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Abstract—We consider backward crosstalk in 2 × 2 trans-
mitters, which is caused by crosstalk from the outputs of the
transmitter to the inputs or by the combination of output
crosstalk and impedance mismatch. We analyze its impact via
feedback networks together with third-order power amplifier
non-linearities. We utilize the Bussgang decomposition to express
the distorted output signals of the transmitter as a linear
transformation of the input plus uncorrelated distortion. The
normalized mean-square errors (NMSEs) between the distorted
and desired amplified signals are expressed analytically and the
optimal closed-form power back-off that minimizes the worst
NMSE of the two branches is derived. In the second part of
the paper, an achievable spectral efficiency (SE) is presented
for the communication from this “dirty” transmitter to another
single-antenna receiver. The SE-maximizing precoder is optimally
found by exploiting the hardware characteristics. Furthermore,
the optimal power back-off is analyzed for two sub-optimal
precoders, which either do not exploit any hardware knowledge
or only partial knowledge. The simulation results show that the
performance of these sub-optimal precoders is close-to-optimal.
We also discuss how the analysis in this paper can be extended
to transmitters with an arbitrary number of antenna branches.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), input back-off, power amplifier, transmitter hardware
imperfections, spectral efficiency.

I. INTRODUCTION

Techniques to handle transmitter imperfections, including

crosstalk between the transmitter branches, nonlinearity of the

power amplifiers, mixer imbalance, and leakage are of utmost

importance for future wireless systems, and is an active field of

research [1]–[6]. Transmitter imperfections can be combatted

to increase the communication performance or appear as a

side-effect of simplified design or implementation.

To complement the derivation of novel methods to combat

the transmitter imperfections, there has been a recent focus on

improving the understanding of the imperfections in single-

input-single-output (SISO) and multiple-input-multiple-output

(MIMO) transmitters under orthogonal frequency-division
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multiplexing (OFDM) signals. Recent works include [7], [8]

that study different aspects of the normalized mean squared

error (NMSE) for a SISO transmitter subject to ideal digital

predistortion. A lower bound on the NMSE is derived in [7].

Additional results to those in [7] are provided in [8], where

simple-to-interpret closed-form formulas for the NMSE in

different regions of power amplifier compression are obtained.

The same methodology is used in [9] to analyze the joint

effect of the mixer and power amplifier imperfections in a

SISO transmitter, where it is shown that the performance

at the NMSE-minimizing power back-off is limited by the

imperfections in the IQ-modulator.

A MIMO transmitter has additional artifacts compared with

a SISO transmitter, including leakage/crosstalk between the

transmitter branches or antennas, that negatively influence its

performance [1]. 2×2 MIMO transmitter structures have been

proposed for IEEE 802.11 [10], [11], long term evolution

(LTE) [12], and 79 GHz radar [13]. Several works also

focused on the design of digital predistorters to compensate

the adverse effects of crosstalk and power amplifier distortions

for wide-band code-divison multiple access (WCDMA) and

Worldwide Interoperability for Microwave Access (WiMAX)

2× 2 transmitters [1], [2], [5]. 2× 2 transmitters are of great

importance in studying the performance degradation resulting

from crosstalk due to the adjacent antenna branches. The

motivation behind this is that the direct coupling between non-

adjacent antennas becomes smaller as the distance between the

antenna units increases [6]. In this paper, we mainly consider

a 2 × 2 MIMO transmitter, which enables us to follow a

completely analytical approach and explore the joint impact

of backward crosstalk and power amplifier non-linearities on

different parts of a communication system.

In [14], a first study of the power amplifier compression

distortion and effects of leakage between the branches in a

2 × 2 MIMO transmitter is presented, where an analytical

expression for the transmitter NMSE is presented for a trans-

mitter subject to crosstalk between the input branches and

between the output branches, respectively. Dirty transmitter

analysis in the massive MIMO scenario is an identified active

area of research [15], [16]. Note that these works do not

consider crosstalk. The properties of an M × M transmitter

with crosstalk is the subject of [6], including the asymptotic

massive MIMO regime where M → ∞.

The previous works [6]–[9], [14] all utilize the classical

Bussgang decomposition [17] to provide an understanding

of the transmitter performance. Despite being theoretical in

nature, the Bussgang decomposition has been verified exper-

http://arxiv.org/abs/1912.08528v2
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imentally in both SISO [7] and MIMO [18] scenarios. It is

here emphasized that the main purpose with employing the

considered approach is in the understanding of the transmitter

imperfections, including balancing the selection of mixers and

transmitters, and effects of coupling between the branches of

a transmitter.

A. Contributions

Almost all of the above-mentioned works consider either

linear or non-linear crosstalk that are both modeled by feed-

forward connections between the antenna branches [1], [2],

[6], [14]. One transmitter imperfection that has been over-

looked in the majority of previous work is the so-called

backward crosstalk between the MIMO transmitter branches.

Backward crosstalk from one amplifier’s output to another’s

input occurs when there is leakage between transmission

lines. A phenomenon with similar effects occur when there

is crosstalk between the outputs of two nonlinear amplifiers

that are mismatched [3], [19]. Even if the power leakage is

small relative to the output power, it can have a large impact

since the inputs to the power amplifiers are also small. For

example, if the amplification gain is 20 dB, then a 1% leakage

will result in a crosstalk distortion that is equally strong as the

input. The crosstalk appears when the transmitter branches

(transmission lines) are physically close and, thus, the issue

will likely be larger in future digital mmWave transceivers

where many branches must be squeezed into a small circuit.

Different from the existing works [6], [14] that consider

forward crosstalk, we consider backward crosstalk, which can

be modeled by a feedback network and, hence, is analytically

more challenging. Some approximations are introduced along

the way to obtain analytically tractable and insightful results.

In the simulations, we validate these approximations.

In [19], models for digital predistortion of transmitters under

backward crosstalk were proposed and their performance was

evaluated in laboratory experiments. [19] uses a generalized

memory polynomials and does not exploit the Bussgang de-

composition to obtain closed-form expressions for the NMSE.

In this paper, we provide a deeper level of understanding of

the backward crosstalk by employing the discussed Bussgang

decomposition. Explicitly, the paper considers the performance

of a 2 × 2 MIMO transmitter subject to backward crosstalk,

by aid of a fully analytical approach leading to a closed-

form expression for the transmitter NMSE, as function of the

transmitter imperfections. Transmitter NMSE is one of the

common figure-of-merits, which is adapted for studying the

effect of hardware impairments [7]–[9]. Different from the

existing literature that exploits Bussgang decomposition for

modeling the joint distortion caused by crosstalk and power

amplifiers, we also consider the spectral efficiency (SE) in

data transmission to a single-antenna receiver. The closed-

form expressions are used to obtain the optimal power back-

off to minimize the maximum of NMSE. Different from the

existing literature which exploits Bussgang decomposition for

crosstalk impairments, the optimal precoder is derived, which

maximizes the SE in data transmission. The optimal input

reference power is also found for the conventional maximum

ratio transmission (MRT) that is a sub-optimal precoder un-

der backward crosstalk and power amplifier non-linearities.

In addition, the SE of another sub-optimal precoder that

exploits the hardware impairments to maximize the desired

signal strength is analyzed. Lastly, we include a discussion

section how the derived closed-form results can be extended

to transmitters with an arbitrary number of antennas. The

closed-form expressions and the optimal results are expected

to provide the academia and practitioners with a deeper insight

into transmitter performance.

B. Outline

The paper is organized as follows. In Section II, a 2×2 dirty

MIMO transmitter with backward crosstalk is modeled and its

properties are analyzed. The model is used in Section III to

analyze the NMSE at the transmitter output and determine

the power back-off for minimizing the maximum of NMSE

of two branches. Then, in Section IV, an SE expression of

a point-to-point communication system with a single-antenna

receiver is derived under backward crosstalk impairment at the

transmitter. The optimal precoding vector which maximizes

the SE is found analytically. Furthermore, the optimization of

the input reference power of the two sub-optimal precoders is

considered. Finally, numerical simulations and how to extend

the derived results to more than 2-antenna transmitters are

included in Section V and Section VI. The conclusions are

drawn in Section VII.

Reproducible research: All the simulation results can be

reproduced using the Matlab code and data files available at:

https://github.com/emilbjornson/backward-crosstalk

Notation: (·)T and (·)H denote the transpose and Hermitian

transpose of a vector, respectively. I is the identity matrix of

an appropriate size and , denotes a definition. E[·] denotes

statistical expectation, while the multivariate circular symmet-

ric complex distribution with covariance matrix C is denoted

NC(0,C).

II. TRANSMITTER MODEL AND ANALYSIS

In this section, we derive a behavioral model of the 2 × 2
MIMO transmitter with backward crosstalk shown in Fig. 11.

In Fig. 1, the backward crosstalk is modeled by the parameters

κ1 and κ2. As mentioned above the backward crosstalk

modeled in this way has two origins: crosstalk between in

and output transmission lines, and the combination of output

crosstalk and impedance mismatch. We have omitted the

crosstalk from input to output. It is physically present due to

reciprocity, but the contribution is small since it is not affected

by the amplifier’s gain. We consider a symbol-sampled model

where the outputs of the transmitter are denoted as y1, y2 ∈ C.

