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Abstract—In this paper, we propose a novel hybrid user pairing
(HUP) scheme in multiuser multiple-input single-output non-
orthogonal multiple access networks with simultaneous wireless
information and power transfer. In this system, two information
users with distinct channel conditions are optimally paired while
energy users perform energy harvesting (EH) under non-linearity
of the EH circuits. We consider the problem of jointly optimizing
user pairing and power allocation to maximize the overall
spectral efficiency (SE) and energy efficiency (EE) subject to user-
specific quality-of-service and harvested power requirements. A
new paradigm for the EE-EH trade-off is then proposed to
achieve a good balance of network power consumption. Such
design problems are formulated as the maximization of non-
concave functions subject to the class of mixed-integer non-convex
constraints, which are very challenging to solve optimally. To
address these challenges, we first relax binary pairing variables to
be continuous and transform the design problems into equivalent
non-convex ones, but with more tractable forms. We then develop
low-complexity iterative algorithms to improve the objectives and
converge to a local optimum by means of the inner approximation
framework. Simulation results show the convergence of proposed
algorithms and the SE and EE improvements of the proposed
HUP scheme over state-of-the-art designs. In addition, the effects
of key parameters such as the number of antennas and dynamic
power at the BS, target data rates, and energy threshold, on the
system performance are evaluated to show the effectiveness of
the proposed schemes in balancing resource utilization.

Index Terms—Energy efficiency, inner approximation, non-
linear energy harvesting, non-orthogonal multiple access
(NOMA), non-convex optimization, spectral efficiency, transmit
beamforming, user pairing.
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I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has rec-
ognized as the promising multiple access technique for the
evolving fifth generation (5G) of cellular networks since it
provides high spectral efficiency (SE) and accommodates
a large number of users [1], [2]. In power domain-based
NOMA, a base station (BS) serves multiple users in the
same time-frequency resources with different power allocation
coefficients. Particularly, users with poor channel conditions
get more power in order to improve their throughput, while
successive interference cancellation (SIC) is applied for the
users with better channel conditions to remove the interference
from the former ones [3]. When users have similar channel
conditions due to the same path loss, dynamic user cluster-
ing and user pairing are effective approaches to realize the
viable benefits of NOMA in providing high SE and massive
connectivity requirement of 5G networks [4]-[7].

Simultaneous wireless information and power transfer
(SWIPT) has attracted significant attention due to its promising
feature in extending lifetime of wireless networks [8], [9].
However, the increase of path loss attenuation during far-
field wireless power transfer (WPT) is one of the most
challenges faced by SWIPT systems [8]. To reduce such an
attenuation, the optimization of the hardware architecture of
energy harvesting (EH) circuits was a favorable approach to
improve the energy conversion efficiency for wireless devices
[9]. In practice, the input-output characteristic of EH circuits is
highly non-linear, which leads to a mismatch for resource al-
location and performance degradation [10]. To capture exactly
behaviors of EH circuits in SWIPT systems, in this paper we
consider a practical non-linear EH model and design energy
beamforming (EB) at BS to maximize spectral efficiency and
energy efficiency (EE).

In order to effectively reduce the system load while main-
taining the quality-of-service (QoS) requirement of users in
NOMA systems, hybrid NOMA has been considered by
flexibly combining NOMA with orthogonal multiple-access
(OMA). Particularly, users are first grouped in multiple pairs,
in which NOMA is performed within each pair and different
pairs are served by the conventional OMA to avoid inter-pair
interference [7]. Recently, the optimal user pairing algorithm is
capable of providing better SE performance than the random
pairing in downlink NOMA systems [4], [11]. In [12], the
authors proposed a user pairing scheme by adopting matching



theory to select users for pairing from preference list channel
conditions. In multiuser (MU) multiple-input single-output
(MISO) systems with SWIPT, the effects of multiuser inter-
ference and non-linear EH circuits, which were unpredictable
and caused a mismatch for resource allocation, have received
less attention. Thus, it is of crucial to unveil how the hybrid
user pairing approach can improve the system performances
from the perspective of SE and EE.

A. Related Works

Early literature on user pairing has considerably focused
on maximizing spectral efficiency in NOMA downlink sys-
tems. For instance, in [11], various optimal user pairing-
based scenarios were studied to improve SE performance
considering minimal rate constraints for each user. In cellular
networks, the user pairing process was handled by the BS
with power allocation in a centralized management manner
[7], [13]. Moreover, opportunistically pairing for users with
distinct channel conditions greatly reduced the complexity of
NOMA systems [13]. Based on the users’ channel correlations,
user grouping was applied in millimeter-Wave (mmWave)
NOMA systems in [14] and mmWave massive multiple-input
multiple-output (MIMO) NOMA systems with SWIPT in [15],
where a joint design of user grouping, power allocation,
analog and digital precoding approach showed the SE and
EE improvements over its counterpart without user grouping.
To further enhance the SE of MIMO-NOMA systems, [16]
proposed user pairing and scheduling algorithms which not
only pair the selected users but also schedule suitable pairs for
data transmission. In addition to user pairing, user clustering
and power allocation have recently been investigated in [17]
to maximize SE in downlink MIMO-NOMA systems from the
user fairness perspective.

Regarding MISO-NOMA SWIPT systems, the power split-
ting architecture was addressed in [18], where a user with
better channel condition is acted as an EH relay for the poor
channel condition one, with the goal of maximizing its data
rate under serious feedback delay at the BS. Considering
non-linear EH model, Zhang et al. in [19] formulated the
transmission power and the total EH trade-off problem by
using multi-objective optimization approach. To maximize
the system secrecy throughput in MISO networks, a path
following algorithm was proposed in [20] relying on the
inner approximation (IA) framework to arrive at a suboptimal
solution with the low complexity and rapid convergence. In
[21], a joint design of beamforming and power splitting was
considered in cooperative MISO-NOMA SWIPT systems to
maximize the data rate of a strong user subject to the QoS
requirement of a weak user.

However, the aforementioned works on MISO-NOMA
SWIPT systems were mainly focused in maximizing average
SE or enhancing the total EH. Only a few works have studied
the effects of user pairing on energy efficiency, which is one
of the key performance metrics in 5G. In [22], the weighted
sum EE maximization problem with a new power consumption
model was formulated in multi-cell downlink MISO systems,
where such problem was latter efficiently solved by IA al-
gorithms. A jointly designing SE-EE trade-off problem has

also attracted much attention in recent literature, e.g., see
[23]-[25]. In [23], a joint antenna selection and beamforming
design was studied to achieve a good SE-EE trade-off region.
It was proved in [24] that the system with an accurate channel
estimator can achieve a good SE-EE trade-off. Under a similar
target, a jointly optimizing transmit covariance matrices and
transmit antenna selection was performed in MIMO systems
[25], and power splitting in combination with beamforming
problem was designed in [26] to maximize the achievable
utility function (UF) in MISO-SWIPT systems considering
both the system SE and total harvested power.

B. Motivation and Contributions

As mentioned above, the power allocation in combination
with random user pairing in NOMA systems has been exten-
sively researched. However, considering the hybrid user pair-
ing together with energy beamforming design under the non-
linearity of EH circuits in MISO-NOMA systems with SWIPT
has not been properly studied in the literature. Motivated
by the 5G network requirements and the benefits of MISO,
NOMA and SWIPT, these concepts can be naturally linked to-
gether to realize an efficient type of network model with the SE
and EE enhancements. In [27], the design of NOMA-enabled
EH in MISO systems provided higher EE than the OMA one.
An effective beamforming design in NOMA-enabled MISO-
SWIPT systems also revealed its superior SE compared to the
conventional OMA [28]. Beamforming design and cooperative
transmission were studied in MISO-NOMA SWIPT systems in
[29], [30] aiming to improve SE performance. By employing
MISO, NOMA and SWIPT in 5G cellular Internet-of-Thing
networks, the proposed system achieved its largest SE while
consuming the lowest power under practical conditions of
imperfect SIC, non-linear EH circuits and channel uncertainty
[31]. Moreover, a general EE-EH trade-off problem for such
systems has also remained comparatively open in the literature.

