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Abstract

Iterative decoders used for decoding low-density parity-check (LDPC) and moderate-density

parity-check (MDPC) codes are not characterized by a deterministic decoding radius and their error

rate performance is usually assessed through intensive Monte Carlo simulations. However, several

applications, like code-based cryptography, need guaranteed low values of the error rate, which are

infeasible to assess through simulations, thus requiring the development of theoretical models for the

error rate of these codes under iterative decoding. Some models of this type already exist, but become

computationally intractable for parameters of practical interest. Other approaches approximate the

code ensemble behaviour through some assumptions, which may not hold true for a specific code.

We propose a theoretical analysis of the error correction capability of LDPC and MDPC codes that

allows deriving tight bounds on the error rate at the output of parallel bit-flipping decoders. Special

attention is devoted to the case of codes with small girth; moreover, single-iteration decoding is

investigated through a rigorous approach, which does not require any assumption and hence results

in a guaranteed error correction capability for any single code. We show an example of application

The material in this paper has been presented in part at the 2019 IEEE International Conference on Communications,

Shanghai (China) [1].
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of the new bound to the context of code-based cryptography, where guaranteed error rates are needed

to achieve some strong security levels.

Index Terms

Bit flipping decoder, code-base cryptography, error correction capability, LDPC codes, MDPC

codes.

I. INTRODUCTION

Contrary to bounded distance decoders, iterative decoders commonly used for low-density

parity-check (LDPC) and moderate-density parity-check (MDPC) codes are not characterized

by a deterministic decoding radius. This implies the existence of a residual error rate that is

difficult to model theoretically, and is hence usually assessed through Monte Carlo simula-

tions. Nevertheless, there are applications in which extremely low error rates are required.

One of these cases is in the area of code-based cryptography, where error rates as low as

2−80 or less are required to avoid some types of attacks [2]–[5]. Obviously, such low values

of the error rate are infeasible to assess through numerical simulations.

Therefore, an important research challenge is represented by the development of analytical

tools able to foresee the number of errors that an iterative decoder can correct. A vast body

of literature exists on this subject [6]–[10], which permits to determine lower and upper

bounds on the guaranteed error correction capability of the code. Many of these approaches

use expander graph based arguments [8], [9], whose application, however, is known to be

NP-hard [11] and can be used for a limited number of cases and under specific constraints.

Moreover, the bounds these methods provide are often loose, particularly in case of small

girths.

To overcome these limitations, recently, in [12] and [1], a new approach has been proposed

to evaluate the guaranteed error correction capability of LDPC and MDPC codes. In [12],

in particular, a majority-logic decoder is considered and it is shown that its error correction

capability depends on the maximum number of superimpositions between any two columns of

the code parity-check matrix. This allows deriving conditions under which a single iteration

of this decoder corrects all errors up to a given weight. These results are extended in [1],

where a more general decoder is considered and tighter bounds are derived.

The latter results, however, are obtained under some assumptions. As a first contribution,

this paper improves the analysis in [1], by providing tighter bounds. For such a purpose, we
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focus attention on Gallager’s bit flipping (BF) decoder [13], because of its high computational

efficiency, due to a relatively low algorithmic complexity.

Low-complexity iterative decoders are important in many applications where high through-

puts have to be achieved. Starting from its basic principle, several variants of Gallager’s BF

algorithm have been proposed. Among them, in this paper we focus on the so-called parallel

BF. Roughly speaking, the parallel BF algorithm operates as follows. At each iteration, all

parity checks are computed: all bits involved in a number of unsatisfied parity-check equations

overcoming some suitably chosen threshold are flipped, and the syndrome is accordingly

updated. The procedure is iterated, until a null syndrome is obtained or a maximum number

of iterations is reached. Following a more general approach than [14], where parallel BF is

introduced, we consider a threshold that is not fixed, but rather depends on some features of

the code under investigation.

In principle, other families of iterative decoding algorithms could achieve better error

correction performance than BF decoding. However, we focus on channel models without

soft information, where decoding algorithms working with discrete values are a natural choice.

Moreover, the parallel BF algorithm is characterized by a very high algorithmic efficiency,

which is an important requirement in code-based cryptography [15], [16]. Such an area of

application is experiencing an increasing interest by the scientific community due to the

standardization initiative of post-quantum cryptosystems started in 2016 by the US National

Institute of Standards and Technology (NIST) [17]. In this context, state-of-the-art schemes

based on LDPC and MDPC codes such as LEDAcrypt [18] and BIKE [19] employ decoders

such as BF or some of its variants. This is all the more evident by considering that in these

applications very large codes are usually required and the adoption of more complex decoding

algorithms would yield unacceptable delays.

When LDPC or MDPC codes are used in code-based cryptosystems, the structure of their

parity-check matrix is mainly dictated by security issues. This may yield unavoidable short

cycles in the Tanner graph describing the code. More precisely, in these systems the sparse

parity-check matrix of an LDPC or MDPC code is used as a secret key and it usually has

quasi-cyclic (QC) structure. Starting from a code ensemble, according to the chosen QC

structure, the parity-check matrix of the code is randomly picked from the ensemble, thus

often yielding a large number of cycles of length 6 or even 4. Accurate evaluation of the

guaranteed error correction capability of codes with small girth has not been extensively

investigated in previous literature. This is another relevant contribution of this paper, as we

show that the new bounds are particularly tight if the girth of the considered codes is small.
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We devote our attention to the first iteration of BF decoding. For it, we provide an upper

bound on the error rate of LDPC and MDPC codes which does not rely on any specific

assumption. We note that some lower and upper bounds on the error rate under BF decoding

are also proposed in [20], but their computation requires pre-processing of all possible initial

error patterns with weight up to a certain value; thus, the approach becomes quickly unfeasible

as the error probability of the channel decreases or error patterns with too large weight have

to be considered. The same remark holds for the approaches proposed in [21]–[24], which

allow estimating the error rate of LDPC codes under BF decoding. Our approach instead is

fully analytical, and does not require any preliminary simulation or assumption. To the best

of our knowledge, this is the first time in which this problem is faced in exact analytical

terms.

The paper is organized as follows. In Section II we introduce the notation used throughout

the paper and recall some basic notions of LDPC and MDPC codes. In Section III we discuss

the error correction capability of codes with small girth under BF decoding. In Section IV

we provide an upper bound on the error rate of LDPC and MDPC codes under BF decoding.

In Section V we present the results of numerical simulations and show an application of the

derived bounds to code-based cryptography. Finally, we draw some conclusions in Section

VI.

II. NOTATION AND DEFINITIONS

We use capital letters to denote sets, adopting caligraphic fonts for sets of vectors. The

cardinality of a set A (or A) is denoted as |A| (or |A|). Given a set A, we use a ← A to

express the fact that a is randomly extracted, with uniform law, among all the elements of

A, and the same notation is used for sets of vectors.

The binary Galois field is denoted as F2. We use small bold letters to denote vectors,

and capital bold letters to denote matrices. Given a matrix H, its entry at position (i, j)

is denoted as hi,j and its k-th column is denoted as hk. Given a vector e, we refer to its

j-th entry as ej . Given a set A, we have e
(A) = {ei s.t. i ∈ A}. The AND, OR and ex-OR

operations are denoted as ∧, ∨ and ⊕, respectively. The Hamming weight and the support

of any vector e are referred to as wt (e) and S(e), respectively. The set of integers between

a and b, extremes included, is indicated as [a, b]. We denote the set of all binary vectors of

length n and Hamming weight m as Bm.
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A. LDPC and MDPC codes

A binary LDPC code is the null space of a binary parity-check matrix H containing a

small number of ones compared to the total number of entries. Denoting the code block

length as n and the code dimension as k, H has r ≥ n − k rows and n columns and the

design rate is R = 1
2
. The syndrome of a binary vector e is defined as s = eH

⊤, where

⊤ denotes transposition and the product is performed over F2. Any codeword belonging to

the code defined by H has an all-zero syndrome. The i-th column and j-th row of H have

weight vi and wj , respectively. The code is said to be (v, w)-regular if each column of H

contains exactly v ones and each row contains exactly w ones. Regular LDPC codes are

generally characterized by w = O(logn), whereas regular MDPC codes have w = O(
√
n).

