transmit power

performance of the DNN based approach in the testing phase compared to the proposed joint

optimization and the disjoint optimizations described in the previous sub-section. The cumulative

distribution function (CDF) for Psum in Fig. 9 is obtained over 5000 testing data sets [29]. It

is observed that the total transmit power of the IoTDs obtained from the trained DNN is very

close to that obtained from the proposed joint optimization while significantly outperforming

the disjoint optimizations. Furthermore, we measured the elapsed time for the computation of

the optimal resource allocations through the proposed joint optimization and the trained DNN,

where Intel core i7-6700 CPU@3.40 GHz and 16.00 GB RAM are used. The average elapsed

time per computation corresponding to the proposed joint optimization and the trained DNN was

found to be 118 ms and 1 ms, respectively, which highlights the practicability of the proposed

deep learning method.

V. CONCLUSION

In this paper, we have formulated a computation offloading problem for IoT applications

with a latency constraint in an uplink xL-MIMO C-RAN. The constructed optimization problem

that minimizes the total transmit power of the IoTDs while satisfying the latency requirement

is found to be non-convex. With the HSF matrix obtained locally at the xL-MIMO RRH, the

joint optimization on the baseband combiner, the communication and computational resource

allocations, and the number of quantization bits at the BBU is solved with the alternating
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optimization based on the concepts of the MMSE metric, the successive inner convexification and

the linear-search method, respectively. Furthermore, a supervised deep learning method using

the DNN is deployed as an efficient solution. Numerical results validate the effectiveness of

the proposed joint optimization scheme, which outperforms two benchmarks based on disjoint

optimization. The efficiency of the DNN-based method is also verified.

APPENDIX

For a given fk, ∀k, P6 can be further transformed into,

P8 : min
{q4log2(Pmax)}

1TK2◦q

s.t. C1 : −ψk (Γk + qk)− βk +
fkbk

BWfkT̄ thk − ωk
≤ 0, ∀k.

(55)

By substituting pk = 2qk and assuming ∃ p such that (28) is satisfied, i.e., p 4 Pmax, P8 reduces

to the following problem:

P9 : min
{p�I(p)}

1TKp, (56)

where the function I(p) ,
[
I1(p), . . . , IK(p)

]T ∈ RK×1 is a standard interference function [45],

with each entry given by

Ik(p) = 2

 1
ψk

(
fkbk

BW T̄th
k
fk−BWωk

−βk

)
−Γk


. (57)

P9 is the well-known power control problem [45], which has an optimal solution obtained through

the standard power control algorithm, given by p(t) = I
(
p(t−1)

)
. According to [8, Corollary 4.1

and 4.2], given a feasible P8, p(t) = I
(
p(t−1)

)
4 p(t−1) will converge to the optimal solution

to P8 with any initial point p(0) � 0. Hence, (51) which is in the form of p(t) = I
(
p(t−1)

)
converges to an optimal solution for P6 for a given fk, ∀k. �
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