Different from recent works [3], [7], [11], we propose a
novel hybrid user pairing beamforming (HUP) scheme for
MU-MISO-NOMA downlink systems with SWIPT in order
to maximize the achievable spectral and energy efficiencies.
A more sophisticated EE-EH trade-off problem is also formu-
lated to provide several meaningful insights into the network
characterizations. In the proposed HUP scheme, two infor-
mation users with distinct channel conditions are paired while
energy users located nearby the BS perform energy harvesting.
The implementation of hybrid user pairing method allows the
BS to optimize information and energy beamformers, resulting
in enhancement of the harvested power at energy users.

We consider a general MISO-NOMA system with SWIPT
technique, where multiple information users and energy users
are deployed randomly in a small cell area. Here, energy users
with non-linear EH circuits can harvest energy and store in
their local batteries for future use. In practice, all users are
not required to group into clusters, however in this paper any
two information users with distinct channel conditions will be
grouped into clusters and perform NOMA. By adding user
pairing approach, NOMA and SWIPT as design degrees to
the optimization problem, the proposed hybrid user pairing is a



promising scheme to achieve better performance than state-of-
the-art solutions, and on the other hand, makes the problems
much more challenging than those considered in [32], [33]
due to their high non-convex characteristics. Even if we split
the formulated problem into subproblems (each subproblem
with integer variables given by one of possible cases) to
separately solve a simpler problem, the resulting subproblem
is still non-convex with continuous variables. We leverage
the TA framework [34] to develop an iterative algorithm that
solves a second-order cone (SOC) program in each iteration,
where the feasibility set in each step contains that of the
previous one, and is always a subset of the feasibility set of
the relaxed problem. The main contributions of the paper can
be summarized as follows:

o We design the hybrid user pairing scheme by introducing
new binary variables to optimally pair two information
users with distinct channel conditions. The new design
helps alleviate intra-pair interference and allows to exploit
the full potential of NOMA for MISO-SWIPT networks.

o We formulate SE and EE optimization problems consider-
ing user pairing and non-linear EH circuit characteristics.
These problems belong to the class of mixed-integer non-
convex programming, which are very challenging to solve
globally.

o Towards practical applications, we develop low-
complexity iterative algorithms to solve the formulated
problems. In particular, we first relax binary variables
to be continuous and transform design problems into
equivalent non-convex ones yet with more tractable
forms. We note that the standard methods cannot be
applied to solve these non-trivial problems directly.
We then resort to the IA framework to tackle these
non-convex relaxed problems. By novel approximations,
problems obtained at each iteration can be cast as a
SOC program for which modern convex solvers are very
efficient. Simulation results latter reveal that pairing
continuous variables found at optimum are close to exact
binary values, arising as a near-optimal solution.

o We further formulate a more sophisticated EE-EH trade-
off problem which captures the system EE and harvested
power to design an accurate measurement on the network
power consumption. The multi-objective optimization is
proposed for such a problem that flexibly switches to
the objective of maximizing EE or EH, depending on
the target design of communication systems. As the
extremely non-convex optimization problem, we develop
an iterative algorithm based on the IA framework for its
solution, where the approximate problem at each itera-
tion is transformed into the SOC program for practical
implementation.

o We show through numerical results the convergence of
proposed algorithms, and the SE and EE improvements of
the proposed HUP scheme over state-of-the-art designs,
i.e., random user pairing (RUP) [5], and conventional
multiuser beamforming (MUB) [35]. Moreover, the ef-
fects of key parameters such as the number of antennas
and dynamic power at the BS, target data rates, and en-

ergy threshold, on the system performance are evaluated
and discussed comprehensively.

The rest of the paper is arranged as follows. Section II
introduces the system model and formulates the problems
of SEM, EEM, and EE-EH trade-off. We devise the optimal
solution for the SEM, EEM, and EE-EH trade-off problems
in Section III, IV, and V, respectively. Section VI analyzes
and discusses the convergence and complexity of the proposed
algorithms. Numerical results are provided in Section VII, and
Section VIII concludes the paper.

Notation: x, x, and X denote a scalar, a vector, and a
matrix, respectively. [x]; denotes the i-th element of a vector
x and [X];; represents the (7,j)-th element of a matrix. C
and R are the sets of complex numbers and real numbers,
respectively. ||.|| and |-| indicate the Ly-norm and the absolute
value, respectively. SR{-} symbolizes the real part. CA'(n, Z)
stands for circularly symmetric complex Gaussian (CSCG)
distribution with mean n and covariance matrix Z. Trace(-)
designates the trace operator, and E{-} denotes the expectation
operator. (-)T, (-)*, and (-)¥ are normal transpose, complex
conjugate, and Hermitian transpose, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Description

We consider a multiuser MISO downlink system, where a
base station equipped with L antennas serves multiple single-
antenna users in the same time-frequency resource, as depicted
in Fig. 1. We assume that the BS is located at the center
of network while users are uniformly distributed into two
zones [5], [36]. Zone-1 is a smaller disc with inner radius
r, while zone-2 is an annular area with outer radius R. There
are a set M 2 {10),m = 1,..., M} of M information
users and a set K 2 {EHp,k = 1,...,K} of K energy
users in zone-1, and a set N £ {ID%Q),TL =1,...,N}
of N information users in zone-2. It should be emphasized
that information user IDSL) in zone-1 has different channel
condition compared to user ID%Z) in zone-2. Hence, ID%) is
potentially grouped with IDg) to create a virtual pair! for
NOMA transmission. Besides, the energy user EH; can take
the advantage of its proximity to the BS to harvest energy
and store in its local battery for future use, e.g., processing
the received signals or transmitting signals to the BS [26],
[37]. We assume that all channels experience quasi-static
independent identically distributed (i.i.d.) Rayleigh fading, and
the channel state information (CSI) is available at both the
BS and users [33], [36], [38]. In this system, we deploy
the spatial transmit beamforming incorporated with NOMA
to simultaneously serve multiple users at the same resource
block (time, frequency, and spreading code). The BS transmits
the information bearing signals to the information users using
information beamforming while the power is simultaneously
delivered to K energy users via energy beamforming matrix.
Thus, the complex signals transmitted by the BS can be
expressed as

'The pairing approach is able to reduce the BS load and signal processing
delay while improving the performance of NOMA systems [36].



Fig. 1: Illustration of the downlink NOMA-assisted MISO-
SWIPT system serving multiple information and energy users.

X = Z 1)5m+ Z Sn"'vea (1)
meM neN
where wﬁ}} and w%) denote the L x 1 information beam-

forming vectors for IDgn) and ID%), respectively; s,, with
E{|sn|*} =1 and s,, with E{|s,|?} =1 are the signals in-
tended for ID%) and ID%Z), respectively; v, ~ CN (O, vvH )
represents the energy beam vector intended for K energy users
with V. € CE*K | where K < min(L, K) is the concur-
rent energy streams. For notational convenience, we define
wi 2 i eats wo £ (w1 ucs and w £ fw] Wit
Considering a flat fading channel, the received signals at IDnl,,),
ID(2) and EHj can be expressed, respectively, as

ym =hlwDs, + 3" hlwl)s,.
m’eM\{m}

+ Z hgwg)sn + hf:‘rlv6 + N, 2)
neN

_hH (2)8n+ Z hH (,)Sn

n GN\{n}
+ Y hwl)s, +hllve +ny, 3)
meM
Yk = Z gllng)sm + Z ngW%Q)Sn + glfve +ng, 4)
meM neN

where h,,, h,, and g; are the L x 1 channel coefficient
vectors from the BS to Inﬁ}ﬂ, ID%2 ), and EHy, respec}ively.
The channel coefficient vector is modeled as f = /pff with
f € {h,,,h,, gk}, where p; is the large-scale fading and f
is the small-scale fading vector whose entries are generated
as independent CSCG random variables with distribution
CN(0,1). From (4), the radio-frequency (RF) power at the
input of EH circuits at EHy, is given by [9]