These two families of codes allow the same decoding principle, based on the sparsity of

their parity-check matrices. Let us introduce two classes of QC codes that will be considered

throughout the paper (in particular, in Sections IV-C and V). Codes in the first class are

defined by parity-check matrices in the following form

H =
[

H0 H1

]

, (1)

where each Hi, i ∈ {0, 1}, is a circulant matrix of size p and row/column weight v. The

resulting codes are (v, 2v)-regular, have block length 2p and design rate R = 1
2
.

Codes in the second class, also named monomial codes [25], are defined by parity-check

matrices in the following form

H =











I
p(i0,0) . . . I

p(i0,w−1)
...

. . .
...

I
p(iv−1,0) . . . I

p(iv−1,w−1)











, (2)

where I
p(i) is the identity matrix of size p whose columns have been cyclically shifted

downwards by i positions.

Definition 1 Given a matrix H ∈ F
r×n
2 , the adjacency matrix of H, denoted as Γ, is the

n× n matrix whose element in position (i, j) is such that

γi,j =











|S(hi) ∩ S(hj)| if i 6= j

0 if i = j
.

The adjacency matrix is commonly employed in graph theory: given a multigraph with n

nodes, the adjacency matrix can be defined as the n × n matrix whose element in position

(i, j) is equal to the number of edges connecting nodes i and j. Obviously, starting from a
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parity-check matrix H, we can construct a graph1 with n nodes, such that the i-th and the

j-th node are connected by |S(hi) ∩ S(hj)| edges.

B. Bit flipping decoding

Let us describe a general version of the parallel BF algorithm, which performs a single

iteration. Decoder inputs are a syndrome s ∈ F
r
2 and a vector of integers b = [b0, · · · , bn−1],

such that bi ∈ [1, vi], ∀i. For each i ∈ [0, n − 1], the number of unsatisfied parity-check

equations involving the i-th bit is computed; we denote such a number as σi. The decoder

considers as “error affected” all bits for which σi ≥ bi and, thus, returns as output a vector

e
′ with support S(e′) = {i s.t. σi ≥ bi}. So, bi has the meaning of a decision threshold for

the i-th bit. Clearly, decoding is successful if e
′ coincides with the actual error vector. An

important special case considered next is that in which bi = b, ∀i, which boils down to a

majority-logic decoder when b = ⌊v
2
⌋ + 1. The decoding procedure we consider is reported

in Algorithm 1.

III. GUARANTEED ERROR CORRECTION CAPABILITY OF BIT FLIPPING

Let us provide some preliminary definitions taken from [1], with some adaptations.

Definition 2 Given H, let us consider the rows of H indexed by S(hi) and put them into a

matrix H
(i). Following [1], we define H

(i) as the i-th partial parity-check matrix. The j-th

column of H(i) is denoted as h
(i)
j . We also define

δ(i)(H(i), z) = max
M, |M |=z, i 6∈M

{

wt

(

⊕

j∈M

h
(i)
j

)}

,

where M is a set containing the indexes of z columns of H(i), except for the i-th. We call

the maximum column intersection of order z, and denote as δ(H, z), the quantity defined as

δ(H, z) = max
0≤i≤n−1

{

δ(i)(H(i), z)
}

.

When z = 1, we call δ(H, 1) the maximum column intersection and, for simplicity, we

denote it as δ; it is easy to see that δ corresponds to the maximum number of set positions

in which two columns of H overlap. We remark that, if the code has girth larger than 4, then

the supports of any two columns intersect in at most one position, thus we have δ = 1.

1We remark that this graph, which is not bipartite, is different from the Tanner graph [26] of the code.
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Algorithm 1 BFdecoder

Input: H ∈ F
r×n
2 , s ∈ F

r
2, imax ∈ N, b = [b0, . . . , bn−1], bi ∈ [1, vi], ∀i

Output: e′ ∈ F
n
2

1: e
′ ← 0n

2: F ← ∅

3: for i← 0 to n− 1 do

4: σi ← 0

5: for l ∈ S(hi) do

6: σi ← σi + sl

7: end for

8: if σi ≥ bi then

9: F ← F ∪ i ⊲ Position i is estimated as error affected

10: end if

11: end for

12: for i ∈ F do

13: e′i ← e′i ⊕ 1 ⊲ Error estimation update

14: end for

15: return {e′}

The above notions can be easily related to the entries of the adjacency matrix. For instance,

the weight of the j-th column of the i-th partial parity-check matrix is equal to the (i, j)-

th element of the matrix Γ, γi,j , and the maximum column intersection corresponds to the

largest entry of Γ. For a code with girth larger than 4, the entries of the adjacency matrix

belong to [0, 1].

Definition 3 Given H and the corresponding adjacency matrix Γ, we denote as γ̃
(i) the

vector formed by the elements of the i-th row of Γ, except for the i-th one. We define µ(i)(z)

as the sum of the z largest entries of γ̃(i). We then define the maximum column union of

order z, denoted as µ(H, z), the quantity

µ(H, z) = max
0≤i≤n−1

{

µ(i)(z)
}

. (3)
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A. Bounds on the error correction capability

The following theorem, from [12], shows that the error correction capability of a code

decoded with a majority-logic decoder is related to the maximum column intersection.

Theorem 1 [12] Let us consider a code defined by a parity-check matrix for which every

column has weight at least v and whose maximum column intersection is δ. Majority-logic

decoding on this matrix allows the correction of all error vectors with weight t ≤ tM , where

tM =
⌊

v
2δ

⌋

.

Corollary 1 Let us consider a code with g > 4 defined by a parity-check matrix for which

every column has weight at least v∗. Majority-logic decoding on this matrix allows the

correction of all error vectors with weight t ≤ tM , where tM =
⌊

v∗

2

⌋

.

Proof: It is a straightforward consequence of the fact that, if g > 4, the maximum

column intersection is equal to 1.

As mentioned in the Introduction, these preliminary results are generalized in [1], where

it is shown that the guaranteed error correction capability under BF decoding can actually be

expressed by taking into account the interplay of more than two columns, that is, assuming

z > 1.

Theorem 2 [1] Let us consider a code defined by a parity-check matrix H in which every

column has weight at least v∗. Let t be an integer such that

v∗ > δ(H, t) + δ(H, t− 1).

Then a BF decoder with variable decoding thresholds

bi ∈ [δ(H, t) + 1, vi − δ(H, t− 1)] , ∀i ∈ [0, n− 1], vi ≥ v∗,

(or fixed decoding threshold b ∈ [δ(H, t) + 1, v∗ − δ(H, t− 1)]) corrects all the error vectors

of weight t in one iteration.