The inputs of the transmitter are the OFDM modulated com-

munication signals x1, x2 ∈ C [14], which are modeled as

Gaussian distributed. All input signals have the same center

frequency.

1Here the name “MIMO” refers to the hardware distortion model whose
inputs and outputs are both related to the transmitter side. The inputs are the
precoded signals and the outputs are the distorted signals to be transmitted.
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Fig. 1. A behavioral model of a 2 × 2 MIMO transmitter with third-order
polynomial nonlinearities fℓ(·) with compression parameter ρℓ, subject to
backward crosstalk via κℓ and thermal noise wℓ.

Let x = (x1 x2)
T ∈ C2×1 denote the inputs in vector form.

When a MIMO transmitter is used for coherent beamforming,

the inputs are correlated. To provide a general description, we

therefore assume that x ∼ NC(0,Cx), where Cx = E[xxH ]
denotes the covariance matrix. A general representation of Cx

is

Cx = Px

(
1 βξ

βξ∗ β2

)
, (1)

where the Px = E[|x1|2] is the power of the first input and

it is taken as the reference power in the following parts of

this paper. Moreover, β > 0 is the square root of the ratio

between the second signal’s power and the first signal’s power:

β2 = E[|x2|2]/E[|x1|2]. The correlation coefficient of x1 and

x2 is denoted by ξ ∈ C and satisfies |ξ| ≤ 1.

As shown in Fig. 1, the accessible transmitter output y =
(y1 y2)

T ∈ C2×1 is described by

y = r+w, (2)

where r = (r1 r2)
T ∈ C2×1 models the output from the

power amplifiers and w = (w1 w2)
T ∼ NC(0, σ

2
w I) models

the independent thermal noise that has variance σ2
w.

A. Bussgang Description of the Power Amplifier Output

The input to the ℓth power amplifier non-linearity is the

internal amplified signal uℓ ∈ C and the output is rℓ ∈ C for

ℓ = 1, 2. The input is an internal signal that is not equal to

the amplified transmitter input γℓxℓ when there is backward

crosstalk. This is due to the feedback connection between

antenna branches as illustrated in Fig. 1, i.e., the signal

uℓ represents the amplified version of the actual transmitter

input, xℓ, plus the crosstalk signal that is coupled from the

other antenna branch. We will model the backward crosstalk

mathematically in Section II-B.

The ℓth power amplifier will ideally provide an amplifica-

tion gain of γℓ > 0, but has a nonlinear behavior determined

by the compression parameter ρℓ ≤ 0 and the function fℓ(·).
We assume that the power amplifiers are subject to third-

order nonlinear distortion that compresses strong input signals,

which implies fℓ(uℓ) = uℓ |uℓ|2. Hence, if uℓ is the input to

the ℓth amplifier, then the output is

rℓ = uℓ + ρℓ fℓ(uℓ) = uℓ + ρℓuℓ |uℓ|2, ℓ = 1, 2. (3)

The compression parameter values ρ1, ρ2 are typically similar

but nonidentical for the two branches. The vector signal r in

(2) can then be expressed as

r = u+

(
ρ1 0
0 ρ2

)

︸ ︷︷ ︸
, G

(
u1 |u1|2
u2 |u2|2

)

︸ ︷︷ ︸
, f(u)

, (4)

where u = (u1 u2)
T is the input to the nonlinearity. Note that

in (4), the power amplifier output r is described as a function

of the internal signal u, where u is a function of the transmitter

gains, transmitter input x and the backward crosstalk via the

power amplifier output r.

By Bussgang decomposition theory, the nonlinear transfor-

mation of the input u via f(u) in (4) can be equivalently

described as

r = Au+ v, (5)

where A is the constant Bussgang matrix and v is a zero-mean

distortion term that is uncorrelated to the input u [14]. The

observation bandwidth of r must be wide enough to comprise

all spectral regrowth due to nonlinearities [20]. The Bussgang

matrix A depends on both the properties of the input u excit-

ing the nonlinearity and the nonlinearity f(u) itself. As shown

in [16], it can be computed as A = E[ruH ](E[uuH ])−1 and

by substituting (5) into this expression we obtain

A = I+GUU−1, (6)

where U , E[uuH ] denotes the covariance matrix of u and

U , E[f(u)uH ] is a fourth-order moment matrix. Hence, the

Bussgang matrix A in (6) depends on the transmitter model via

G and the second- and fourth-order moments of the internal

signal u, which are studied below. In addition, the properties

of the power amplifier output r in (5) depends also on the

nonlinear distortion noise v which is determined later.

B. Modeling the Backward Crosstalk

We will now determine the power amplifier input u for the

model in Fig. 1, where there is backward crosstalk between

the transmission lines on the circuit board. This phenomenon

is modeled by a feedback network, where

u =

(
γ1 0
0 γ2

)

︸ ︷︷ ︸
, L

x+

(
0 γ1 κ2

γ2 κ1 0

)

︸ ︷︷ ︸
, K

r. (7)

Inserting (5) into (7) yields

u = Lx+K(Au+ v). (8)

By solving for u, the signal that excite the non-linearities is

obtained as

u = (I−KA)−1 (Lx +Kv). (9)

This signal depends on the transmitter input x, the non-linear

distortion noise v, and on the parameters of the considered

transmitter model. We study these relationships in further

detail in the following example.
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1) Linear Model and Transmitter Actual Gain: To focus

on the impact of backward crosstalk, we will now exemplify

a linear transmitter with G = 0, symmetric amplification

γ = γ1 = γ2, and a common backward crosstalk coefficient

δ = γ κ for which κ = κ1 = κ2 ∈ R and |δ| < 1. Then,

according to (4), r = u, and using (9) the power amplifier

output becomes

r =
1

1− δ2

(
1 δ
δ 1

)(
γ 0
0 γ

)
x

=
1

1− δ2

(
γ δ γ
δ γ γ

)
x. (10)

Hence, the covariance matrix of r is

E[r rH ] =
1

(1− δ2)2

(
γ δ γ
δ γ γ

)
Cx

(
γ δ γ
δ γ γ

)
. (11)

In appropriately designed radio frequency transmitters, clearly

the backward crosstalk yields small errors, that is |δ| ≪ 1. As

δ → 0, E[r rH ] → γ2Cx and the transmitter only provides

the amplification gain of γ. However, it is the case when |δ|
is small but non-zero that is of practical interest.

If the inputs are independent and symmetrically distributed,

represented by Cx = PxI, then for |δ| > 0 we notice that (11)

simplifies to

Px

(1− δ2)2

(
γ2(1 + δ2) 2δ γ2

2δ γ2 γ2(1 + δ2)

)
. (12)

The non-zero off-diagonal elements in (12) show that the

backward crosstalk makes the outputs correlated even when

the inputs are uncorrelated. From (12), we also notice that the

output power σ2
rℓ = E[|rℓ|2] of the ℓth output is

σ2
rℓ =

γ2 (1 + δ2)

(1− δ2)2
Px , γ̄2 Px, (13)

where γ̄ = γ
√
1 + δ2/(1−δ2) is the actual amplification gain

of the transmitter. We have γ̄ ≃ γ for |δ| ≪ 1, where ≃
denotes an approximate expression where only the dominant

terms are retained. Nevertheless, we want to further understand

the small errors that also occur in the regime of |δ| ≪ 1.

C. Small-Error Analysis

In (9), we have derived that the internal signal u is a

weighted sum of the input x and the non-linear distortion noise

v, which is by construction uncorrelated to u. Although x was

assumed to be Gaussian, the distortion noise v is non-Gaussian

and also not independent of x, which makes an exact analysis

cumbersome. In a small-error analysis where the distortion

noise is negligible, the signal u in (9) can be approximated as

u ≃ (I−KA)−1 Lx. (14)

When the matrix representing the compression of power ampli-

fiers, G is zero (i.e., the power amplifiers are ideal), the above

approximation becomes exact. Note that this is a meaningful

assumption when the power amplifiers operate close to the

linear operation, which is possible with sufficient input power

back-off. Furthermore, for a transmitter working close to its

linear operation it holds that KA ≃ K and |γ1γ2κ1κ2| ≪ 1,

so that

u ≃
(

γ1 γ1 κ2 γ2
γ2 κ1 γ1 γ2

)

︸ ︷︷ ︸
, Q

x. (15)

From now on, we will utilize this approximate description, for

which we can compute the Bussgang matrix A in closed form.

The linear relation in (15) is based on two approximations: 1)

the power amplifier operates close to its linear region, and

2) the power of the backward crosstalk is much smaller than

the actual desired signal. These are all reasonable since the

hardware is pre-calibrated to limit the distortion and only

the small residual impairments remain to be modeled. In

this paper, we analyze the system mathematically under these

approximations and we then provide numerical simulations in

Section V to demonstrate the accuracy.