= e w P+ g w?)|

meM neN

To present exactly the non-linear end-to-end WPT character-
istic at EH circuits, we consider a practical non-linear EH
(NL-EH) model based on the logistic (sigmoid) function. The
non-linear harvested power at EHy is modeled as [9]

Ay
1+ exp(—a(Ex(w, V) — by))
where A, £ PPC/(1—Q4), PPC denotes the maximum

power harvested at EH; when the EH circuit is saturated, aj
and by are the parameters of non-linear EH model capturing

*+gd VA 65)

B (w, V) = — A, (6)

the joint effects of various non-linear phenomena caused by
hardware limitations, and €, = (1 + exp(aby))~*

B. Proposed Hybrid User Pairing Beamforming Scheme

At the beginning of each time frame, BS performs user
pairing for information users who are located in different zones
with distinct channel conditions. Particularly, the user with
good channel condition in zone-1, IDE,%,), is opportunistically
paired with the user with poor channel condition in zone-2,
IDSL2 ). Once they are in pairs, NOMA principle will be applied
in each pair, where the SIC is carried out at the user with good
channel condition. More specifically, IDS,ll) employs SIC to
decode the IDg)’s message, and then successively subtracts
this message from the received signal to obtain its own
information, while IDn) directly decodes its own message.
In the event that IDg,L) and IDSL ) cannot be paired together, or
when the number of users in zone-1 differs from that of zone-
2 (i.e., M # N), the remaining users |M — N| are not paired
and will communicate directly with the BS through their own
beamforming vectors without using NOMA. The use of two
NOMA users in one cluster has been widely studied recently
due to its simplicity for practical implementation [S], [11],
[36]. The key benefit of this approach is low signal processing
latency (possibly low hardware design) since the near user
requires to decode and remove the signal of one far user only
(or one iteration). It is noted that in the scheme of near user de-
coding and removing signals of all far users, it requires many
iterations (corresponding the number of far users) to perform
SIC, leading to high signal processing latency and residual SIC
[33], [39]. In practice, NOMA may become inefficient if the
channels of two paired users are not sufficiently distinct [7].
Thus, in the proposed HUP scheme, ID%) and ID%Q) are paired
together if and only if the performance measure of interest
is improved. To implement user pairing, we introduce a new
matrix A € RM*N whose elements are expressed as

(Al = 1, when ID,, pairs with ID,,
mn 0, otherwise.

The signal-to-interference-plus-noise ratio (SINR) at ID(l)
in decoding ID%) s message can be expressed as

)

|hHW£l2)|2
SINR’" V=2 — 8
m(w7 ) ‘Ilmn(W,V)’ ( )
where U, »(w, V) = 3 [hZwH) 2+ 3 hHEw?24
meM n’eN\{n}

[ VI? + 07,

In order to adjust the pairing process, the SINR at ID( )
to decode its own signal involving the pairing element can be
expressed as

hHW(l)‘Q

SINRTP (w, V, A LA 9

(W, V. A) = = W V.A) ©)

where Z,,(w,V,A) = Y |[hAw2 4 |hiv|2 4+
m’eM\{m}

> (1~ [Alpn)EwE 2 4 62,

n’'eN



For ID5L2 ), it decodes directly its own message with the
following SINR:

|hHW$l2)|2
SINRS" V)= -2 —__ 10
n (W, ) (I)n(w, V) ) ( )
where ®,(w, V)= \h{jwﬁ})F + > |h"Hw£3)|2 +
meM n’eN\{n}

b V(12 + a7
Based on (8) and (10), the SINR for ID%Q) can be derived
involving with the pairing element [A],,, as
|hHW§L2)|2
(I)n(wa V) ’ [A]mn\:[jm,n(wv V) }

|hHW7(12)|2
- mEM{
(1T)

min

In (11), if [A}nn = 0 (i.e., two users are not paired), the
second term inside of the min operator will go to infinity.
In other words, it implies that ID%Q) just decodes its own
H_ (2))2
message only, i.e., SINRIP(w, V A) = % Thus, the
proposed HUP scheme is now switched to the conventional
MUB scheme without using NOMA, which will be discussed

in Remark 1.
Finally, the achievable rates in nat/sec/Hz for ID%)

IDS«?) can be expressed, respectively, as

RE(w, V, A)=In(1 + SINRI®(w, V, A)),¥m € M, (12)

m

REF(w, V, A) =In(1 + STNRI™ (w, V, A)),¥n € N. (13)

SINRE®(w, V, A)

and

Remark 1. Considering SINRs of ID,(VIL) and IDg) defined
by (9) and (11), respectively, some interesting observations
can be remarked as follows. When [Al],,, = 1, two users are
paired randomly and the proposed HUP scheme is changed
to the RUP one that was considered in [5]. When these users
are not in a pair, i.e. [Aly,, = 0, the proposed HUP scheme
is changed to the MUB one which also was studied in [26],
[35]. Hence, the proposed HUP scheme is a general scenario
and can be switched to RUP and MUB schemes by adjusting
pairing element [Al,,, =1 and [Al];,, = 0, respectively.

C. Problem Formulation

1) SEM Problem Formulation: Our main goal is to max-
imize the spectral efficiency of the system under QoS con-
straints for each individual ID user, the power budget at
the BS, EH constraints for EH users, and pairing constraints
for ID users. Therefore, the network SEM problem can be
mathematically formulated as

: Iy HUP HUP
SEM .“1;{1&7)%732— Z Ry, (w, V,A) + ZRn (w,V,A)

meM neN
(14a)
s.t. R%(w, V,A)>R,,, VYmeM, (14b)
REP(w,V,A) >R,, VneWN, (14c)
Ef(w,V) >Ep,  VkeEK, (14d)
[will? + [wal®> + V][> < PES™,  (14e)
[Almn € {0,1},Ym € M,Vn € N, (14f)

> Alnn <1, ) (Al <1,

neN meM

Ym e M,Vn e N, (14g)

where constraints (14b) and (14c) guarantee the QoS require-
ments for IDS}L) and ID%Q) with predefined thresholds Ry, >0
and R,, > 0, respectively. Constraint (14d) indicates that the
minimum energy harvested by EHy, is larger than some target
EH threshold Ej. Constraint (14e) presents the total power,
which is upper bounded to the total power budget of the
BS, PEg™. Constraints (14f) and (14g) present the criteria for
ID users pairing. Finally, constraint (14g) ensures that each
information user only pairs with one another.

2) EEM Problem Formulation: Another goal is to maxi-
mize the EE of the considered system setup, where the total
hardware power consumption at BS and all users can be
modeled as [32], [40]

1 n sta
Protar= (I[will? + w2 + [ V|[%) + LE" + Pt

+ ) PRE+ Y PRe+ ) Pl

meM neN kex

5)

where € € (0, 1] denotes the power amplifier efficiency of the
BS, Pglsy" is the dynamic power consumption corresponding
to the power radiation of all circuit blocks in each active
radio-frequency chain, Pgi is the static power consumed by
; it st it

the cooling system, power supply, etc. Py, Pi®, and P!
present the energy consumption of ID,(I), IDn2 , and EHy, re-
spectively. By denoting Py £ LPsg" + P5te + 3, v Pite +
Y onen Pt 43"k Pt as the total circuit power, the EEM
problem is thus formulated as

> REF(w,V,A)

AmeEM

EEM : maxfs =
w,V,XA b

+ > Riw (W, V, A)
neN

cUwill? + w2 + [ V]2) + Py
(16a)

s. t. (14b), (14c), (14d), (14e), (14f), (14g). (16b)

It is clear that the objective function in (16) is non-convex
with respect to wi, wo and V which brings the difficulty in
obtaining the optimal design for the EEM problem.