If we denote by tM the largest integer t such that Theorem 2 is satisfied, and assume that

δ(H, i) ≤ δ(H, j), 2 ∀i < j ≤ tM , then Theorem 2 allows correction of all the error vectors

with weight smaller than or equal to tM . Let us now specialize Theorem 2 to (v, w)-regular

codes with girth g > 4. When g > 4, the weight of the columns of any partial parity-check

matrix is either 0 or 1. In particular, any partial parity-check matrix contains one column

2This condition may be satisfied or not, depending on the structure of H.
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with weight v, (w − 1)v columns with weight 1 and n− (w − 1)v − 1 all-zero columns. As

any partial parity-check matrix has v rows, it follows that

δ(H, z) = z ∀z ≤ v,

which is obtained by considering z different columns. Then, according to Theorem 2, we

have that

tM = max
t
{t s.t. v > t+ t− 1} = max

t

{

t s.t. t ≤
⌊v

2

⌋}

=
⌊v

2

⌋

,

with threshold b =
⌊

v
2

⌋

+ 1 if v is even (corresponding to a majority-logic decoder), and

b ∈ [
⌊

v
2

⌋

+ 1,
⌈

v
2

⌉

+ 1] if v is odd.

In other words, when g > 4, Theorem 1 and Theorem 2 express the same error correction

capability, with Theorem 2 giving an additional choice on the decision threshold when v is

odd. When g = 4, instead, as proved in [1], the bound given in Theorem 2 is never smaller

than that given in Theorem 1, which means that the new bound is tighter.

Theorem 2 guarantees correction of all error vectors up to a given weight tM only if

δ(H, t) is a non-decreasing function for all t ≤ tM . This assumption is reasonable for

sparse parity-check matrices, but it may be not verified for any choice of H; thus, we state

the following Theorem 3, based on the adjacency matrix Γ, which does not rely on any

assumption. Theorem 3 provides an upper bound on the error correction capability that is

smaller than or equal to the one given by Theorem 2, but larger than or equal to the one

given by Theorem 1.

Theorem 3 Let us consider a code defined by a parity-check matrix H in which every column

has weight at least v∗. Let t be an integer smaller than or equal to tM , where tM is the

largest integer such that

v∗ > µ(H, tM) + µ(H, tM − 1). (4)

Then a BF decoder with decoding thresholds

bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)] (5)

corrects all the error vectors of weight smaller than or equal to t in one iteration.
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Proof: Let σi denote the number of unsatisfied parity-check equations in which the i-th

bit participates, and vi denote the weight of the i-th column in H. Let us denote by e the

error vector and assume that wt (e) = t; if ei = 1, then we have

σ
(1)
i = vi − wt





⊕

j∈S(e)\i

h
(i)
j





≥ vi −
∑

j∈S(e)\i

γi,j (6)

≥ vi − µ(H, t− 1).

In the same way, when the i-th bit is error free, that is, ei = 0, we have

σ
(0)
i = wt





⊕

j∈S(e)

h
(i)
j





≤
∑

j∈S(e)

γi,j (7)

≤ µ(H, t).

Clearly, one iteration of BF decoding can correct any error vector e of weight t if, ∀i,
there exists a value of bi such that

min
e

{σ(1)
i } ≥ bi > max

e

{σ(0)
j }, ∀i ∈ S(e), ∀j 6∈ S(e). (8)

Inserting (6) and (7) into (8), we obtain

vi − µ(H, t− 1) ≥ bi > µ(H, t), (9)

which implies

v∗ − µ(H, t− 1) > µ(H, t). (10)

According to (9), any bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)] guarantees that all bits such that

ei = 0 are characterized by values of σ
(0)
i that never exceed bi and, thus, are not flipped;

oppositely, all bits such that ei = 1 are characterized by values of σ
(1)
i larger than or equal

to bi, and thus are flipped.

B. Comparison with previous approaches

In [8], explicit formulas for bounds on the error correction capability are presented, thus

we use them as a benchmark for our approach. We remark that our bounds are referred to

a single decoding iteration, whereas those in [8] are referred to an unspecified number of
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decoding iterations. Despite this, as shown in the following, for small values of g our bounds

are tighter than those in [8]. The latter are specified through the following theorem.

Theorem 4 [8] For a code defined by a parity-check matrix H with girth g in which every

column has weight v, BF decoding with decoding threshold b =
⌊

v
2

⌋

+ 1 allows correction

of all error patterns of weight less than






1
2
+ v

4

∑k−1
i=0

(

v−2
2

)i
if g = 4k + 2,

∑k−1
i=0

(

v−2
2

)i
if g = 4k.

(11)

For g = 4, g = 6 and g = 8, the bounds on the error correction capability computed

according to (11) are 0, ⌈v+2
4
⌉ − 1 and ⌈v

2
⌉ − 1, respectively. So, for g = 4 (11) is useless.

On the contrary, the error correction capability given by Theorem 2 is not null on condition

that δ(H, 0)+ δ(H, 1) < v, that is, being δ(H, 0) = 0 by definition, if δ < v. So, contrary to

(11), as long as H does not contain repeated columns, Theorem 2 guarantees a significant

error correction capability, just after one decoding iteration. Several examples are reported

in [1], where it is shown that even the values resulting from Theorem 3 (that, we remind,

are more conservative than those from Theorem 2) are often significantly larger than those

obtained from Theorem 1.

For g = 6, we have δ = 1 and the error correction capability given by Theorem 2 coincides

with that given by Theorem 3, resulting in tM = ⌊v
2
⌋ ≥ ⌈v+2

4
⌉ − 1. Notice that the previous

inequality, which compares the error correction capability given in Theorem 3 (left hand

side) and that resulting from (11) (right hand side), holds with the equality sign only for

v = 1 and v = 3. To be more explicit, the gap between the correction capability foreseen

by Theorem 2 and that obtained through (11) becomes higher and higher for increasing v,

which is a significant issue in view of the application to code-based cryptography, where v

may assume relatively large values. Finally, for g = 8, Theorem 2 and Theorem 3 result in

⌊v
2
⌋, whereas (11) results in ⌈v

2
⌉ − 1. So, since ⌊v

2
⌋ −

(

⌈v
2
⌉ − 1

)

= 1− v mod 2, the bounds

are the same for odd values of v, whereas the bound we provide in Theorem 2 and Theorem

3 is larger by 1 than that given in (11) for even values of v.

The comparison between the bounds we propose and those in [8] is summarized in Table

I, where by “range of improvement” we mean the values of v for which our bound is strictly

tighter than that in [8]. The case of g = 10 has been also included in the table, for which

the advantage of our approach is limited to the case of v = 2. The advantage disappears for

g > 10 that, however, is not of interest in this paper.
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TABLE I

COMPARISON OF BOUNDS ON THE ERROR CORRECTION CAPABILITY OF LDPC AND MDPC CODES FOR DIFFERENT

VALUES OF THE GIRTH.

g Bound on tM given by Theorem 2 Eq. (11) Range of improvement

4 ≥ ⌊ v
2δ
⌋ 0 ∀v

6 ⌊ v
2
⌋ ⌈ v+2

4
⌉ − 1 ∀v 6= 1, 3

8 ⌊ v
2
⌋ ⌈ v

2
⌉ − 1 ∀v > 2, v even

10 ⌊ v
2
⌋ ⌈ v2+4

8
⌉ − 1 v = 2

So, based on the above considerations, we can conclude that the major impact of the

present analysis and, similarly, of the analyses in [1], [12], occurs for codes with g = 4 and

g = 6.