From (15), we first notice that the internal signal u is now

Gaussian distributed with covariance matrix U , E[uuH ]
given by

U ,

(
u11 u12

u∗
12 u22

)
= QCx Q

H , (16)

where the elements of U are denoted as

uℓℓ, E[uℓ u
∗
ℓ ] = tℓℓPx, ℓ = 1, 2,

u12, E[u1 u
∗
2] = t12Px, (17)

where t11, t12, t22 can be computed as

t11 , γ2
1 + 2γ2

1γ2βℜ{κ∗
2ξ}+ γ2

1γ
2
2 |κ2|2β2, (18)

t12 , γ1γ2
(
γ1κ

∗
1 + βξ + γ1γ2κ

∗
1κ2βξ

∗ + γ2κ2β
2
)
, (19)

t22 , γ2
2β

2 + 2γ1γ
2
2βℜ{κ1ξ}+ γ2

1γ
2
2 |κ1|2. (20)

When the inputs to the non-linearity is Gaussian distributed,

it follows that the Bussgang matrix A is diagonal [16,

Sec. II.B] and given by

A =

(
a1 0
0 a2

)
=

(
E[r1u

∗

1
]

E[|u1|2]
0

0
E[r2u

∗

2
]

E[|u2|2]

)

=

(
1 + 2ρ1u11 0

0 1 + 2ρ2u22

)
. (21)

This result alternatively can be obtained by the first part

of Appendix A. Since ρ1, ρ2 are negative parameters, the

diagonal elements of A will be smaller than one. For practical

parameter values it holds that 0 < |1 + 2ρℓuℓℓ| < 1, for

ℓ = 1, 2, thus when substituting (21) into (5), the output of the

nonlinearity is the input with reduced gain plus the nonlinear

distortion noise. We call 1+2ρℓuℓℓ the Bussgang attenuation.

D. Transmitter Output Error

We will now utilize the Bussgang decomposition in (5), the

closed-form results in the small-error regime, and the obtained

properties of the internal signal u to derive properties of the

transmitter output error. These properties are key to analyze

the end performance of the transmitter.
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The transmitter output y in (2) is now given as functions

of the transmitter input x, nonlinear distortion noise v, and

transmitter thermal noise w by

y = AQx+ v +w, (22)

where (5) and (15) were used to form an expression of the

input x and nonlinear distortion noise v. In (22), Q is given

in (15) and the matrix A in (21). The ideal output yo of the

transmitter is given by the purely amplified inputs, that is

yo =

(
yo1

yo2

)
, Lx, (23)

where the gain matrix L is defined in (7). From (22) and (23),

the error signal e determining the full properties of the 2× 2
MIMO transmitter reads

e , y − yo = (AQ− L)x︸ ︷︷ ︸
, x̃

+v +w. (24)

The introduced signal x̃ captures (the linear part of) the error

due to backward crosstalk and Bussgang attenuation, v is the

nonlinear distortion noise, and w is the thermal noise. The

model (24) of the transmitter output error e forms the basis

for the performance analysis in the following sections.

III. PERFORMANCE ANALYSIS BASED ON THE NMSE

One way to measure the transmitter performance is to

measure the NMSE between the ideal output yo in (23) and

the true output in (22). This is the normalized power of the

error vector in (24). The three error terms defining the total

error in (24) are jointly uncorrelated. Accordingly, the error

covariance E = E[e eH ] can be written as

E = X̃+V + σ2
w I, (25)

where the covariance matrices X̃ = E[x̃ x̃H ] and V =
E[v vH ] are to be determined, while σ2

w still denotes the

variance of the thermal noise.

A. Properties of the Linear Error Matrix X̃

From (24) it follows that the covariance matrix X̃ in (25)

reads

X̃ = (AQ− L)Cx(AQ− L)H , (26)

where E[xxH ] = Cx was used. It follows from a straight-

forward calculation using A in (21), Q in (15), and L in (7)

that

AQ−L =

(
2γ1 ρ1 u11 γ1 κ2 γ2(1 + 2ρ1u11)

γ2 κ1 γ1(1 + 2ρ2u22) 2γ2 ρ2 u22

)
,

(27)

where the result in (27) is expressed in terms of the inter-

mediate diagonal elements of U in (16), and the transmitter

parameters. We can also express AQ− L as

AQ− L = 2GBQ+KL, (28)

where K is defined in (7) and B is defined as

B ,

(
u11 0
0 u22

)
. (29)

Using (16) and (28), the covariance matrix X̃ in (26) reads

X̃ = 4GBUBG+KLCxLK
H

+2KLCxQ
HBG+ 2GBQCxLK

H . (30)

If the elements of X̃ are denoted as

X̃ ,

(
x̃11 x̃12

x̃∗
12 x̃22

)
, (31)

then a straightforward calculation provides

x̃11 = 4ρ21 t
3
11 P

3
x + 4γ2

1γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
P 2
x

+β2γ2
1γ

2
2 |κ2|2Px, (32)

x̃12 = 4ρ1 ρ2 t12 t11 t22 P
3
x + 2γ2

1γ2t11ρ1κ
∗
1 (1 + γ2βξ

∗κ2)P
2
x

+2γ1γ
2
2t22ρ2κ2

(
β2 + γ1βξ

∗κ∗
1

)
P 2
x

+βξ∗γ2
1γ

2
2κ

∗
1κ2Px, (33)

x̃22 = 4ρ22 t
3
22 P

3
x + 4γ1γ

2
2t22ρ2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
P 2
x

+γ2
1γ

2
2 |κ1|2Px. (34)

In the above equations, the results are compactly expressed in

terms of the input signal and transmitter hardware parameters.

Note that all the terms in (32)-(34) are third-order polynomials

of the reference input power Px. The result above will be used

to derive the error covariance in (25), once the elements of V

have been determined.

B. Properties of the Nonlinear Error Matrix V

The covariance matrix of the distortion noise v is known to

be [14]

V = G (U−UU−1 U
H
)GH , (35)

where G is given in (4) and U = E[f(u) f(u)H ] is the matrix

of higher-order moments. It is shown in Appendix A that (35)

can be reduced to

V = 2GCGH , (36)

where the matrix C can be compactly written using the

properties of the internal signal u:

C =

(
u3
11 u12 |u12|2

u∗
12 |u12|2 u3

22

)
. (37)

With (36) and (37) as starting point, a straightforward calcu-

lation reveals that the covariance matrix V in (35) reads

V ,

(
v11 v12
v∗12 v22

)
, (38)

where

vℓℓ = 2ρ2ℓ u
3
ℓℓ = 2ρ2ℓ t

3
ℓℓP

3
x , ℓ = 1, 2, (39)

v12 = 2ρ1 ρ2 u12 |u12|2 = 2ρ1ρ2t12|t12|2P 3
x . (40)
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C. Closed-form Expressions for the NMSE

By denoting the diagonal elements of the error covariance

E in (25) as e11, e22, the figure-of-merit NMSE for the first

and second branch is given as

NMSE1 ,
e11

E{|yo1|2}
=

e11
γ2
1 Px

, (41)

NMSE2 ,
e22

E{|yo2|2}
=

e22
γ2
2 β

2 Px
. (42)

By utilizing the expressions derived in (32), (34), (39), the

diagonal elements e11 and e22 are obtained as

e11 = x̃11 + v11 + σ2
w

= 6ρ21 t
3
11 P

3
x + 4γ2

1γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
P 2
x

+β2γ2
1γ

2
2 |κ2|2Px + σ2

w, (43)

e22 = x̃22 + v22 + σ2
w

= 6ρ22 t
3
22 P

3
x + 4γ1γ

2
2t22ρ2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
P 2
x

+γ2
1γ

2
2 |κ1|2Px + σ2

w. (44)

With the variances e11 and e22 of the first and second branch

errors in (43)-(44), NMSE1 and NMSE2 becomes

NMSE1 =
6ρ21 t

3
11

γ2
1

P 2
x

+4γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
Px

+β2γ2
2 |κ2|2 +

σ2
w

γ2
1 Px

, (45)

NMSE2 =
6ρ22 t

3
22

γ2
2β

2
P 2
x

+
4γ1t22ρ2

β2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
Px

+γ2
1

|κ1|2
β2

+
σ2
w

γ2
2 β

2Px
. (46)

Lemma 1: The NMSEs for the two antenna branches,

NMSE1 and NMSE2, are convex functions of the reference

input power Px for Px ≥ 0.

Proof: This can easily be proved by taking the second

derivative of NMSE1(Px) and NMSE2(Px) with respect to Px

and show that they are positive. Direct differentiation yields

NMSE′′
1 (Px) =

12ρ21 t
3
11

γ2
1

+
2σ2

w

γ2
1 P

3
x

,

NMSE′′
2 (Px) =

12ρ22 t
3
22

γ2
2β

2
+

2σ2
w

γ2
2 β

2P 3
x

. (47)

Both are positive for Px ≥ 0 which is the range of interest.

The closed-form NMSE expressions in (45) and (46) pro-

vide insights into the hardware behavior. Let us focus on

NMSE1 since the other branch has identical characteristics,

except for the different notation. If we assume that the strength

of the backward crosstalk signal is very small compared to

the main signal, we have γ2 |κ2| ≪ 1 and t11 in (18) can be

approximated as t11 ≃ γ2
1 and furthermore NMSE1 can be

approximated as

NMSE1 ≃ 6ρ21γ
4
1 P

2
x + 4ρ1βγ2ℜ{κ2ξ

∗} γ2
1Px +

σ2
w

γ2
1 Px

.