3) EE-EH Trade-Off Problem Formulation: In future wire-
less networks, the escalation of energy consumption directly
results in the increase of greenhouse gas emission which neg-
atively affects the environment and sustainable development
worldwide. The energy in the communication systems should
be used efficiently, and consequently there is the need of
comprehensive energy consumption model for these systems.
A promising performance metric which can optimally trade-off
between the needs of improving system throughput and limit-
ing energy consumption, while the amount of harvested energy
is maximized under the non-linear EH circuit characteristics,
is introduced as the energy efficiency-energy harvesting (EE-
EH) trade-off problem. Furthermore, figuring out the EE-EH
trade-off metric allows us to find practically achievable EE-
EH regions and paves the way for designing a more accurate
measurement on the power consumption in future wireless
networks. Due to this, in this paper we address the EE-
EH trade-off issue by designing a general EE-EH framework
which can flexibly switch between EE and EH depending on
the target design of communication systems.



To facilitate the EE-EH trade-off problem, we introduce
a utility function that captures both energy efficiency and
harvested power. Specifically, the UF is shown as a general
definition of power consumption of the system considering
not only the data rate but also the amount of harvested
energy. Therefore, it would be more reasonable to propose a
multi-objective optimization problem to obtain a good balance
between energy efficiency and harvested power. The UF based
on the multi-objective optimization approach can be expressed
as [26], [41]

RiuP \% A RHUP V A
]:(W,V,A):ozz(w— az (w, )
meM neN
+(1 —a) Z M7 (17)

Ex
ke

where « € [0, 1] denotes the weighting parameter to control
the priority between EE and EH. R,,. R,, and Ej can be con-
sidered as reference parameters which make units of the two
objective functions in (17) consistent and their numerical val-
ues are comparable [26]. The utility function F(w, V, A «) is
modeled to exposure the system characteristic in using energy.
Based on the power consumption model in (15), we jointly
design the information and energy beamformers, and pairing
condition for maximizing the efficiency of using power in the
network. To this end, the EE-EH problem can be formulated
as

F(w,V,A)

(w2 + w2l + [[V][2) + Po
(18a)

s. t. (14b), (14c), (14d), (14e), (14f), (14g). (18b)

EE-EH :maxTep.py =
w,V, A

Remark 2. The EE-EH problem is generally multi-objective
accounting for power consumption minimization, throughput
maximization, and energy harvesting maximization [41]. The
intuition behind the EE-EH trade-off optimization problem
through the lens of network design is that the usage of energy
is more flexible and efficient depending on the demand of net-
work target by adjusting weight parameter. When the weight-
ing parameter o is sufficient large in (17), corresponding to the
demand of maximizing energy efficiency, the EH becomes less
significant and the EE-EH problem is changed into the EEM
problem. When « is relatively small, corresponding to the
demand of maximizing energy harvesting, the EE becomes less
significant in (17) and the EE-EH problem aims at increasing
the amount of harvested energy at mobile users.

III. PROPOSED ALGORITHM FOR SEM PROBLEM

It is highly challenging to find a globally optimal solution
to (14) because of two reasons. First, due to the strong
coupling between continuous variables (w,V) and binary
variables A, an exhaustive search can be used to find an
optimal solution to (14) with a very high computational
complexity. Second, even when binary variables are fixed,
problem (14) is still highly non-convex in continuous variables
(w, V). In practical networks, the computational complexity
of using exhaustive search is exponentially growing when the

number of users increases. This motivates us to design more
practically fascinating approaches that can achieve a good
solution with low complexity. In the following, we propose
an iterative low-complexity algorithm to find a suboptimal
solution, yet efficient to (14). To do so, we first transform
(14) into an equivalent non-convex problem, but with a more
tractable form, and then apply the IA framework to iteratively
approximate the non-convex parts [34], [42].

A. Tractable Form of (14)

A standard way to overcome the binary nature of (14) is to
relax binary variables to be continuous, i.e., constraint (14f)
is re-expressed as [A]n,, € [0, 1]. Thus, the relaxed problem
of (14) is given as

EM—Relaxed : Ry £ "P(w,V,A
SEM—Relaxe wf{lféﬁ,rRz Z R, (w,V, A)

meM
+ > RIP(w,V,A) (19)
neN
s. t. [Almn €10,1], VmeM,neN, (19b)
(14b), (14c), (14d), (14e), (14g). (19¢)

We then introduce new variables r £ {r,,, 7, }nc N meM
and Y £ {’Vma’Yn}mGM,nGN’ where 7, and 7,, and Ym
and -, denote soft data rates and SINRs of IDg,ll) and ID%Q),
respectively, to rewrite (19) as

D) A
w,{lr}ja;’(rﬁ Ry = mg\/[ T + %rn (20a)
s. t. SINRI®(w,V,A)>1/v,, VmecM, (20b)
SINREP(w, V,A) > 1/v,, VneAN, (20c)
In(1+1/vm) > rm, VmeM, (20d)
In(1+1/v,) >r,, VYneWN, (20e)
Tm > Rm, ¥Ym €M, (201)
>R, VYneN, (20g)
(14d), (14e), (14g), (19b). (20h)

We now provide the following proposition to characterize the
relationship between problems (19) and (20).

Proposition 1. Problems (19) and (20) are equivalent at
optimum since they have the same optimal solution set
(w*, V* A*) and objective value 7_3*2
Proof: The equivalence between (19) and (20) is veri-
fied by showing that inequalities (20b)-(20e) must hold with
equalities at optimum. The proof is detailed in Appendix A.
|

B. Proposed Iterative Algorithm

In problem (20), the objective (20a) is linear and concave
function, and constraints (20b)—(20e), and (14d) are non-
convex. Thus, we now pay a particular attention to handle
non-convex parts of (20) following the IA principle.



Approximation of constraints (20b) and (20c): First, con-
straint (20b) for IDg,ll) user can be reformulated from (9) as

En(w,V, A)

Ym
To arrive at a tractable form, we introduce additional vari-
ables T £ {Tmmn > Olmem,nen Which satisfy the convex
512,)|2 < T n, to rewrite (21) equivalently as

Z |h77L

m’eM\{m}

+ > (1-[A

n’eN

< |hflw 1)

m ’HL ‘ N

constraint |hw

1
W w (D2 > D12 + b2V + 02,

m

1 ~
VT ) 2 —=.,.(w,V,A, T).
Tm

The following lemmas are invoked to make (22) convex.

Lemma 1. For any x € C,y € Ry, it is true that

z? _ 2z z?
— 2> —T— %y (23)
Y Y Y
Proof: The proof of Lemma 1 is given Appendix A of
[43]. n
Lemma 2. For any (z,y) € R, it is true that
1 1/ z U
— < ==+ = ). 24
xy_Q(gjz2+:fy2) (24)

Proof: The proof of Lemma 2 is given [42]. It is noted
that the right-hand side (RHS) of (24) is shown as a convex
upper bound of function 1/(zy), making it become more
refined in approximating the function 1/(xy) based on the
IA framework. ]

Let 2(*) indicate the feasible point of z at the x-th iteration
of an iterative algorithm. We are now in a position to make
(22) convex, where the term |hﬁvv7(,1L)\2 in the left-hand side
(LHS) of (22) can be approximated by recalling Lemma 1 as

[fTw i) 2= 28] (W w D) (hfiwD)} = [T w i) )
£ i (wil), (25)

and ém(W,V,A,T) can be iteratively upper bounded by
invoking Lemma 2 as

Em(W7V,A,T)
17A(H)/ Trsf)nfl_Amn’2
SZ( [(gmnﬂivn* ha [<L> ))
n’'eN 27, 2(1 - [A]mn’)

m,n’
DY

w12 4+ |hE V|2 + o2,
m’eM\{m}

m W/
20 (w, V, A, 7).

[l

(26)

Note that E;I;)(W,V,A,T) is quadratic convex function
and the global upper bound of =,,(w,V,A 7), satisfying
20 (wn), V) AR 20y = B (wo) VR AR 100y
Hence, (22) is iteratively replaced by the following convex
constraint:

2(x) (w, V,A 1)

< fi W),
Tm (

Ym € M. 27

Turning our attention to constraint (20c) for user ID&L2 ) which
can be rewritten as

1 ‘hHWELZ)lg |hHW,(,L2)|2
< mi n m . 28
Yn ;Lrél./l\l/l{ <I>n(w, V) ’ [A]mn\llm,n(wa V) } 28)

Without loss of generality, inequality (28) can be replaced by

1 [nfw)?