IV. ANALYSIS OF THE DECODING FAILURE PROBABILITY FOR THE FIRST ITERATION OF

BF DECODING

In this section we derive a conservative bound for the decoding failure probability, de-

noted as Pf ,3 of the first and only iteration of a BF decoder, with decoding thresholds

[b0, b1, · · · , bn−1], applied on a syndrome s = eH
⊤, where e ← Bt. Having a fixed number

of errors (t) is a scenario of interest in code-based cryptography, in which encryption is

performed by intentionally corrupting a codeword with a constant number of errors. Nev-

ertheless, once having characterized the decoder performance for a given number of errors,

it is easy to extend such a characterization to channel models (like the binary symmetric

channel (BSC)) in which the statistic of the number of errors is known. In fact, a BSC with

crossover probability ρ can be straightforwardly studied by considering that the probability

that the channel introduces exactly t errors is equal to Pr{wt(e) = t} =
(

n

t

)

ρt(1−ρ)n−t. So,

denoting the error vector after the first iteration as e
′, the decoding failure probability over

the BSC can be computed as

Pf =
n
∑

l=0

Pr {e′ 6= e | wt(e) = l}Pr {wt(e) = l}, (12)

where Pr {e′ 6= e | wt(e) = l} can be upper bounded through the method we describe next.

Pr {wt(e) = l}, instead, defines the adopted channel model. For the sake of conciseness, we

3Notice that the decoding failure probability coincides with the expected value of the frame error rate (FER).
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only study the case in which










Pr {wt(e) = l} = 1, l = t,

Pr {wt(e) = l} = 0, ∀l 6= t.

that models the application to code-based cryptography (where a fixed number t of intentional

errors is used for encryption). However, our analysis can be easily extended to other channel

models (like the BSC) by changing the definition of Pr {wt(e) = l}.
For i ∈ [0, n− 1], we define fi as the binary variable obtained through the following rule

fi =











0 if [(σi < bi) ∧ (ei = 0)] ∨ [(σi ≥ bi) ∧ (ei = 1)],

1 if [(σi ≥ bi) ∧ (ei = 0)] ∨ [(σi < bi) ∧ (ei = 1)].
(13)

In other words, when fi = 0, the decoder takes a right decision on the i-th bit, i.e., it flips

a bit affected by an error or it does not flip an error-free bit. Conversely, when fi = 1, the

decoder takes a wrong decision on the i-th bit; a wrong decision can either be the flip of an

error-free bit or the missing flip of a bit affected by an error. The error patterns that cause

a decoding error in the i-th position, that is, those for which fi = 1, are defined by the

so-called error sets, which we introduce below.

Definition 4 Let H ∈ F
r×n
2 be the parity-check matrix of a code with block length n. We

consider the first and only iteration of a BF decoder as in Algorithm 1, with decoding

thresholds [b0, · · · , bn−1]. Let fi be the binary variable defined as in (13), for i ∈ [0, n− 1].

Then, for z ∈ {0, 1}, we define the error set for the i-th bit as follows

Ezi,t,bi = {e ∈ Bt s.t. fi = 1| ei = z} .

As we show in the following section, the cardinality of each error set represents a fun-

damental quantity for assessing the error correction capability of the first iteration of a BF

decoder as in Algorithm 1. Notice that the cardinality computation for each error set is strictly

related to a subset sum problem, which in our case can be defined as follows: for a generic

set, determine the number of subsets with given size having the property that the sum of their

entries exceeds some target value. The precise subset sum problem variant that we consider

in this paper is formalized in the following definition.

Definition 5 Let a ∈ N
l be a length-l vector. For m ≤ l, let Pl,m = {p0, · · · , pm−1} be a

size-m set of distinct integers in [0, l − 1] such that p0 < p1 < · · · pm−1. Let Pl,m be the

ensemble containing all such sets; clearly, |Pl,m| =
(

l

m

)

. For α ∈ N, we define

N a

m,α =

{

Pl,m ∈ Pl,m s.t.

m−1
∑

i=0

api > α

}

.
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A. Decoding failure probability analysis based on the error sets

Let us introduce a property of the error sets that will then be used to derive the main result

reported in Theorem 5.

Lemma 1 Let H ∈ F
r×n
2 be a parity-check matrix, and let Ezi,t,bi , for z ∈ {0, 1}, be the error

set for the i-th bit. We denote with γ̃
(i) the vector formed by the entries of the i-th row of

the adjacency matrix Γ, defined in Section II, except for the i-th one. Then, we have

∣

∣E1i,t,bi
∣

∣ ≤
∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
, (14)

∣

∣E0i,t,bi
∣

∣ ≤
∣

∣

∣
N γ̃

(i)

t,bi−1

∣

∣

∣
. (15)

Proof: We focus on the i-th bit, characterized by a certain value of σi and flipping

threshold bi, and derive the conditions upon which the decoder takes a wrong decision (i.e.,

fi = 1). We first consider the case of ei = 1: a wrong decision is taken if the decoder does

not flip the bit, i.e., if σi < bi. From (6), we know that the value of σi is not lower than

the difference between the weight of the i-th column (that is, vi) and the sum of the values

γi,j indexed by S(e), except the i-th index (that is,
∑

j∈S(e)\i γi,j). If such a difference is

not lower than bi, then σi ≥ bi and the decoder flips the i-th bit. On the other hand, if

vi−
∑

j∈S(e)\i γi,j < bi, σi might be lower than bi and the decoder might not flip the i-th bit.

Hence, a necessary (but not sufficient) condition to have a wrong decision on the i-th bit is

∑

j∈S(e)\i

γi,j > vi − bi. (16)

Because of the above reasoning, E1i,t,bi is a subset of the error vectors satisfying (16). The

set S(e) \ i in (16) corresponds to a subset of [0, i − 1] ∪ [i + 1, n − 1], of size t − 1;

furthermore, the values γi,j that are possibly selected by S(e) \ i are entries of γ̃
(i) =

[γi,0, · · · , γi,i−1, γi,i+1, · · · , γi,n−1], which has length n−1. Let Pn−1,t−1 be a subset of [0, n−1]
such that the sum of the entries in γ̃

(i) indexed by Pn−1,t−1 is larger than vi−bi. According to

Definition 4, the number of such sets corresponds to the cardinality ofN γ̃
(i)

t−1,vi−b1
. Furthermore,

to each one of these subsets, we can associate an error vector satisfying (16), with support

{j ∈ Pn−1,t−1 |j < i} ∪ i ∪ {j + 1 ∈ Pn−1,t−1 |j > i} .

Thus, we obtain

∣

∣E1i,t,bi
∣

∣ ≤

∣

∣

∣

∣

∣

∣







e ∈ Bt s.t. (ei = 1) ∧





∑

j∈S(e)\i

γi,j > vi − bi











∣

∣

∣

∣

∣

∣

=
∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
.
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Similarly, for the case of ei = 0, we can derive from (7) that a necessary but not sufficient

condition for fi = 1 is bi ≤ σi ≤
∑

j∈S(e) γi,j . Similarly to the case of e1 = 1, we have

∣

∣E0i,t,bi
∣

∣ ≤

∣

∣

∣

∣

∣

∣







e ∈ Bt s.t. (ei = 0) ∧





∑

j∈S(e)

γi,j > bi − 1











∣

∣

∣

∣

∣

∣

=
∣

∣

∣
N γ̃

(i)

t,bi−1

∣

∣

∣
.

Based on these relationships, we can now prove the following main theorem.