(48)

We note that it is a convex function of the ideal amplified

signal power E{|yo1|2} = γ2
1Px. This means that when

the desired amplifier gain of the first transmitter branch, γ1
increases, the input reference power Px should be decreased

at the same ratio with γ2
1 in order to keep the NMSE the

same. Moreover, the first term in (48) is a monotonically

increasing function of Px and as the compression ratio of

the first branch’s power amplifier, |ρ1|, increases, it increases

with the square of it. Note that this term dominates the NMSE

when γ2
1Px grows. The sign of the second term is dependent

on ℜ{κ2ξ
∗}. Since ρ1 ≤ 0, when the crosstalk parameter κ2

and the correlation coefficient ξ are phase-aligned, this term

reduces the NMSE to some extent. In this case, the power

amplifier non-linearity corresponding to the first term is the

main source for the distortion. When ℜ{κ2ξ
∗} < 0, the sum

of the first two terms monotonically increases with Px and we

see a combination of power amplifer and backward crosstalk

distortion. In this case, the last term regularizes the NMSE

since it decreases with Px and goes to infinity as Px → 0,

hence the optimal input reference power is clearly non-zero.

This term dominates the NMSE expression when Px is small

compared to the thermal noise variance.

D. Power Back-off for Minimizing Maximum NMSE

As discussed above, the NMSE of an antenna branch is

minimized at a non-zero value of Px. For a single-antenna

transceiver, there is only one NMSE and therefore it is

desirable to find the average input power that minimizes its

NMSE. We can study that special case by setting β = 0,

we obtain NMSE1 = 6ρ21 γ
4
1 P

2
x +

σ2

w

γ2

1
Px

from (45). It is then

straightforward to show that it is minimized by

Px =
1

γ2
1

3

√
σ2
w

12ρ21
, (49)

which depends on the compression parameter as 1/|ρ1|2/3.

Since we have a 2×2 MIMO transmitter structure with two

different NMSE expressions, given in (45) and (46), there is

generally not one value of Px that jointly minimizes both

NMSEs. Hence, we take a min-max fair optimization approach

that minimizes the maximum of NMSE1 and NMSE2. The

optimization problem for this aim can be cast as

minimize
Px,ǫ

ǫ (50)

subject to NMSE1(Px) ≤ ǫ

NMSE2(Px) ≤ ǫ,

where ǫ represents the maximum NMSE value of the two

branches. This is a convex optimization problem since the

cost function is linear and the NMSEs are convex functions

of Px, as proved in Lemma 1. Hence, the problem can

be solved numerically using standard convex optimization

solvers. However, the following theorem presents the optimal

closed-form input reference power, Px, for the problem (50).
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Theorem 1: The optimal input reference signal power, Px

for the problem (50) is given by

PNMSE-opt
x = arg min

Px∈S
max

{
NMSE1(Px),NMSE2(Px)

}
,

(51)

where S =
{
P

(1)
x , P

(2)
x , P

(3)
x

}
and the elements of the set S

are given as follows:

1) P
(1)
x is the unique positive root of the third-order poly-

nomial

12ρ21 t
3
11 P

3
x

+ 4γ2
1γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
P 2
x − σ2

w . (52)

2) P
(2)
x is the unique positive root of the third-order poly-

nomial

12ρ22 t
3
22 P

3
x + 4γ1γ

2
2t22ρ2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
P 2
x − σ2

w.

(53)

3) If it exists, P
(3)
x is the positive root of the third-order

polynomial

6
(
ρ21 t

3
11 γ

2
2β

2 − ρ22 t
3
22γ

2
1

)

γ2
1γ

2
2β

2
P 3
x

+ 4γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
P 2
x

− 4γ1t22ρ2
β2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
P 2
x

+

(
β2γ2

2 |κ2|2 − γ2
1

|κ1|2
β2

)
Px +

σ2
w

γ2
1

− σ2
w

γ2
2 β

2
, (54)

which makes NMSE1 = NMSE2 the smallest.

Proof: The proof is provided in Appendix B.

We call the optimal solution provided by Theorem 1 a

closed-form solution since no optimization needs to be carried

out to obtain it. We only need to compute the NMSEs for

the three candidate solutions in S and pick the one that

minimizes the maximum of the NMSEs of the two transmitter

branches. We stress that the roots of third-order polynomials

are available in closed form [21] but we will not give these

expressions here since they are lengthy and offer no additional

insights. We will instead analyze the solutions numerically in

Section V.

IV. SPECTRAL EFFICIENCY OF 2× 1 MISO CHANNEL

In this section, we turn the attention to the receiver side

by considering the impact that the transmitter distortion (i.e.,

nonlinearity and backward crosstalk) has on the communica-

tion performance, characterized by the SE. More precisely, we

consider a 2×1 multiple-input single-output (MISO) channel2

where the signals sent from the antennas are y1 and y2, which

is given in vector form as in (22), while the received signal at

the single-antenna receiver is

z = hTy + n, (55)

2In this section, different from the previous parts, the name “MISO” refers
to the 2× 1 physical channel between the outputs of the 2× 2 dirty MIMO
transmitter and the single-antenna receiver.

where n ∼ NC

(
0, σ2

n

)
is the independent receiver noise,

which might also include interference. The vector h =
(h1 h2)

T ∈ C2×1 represents the equivalent baseband channel

from transmitter to the receiver, where h1 and h2 are the

channel coefficients from the first and second transmit antenna,

respectively. Since our main aim is to quantify the impact

of transmitter distortion, we assume the channel coefficients

are deterministic and known, and we have also assumed that

the receiver hardware is ideal. The data is encoded into the

transmitted signal y by selecting the input signal x. Since

we consider a single-antenna receiver, we consider precoded

transmission:
x = cx̄, (56)

with c = (c1 c2)
T ∈ C2×1 being the fixed precoding vector

and x̄ is a scalar data signal. Since the SE is maximized by

Gaussian data codebooks [22], we assume that x̄ ∼ NC(0, 1)
and, thus, the input x is a zero-mean complex Gaussian vector

with covariance matrix

Cx = ccH =

(
|c1|2 c1c

∗
2

c∗1c2 |c2|2
)
. (57)

When comparing (57) with the original model in (1), we can

identify Px = |c1|2, β = |c2|
|c1|

, ξ = ej∠c1c
∗

2 . Using (22) and

(55), we can express the received signal z as

z = hTAQcx̄ + hTv + hTw + n, (58)

where the first term is the desired signal term and the other

three terms are noise that are mutually uncorrelated with the

desired signal and each other. However, the effective noise,

hTv+hTw+ n, is not Gaussian distributed, hence the exact

channel capacity is hard to obtain. However, we can use a

well-known result [22, Corollary 1.3] to obtain the following

lower bound on the capacity: it is well known that the capacity

of 2× 1 MISO channel is lower bounded by

R̄ , log2


1 +

∣∣hTAQc
∣∣2

E

{
|hTv|2

}
+ E

{
|hTw|2

}
+ σ2

n




= log2

(
1 +

∣∣hTAQc
∣∣2

hTVh∗ + σ2
wh

Hh+ σ2
n

)
. (59)

This is called an achievable SE and is measured in bit per

channel use. Note that in (59), the matrix Q, the channel vector

h, and the transmitter and receiver noise powers, σ2
w and σ2

n

represent constant system parameters that are independent of

the precoding vector c, and hence Cx. The expression is valid

for any precoding vector c, but it is desirable to identify the

precoding that maximizes the SE.

In a distortion-free system, the SE is maximized by max-

imum ratio transmission (MRT) [23] for which c is a scaled

version of the conjugate channel h∗, where the scaling deter-

mines the transmit power. It is then desirable to transmit at

as high power as possible to maximize the SE. None of these

conventional properties hold under the considered transmitter

distortion model, thus we will select c to maximize R̄.
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A. Precoder Design for Maximizing Spectral Efficiency

We will now optimize c to maximize R̄, which is equiv-

alent to maximizing the signal-to-noise-plus-distortion ratio

(SNDR) inside the logarithm in (59):

SNDR =

∣∣hTAQc
∣∣2

hTVh∗ + σ2
wh

Hh+ σ2
n

. (60)

Due to the backward crosstalk, the input u to the power

amplifiers has covariance matrix

U = QCxQ
H = QccHQH , (61)

where the matrix Q is defined in (15). We therefore define the

effective precoding vector c̃ , Qc and note that U becomes

U =

(
u11 u12

u∗
12 u22

)
= c̃c̃H =

(
|c̃1|2 c̃1c̃

∗
2

c̃∗1c̃2 |c̃2|2
)
. (62)

Since Q is an invertible matrix, we can without loss of

generality maximize SNDR with respect to c̃ instead. With

this new notation, the matrices A and V in the numerator and

denominator of SNDR can be expressed as

A =

(
1 + 2ρ1|c̃1|2 0

0 1 + 2ρ2|c̃2|2
)
,

V =

(
2ρ21|c̃1|6 2ρ1ρ2|c̃1|2|c̃2|2c̃1c̃∗2

2ρ1ρ2|c̃1|2|c̃2|2c̃∗1c̃2 2ρ22|c̃2|6
)
. (63)

Using (63), the SE maximization problem can be equivalently

expressed as

maximize
c̃1, c̃2

2
∣∣∣h1c̃1 + h2c̃2 + h̃1|c̃1|2c̃1 + h̃2|c̃2|2c̃2

∣∣∣
2

∣∣∣h̃1 |c̃1|2 c̃1 + h̃2 |c̃2|2 c̃2
∣∣∣
2

+ σ2

(64)

where the following constants were defined for ease of nota-

tion:

h̃ℓ , 2hℓρℓ, ℓ = 1, 2, σ2 , 2σ2
wh

Hh+ 2σ2
n. (65)

The optimal precoder weights are computed as follows.