— < Vn e N (29a)

In (@ (W, V)]

1 W2 w2

— < o , YmeM,neN. (29b)
Inequality (29a) can be re-expressed as

@n(w,V)/7n§|h5w%2) 2, where the term |hfw(2)\2

can be lower bounded by invoking Lemma 1 as

w2 > 29 (hy w20 (g wi?) } — [y w092
£ £ W), (30)

Note that ®,(w,V)/v, is a quadratic-over-linear function,

which is convex. Thus, (29a) can be approximated at iteration
K+1as

®,(w,V)

> < fS(w@), YneN. (31)
Considering constraint (29b), it follows that
Uy (w, V) _ [h w2
) (W’ ) < | ’mW ‘ , vn GN, (32)
Tn [A]mn

where both sides are a quadratic-over-linear function. By
recalling again Lemma 1, we address the RHS of (32) with
its lower bound as

lhHw )|2 29{{ (2) (N)) (hHW(2))} |hH (n)|2

m > m mYYn
[Almn Al AL (AL
£ 5 (W, [Aln)- (33)

Plugging (33) into (32), (29b) is iteratively replaced by the
following convex constraint:
\Ijm,n (W7 V)

f('f) (w (2)
Tn

m,n ’fL ’

[ ]mn) Ym € M neN. (34)

Approximation of constraints (14d), (20d) and (20e): We
tackle constraint (14d) by transforming it into the following
(e+a

equivalent form:
A
= = 0.
Er + ArQy ) k

Note that the LHS of (35) is a convex function; thus, we
apply Lemma 1 to innerly approximate it around the point
(w) V() as follows:

Ev(w,V)> Y [29%{

(W V)>bk——ln
ak

(35)

D) g gfwi)} — gl w2

meM

£ 30 [on{ (W) gl w? ) gl w0 ]
neN

+ 20 {Trace (V) "grg V) } — llgf V™|

2 g7 (w, V). (36)



Substituting (36) into (35), the inner convex approximation of
(14d) is given as

E) (w, V) > 6, VkeK.

The LHSs of (20d) and (20e) are convex and logarithmic func-
tion, while their RHSs are linear. To solve these constraints
more efficiently, we will approximate and convert them into
SOC constraints. By applying the concave lower bound of the
logarithmic function in [5, Eq. (66)], the function In(1+~~1)
with v > 0 can be approximated at iteration x + 1 as

(37

In(1+~71) >In(1+ (")) + (* + o
— [P + 1)) 2 AW (),

where Y € {’Vma’yn}mEM,nGN-
From the above discussions, problem (20) can be approx-
imated by the following convex program at iteration x + 1:

(38)

nax REV L D" r Y (3%)
“;'7, T meM neN
s.t. [WEw@ 2 < 7, Yme M0 €N,
(39b)
AW (4,) > rp,  Ymoe M, (39¢)
AW () > 1, VneWN, (39d)
(14e), (14¢g), (19b), (20f), (20g),
(27),(31),(34),(37). (39)

After solving (39), we update the involved optimization
variables for the next iteration until convergence. We have
ascertained that an iterative algorithm for solving (39) will
result in a solution containing many [A],,, close to 0 and 1 but
still inexact binary values. In other words, the optimal solution
achieved by solving (39) is infeasible to the original problem
(14). To overcome this issue, we introduce the rounding
function after obtaining the optimal solution of problem (39)
as

(Al = [[AI +1/2, YmeMmneN. @)

In Algorithm 1, we summarize the proposed iterative algorithm
to solve the SEM problem (14).

Generating Initial Feasible Point For SEM Problem: Since
our approximations are based on IA framework, finding a
feasible initial point for (20) is required for the IA-based
algorithm in the first iterations to successfully initialize the
computational procedure. However, it is challenging to find the
feasible starting point of Algorithm 1 due to the complexity of
the objective function and its constraints. One simple option
is to generate random initial points until satisfying constraints
(20b)—(20h). However, this method is very inefficient or even
fails to initialize the computational procedure. It is therefore
nontrivial to develop a simple yet efficient way to find a
feasible initial point so that Algorithm 1 is successfully solved
in the first iterations. To do so, we provide an initialization
method which makes QoS constraints feasible (i.e., (14d),
(20f), and (20g)). Based on the development presented before
and by any initial point (w(® V(O A0 40) 7)) we

Algorithm 1 Proposed Iterative Algorithm for Solving SEM
Problem (14)
1: Inmitialization: Set x := 0, (w*, V*, A*) := 0, and gener-
ate an initial feasible point (w(?), V() A0 ~(0) +(0))
for (20) by solving (41).
2: repeat
3:  Solve the convex program (39) to obtain the optimal
solution (W*, V* A* ~* 1*);
4 Update (wlrtD) Vst A (D) y(r+1) 7 (nt1))
— (W*, V*, A*, ,7*) T*);
Set kK =k +1;
. until Convergence
. Update (w*, V*) = (w*¥), V(®)) and A* as (40);
: Calculate Ry~ in (14a) based on (w*, V*, A*);
: Output: Ry~ and the optimal solution (w*, V*, A*).

successively solve the following convex program:

Iy : R _p r _
g & i {7 =Rt = Rl ) - 0
Ar,~y neN,keK

(41a)
s. t. (14e), (14g), (19b), (27), (31), (34),
(39b), (39¢), (394d), (41b)

until achieving dsgy > 0, which outputs a feasible initial point
for Algorithm 1.

IV. PROPOSED ALGORITHM FOR EEM PROBLEM

In general, solving the EEM problem (16) is even more
challenging than the SEM problem (14), since the former
is a mixed-integer non-convex fractional programming which
requires exponential complexity to find its optimal solution.
However, we will show in the sequel that the IA framework
applied for the SEM problem can be well extended to the EEM
problem.

Similarly to (19), the relaxed problem of (16) is given as

EEM—Relaxed :
> REF(W,V,A)+ 3 REP(w,V,A)
neN

max &5~ & MM
w.V.A > (Wl + w2l + [ VI[2) + Po
(42a)
s. t. [Almn €[0,1], Ym e M,neN, (42b)

(14b), (14c¢), (14d), (14e), (14g). (42c)

We first introduce a new variable ¢ > 0 which satisfies the
constraint

e t(lwi |l + llwa|* + V") + Po <t (43)
to rewrite the relaxed EEM problem (42) equivalently as
RIP(w,V,A) REP(w,V,A)

2 D

meM neN

max Es 2
w,V, a,t b

(44a)

s. t. (14b), (14c), (14d), (14e), (14g), (42b), (43). (44b)

The equivalence between (42) and (44) can be easily verified
by the fact that constraint (43) must hold with equality at



optimum. Although problem (44) is highly non-convex, it can
be transformed to the convex program by adopting the same A
framework as the SEM problem (20). By reusing the variables
introduced in (20), problem (44) can be equivalently expressed

as
c A

w,VrPﬁ,}é,'y,t & = m;,, em + Tg;\/en (45a)

s. t. SINRp(W,V,A) > 1/ym, Yme M, (45b)

SINR,(w,V,A) >1/v,, VYneN, (45¢c)

In(l141/vm)/t > em, VYmeM, (45d)

In(141/v,)/t > e,, VneN, (45e)

In(1+1/9,) >R, VmeM, (451)

In(1+1/y,) >R,, VneWN, (45g)

(14d), (14e), (14g), (42b), (43), (45h)

where € £ {e,,, €n }mer.nen are new variables. In problem
(45), non-convex parts include (45b)-(45g) and (14d) which
are already addressed in Section III, except for (45d) and
(45e). The function In(1+ 1/v)/t with v € {ym, W} is
convex in (v, t), which can be approximated at a feasible point
(v*), (%)) as [44, Eq. (18)]:

In(1+1/7) _ 2mn(1+ 1/7") 1
t = (%) ) () 1)
In(1 4+ 1/~
. v RLICRE Vol M
() (v(®) 1 1) (t™)
2 BW(y,t), Wt > 0,4 > 0.