Theorem 5 Let H ∈ F
r×n
2 be a parity-check matrix. Let e ∈ Bt, and s = eH

T be the

corresponding syndrome. We consider a single BF iteration applied on s, with decoding

threshold for the i-th bit denoted as bi. Let γ̃(i) denote the vector formed by the elements in

the i-th row of Γ, except for the i-th one. The probability that the decoder fails to decode,

starting from s, is upper bounded as follows

Pf ≤ min







1;

∑n−1
i=0

(

|N γ̃
(i)

t−1,vi−bi
|+ |N γ̃

(i)

t,bi−1|
)

(

n

t

)







. (17)

Proof: Let us start from an arbitrary position i ∈ [0, n− 1]. Let Ei,t,bi be the set of error

vectors of weight t such that, when the decoding threshold for the i-th bit is bi, the decoder

decision results in fi = 1 (i.e., the decoder flips the bit if ei = 0 or does not flip the bit if

ei = 1). Clearly Ei,t,bi = E0i,t,bi ∪ E1i,t,bi . Moreover, the sets E1i,t,bi and E0i,t,bi are disjoint, since

the vectors in e ∈ E1i,t,bi are such that ei = 1 and those in E0i,t,bi are such that ei = 0. Taking

into account (14) and (15), we obtain

|Ei,t,bi| =
∣

∣E0i,t,bi
∣

∣+
∣

∣E1i,t,bi
∣

∣

≤
∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
+
∣

∣

∣
N γ̃

(i)

t,bi−1

∣

∣

∣
. (18)

For all values j ∈ [0, n − 1] such that Ej,t,bj contains e, we have fj = 1, i.e., a wrong

decoder decision is taken on the j-th bit. Then, the probability that decoding fails can be

upper bounded by means of the following chain of inequalities

Pf =

∣

∣

⋃n−1
i=0 Ei,t,bi

∣

∣

|Bt|

≤
∑n−1

i=0 |Ei,t,bi|
|Bt|

≤
∑n−1

i=0

(∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
+
∣

∣

∣
N γ̃

(i)

t,bi

∣

∣

∣

)

|Bt|
. (19)
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The thesis of the theorem is finally proved by considering that |Bt| =
(

n

t

)

and that, by

definition, Pf ≤ 1 (while the bound in (19) is not guaranteed to be smaller than or equal to

1).

In order to compute the bound given in the theorem above, we need to solve instances

of the subset sum problem according to Definition 5. Clearly, the naive approach of testing

all possible subsets of vectors γ̃
(i) is computationally unfeasible. Fortunately, in our case of

interest, the problem can be eased by considering that, due to the sparsity of the parity-check

matrix, γ̃(i) is likely to contain a large number of very small entries (the majority of which

being actually null). This peculiarity of sparsity makes the problem efficiently solvable; a

low complexity approach to perform this computation is described in Appendix A.

The expression of Pf derived above is coherent with the results given in Section III-A

and, in particular, in Theorem 3. Indeed, the following corollary holds.

Corollary 2 Let us suppose that t ≤ tM , where tM is the largest integer such that (4) holds.

If the decoding threshold is chosen as follows

bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)] , ∀i, (20)

then

∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
=
∣

∣

∣
N γ̃

(i)

t,bi

∣

∣

∣
= 0, ∀i and, consequently, Pf = 0.

Proof: By definition,

∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
=

∣

∣

∣

∣

∣

{

Pn,t−1 ∈ Pn,t−1 s.t.

t−2
∑

i=0

γ̃
(i)
pi

> vi − bi

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

Pn,t−1 ∈ Pn,t−1 s.t. bi > vi −
t−2
∑

i=0

γ̃
(i)
pi

}∣

∣

∣

∣

∣

.

However, it follows from the definition of µ(H, t− 1) and from (20) that

bi ≤ vi − µ(H, t− 1) ≤ vi −
t−2
∑

i=0

γ̃
(i)
pi

for any choice of the indexes pi and, thus,

∣

∣

∣
N γ̃

(i)

t−1,vi−bi

∣

∣

∣
= 0. Similarly, we have

∣

∣

∣
N γ̃

(i)

t,bi−1

∣

∣

∣
=

∣

∣

∣

∣

∣

{

Pn,t ∈ Pn,t s.t.

t−1
∑

i=0

γ̃
(i)
pi

> bi − 1

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

Pn,t−1 ∈ Pn,t−1 s.t. bi <

t−1
∑

i=0

γ̃
(i)
pi

+ 1

}∣

∣

∣

∣

∣

.
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It also follows from (20) that

bi ≥ µ(H, t) + 1 ≥
t−1
∑

i=0

γ̃
(i)
pi

+ 1

for any choice of the indexes pi, and thus

∣

∣

∣
N γ̃

(i)

t,bi−1

∣

∣

∣
= 0. Finally, the fact that Pf = 0 is a

straightforward consequence of (17).

In the particular case of regular codes, which implies to have equal decoding threshold

values, noted as b, assuming v is odd and b =
⌈

v
2

⌉

, the bound on Pf provided by Theorem

5 can be rewritten as

Pf ≤ min







1;

∑n−1
i=0

∣

∣

∣
N γ

(i)

t, v−1
2

∣

∣

∣

(

n

t

)







. (21)

The proof is reported in Appendix B.

Equation (21) can be used for any regular code with g ≥ 4. For regular codes with g ≥ 6,

however, (21) can be further elaborated as discussed next.

B. Regular codes with girth larger than 4

When g ≥ 6, we have

γi,j ∈ {0, 1}, ∀i, j. (22)

In particular, for (v, w)-regular codes, each row and each column of Γ contain exactly v(w−1)
non-zero entries. The following lemma holds.

Lemma 2 Let a ∈ F
l
2 be a vector of weight m; then, we have

∣

∣N a

x,α

∣

∣ = θ(l, x,m, α), with

θ(l, x,m, α) =











0 if α ≥ m or x ≤ α

∑min{m,x}
j=α+1

(

m

j

)(

l−m

x−j

)

otherwise

. (23)

The following Theorem 6 specializes Theorem 5 to the case of a regular code with girth

larger than 4, and reformulates (21) for such a case.

Theorem 6 Let H ∈ F
r×n
2 be the parity-check matrix of a (v, w)-regular code with girth

g ≥ 6. Let e ∈ Bt, and s = eH
⊤. We consider a single iteration of BF decoding applied to

s, with a unique decoding threshold b. If v is odd and b =
⌈

v
2

⌉

, we have











Pf = 0 if t ≤ v−1
2

Pf ≤ min

{

1;
nθ(n,t,v(w−1), v−1

2
)

(nt)

}

otherwise
, (24)
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where, using (23),

θ
(

n, t, v(w − 1),
v − 1

2

)

=

min{v(w−1),t}
∑

j= v+1
2

(

v(w − 1)

j

)(

n− v(w − 1)

t− j

)

.

Proof: The proof is quite similar to that of Theorem 5 and its specialization to the case

of regular codes (reported in Appendix B), by taking into account Lemma 2.

C. A special class of QC codes

In this section we consider QC codes with parity-check matrix as in (1), which is interesting

for cryptographic applications, as will be discussed in Section V. By considering the QC

nature of these codes, described by parity-check matrices made of circulant blocks, the bounds

introduced in the previous sections can be further specialized. It can be easily verified that,

for these codes, the matrix Γ is QC as well; this property can be exploited to further speed-up

the computation of the error sets required to calculate the bounds.

The following well-known result holds.

Lemma 3 Any circulant matrix with weight larger than 2 has girth g ≤ 6.

Proof: The proof is omitted for brevity. See [27, Lemma 4.2].

It follows from Lemma 3 that a parity-check matrix as in (1) cannot have girth larger than

6.

In this case, the matrix Γ can be written as

Γ =





Γ0,0 Γ0,1

Γ1,0 Γ1,1



 , (25)

where each Γi,j is a p × p matrix; in particular, Γ is symmetric, and this means that Γ0,0

and Γ1,1 are symmetric as well, while Γ
⊤
0,1 = Γ1,0. Moreover, each block Γi,j is circulant.