Theorem 2: The precoding vector that maximizes the SE

is given by c = Q−1c̃opt, where c̃opt = (c̃opt1 c̃opt2 )T is

computed as
{
c̃opt1 , c̃opt2

}
= arg max

{c̃1,c̃2}∈C
R̄(c̃1, c̃2), (66)

where the set C is given by

C =

{{
0, ̺

(1-B-1)
2

}
,
{
0, ̺

(1-B-2)
2

}
,
{
̺
(1-C-1)
1 , 0

}
,

{
̺
(1-C-2)
1 , 0

}
,

{
̺
(1-C-1)
1 ej∠h∗

1
h2 ,

√
|ρ1|
|ρ2|

̺
(1-C-1)
1

}
,

{
̺
(1-D)
1 ej∠h∗

1
h2 ,

√
|ρ1|
|ρ2|

̺
(1-D)
1

}
,

{
̺
(1-C-1)
1 ej∠h∗

1
h2+jπ ,

√
|ρ1|
|ρ2|

̺
(1-C-1)
1

}
,

{
̺
(2)
1 ej∠h∗

1
h2+jπ ,

√
|ρ1|
|ρ2|

̺
(2)
1

}}
, (67)

where

• ̺
(1-B-1)
2 =

√
1

−2ρ2

and ̺
(1-C-1)
1 =

√
1

−2ρ1

.

• ̺
(1-B-2)
2 is the unique positive root of the sixth-order

polynomial

2
∣∣∣h̃2

∣∣∣
2

̺62 − 6ρ2σ
2̺22 − σ2. (68)

• ̺
(1-C-2)
1 is the unique positive root of the sixth-order

polynomial

2
∣∣∣h̃1

∣∣∣
2

̺61 − 6ρ1σ
2̺21 − σ2. (69)

• ̺
(1-D)
1 is the unique positive root of the sixth-order

polynomial

2

(∣∣∣h̃1

∣∣∣+
|ρ1|3/2

|ρ2|3/2
∣∣∣h̃2

∣∣∣
)2

̺61 − 6ρ1σ
2̺21 − σ2. (70)

• ̺
(2)
1 is the only positive root of the sixth-order polynomial

2

(∣∣∣h̃1

∣∣∣− |ρ1|3/2

|ρ2|3/2
∣∣∣h̃2

∣∣∣
)2

̺61 − 6ρ1σ
2̺21 − σ2. (71)

Proof: The proof is provided in Appendix C.

Note that both the characteristics of the power amplifier

non-linearity and the backward crosstalk should be known at

the transmitter to implement the optimal precoder presented in

Theorem 2. To determine how important it is to obtain these

characteristics, in the following sections, we will consider two

sub-optimal precoding vectors that neglect all or some of the

hardware characteristics. In addition, we will also derive the

optimal input reference power for these precoders.

B. Conventional MRT

In the absence of power amplifier non-linearity and back-

ward crosstalk, conventional MRT is the optimal precoder and

it is desirable to transmit with as high power as possible.

If we consider MRT in the presence of non-linearities and

crosstalk, the distortion and noise in the denominator in (60)

also depends on the transmit power and therefore the SNDR

is maximized at a finite reference power Px. In this section,

we set

c =

√
P̃xh

∗ (72)

and optimize the power control coefficient P̃x in order to

maximize the SE and, equivalently, maximizing the SNDR

in (60). The relation between the power control coefficient P̃x

and the actual input reference power Px is Px = P̃x |h1|2
according to (57). The effective precoding vector defined in

the previous section is given as c̃ = Qc =
√
Px

Qh∗

|h1|
. Let us

define the fixed part of the effective precoder as ĉ ,
Qh∗

|h1|
,

hence c̃ =
√
Pxĉ. Using the expressions in (63), the SE

maximization problem in terms of Px can be expressed as

maximize
Px

2Px

(
|k1|2 P 2

x + 2ℜ{k0k∗1}Px + |k0|2
)

|k1|2 P 3
x + σ2

(73)
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where the two constants were defined for ease of notation:

k0 = h1ĉ1 + h2ĉ2 ∈ C, k1 = h̃1|ĉ1|2ĉ1 + h̃2|ĉ2|2ĉ2 ∈ C,
(74)

where h̃ℓ, ℓ = 1, 2, and σ2 are as in (65). For conventional

MRT, k0 and k1 are not phase aligned since ∠ĉℓ may not be

equal to ∠h∗
ℓ due to the effect of backward crosstalk. However,

k0 and k1 are phase aligned for the optimal precoder as can be

seen from Appendix C. Hence, neglecting backward crosstalk

yields some drop in the SE.

To solve the one-dimensional optimization problem in (73),

we take the derivative of the objective function and equate it

to zero. We then obtain the candidate solutions as the positive

roots of the following fourth-order polynomial of Px:

2 |k1|2 ℜ{k0k∗1}P 4
x + 2 |k1|2 |k0|2 P 3

x

− 3 |k1|2 σ2P 2
x − 4ℜ{k0k∗1} σ2Px − |k0|2 σ2. (75)

The optimal input reference power for Px is the root that

maximizes the SNDR in (73).

Remark: Note that we have not been put any constraint

on Px in any of the optimization problems considered so

far. However, the Bussgang gains aℓ are greater than zero

in practice meaning that 1 + 2ρℓ |ĉℓ|2 Px > 0, for ℓ = 1, 2.

However, ρℓ < 0 is usually very small in absolute value

compared to 1 and only very large input power can make the

Bussgang gains negative. Hence, we have not considered these

practically implicit constraints. We also note that as Px → ∞,

it is clearly seen that the SNDR in (73) approaches 2. Since

we consider practical range of input reference powers, we are

not interested in this asymptotic behavior and evaluate only

the critical points of the objective function.

C. Distortion-Aware MRT

In this section, we will find the optimal input power for

another sub-optimal precoder which selects c̃ = Qc =√
ηATh∗ in order to maximize the desired signal strength in

the numerator of the SNDR. We call this precoder distortion-

aware MRT and note that η > 0 is a power control coefficient.

Unlike the previous case, we cannot find the optimal input

reference power, Px, by optimizing η for a fixed value of

ATh∗ since also the Bussgang matrix A depends on Px. More

precisely, the elements of c̃ are given as

c̃ℓ =
√
ηh∗

ℓ

(
1 + 2ρℓ |c̃ℓ|2

)
. (76)

Assuming the Bussgang gains aℓ =
(
1 + 2ρℓ |c̃ℓ|2

)
are posi-

tive, the phase of c̃ℓ is ∠h∗
ℓ . However, there is a dependency

between their gains as

√
η =

|c̃1|
|h1|

(
1 + 2ρ1 |c̃1|2

) =
|c̃2|

|h2|
(
1 + 2ρ2 |c̃2|2

) . (77)

By arranging the terms in (77), we obtain quadratic equations

of |c̃1| and |c̃2|, which both have only one positive root. Hence,

for a given η, the elements of the effective precoding vector

c̃ are given as

c̃ℓ =
1−

√
1− 8ρℓ |hℓ|2 η

4ρℓ |hℓ| √η
ej∠h∗

ℓ , ℓ = 1, 2. (78)

Due to the one-to-one relationship between c̃1, c̃2 and η,

the SNDR maximization problem in (64) can be expressed

as a one-dimensional optimization problem in terms of η.

However, the resultant objective function is complicated due

to the square root expressions and finding its critical points

are not easy. Instead, one can simply make a line search over

η to find the SE and the corresponding input reference power

Px = |c1|2 where the actual precoder is given by c = Q−1c̃.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we simulate the impact of backward crosstalk

and power amplifier non-linearity on the NMSE for a 2 × 2
MIMO transmitter and on the SE of a 2 × 1 MISO channel

when using this 2× 2 transmitter.

First, we validate the Gaussian approximation derived in

(15) by the solution of the non-linear equation system in

(7) with (4) for a randomly generated Gaussian input x

of length 10000. Then the corresponding u is obtained by

using the “fsolve” function in MATLAB with the initial point

Qx. In this setup, the input power of two branches are the

same (β = 1) and the correlation coefficient is ξ = 0.