In summary, at the (k+1)-th iteration we solve the following
convex program:

WI’I{%XSZ = Z em + Z én (47a)
ey, Tt meM neN
s.t. B (ym,t) > em, YmeM, (47b)
B (1,,t) > en, Vn€EN, @7c)
A (v)) > Ry, Vmoe M, (47d)
A (7)) > R,, VneN, (47e)
(14e), (14¢), (27), (31), (34), 37),
(39b), (42b), (43), (471)

where A" () was defined in (38).

We outline the proposed iterative algorithm for solving the
EEM problem (16) in Algorithm 2. Generating Initial Feasible
Point For EEM Problem: To generate the initial feasible point
for the EEM problem, we apply the similar initialization
approach of the SEM problem by successively solving the
following convex optimization problem:

A ; (%) R (%) _ R
Jnax OgEm min, {A (Ym) = Ry A (1) — R,
e,y,T,t neN,kex

E (w, V) — ek} (48a)

s. t. (14e), (14g), (27), (31), (34), (39b),

(42b), (43), (47b), (47c), (48b)

Algorithm 2 Proposed Iterative Algorithm for Solving EEM
Problem (16)
1: Initialization: Set x := 0, (w*, V*, A*):=0, and generate
an initial feasible point (w(®), V() A(0) ~(0) +(0) 4(0))
for (45) by solving (48).
2: repeat
3:  Solve the convex program (47) to obtain the optimal
solution (wW*, V* A* ~* 7% t*);
4 Update (W(K-'rl)’ \7(%—‘,—1)7 A(fi-‘rl)’ ,y(f-f,-&-l), T(»@—i—l), t(f-@-&-l))
— (W*, V*, A*, ,7*, T*, t*);
Set kK =k +1;
. until Convergence
. Update (w*, V*) = (w), V(®)) and A* as (40);
: Calculate &~ in (16a) based on (w*, V*, A*);
: Output: &~ and the optimal solution (w*, V*, A*).

until reaching Jggy > 0.

V. PROPOSED ALGORITHM FOR EE-EH TRADE-OFF
PROBLEM

In this section, the EE-EH trade-off is provided to show the
resource allocation problem for the usage of power in the net-
work. Specifically, the EE-EH problem trade-off is equivalent
to the multi-objective optimization problem of balancing the
EE and EH maximization. From (18), the EE-EH problem can
be rewritten as
EE-EH : max Ter e £

W7 b
> CnREPw, V,A) + > GRIEA(w, V,A) + > GENw, V)
meM neN kex
(Wl + w22 + [ V]12) + Py

(49a)

s. t. (14b), (14c), (14d), (14e), (14f), (14g), (49b)

where (,,, = a/R,, ¢n 2 /R, and ¢, = (1 — a)/Ey. The
relaxed problem of (49) is

EE-EH—Relaxed : max 7_;3EEH £
w,V A

Z CTYLR];[SP(Wv Va A) + Z CHRI;ILUP(Wv Va A) + Z Ck‘EiL(Wa V)
meM neN kek

w2 + w2 + [ VI[2) + Py

(50a)
s.t. [Almn €10,1], VmeM,neN, (50b)
(14b), (14¢), (144d), (14e), (14g). (50¢)

In the same manner with (45), we can further equivalently
rewrite problem (50) as

NL V
Juax > <mem+2<nen+24kw (51a)

e,‘y’,t " mem neN ke

s. t. (14d), (14e), (14g), (43), (45b) — (45g), (50b). (51b)

Given the develoRments in Section IV, only the non-concave
function kZK Ckw in (51a) needs to be tackled. By
c
)

. . . A E“,L(W,V
introducing new variables z = {zj }rek, kZ)C Cr =25+ can
€



be equivalently expressed as

z
PRIV (52)
keKx
which imposes the constraint
-1
[1 + exp(fak(Ek(w, V) — bk))] - Qk Z Zk . (53)

By Lemma 1, the concave lower bound of % in (52) is given

as
/ (k) (k)
2k . 24/ 2 2 B Zk

R 2 n(k)
For constraint (53), it follows that
-1
—Q >
(53) < (1 + uk) Qr > 2z, Vk € K, (55a)
exp(fak(Ek(w,V) — bk)) < ug,Vk € K, (55b)

where u £ {uy }rex are new variables. Constraint (55a) can
be further rewritten as

1—Qp — Qpug — 21 > Up2k- (56)

We note that the function uyz;, is jointly concave with respect
to ur and z; on the domain u; > 0,2 > 0, and its convex
upper bound can be found by recalling Lemma 2 as

u(”) (F») R
Uk 2K < ( (ﬁ) k + (n) 2) :X(K)('zkauk)' (57)
For constraint (55b), we have
Ex(w, V) + ak_l In(ug) > by. (58)

It is noted that the function Ex(w, V) is convex and its lower
bound approximation can be obtained by using the same
approach in (36). The function In(uy) is a concave on the
domain uy > 0, and its lower bound inner approximation can
be found by applying [5, Eq. (32)] as

(H)
k2 308 ().

In(ug) > In(u,, ( )) +1-— »
k

(59)

As a result, constraint (55) is iteratively replaced by the
following convex ones:

{ 1—Qp — Qpuy, — 2z > X" (23, ),
E (w, V) + ar 10" (ug) > by

(60a)
(60b)

Based on the discussion above and the approximations in
(47), we solve the following convex program at the (x + 1)-th

iteration:
WI\I}aX 7;:]5 EH — Z Cmem + Z Cnen +Z<kAk/B Zka )
~,T,z,u, { meM neN ke
(61a)
s. t. (l4e),(14g),(27),(31),(34), (37),
(39b), (43), (47b), (47c), (47d),
(47e), (50b), (60). (61b)

In Algorithm 3, we describe the proposed IA-based algorithm
for solving the EE-EH problem (18).

Algorithm 3 Proposed Iterative Algorithm for Solving EE-EH
Problem (18)

1: Inmitialization: Set « = 0, (w*,V*A*) =
0, and generate an initial feasible  point
(w0, V(O A ~(0) (0 Z(O)’u(0)7t(0)7) for (51) by
solving (62).

2: repeat

3:  Solve the convex program (61) to obtain the optimal

solution (W*, V* A* ~* 7% z* u* t*);

4: Update (W(n+1), V(fi+1)’ A(fi+1)’ ,.Y(K—‘rl), T(K+1), Z(f-c+1)7
u(n+1), t(n+1)) — (W*, V*, A*7’7*7 T*, Z*7 u*7 t*);
Set k :=r +1;

: until Convergence

. Update (w*,V*) = (w(*), V(®)) and A* as (40).

: Calculate Tge.gy in (18a) based on (w*, V* A*).

: Output: Tgg.gy and the optimal solution (w*, V*, A*).

Generating Initial Feasible Point For EE-EH Problem: To
initialize the iterative procedure of Algorithm 3, we succes-
sively solve the following simpler convex program of (61):

max o, =
EE-EH —

w,V,A e,

v,T,z,u,t

() _R
min, {A (Ym) — Rim,

neN, kGIC
A® (3,) = Ry, B (w, V) — 9k} (62a)

s. t. (14e), (14g), (27),(31),(34), (39b),

(43),(47b), (47¢), (50b), (60), (62b)

until reaching dgg.gy > 0.

VI. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Convergence Analysis

In this subsection, we theoretically provide the convergence
analysis of the proposed algorithms. We recall that Algorithms
1, 2 and 3 are developed to solve the relaxed problems (19),
(42) and (50), respectively. For compact representation, we
define the sets of optimization variables and updated variables
of Algorithms 1, 2 and 3 as

SSEM é {Wa V7 Aa v, T}a and

S £ () V(R AR (%) (),

SEEM é {W7 Va Aa '77 T, t}a and

SUE) & (wlm) VR A A (5) 1) 4()y
SEE~EH é {W> V7 Aa YT, ta z, u}a and

S8 L) Y® AR A8 (0) (8) ) )y,

respectively. The convergence results of Algorithms 1, 2 and
3 for solving the relaxed problems are stated in the following
proposition.