In particular, let γ(i) be the i-th row of Γ; then, all rows γ
(j) such that ⌊i/p⌋ = ⌊j/p⌋ are

identical up to a quasi-cyclic shift; this means that

∣

∣Ezi,t,b
∣

∣ =
∣

∣Ezj,t,b
∣

∣ , ∀b, t, ∀i, j s.t. ⌊i/p⌋ = ⌊j/p⌋ , (26)

with z ∈ {0, 1}. Then, from Theorem 5 we obtain

Pf ≤ min

{

1; p
Ntot
(

n

t

)

}

, (27)

with

Ntot =
∣

∣

∣
N γ̃

(0)

t−1,v−b

∣

∣

∣
+
∣

∣

∣
N γ̃

(0)

t,b−1

∣

∣

∣
+
∣

∣

∣
N γ̃

(p)

t−1,v−b

∣

∣

∣
+
∣

∣

∣
N γ̃

(p)

t,b−1

∣

∣

∣
.
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V. APPLICATION TO CRYPTOGRAPHY

In this section we assess the accuracy of our bound through numerical simulations. Then,

we make some considerations on the connections of the proposed bound with the security

levels of code-based cryptosystems.

A. Numerical simulations

There is a recent trend in post-quantum cryptography regarding the use of quasi-cyclic

low-density parity-check (QC-LDPC) and quasi-cyclic moderate-density parity-check (QC-

MDPC) codes [15], [16], [28] defined in Section IV-C, since they enable the design of

McEliece cryptosystem variants with very small public keys. We remark that, in code-based

cryptography, a decoding failure yields a decryption failure; thus, the FER coincides with

the so-called decryption failure rate (DFR).

Let us first consider some codes defined by parity-check matrices as in (1). In order to show

the tightness of the provided bounds, let us consider different choices of code parameters.

First, we analyze some specifically designed codes, whose column weight is chosen in such

a way as to approach or reach the expected guaranteed error correction capability through

Monte Carlo simulations. Then, we also consider codes that have actually been proposed for

cryptographic applications, whose column weight must be sufficiently large to withstand key

recovery attacks [16, Section 5.2].

In order to assess the behaviour of codes with similar parameters and different girth, let

us consider a first code, C0, with length n = 19 702, design rate R = 1
2
, p = 9 851, v = 25,

g = 4 and a second code, C1, with n = 17 558, design rate R = 1
2
, p = 8 779, v = 13 and

girth g = 6. A compact representation of their parity-check matrices is available in Appendix

C. We assess the DFR achieved by a single-iteration BF decoder with different threshold

values through Monte Carlo simulations; for each value of t, the DFR has been estimated

through the observation of 100 wrong decoding instances. The comparison of the simulation

results with our bounds is shown in Figs. 1 and 2, respectively. From the figures we observe

that for both codes the bound becomes tighter and tighter for decreasing values of t.

Let us now consider a (45, 90)-regular code, C2, with block length n = 9 602, circulant

block size p = 4 801, design rate R = 1
2

and girth g = 4. These parameters are suitable

for cryptographic applications [16]. A compact representation of its parity-check matrices is

available in Appendix C. Also in this case, its error rate performance is compared to the

bound, considering different thresholds. The results are shown in Fig. 3. We notice that, also

in this case, the bound becomes tighter and tighter for decreasing values of t.
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Fig. 1. Comparison of the DFR resulting from Monte Carlo simulations with our bound for a (25, 50)-regular code with

block length n = 19 702, R = 1
2

, p = 9851, v = 25, g = 4, and different threshold values.

In order to assess the effect of the parity-check matrix column weight, let us consider

three (v, 2v)-regular codes, C3, C4 and C5, defined by parity-check matrices as in (1), with

the same block length, n = 23 434, circulant block size p = 11 717, and design rate R = 1
2
,

but different values of the column weight: v = 9, v = 15 and v = 47 for C3, C4 and C5,

respectively. A compact representation of their parity-check matrices is available in Appendix

C. The decoding threshold is chosen as b = ⌊v
2
⌋ + 1. The simulation results are shown in

Fig. 4. Also in these cases, the bound becomes tighter and tighter for decreasing values of

t. We also remark that the bound is tight for both LDPC and MDPC codes; in fact, C3 and

C4 are LDPC codes, whereas C5 is an MDPC code.

In order to assess the effect of the block length, let us fix the parity-check matrix row

and column weight and consider three (25, 50)-regular codes, C6, C7 and C8, defined by

parity-check matrices as in (1), with block length n = 9 946, n = 13 766 and n = 29 734,

respectively. A compact representation of their parity-check matrices is available in Appendix

C. Also in this case, the threshold is b = ⌊v
2
⌋ + 1. A comparison of their DFR with the

proposed bound is shown in Fig. 5. In all these cases, the bound becomes tighter and tighter

for decreasing values of t, as in the previously considered cases.

Finally, let us consider a different family of codes, that is, monomial codes defined in

Section II-A. It is shown in [29] that, for a proper choice of the shifts and of the code

parameters, monomial codes can be used in code-based cryptosystems. Thus, we consider

QC-LDPC codes of this type designed through the technique suggested in [29, Section
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Fig. 2. Comparison of the DFR resulting from Monte Carlo simulations with our bound, for a (13, 26)-regular code with

block length n = 17 558, R = 1
2

, p = 8779, v = 13, g = 6, and different threshold values.

Fig. 3. Comparison of the DFR resulting from Monte Carlo simulations with our bound for a (45, 90)-regular code with

block length n = 9602, R = 1
2

, p = 4801, g = 4, and different threshold values.

IV-C] with some modifications, in such a way as to obtain codes with variable rate and

row/column weight. These codes have girth 6 and design rate R = 1 − v
w

, and we assess

their error rate performance considering b = ⌈v
2
⌉, as imposed by Theorem 6. In particular, let

us consider three parameter sets, described in Table II, and for each parameter set, i.e., for

each code ensemble, we randomly generate three monomial codes and compare their error

rate performance with the bound given by (24). Results are shown in Fig. 6. We observe that

there is no appreciable difference between the performance of codes in the same ensemble.

We also observe that the bound is tight for monomial codes as well.
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Fig. 4. Comparison of the DFR resulting from Monte Carlo simulations with our bound, for (v, 2v)-regular codes with

block length n = 23 434, R = 1
2

, p = 11 717, v ∈ {9, 15, 47}, g = 4, and b = ⌊ v
2
⌋+ 1.

Fig. 5. Comparison of the DFR resulting from Monte Carlo simulations with our bound, for (25, 50)-regular codes with

block length n ∈ {9 946, 13 766, 29 734}, R = 1
2

, p = n
2

, g = 4, and b = 13.

TABLE II

PARAMETERS OF THE CONSIDERED MONOMIAL CODES.

Parameter Set n r v w p g Design rate

# 1 4 171 1 455 15 43 97 6 0.65

# 2 8 517 5 177 31 51 167 6 0.39

# 3 3 937 2 921 23 31 127 6 0.26
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Fig. 6. Comparison of the DFR resulting from Monte Carlo simulations with our bound, for monomial codes described by

the parameters in Table II.

B. Design of codes with given DFR

When codes as in (1) are used in code-based cryptosystems that support key reuse, the

required values of Pf are much smaller than those reported in the figures of Section V-A, and

are impossible to assess through Monte Carlo simulations. In particular, in order to avoid key

recovery attacks based on decryption failures, such as those in [30], [5], also called reaction

attacks, a cryptosystem designed for a 2λ security level (expressed as number of binary

operations) must have DFR < 2−λ [31] with values of λ not smaller than 80. A negligible

decoding failure probability is also required to achieve the desirable security condition known

as indistinguishability under adaptive chosen ciphertext attack (IND-CCA) [31].