We consider a fully symmetric transmitter: κ1 = κ2 = κ,

ρ1 = ρ2 = ρ, and γ1 = γ2 = γ. The backward crosstalk

parameter is selected as real and positive, and its power is

10 log10(|κ|2) = −50 dB. The power amplifier compression

parameter is ρ = −0.025, and the thermal noise variance

at the transmitter is σ2
w = −10 dBm. The gain of power

amplifier is 10 log10(γ
2) = 30 dB,3 where γ > 0 and γ2

are the amplification and power gains, respectively. Since the

transmitter is fully symmetric, both u1 and u2 have the same

distribution and the cumulative distribution function (CDF) of

the real and imaginary parts of them are shown in Fig. 2 for

three values of input reference power: Px = −20, Px = −10,

and Px = 0 dBm. As Fig. 2 shows, the approximation in

(15) matches well with the exact solution of the non-linear

system. Furthermore, the NMSE for the covariance of u1 and

u2 between two sets of data is given as −32 dB, −22 dB,

and −29 dB, respectively for Px = −20, Px = −10, and

Px = 0 dBm.

A. NMSE Performance

We consider again the fully symmetric transmitter described

above. Hence, the NMSE of the two branches are identi-

cal: NMSE1(Px) = NMSE2(Px). Fig. 3 shows NMSE =
NMSE1 = NMSE2 versus the input reference power, Px for

three levels of crosstalk: |κ|2 = −70 dB, |κ|2 = −60 dB,

and |κ|2 = −50 dB. Both the derived analytical results and

simulation results obtained by averaging the Monte Carlo

trials with the exact solution of the non-linear system are

3Note that the power of the leakage signal due to crosstalk is
10 log10(|κ|

2) + 10 log10(γ
2) = −20 dB for this setup.
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Fig. 2. The CDF of ℜ{uℓ} and ℑ{uℓ} for using the derived approximation
and the solution of the non-linear system.

Fig. 3. NMSE versus input reference power, Px for a symmetric transmitter.

Fig. 4. Optimal input reference power, Px and NMSE versus power gain,
γ2, for a symmetric transmitter.

shown. The optimal solution of the min-max NMSE problem

is shown by the red diamond. Since the NMSE for two

branches is the same, the optimal Px is the minimizer of

NMSE1(Px) = NMSE2(Px). Although there are some slight

deviations between the simulation and the analytical results

obtained by the Gaussian approximation for u at some points,

the closed-form results match very well with the simulation.

As seen from Fig. 3, as the crosstalk power decreases,

the NMSE becomes more sensitive to the changes in input

reference power, Px. For |κ|2 = −70 dB, the optimum Px is

around -6 dBm. When we decrease Px to -10 dBm or increase

it to -2 dBm, the NMSE increases by around 2 dB. Moreover,

the optimal Px also changes with the crosstalk level.

In Fig. 4, we plot the optimal input reference power that

minimizes NMSE1 = NMSE2 and the corresponding NMSE

by changing the power gain of amplifier, 10 log10(γ
2) dB. We

consider two different backward crosstalk parameters: |κ|2 =

Fig. 5. NMSE versus input reference power, Px for the asymmetric trans-
mitter.

Fig. 6. Optimal input reference power, Px and NMSE versus γ2 for the
asymmetric transmitter.

−50 dB or |κ|2 = −60 dB. For both cases, as the gain of

power amplifier increases, the value of Px that minimizes the

NMSE decreases. For relatively smaller values of γ2, optimal

input reference power for both crosstalk levels are nearly the

same. After some point, the gap between the input powers

starts to become visible. Higher input power is needed at the

optimal point when the crosstalk level increases. As expected,

the corresponding optimal NMSE is higher for |κ|2 = −50 dB

where the gap increases with the power amplifier gain.

Next, we consider the performance of an asymmetric trans-

mitter with different power levels and non-zero correlation be-

tween the two input signals. The amplitude ratio of the second

input signal to the first one is taken as β = 1.3. The correlation

coefficient is ξ = 0.7. The backward crosstalk parameters are

10 log10(|κ1|2) = −48 dB and 10 log10(|κ2|2) = −52 dB. The

power amplifier compression parameters are ρ1 = −0.023, and

ρ2 = −0.027. The gains of the power amplifiers are the same:

10 log10(γ
2) = 30 dB.

Fig. 5 shows NMSE1 and NMSE2 for the asymmetric

transmitter versus the input reference power, Px. The optimal

solution of the min-max NMSE problem for this setup is

where NMSE1(Px) = NMSE2(Px) which corresponds to

Case 3 in Appendix B. Note that NMSE1 achieves its min-

imum at a clearly different point. When Px deviates from

its optimal value, either NMSE1 or NMSE2 increases and

max{NMSE1,NMSE2} changes substantially. In addition, the

optimal Px for the exact simulation data is approximately the

same with the analytical one. This shows that the derived

analytical results model the effect of dirty MIMO transmitter

properly.
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Fig. 7. SE versus the phase shift applied to the optimal c̃1.

Fig. 8. SE versus the amplitude scaling applied to the optimal c̃1.

We repeat the experiment in Fig. 4 but in the asym-

metric transmitter case with 10 log10(|κ1|2) = −48 dB and

10 log10(|κ2|2) = −52 dB, and show the results in Fig. 6.

We observe similar characteristics, except that the NMSE is

around 5 dB greater for relatively small values of γ2.

B. SE Performance

Now, we will consider the SE performance in the symmetric

transmitter case described above. The channel coefficients are

randomly and independently generated as h1, h2 ∼ NC(0, 1).
The thermal noise variance at the receiver is taken as σ2

n.

Hence, channel gain over noise ratio is given by 1/σ2
n.

We first consider a single channel realization with σ2
n = 1

and verify the optimality of the proposed precoder in The-

orem 2 that maximizes SE. Fig. 7 shows the SE when the

first element of the optimal effective precoder, c̃1, is phase

shifted and all other parameters of the optimal precoder are

kept constant. The zero phase shift corresponds to the proposed

optimal precoder. As it can be seen from Fig. 7, when the

phase of the optimal c̃1 is shifted, the SE can be reduced

significantly compared to the optimal value. In Fig. 8, we

are instead keeping the phases of the elements of the optimal

effective precoder to be the same and scale c̃1 to see how the

SE changes. We notice that the maximum SE is achieved when

the scaling parameter is 1, which verifies the optimality of the

proposed SE maximizing precoder. As the amplitude scaling

increases above 1, the SE drops quickly towards zero. This

is due to the decrease in the amplitude of the corresponding

Bussgang gain and increased distortion level.

For the same single channel realization, Fig. 9 shows the

SE versus input reference power, Px, for conventional and

Fig. 9. SE versus input reference power, Px, for conventional and distortion-
aware MRT.

Fig. 10. Average SE versus channel gain over noise 1/σ2
n.

distortion-aware MRT. The proposed optimal solution for con-

ventional MRT is shown by the red diamond and it obviously

maximizes the SE. The SE curve for distortion-aware MRT

is obtained by a line search over η and using the relations

in (78). We observe that the SE versus Px has a uni-modal

characteristic. Furthermore, the gap between the SE curves

for two precoders are very close for Px ≤ 5 dBm. For higher

values of Px, the distortion-aware MRT provides higher SE

compared to the conventional MRT by exploiting the distortion

characteristics. We note that although these two sub-optimal

precoders do not utilize the full information related to the

crosstalk distortion, the optimal Px is dependent on the all

the hardware parameters. Hence, by neglecting crosstalk, the

SE may deteriorate significantly. In the following experiments,

we will find the optimal Px for the distortion-aware MRT by

a line search over η. Interestingly, the SE-maximizing input

power is substantially higher (around 10 dB) than the NMSE-

minimizing input power, which was shown in Fig. 3.

We now consider 1000 random channel realizations and

plot the average SE for all the considered precoders: a) the

optimal precoder that maximizes SE, b) distortion-aware MRT

with optimized Px, c) conventional MRT with optimized Px.

In Fig. 10, the SE performance of the three precoders is

considered by changing channel gain over noise. Although

there is a slight difference between the SE of the considered

precoders, it is possible to attain the same SE with approxi-

mately 0.7 dB and 0.5 dB worse channel gain compared to the

conventional MRT and the distortion-aware MRT, respectively.

Hence, although the hardware distortion has clear impact on

the SE, the same precoding still works fairly well.
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Fig. 11. Average SE versus crosstalk power, |κ|2.

In Fig. 11, we set the channel gain over noise to 0 dB and

analyze the effect of the crosstalk parameter, κ, on the SE. The

performance of the optimal precoder and the distortion-aware

MRT is barely affected by the crosstalk change. This is due

to the fact that they both exploit the structure of the matrix Q

that is determined by the power amplifier gains and crosstalk

parameters. The non-diagonal structure of this matrix yields

that the optimal phase difference between the precoder weights

is not equal to the phase difference between the channels

of two antennas. In conventional MRT, the effect of Q is

neglected and the phase deterioration results in a consistent

drop in the SE with the increase of crosstalk strength after

-60 dB although the input reference power is also optimized.

According to our observations, the optimal input reference

power for maximum SE changes substantially with different

channel realizations even if the channel variance is the same.

This is typical for fading channels. Furthermore, it may signif-

icantly differ from the input reference power that minimizes

the maximum NMSE of the two transmitter branches. One can

often use a higher power for data transmission since the SE

grows with Px as long as the numerator of the SNDR increases

faster than the denominator.