Proposmon 2 Algorithms 1, 2 and 3 produce the sequences
{SSEM} {SEEM} and {Sé’g)EH of improved solutions of (20),
(45) and (51) (hence, (19), (42) and (50)), respectively, which
converge to a Karush—Kuhn—Tucker (KKT) point.



Proof: The convergence of IA-based algorithms can be
found in [34]. To be self-contained, we provide the proof of
Proposition 2 in Appendix B. [ ]

Remark 3. From Proposition 2, the obtained solutions of Al-
gorithms 1, 2 and 3 for solving the relaxed problems converge
at least to local optima which satisfy the KKT conditions. The
performance loss of the proposed algorithms compared to the
optimal solution is mainly attributed to the use of the rounding
function in (40). However, we have numerically observed that
the solution of the relaxed binary variables at optimum is
very close to 0 or I, resulting in a very slightly sub-optimal
solution. The gap between the proposed algorithms and the
optimal one (i.e., brute-force search) will be elaborated in
Section VII.

B. Complexity Analysis

We now provide the worst-case per-iteration complexity
analysis of Algorithms 1, 2 and 3. It is clear that the complex-
ity of the proposed algorithms is mainly contributed by solving
the convex programs (i.e., Step 3). The convex optimization
programs (39), (47) and (61) only involve SOC and linear
constraints, leading to a low computational complexity. For
the sake of notational simplicity, we denote by n. and m.
with ¢ € {1, 2,3} the numbers of scalar optimization variables
and linear/SOC constraints, respectively. The worst-case per-
iteration computational complexity of Algorithms 1, 2 and 3
is provided in Table I.

VII. NUMERICAL RESULTS

In this section, we present illustrative numerical results
for the achievable performance of the proposed algorithms.
Following [5], [36], [45], we consider the small cell downlink
network topology with K = 5 energy users, M = 3
information users in zone-1, N = 4 information users in zone-
2, the number of antennas at BS L = 7. The large-scale fading
is modeled as py £ 10797L/10, where opy, presents the path
loss (in dB). Without loss of generality, we set the target rate
threshold of all information users to R = R,, = R,. The
obtained SE results in nats/sec/Hz are divided by In(2) to
achieve the corresponding results in bits/sec/Hz. Unless stated
otherwise, the general simulation parameters used in this paper
are taken from [5], [26], and shown in Table II. The convex
solver SDPT3 [46] and the toolbox YALMIP [47] are used in
the MATLAB environment to solve the convex program, where
the iterative procedure of each algorithm is terminated when
the increase in objective function between two consecutive
iterations is less than 1075. The simulation result in each
figure is obtained by averaging over 1000 independent channel
realizations.

To emphasize the effectiveness of the proposed pairing
approach, we compare the performance of HUP scheme with
that of RUP and MUB schemes. The solutions for SEM, EEM
and EE-EH problems of MUB scheme can be obtained by
setting all the elements of matrix A in (39), (47), and (61),
respectively, to be zero. In RUP scheme, if two users are
randomly paired, the corresponding element of matrix A will

be set to one, so that the new pairing matrix is obtained. Then,
by replacing the matrix A in (39), (47), and (61) with the new
pairing matrix in the previous step, we obtain the solutions of
the RUP scheme for SEM, EEM and EE-EH problems, respec-
tively. With these arrangements, the RUP and MUB schemes
can be simulated from the problem of HUP scheme. Moreover,
we provide the simulation results of the optimal scheme, i.e.,
brute-force search (BFS) algorithm, to find the best user-
pairing scheme among max (M, N)!/(|N — M|)! possibilities.
The complexity of each subproblem in the BFS algorithm can
be calculated in the same way with Algorithm 1 but without
binary variables. The numbers of scalar optimization variables
and linear/SOC constraints in the BFS algorithm are np =
(L+3)(M+N)+LK and mp = 2MN+3(M+N)+K +1,
respectively. Therefore, the total complexity of BFS algorithm
is max(M, N)!/(|N — M|)! x O(n%m%® + m%>), which is
very high computational complexity even for networks of
medium size. Therefore, it is utilized typically for benchmark-
ing purposes.

Fig. 2 illustrates the typical convergence behavior of Al-
gorithms 1, 2 and 3 for a given set of channel realizations
which are generated randomly for three cases with Pgg™ = 35
dBm. Each point on the curve of Figs. 2(a), 2(b), and 2(c) is
plotted by solving problems (39), (47), and (61), respectively.
As can be observed, three algorithms converge to their optimal
values within 10 iterations because they can search for an
improved solution over the whole feasible set in each iteration.
It also reveals the effectiveness of our approaches in terms
of generating the initial points for Algorithms 1, 2 and 3 in
(41), (48), and (62), respectively, which reduces the number
of iterations required for convergence.

We study the average spectral efficiency of the considered
schemes against the power budget, Pgg™, as shown in Fig.
3(a). In this figure, results obtained by BFS algorithm are
labeled as “BFS scheme”. As can be observed, average SEs
of all schemes are linearly increased with respect to Pgg™
because the BS with high power budget can provide better
services to ID users. As expected, the BFS scheme provides
the highest SE because of finding the best user-pairing scheme
among all possibilities. The gap between the BFS scheme and
the proposed HUP one is mainly due to the introduction of the
rounding function in (40) (after obtaining the optimal solution
to recover exact binary values). The loss of performance of
the proposed HUP scheme over the BFS one is illustrated in
Fig. 3(a), which is also quantified in Table III. It can be seen
that the gap is relatively small and narrower when the BS’s
transmit power increases. However, the BFS scheme requires
extremely high complexity since the number of subproblems
scales exponentially with the number of users, and thus, it
only serves as a benchmark scheme. Statistically, the SE of
the proposed HUP scheme only deviates around 2% from the
optimal SE which reveals the excellent performance with much
less complexity than the BFS scheme. It is not surprising
that the proposed HUP scheme outperforms the RUP and
MUB ones in all regions of Pgg™. The reason is that the
HUP scheme optimally selects two suitable users with distinct
channels for pairing to achieve the largest possible SE while
the RUP scheme selects randomly any two users for pairing



TABLE I: THE PER-ITERATION COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHMS

Alg. Ne Me Per-iteration complexity
Alg. 1 (L+3)(M+N)+MN+ LK 3BMN +4(M +N)+ K +1 O(nimi® +mi?)
Alg. 2 (L+3)(M+N)+ MN+LK+1 3BMN +4(M+N)+ K +2 O(nim3® +m3?)
Alg.3 | (L+3)(M+N)+ MN+LK+2K+1 | 3MN+4(M+ N) +3K +2 O(n3m3° +m3"®)
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Fig. 2: Convergence of Algorithms 1, 2, and 3 with HUP, RUP and MUB schemes.

TABLE II: SIMULATION PARAMETERS

Parameters

[ Value

Bandwidth

Noise power spectral density, 03,1 =
o

Power consumption at BS, PBdsy" and
Pige

Power consumption at users, PISthL =
Pie = Pgie

Path loss at distance d (km), opr,
Radius of the cell, R

Coverage of the inner zone, r
Distance from BS to nearest user
Power budge at the BS_, P]gnsax

Target rate threshold, R

Target energy harvesting threshold, Ey,
Parameters for non-linear EH model,
My, and (ag, bg), Vk € K

20 (MHz)
—174 (dBm/Hz)

10 and 15 (dBm)
5 (dBm)

140.7+37.6log,o(d) (dB)
500 (m)

200 (m)

> 10 (m)

35 (dBm)

1 (bps/Hz)

—55 (dBm)

24 mW and (150,0.0014)
[10].