This makes the derived bounds particularly useful in this case. In fact, by assuming the

QC code structure specified in Section IV-C, we can use (27) to design code parameters

able to achieve the desired small values of Pf without requiring any simulation. To show

an example, let us consider the case of a security level of 280 binary operations, for which

QC-MDPC codes with v ≥ 45 and t ≥ 84 are needed [16]. The matrices proposed in [16]

have p = 4801, which however leads to a decoding failure probability too large to resist

reaction attacks and to achieve IND-CCA. A decoding failure probability lower than 2−80 is

instead required for such a purpose.

Indeed, the bound given in (27) allows achieving such a requirement through a classic

rejection sampling approach: for each randomly generated parity-check matrix in the form

(1), the bound (27) is computed and the matrix discarded if such a value is above the target
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Pf . The procedure is repeated until a matrix with the desired property is obtained. In order

to verify the feasibility of such an approach, we consider different parameter sets and, for

each set, we generate 1 000 parity-check matrices at random and compute the bound on Pf

given by (27). The choice of b is optimized by choosing its value for which the bound takes

its minimum.

The results of this experiment are reported in Table III. We notice that, for all tested

parameter sets, a significant percentage of matrices satisfies the constraint Pf < 2−80. This

fact guarantees that the time required to generate a valid matrix is limited. In other words,

it is not difficult to find a matrix for which we can be sure that the desired security level is

reached.

We point out that, despite the codes obtained through the above approach are significantly

larger than those originally proposed, they still lead to public key sizes that are smaller than

those of other competing cryptosystems, while achieving IND-CCA. For instance, considering

binary Goppa codes as in the original McEliece cryptosystem, the public key size equals

460 647 bits [32] for 80 bits security, while the parameters we have found lead to a reduction in

the public key size by a factor ranging between 1.64 and 3.57. Additionally, the parameter sets

we propose represent a concrete worst case estimate of the key size increase which is needed

in order to ensure IND-CCA. Indeed, we obviously expect that if more than one decoding

iteration is performed, the minimum value of p which is necessary to fulfill Pf < 2−80

decreases, thus further reducing the key size and allowing more significant improvements

with respect to other cryptosystems. However, extending the bound to the case of multiple

iterations goes beyond the scope of this paper and is left for future works.

TABLE III

NUMBER OF SELECTED KEYS FOR DIFFERENT PARAMETER SETS.

p v Keys achieving Pf < 2−80

279 991 45 158 out of 1 000

194 989 65 990 out of 1 000

160 499 75 792 out of 1 000

149 993 85 971 out of 1 000

138 389 95 847 out of 1 000

130 043 105 226 out of 1 000
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VI. CONCLUSION

We have studied the error correction capability of LDPC and MDPC codes under BF

iterative decoding, with the aim of finding theoretical models for its characterization without

resorting to computation-intensive simulations.

Under the simplifying setting of a single-iteration BF decoder, we have shown that a per-

code upper bound on the error rate can indeed be found. Such a bound provides an important

tool in those contexts where very small error rates have to be guaranteed for each specific

code.

One of these scenarios is that of code-based cryptography, and we have shown how our

bound can be succesfully applied to such a context, allowing the design of cryptosystems

based on QC-LDPC and QC-MDPC codes able to achieve strong security notions while

keeping the size of the public keys smaller than that of classic systems employing algebraic

codes and bounded-distance decoders.

APPENDIX A

In this appendix we describe an efficient way to compute the cardinalities of the sets

introduced in Definition 5. To this end, we first formalize the problem and then describe

a method that, for the cases we are interested in, significantly improves upon the naive

exhaustive search approach.

Problem 1 Let a ∈ N
l be a length-l vector of non negative integers, and let B ⊆ [0, l − 1]

be a set of size m ≤ l. Given α ∈ N, α > 0, compute

NB =

∣

∣

∣

∣

∣

{

B ⊆ [0, l − 1], |B| = m s.t.
∑

i∈B

ai > α

}∣

∣

∣

∣

∣

.

It is clear that an exhaustive search would require to generate all subsets of size m: thus, the

corresponding complexity will be equal to
(

l

m

)

. As we show with combinatorial arguments,

a simple algorithm can be devised, with a complexity that may be significantly lower.

In particular, we obtain the number of sets that are complementary to those defined in

Problem 1, that is,

N̄B =

∣

∣

∣

∣

∣

{

B ⊆ [0, l − 1], |B| = m s.t.
∑

i∈B

ai ≤ α

}∣

∣

∣

∣

∣

,

from which the value of NB can be straightforwardly obtained as

NB =

(

l

m

)

− N̄B. (28)
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For a set B, we denote with a
(B) the vector formed by the entries of a that are indexed by

B; we define N̄
(j)
B as the number of subsets B for which the corresponding sub-vector a(B)

contains m elements, j of which are distinct, whose sum is smaller than or equal to α. We

have

N̄B =
m
∑

j=1

N̄
(j)
B . (29)

The values of N̄
(j)
B can be easily obtained, as we show next.

First of all, let ω be the number of distinct values in a, with Y = {y0, y1, · · · , yω−1} being

the set of such values in ascending order. In the same way, we define λu = |{i s.t. ai = yu}|.
As we show below, the computation of N̄B depends only on these quantities.

Let YB be the set of distinct values that are contained in a
(B). When j = 1, we easily have

N̄
(1)
B =

∑

0≤i≤ω−1 : yi≤⌊ α
m⌋

(

λi

m

)

, (30)

where, as usual,
(

λi

m

)

= 0 if m > λi. When j > 1, some further considerations must be taken

into account. For a set B, let yi0, yi1, · · · , yij−1
be the distinct values assumed by the entries

of a
(B), and denote the corresponding multiplicities as m0, m1, · · · , mj−1. If B ∈ N̄

(j)
B , we

must have
j−1
∑

u=0

muyiu ≤ α. (31)

We clearly have m =
∑j−1

u=0mu, from which we obtain m0 = m−∑j−1
u=1mu; then, (31) can

be rewritten as

myi0 +

j−1
∑

u=1

mu(yiu − yi0) ≤ α. (32)

It is obvious that

myi0 +

j−1
∑

u=1

mu(yiu − yi0) ≥ myi0 +

j−1
∑

u=1

(yiu − yi0). (33)

The above condition can be turned into the following criterion: a set B associated to the

values yi0, yi1, · · · , yij−1
of a(B), whose sum is smaller than or equal to α, exists if and only

if
j−1
∑

u=1

(yiu − yi0) ≤ α−myi0 . (34)
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Let us now fix an index q ∈ [1, j − 2], and suppose that we are looking at all sets B such

that a(B) contains the values yi0, · · · , yiq−1 with respective multiplicities m1, m2, · · · , mq−1.

Then, imposing the constraint and summing over all subsets, we obtain

α ≥ myi0+

q−1
∑

u=1

mu(yiu − yi0) +mq(yiq − yi0) +

j−1
∑

z=q+1

mz(yiz − yi0)

≥ myi0 +

q−1
∑

u=1

mu(yiu − yi0) +mq(yiq − yi0) +

j−1
∑

z=q+1

(yiz − yi0).