VI. EXTENSION OF M ×M MIMO TRANSMITTERS

In this section, we will discuss how the analytical results

derived in the previous sections can be extended to M × M
MIMO transmitters. For such a transmitter with M antennas,

a feedback connection can be drawn as in Fig. 1 between

two different antenna branches with crosstalk parameters

κℓ,m ∈ C, where κℓ,m is the scaling factor from the ℓth
antenna branch to the mth one. The input signal is x =
(x1 . . . xM )T ∼ NC (0,Cx) where Cx ∈ CM×M depends

only one design parameter that is Px = E[|x1|2] as in (1). The

output of the transmitter is given by y = r+w, where the only

difference compared to Section II is that all the vectors are M -

dimensional. The power amplifier outputs can be represented

as in (4) with an M -dimensional counterpart of the diagonal

matrix G and the third-order distortion function f(u). All the

equations in (5)–(9) are also valid for M×M transmitter with

appropriately defined matrices. Note that the gain matrix L is

diagonal with entries γℓ, for ℓ = 1, . . . ,M and the feedback

matrix K has zero diagonal elements with the (ℓ,m)th ele-

ment being γℓκm,ℓ, for ℓ 6= m. Using the same small-error

approximations, a similar relationship can be obtained as in

(15), where the elements of the matrix Q ∈ CM×M all depend

on the constant system parameters. Using this linear relation,

the covariance matrix U becomes PxT where the elements

of the constant matrix T ∈ CM×M , i.e., tℓm can easily be

determined as in (18)–(20). Furthermore, the Bussgang matrix

A is diagonal with elements aℓ = 1+2ρℓuℓℓ when the power

amplifier non-linearities affect each antenna signal separately

[16, Sec. II.B].

Note that the simplified expressions for the fourth-order and

the sixth-order matrices in Appendix A hold for any M with

proper dimensions. Using this fact and taking similar steps

as in Section III, we can express the diagonal elements of

the error covariance matrix E as the third-order polynomial

functions of the reference input power, Px with the coefficient

of P 3
x terms being positive. Hence, the NMSE for each trans-

mitter branch becomes a convex function of Px as claimed by

Lemma 1 and the min-max fair optimization problem in (50)

is a convex programming problem. When M is relatively large

and the transmitter is asymmetric, checking all the candidate

solutions in Theorem 1 is not efficient and a numerical solver

should be utilized.

The optimal precoder that maximizes the SE may not be

obtainable in a simple form for M > 2 since the number

of canditate solutions to be checked increases exponentially.

However, for conventional MRT and distortion-aware MRT,

the same steps in Section IV-B and Section IV-C can be

followed to obtain the similar one-dimensional optimization

problems with properly defined parameters.

VII. CONCLUSIONS

In this paper, a non-ideal 2 × 2 MIMO transmitter subject

to backward crosstalk and power amplifier non-linearities has

been analyzed using Bussgang theory for OFDM transmission.

By utilizing the signal statistics, the feedback model for the

backward crosstalk was reformulated as an approximately

linear relation between the transmitter outputs and inputs. The

NMSE compared to the ideal amplified signal at the transmitter

output was derived in closed form. It was used to find the

power back-off that minimizes the maximum NMSE of two

branches. In general, the optimal value will not minimize both

NMSEs, but find a suitable trade-off.

The SE of transmission to a single-antenna receiver has also

been analyzed and a closed-form achievable SE was derived

using the fact that the effective distortion noise in the Bussgang

decomposition is uncorrelated with the desired communication

signal. Three different precoders were considered. The first

one maximizes the SE by exploiting full knowledge of the

parameters in the backward crosstalk and power amplifier non-

linearity models. One of the two sub-optimal precoders uses

the optimal precoder structure for ideal hardware and the other

one assumes partial knowledge about the backward crosstalk.

We optimized the power back-off for maximum SE also for the

sub-optimal solutions. Simulation results showed that the sub-

optimal precoders achieve almost the same SE as the optimal

precoder; thus, it is not of critical importance to estimate the

hardware parameters in practice. However, when the strength

of the crosstalk increases, the SE achieved by the sub-optimal
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precoder that assumes ideal hardware got worse compared

to the others. Finally, we also noticed that the SE is often

maximized when transmitting at a higher power than what is

minimizing the NMSE.

APPENDIX A

DERIVATION OF THE ELEMENTS OF V

The elements of the matrix V in (35) depend on the matrices

U and U, which contain fourth- and sixth-order moments

of the input signals. These matrices will be derived in this

appendix, which finally leads to the simplified expression in

(36).

Fourth-Order Moments U: For the third-order nonlinearity

f(u) in (4), the fourth-order moments in U = E[f(u)uH ]
read

uℓℓ , E[uℓ |uℓ|2 u∗
ℓ ] = 2 u2

ℓℓ, ℓ = 1, 2, (79)

ukℓ , E[uk |uk|2 u∗
ℓ ] = 2 ukk u

∗
ℓk, ℓ 6= k, (80)

where E[uk |uk|2 u∗
ℓ ] = 2E[uk u

∗
k]E[uk u

∗
ℓ ] was used [24].

The higher-order moments matrix U is now given by

U = 2

(
u11 0
0 u22

)

︸ ︷︷ ︸
B

(
u11 u12

u∗
12 u22

)

︸ ︷︷ ︸
U

. (81)

Sixth-Order Moments U: For the third-order nonlinearity

f(u) in (4), the components of U = E[f(u) f(u)H ] read

uℓℓ , E[uℓ |uℓ|2 u∗
ℓ |uℓ|2] = 6 u3

ℓℓ, ℓ = 1, 2, (82)

u12 , E[u1 |u1|2 u∗
2 |u2|2] = E[(u1 u

∗
2)

2 (u1 u
∗
2)

∗]

= 4u12 u11 u22 + 2u12 |u12|2, (83)

where the following results was used [24]:

E[(uℓ u
∗
k)

2(uℓ u
∗
k)

∗]

= 4E[uℓ u
∗
k]E[uℓ u

∗
ℓ ]E[uk u

∗
k] + 2E[uℓ u

∗
k]

2
E[u∗

ℓ uk].(84)

The matrix U can now be divided into two terms as

U = 4

(
u3
11 u12 u11 u22

u∗
12 u11 u22 u3

22

)

+2

(
u3
11 u12 |u12|2

u∗
12 |u12|2 u3

22

)
. (85)

The result (85) can be expressed in B and U given in (81) as

U = 4BUB+ 2C, (86)

where the matrix C was introduced as

C =

(
u3
11 u12 |u12|2

u∗
12 |u12|2 u3

22

)
. (87)

Final simplified expression: It follows directly from (81)

that

UU−1 = 2B. (88)

Furthermore, the matrix product UU−1 U
H

is required to

evaluate the properties of the distortion noise. Combining (88)

with (81) gives

UU−1 U
H

= 4BUB, (89)

where the result follows from the fact that B = BH , and that

U = UH . From (86) and (89) it now directly follows that

U−UU−1 U
H

= 2C, (90)

where C is given in (87). This leads to simplified expression

in (36).

APPENDIX B

PROOF OF THEOREM 1

There are three cases to be evaluated to achieve the optimal

solution to the problem (50) since we minimize the maximum

of two convex functions. The optimal input reference power,

Px is either the minimizer of NMSE1 or NMSE2, or the one at

which the NMSE1 = NMSE2 are equal. These three candidate

solutions are given as follows:

Case 1: The unique minimizer of NMSE1(Px), which is

denoted P
(1)
x , is a solution to the equation

12ρ21 t
3
11

γ2
1

Px + 4γ2t11ρ1

(
γ2β

2 |κ2|2 + βℜ{κ2ξ
∗}
)
=

σ2
w

γ2
1 P

2
x

,

(91)

which is obtained by taking the first derivative of NMSE1(Px)
with respect to Px and equating it to zero. Since NMSE1 is a

convex function of Px, the candidate solution for this case is

the only positive root of the third-order polynomial of Px in

(52).

Case 2: Similarly, we find the unique minimizer of

NMSE2(Px), which is denoted P
(2)
x , as a solution to the

equation

12ρ22 t
3
22

γ2
2β

2
Px +

4γ1t22ρ2
β2

(
γ1 |κ1|2 + βℜ{κ1ξ}

)
=

σ2
w

γ2
2 β

2P 2
x

,

(92)

which is obtained by equating the first derivative of

NMSE2(Px) to zero. There is a unique positive root of the

third-order polynomial of Px in (53).

Case 3: In this case, we take the candidate solution which

satisfies NMSE1(Px) = NMSE2(Px). These are the positive

roots of the third-order polynomial in (54). Let P
(3)
x denote

the positive root of (54) which makes NMSE1 = NMSE2 the

smallest assuming there exists at least one positive root of

(54). If all the roots are non-positive, then we can consider

only Case 1 and 2.

Considering all the three cases, the optimal input reference

signal power, Px, for the problem (50) is given by the element

of the set S =
{
P

(1)
x , P

(2)
x , P

(3)
x

}
that minimizes the objective

function max
{

NMSE1(Px),NMSE2(Px)
}

.

APPENDIX C

PROOF OF THEOREM 2

In order to simplify the optimization in (64), we express the

optimization variables c̃1 and c̃2 in terms of their amplitudes

and phase components as follows:

c̃1 = ̺1χ1, c̃2 = ̺2χ2, ̺1, ̺2 ∈ R, χ1, χ2 ∈ C, (93)

̺1 ≥ 0, ̺2 ≥ 0, |χ1|2 = 1, |χ2|2 = 1. (94)
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By neglecting the constant 2 in the numerator of (64), we can

cast the problem in terms of the amplitude and phase shift

variables in (93):

maximize
̺1, ̺2, χ1, χ2

∣∣∣
(
h1̺1 + h̃1̺

3
1

)
χ1 +

(
h2̺2 + h̃2̺

3
2

)
χ2

∣∣∣
2

∣∣∣h̃1̺31χ1 + h̃2̺32χ2

∣∣∣
2

+ σ2

(95)

subject to ̺1 ≥ 0, ̺2 ≥ 0, |χ1|2 = 1, |χ2|2 = 1. (96)

We observe that the objective function does not change if

a common phase rotation is applied to χ1 and χ2. This

means that if {χ⋆
1, χ⋆

2} are the optimal phase shifts, then{
χ⋆
1e

jθ, χ⋆
2e

jθ
}

result in the same optimal objective for any

θ ∈ [0, 2π). Using this observation, we can simply take χ2 = 1
and consider the optimization problem in terms of ̺1, ̺2, and

χ1. For this reduced-size problem, we obtain the necessary

optimality condition for χ1 as follows:

DEN
(
h1̺1 + h̃1̺

3
1

)∗ (
h2̺2 + h̃2̺

3
2

)

− NUM
(
h̃1̺

3
1

)∗
h̃2̺

3
2 = L1χ1, (97)

where DEN and NUM denote the denominator and numerator

of the objective function in (95). Note that they are both real

and non-negative. L1 is the real scaled Lagrange multiplier

corresponding to the equality |χ1|2 = 1. Now, we have

χ1 = e
j∠

(

DEN
L1

(h1̺1+h̃1̺
3

1)
∗(h2̺2+h̃2̺

3

2)− NUM
L1

(h̃1̺
3

1)
∗
h̃2̺

3

2

)

.
(98)

Using the definitions of h̃1 and h̃2 in (65) and noting that

ρ1 < 0 and ρ2 < 0 are real scalars, we see that the

angle of
(
h1̺1 + h̃1̺

3
1

)
is either ∠h1 or ∠h1 + π. Similar

reasoning applies for
(
h2̺2 + h̃2̺

3
2

)
. Hence, considering the

two possible sign values for L1, we have two possibilities for

the angle of χ1 which are

∠χ1 = ∠h∗
1h2, or ∠χ1 = ∠h∗

1h2 + π. (99)

Now, our aim is to find the optimal set of {̺1, ̺2} for these

two possibilities. Let us explore two cases one by one.

Case 1: In this case, we take the candidate solution χ1 =
ej∠h∗

1
h2 together with χ2 = 1. The maximization problem in

(95)-(96) can be expressed in terms of ̺1 and ̺2 as follows:

maximize
̺1,̺2

(
|h1|

(
̺1 + 2ρ1̺

3
1

)
+ |h2|

(
̺2 + 2ρ2̺

3
2

))2
(∣∣∣h̃1

∣∣∣ ̺31 +
∣∣∣h̃2

∣∣∣ ̺32
)2

+ σ2

(100)

subject to ̺1 ≥ 0, ̺2 ≥ 0. (101)

By KKT conditions for the problem in (100)-(101), there are

four subcases according to complementary slackness condi-

tions and the Lagrange multipliers for (101). These cases are

as follows:

Case 1-A: The first case is ̺1 = ̺2 = 0 where both

variables are at the boundary. This case results in zero SNDR

and is obviously not the optimal solution.

Case 1-B: In this case, we take ̺1 = 0 and do not put

any constraint on ̺2. After inserting ̺1 = 0 into the objective

function and by equating the derivative of it with respect to

̺2 to zero, we obtain

−
2̺2

(
2ρ2̺

2
2 + 1

)(
2
∣∣∣h̃2

∣∣∣
2

̺62 − 6ρ2σ
2̺22 − σ2

)

(∣∣∣h̃2

∣∣∣
2

̺62 + σ2

)2 = 0,

(102)

where we obtain the critical points ̺
(1-B-1)
2 =

√
1

−2ρ2

and

the only positive root, ̺
(1-B-2)
2 , of the polynomial in (68). We

note the solution sets {0, ̺(1-B-1)
2 } and {0, ̺(1-B-2)

2 } as candidate

optimum.

Case 1-C: This case is similar to Case 1-B, by the sym-

metric structure of the objective, i.e., now we take ̺2 = 0
and do not put any constraint on ̺1. After inserting ̺2 = 0
into the objective function and by equating the derivative of

it with respect to ̺1 to zero, we obtain the critical points as

̺
(1-C-1)
1 =

√
1

−2ρ1

and the only positive root, ̺
(1-C-2)
1 , of the

polynomial in (69). We note the solution sets {̺(1-C-1)
1 , 0} and

{̺(1-C-2)
1 , 0} as candidate optimum.

Case 1-D: In this case, we do not put any constraint on

̺1 and ̺2 and equate the Lagrange multipliers corresponding

to the inequality constraints to zero. Then, by equating the

derivatives of the objective function with respect to ̺1 and

̺2 to zero, we obtain the necessary optimality conditions.

However, interpreting the resultant equations is hard. Instead,

we consider an equivalent optimization problem:

maximize
̺1, ̺2, ˜̺1, ˜̺2

(
|h1| ̺1 −

∣∣∣h̃1

∣∣∣ ˜̺1 + |h2| ̺2 −
∣∣∣h̃2

∣∣∣ ˜̺2
)2

(∣∣∣h̃1

∣∣∣ ˜̺1 +
∣∣∣h̃2

∣∣∣ ˜̺2
)2

+ σ2

(103)

subject to ˜̺1 = ̺31, ˜̺2 = ̺32. (104)

Note that we have included additional auxiliary variables,

˜̺1 = ̺31 and ˜̺2 = ̺32 in order to simplify the KKT conditions

and omitted the non-negativity constraints for ̺1 and ̺2 since

we assume in this case (Case 1-D), the Lagrange multipliers

corresponding to these constraints are zero. However, we

should select only the non-negative solutions of the problem

(103)-(104) to be a candidate for the original problem. KKT

conditions for the above problem are given as follows:

2 |hℓ|NUM

DEN
= 3Lℓ̺

2
ℓ , ℓ = 1, 2, (105)

− 2
∣∣∣h̃ℓ

∣∣∣


NUM

DEN
+

NUM2
(∣∣∣h̃1

∣∣∣ ˜̺1 +
∣∣∣h̃2

∣∣∣ ˜̺2
)

DEN2


 = −Lℓ,

ℓ = 1, 2, (106)

where L1 and L2 are the Lagrange multipliers corresponding

to the equalities in (104). NUM and DEN denote the term

whose square is taken in the numerator and the denominator

term of the objective function in (103), respectively, for ease

of notation. By dividing both sides of (106) for ℓ = 1 and
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ℓ = 2, we obtain L1/L2 =
∣∣∣h̃1

∣∣∣ /
∣∣∣h̃2

∣∣∣. Using this relation in

(105), we have

̺2 =

√
|ρ1|
|ρ2|

̺1. (107)

If we insert ̺2 in (107) into the original objective function,

we obtain a similar problem as in Case 1-C and the critical

points are ̺
(1-C-1)
1 =

√
1

−2ρ1

and the only positive root,

̺
(1-D)
1 , of the polynomial in (70). We note the solution sets

{̺(1-C-1)
1 ,

√
|ρ1|
|ρ2|

̺
(1-C-1)
1 } and {̺(1-D)

1 ,
√

|ρ1|
|ρ2|

̺
(1-D)
1 } as candidate

optimum.

Case 2: In this case, we take the other candidate solution

χ1 = ej∠h∗

1
h2+jπ in (99) together with χ2 = 1. In this

case, the SNDR maximization problem in (95)-(96) can be

expressed in terms of variables ̺1 and ̺2 as follows:

maximize
̺1, ̺2

(
|h1|

(
̺1 + 2ρ1̺

3
1

)
− |h2|

(
̺2 + 2ρ2̺

3
2

))2
(∣∣∣h̃1

∣∣∣ ̺31 −
∣∣∣h̃2

∣∣∣ ̺32
)2

+ σ2

(108)

subject to ̺1 ≥ 0, ̺2 ≥ 0. (109)

Note that if at least one of ̺1 or ̺2 is zero, we obtain

the same problem as in Case 1. The only difference occurs

when ̺1 > 0 and ̺2 > 0. In this case, we can follow

the same approach in the reformulation (103)-(104). After

some straightforward calculations, we obtain the candidate set

of solutions:
{
̺
(1-C-1)
1 ,

√
|ρ1|
|ρ2|

̺
(1-C-1)
1

}
and

{
̺
(2)
1 ,
√

|ρ1|
|ρ2|

̺
(2)
1

}
,

where ̺
(2)
1 is the only positive root of the polynomial in (71).

Now, considering all the candidate solutions, we obtain the

optimal c̃1 and c̃2 by selecting the one that maximizes the

SE, as formulated in (66). Given the optimal c̃opt, the optimal

precoder is given by c = Q−1c̃opt.
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