Then, the maximum value for mq is obtained as

m(max)
q = min

{

λq,

⌊

α−myi0 −
∑q−1

u=1mu(yiu − yi0)−
∑j−1

z=q+1(yiz − yi0)

yiq − yi0

⌋}

. (35)

Finally, N̄
(j)
B can be computed as

N̄
(j)
B =

ω−j
∑

i0=0

ω−j+1
∑

i1=i0+1

· · ·
ω−1
∑

ij−1=ij−2+1

d(i0, · · · , ij−1), (36)

where

d(i0, · · · , ij−1) =











0 if
∑j−1

u=1 (yiu − yi0) > α−myi0
∑m

(max)
1

m1=1 · · ·
∑m

(max)
j−1

mj−1=1

( λi0

m−
∑j−1

i=1 mi

)
∏j−1

u=1

(

λiu

mu

)

otherwise

. (37)

We point out that when a contains a small number of distinct elements (i.e., ω ≪ l) this

approach becomes significantly faster than the exhaustive search on all subsets. Indeed, first

of all we clearly have N̄
(j)
B = 0 when j > ω; moreover, the number of configurations tested

by using (37) is surely smaller than mj−1. Then, for a specific value of j, the computation

of N̄
(j)
B requires to test no more than mj−1

(

ω

j

)

configurations. Thus, we can roughly upper

bound the total number of configurations that are considered as

ω
∑

j=1

mj−1

(

ω

j

)

≤
ω
∑

j=1

mj−1

(

ωe

j

)j

≤ ωmω−1eω, (38)

where e is the basis of the natural logarithmic. It can be verified that, when m,w ≪ l, the

above upper bound is significantly smaller than
(

l

m

)

.

APPENDIX B

In this appendix we consider the case of regular codes, for which the decoding threshold

values can be assumed constant and equal to b, and we demonstrate that when v is odd and

b =
⌈

v
2

⌉

, the bound (17) can be reformulated as in (21).
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Let H be the parity-check matrix of a (v, w)-regular code with block length n and odd

v. Let us denote as γ
(i) the i-th row of the adjacency matrix Γ. Moreover, let e ∈ Bt, and

s = eH
⊤. We consider a single iteration of BF decoding applied to s, with a unique decoding

threshold
⌈

v
2

⌉

.

In order to determine a bound for Pf in these conditions, we can basically repeat the steps

in the proof of Theorem 5. In this case, however, (18) can be specialized as follows

∣

∣

∣
E
i,t,⌈v2⌉

∣

∣

∣
=
∣

∣

∣
E1
i,t−1,v−⌈ v2⌉ ∪ E

0
i,t,⌈v2⌉−1

∣

∣

∣

=
∣

∣

∣
E1
i,t−1, v−1

2
∪ E0

i,t, v−1
2

∣

∣

∣

≤
∣

∣

∣
N γ̃

(i)

t−1, v−1
2

∣

∣

∣
+
∣

∣

∣
N γ̃

(i)

t, v−1
2

∣

∣

∣
, (39)

where we have exploited the fact that, since v is odd, we have
⌈

v
2

⌉

= v+1
2

. Now, if we

consider γ(i) and a set S ∈ N γ
(i)

t, v−1
2

, we have only two possibilities:

1) If i ∈ S, since γi,i = 0, we have
∑

j∈S\i γi,j >
v−1
2

, from which {S \ i} ∈ N γ̃
(i)

t−1, v−1
2

.

2) If i 6∈ S, we have
∑

j∈S γi,j >
v−1
2

, from which S ∈ N γ̃
(i)

t, v−1
2

.

Then, we can state
∣

∣

∣
N γ̃

(i)

t−1, v−1
2

∣

∣

∣
+
∣

∣

∣
N γ̃

(i)

t, v−1
2

∣

∣

∣
=
∣

∣

∣
N γ

(i)

t, v−1
2

∣

∣

∣
. (40)

By replacing this equality in (17), the simpler (21) is eventually obtained.

APPENDIX C

In this appendix we give the parity-check matrices used in the Monte Carlo simulations.

All the considered matrices are in form (1) and H0 and H1 are circulant matrices. The support

of their first columns, which is S(h
(0)
0 ) and S(h

(1)
0 ), but is denoted for simplicity as S0 and

S1, respectively, compactly describes the whole parity-check matrix.

The parity-check matrix of C0 is represented by

S0 =
[

16 364 572 1166 1726 2231 2518 2555 2565 3334 3806 3818 4126

4590 4852 5425 5502 5536 5576 5880 7923 8296 8788 9035 9179

]

,

S1 =
[

246 406 1732 1855 1871 2254 2297 2320 2474 3333 3513 4042

4511 5260 6037 6673 6716 7334 7766 7940 8036 8136 8802 8881 9384

]

.

The parity-check matrix of the code C1 is represented by

S0 =
[

934 1750 3485 4040 4117 4639 4838 4879 5874 5886 6041 6874 7425

]

,
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S1 =
[

2043 2184 2619 2715 3190 3359 4163 4327 4705 5188 5335 7629 7879

]

.

The parity-check matrix of C2 is represented by

S0 =
[

168 229 309 405 464 507 668 888 893 908 984 1015

1143 1178 1299 1311 1368 1380 1433 1478 1675 1728 1800

1936 2069 2084 2215 2530 2632 2842 3090 3103 3282 3332

3532 3595 3657 3882 3919 3929 4077 4138 4160 4654 4698

]

,

S1 =
[

263 271 277 369 381 641 689 754 792 935 1153 1415

1551 1727 1732 1743 1988 2065 2099 2102 2139 2159 2205

2249 2443 2566 2586 2737 2932 3041 3140 3337 3504 3613

3632 3946 3953 4047 4097 4218 4233 4315 4329 4486 4506

]

.

The parity-check matrix of C3 is represented by

S0 =
[

864 3551 4164 5538 8013 8487 8846 8986 10925

]

,

S1 =
[

2256 6346 6495 6959 7551 8409 8725 10317 11554

]

.

The parity-check matrix of C4 is represented by

S0 =
[

1106 1985 2497 3036 3394 5118 5136 5276

6506 6523 7450 8338 8472 9662 11434

]

,

S1 =
[

471 974 1775 5048 5595 5617 6805 8861

8894 9009 9158 9416 11071 11379 11404

]

.

The parity-check matrix of C5 is represented by

S0 =
[

242 432 447 784 1040 1669 1786 2430 2496 2643 2682 3161 3173

3952 4461 5319 5336 5369 5423 5678 5768 5891 6906 6943 7207 7535

7740 7743 8435 8496 8608 8765 8824 9251 9463 9635 9637 9659 9685

9969 9971 10052 10284 10397 10525 10821 11367

]

,
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S1 =
[

144 284 722 724 821 1403 1465 1546 2028 2277 2569 2916 3108

3286 3400 3460 3759 3844 3983 4252 4600 4631 5289 5323 5587 6004

6403 7380 7427 7826 7899 7998 8106 8960 9004 9196 9348 9508 9803

10058 10497 10671 10751 10865 11092 11362 11394

]

.

The parity-check matrix of C6 is represented by

S0 =
[

516 739 988 1332 1408 1503 1668 1671 1743 1983 2042 2110 2466

2583 2661 2808 2863 2918 2976 3388 3551 3828 4337 4533 4741

]

,

S1 =
[

132 448 502 769 868 1063 1436 1457 1511 1676 2023 2422 2469

2613 2620 3197 3499 3754 4020 4054 4211 4286 4528 4599 4930

]

.

The parity-check matrix of C7 is represented by

S0 =
[

709 792 854 907 1548 1608 2062 2152 2158 2359 2625 2981 3372

3572 3664 3716 3726 4283 5311 5551 6014 6432 6569 6595 6636

]

,

S1 =
[

824 934 1220 1570 2129 2244 2526 2629 3533 3557 3708 3833 3862

4147 4252 4556 4636 4662 5254 5286 5375 5691 5738 6347 6785

]

.

The parity-check matrix of C8 is represented by

S0 =
[

1383 1783 1940 2117 2834 3216 3347 4168 4267 6118 7683 8431 9114

9191 9562 10170 10515 10874 11604 12110 13137 13202 13508 14658 14687

]

,

S1 =
[

189 272 753 938 1372 1940 1984 2524 3072 4414 4637 4807 4971

6029 6360 6931 6970 7653 8817 9193 11761 11981 12242 12549 13846

]

.
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