TABLE III: THE AVERAGE SE OF THE BFS AND HUP
SCHEMES

Pss (dBm) 30 35 40 45 50
BFS scheme
(bits/s/Hz) 20.3573 | 30.4024 | 38.6645 | 47.7109 | 56.0820
HUP scheme

(bits/s/Hz) 18.6994 | 28.6573 | 37.3895 | 46.5310 | 55.6715

and it is apparently provided lower performance. Moreover,
there is no user pairing in MUB scheme resulting in the
worst performer. To further demonstrate the effectiveness of
designing energy beamformer on the SE performance, we
plot the average SE of the HUP scheme without energy
beamforming, i.e., V = 0, which is labeled as “HUP w/o EB”.
As can be seen, the proposed HUP scheme greatly outperforms
its counterpart without EB because the BS has to sacrifice
a part of its energy to power EH users as well as satisfy

constraint (14d). This leads to the poor average SE of HUP w/o
EB scheme, especially at the low value of the power budget
Pgg>.

Fig. 3(b) reveals the average SE of the considered schemes
as a function of the minimum rate requirement of each ID
user. As can be observed, the highest average SE is achieved
by the HUP scheme while its counterpart without energy
beamforming is the lowest performer. As mentioned earlier,
the BS in HUP w/o EB scheme has to sacrifice its energy
to transfer enough power to EH users while the QoS of
ID users is still guaranteed. This easily depletes the BS’s
energy when the user’s QoS requirement is high, leading to
the lowest system SE performance. In MUB scheme, the BS
also allocates much power budget to serve separately users in
different zones; thus, the average SE is degraded when the
ID user’s QoS requirement is increased. Differently, in RUP
scheme, an ID user can mitigate the interference from the other
one when they are in a pair, thus providing higher system SE.
However, randomly selecting two users for pairing is not a
favorable method when they have similar channel conditions.
The proposed HUP scheme solves this drawback by selecting
optimally two users with distinct channel conditions for pair-
ing, thus it obtains quickly the satisfactory solution of ID user
pairing and EH users constraints. This allows the system to
maintain its QoS requirement even under the high data rate
regime.

Fig. 3(c) plots the average SE against the number of
antennas equipped at the BS, L. As can be observed, the
average SE of all scheme is significantly increased when L
is large. These results can be explained by considering the
fact that the more degrees of freedom (DoF) are contributed
to the system when the number of antennas is increased, the
more efficient resource is utilized. Again, the proposed HUP
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Fig. 3: Average SE versus P, R, and L with EH threshold E; = —55 dBm.

scheme enjoys a considerable improvement of the average SE
as compared to the RUP, MUB and HUP w/e EB schemes.
For small L, ie., L < 8, the performance gap between
HUP and MUB schemes is large due to the lack of DoF,
arising the importance of using NOMA transmission in the
considered network. When the number of antennas is larger
than the total number of information users, i.e., L > 7, the
effect of interference-free conditions becomes less significant
in MUB scheme. Thus, the SE of MUB scheme is increased
asymptotically to the RUP and HUP ones. A small number
of antennas equipped at the BS result in the energy depletion
for the HUP w/e EB scheme, and thus it again witnesses the
lowest SE performance.

Fig. 4(a) sketches the cumulative distribution function
(CDF) of the considered schemes as a function of the average
SE with E;, = —55 dBm. It can be seen that the probabilities
of feasibility of all schemes are smaller when the average SE is
increased. In particular, the HUP scheme achieves the highest
performance among the considered schemes, confirming the
advantage of the proposed hybrid user pairing method and
energy beamforming design. Besides, the HUP w/o EB scheme
has a high probability that its achievable SE is less than 22
dBm, showing that it is an unstable design for the MISO-
NOMA SWIPT systems. Finally, the HUP scheme reaches 1
Mbits/s and 2.2 Mbits/s of SE higher than the RUP and MUB
schemes, respectively, in about 85% of simulated trials.

Fig. 4(b) shows the average SE versus target EH threshold
Ey in a setup with Pgg* = 35 dBm and R =1 (bps/Hz). As
can be observed, the average SE-target EH threshold regions
of all scheme are narrowed when Ej, is increased. Particularly,
the SE of HUP w/o EB scheme starts to decrease dramatically
at the small value of energy threshold, i.e., I_E;c = —60 dBm,
while other schemes begin to diminish at E, = —45 dBm.
Specifically, the SE of all schemes is infeasible when Ej, is
larger than —32 dBm, which also reveals a high influence
of energy threshold on the system SE. For a small Ej, the
small portion of received signal can fulfill the harvested power
requirement, and thus the BS mainly allocates its power for ID

users. However, when the Ej, becomes large, more power needs
to be allocated to EH users to make the (14d) feasible, which
results in the decrease of received power at ID users, and
consequently the system SE. Moreover, the performance gain
of HUP scheme over the MUB and RUP schemes is evident,
suggesting an effective scheme for MISO-NOMA networks
under non-linear EH circuit condition.

In Fig. 4(c), we show the effect of the total number of
users on the average SE. We set the number of energy users
as K = 12, the number of ID users as M = N € [2,5], and
number antennas as L = 7. The average SE first increases and
achieves its maximum at 18 users (K = 12, M = N = 3),
then it degrades with M and N. The reason is that the system
lacks of the available DoF for leveraging multiuser diversity
when the number of ID users is larger than the number of
antennas at the BS. Therefore, the system can serve a larger
set of users as long as it still maintains the available DoF
for transmission. Again, the proposed HUP scheme shows its
highest SE performance over the existing ones.

In Fig. 5(a), we show the average EE as a function of the
power budget Pg§™ with different target rate thresholds R. As
can be observed, the EE of all schemes is very small at the low
value of P5g™ because the EE is proportional to the system SE
at low value of the Pgg™, especially the HUP w/o EB scheme
witnesses the worst performance. When PE§™ is increased, the
EE of all schemes is also escalated. However, for a sufficiently
large Pgg™, the system EE is not increase any more due to the
effect of large power consumption. The EE of the HUP w/o
EB scheme is asymptotic to the HUP one at high region of
Pgg™, i.e., PEg™ > 40, because the power budget at the BS is
now sufficient to allocate for the information and energy users.
Finally, HUP scheme outperforms RUP one which by its turn
considerably outperforms MUB one over the whole range of
Pgg>. The reason is that the HUP scheme using hybrid user
pairing approach with optimal pairing factor [A],,,, suppresses
the interference from unwanted users in (9), which improves
the SE and EE performances. On the other hand, the MUB
scheme deploying conventional beamforming results in poor



——HUP scheme 30 35+
e
—=—RUP scheme 1 —~a= a0l
0.8 [|_o—MUB scheme N o5 /é\
—HUP w/o EB Z o,
& 2,
06+ 20
= = =20
(@) m @M
o € 15 n
0.4] o ¢ 15 \
ki g 10 {—=—HUP scheme z ——HUP scheme
2 = 101l _. RUP sch
0.2+ < —=—RUP scheme = —— scheme
5 —e—MUB scheme 5l —+—HUP w/o EB
——HUP w/o EB ——MUB scheme !
0 oF—————— 0

20 25 30
Average SE (Mbits/s)

(a) CDF of the system SE

35 -70 -60

Target EH threshold, Ej
(b) Average SE versus Ej

-50 -40 18 20
The total number of users

-30 16 22

(c) Average SE versus the number of users

Fig. 4: CDF of the system SE and effects of Ej and the number of users on the average SE.

0.2 0.3 - -
——HUP scheme
A 0.18 ) —=—RUP scheme
x 0.25 1
. 0.15 ; . —o—MUB scheme
g = 0.16 2 _
> > = R = 1 Mbits/s
= E= 5 024
& &£ o014 =]
< 04 & <)
m = 0.12 @ 015 i
&) 4 = Lj R = 2 Mbits/s
% 0 0.1 & o1
= = < 0.
€ 0.05 ——HUP scheme || 4 0.08 J =
< —=—RUP scheme <P ——HUP scheme < 0.05
——MUB scheme 0.06 —=—RUP scheme || ’
—+—HUP w/o EB ——MUB scheme
0 : : : : 0.04 ‘ ‘ : 0
25 30 85 40 45 50 4 6 8 10 12 5 w1 20 25 30
Pyg(dBm) Number of antennas at the BS, L Pg¥"(dBm)

(a) Average EE versus Pgé™

(b) Average EE versus L

(c) Average EE versus ng"

Fig. 5: Average EE against ng”, L, and PE&>.

performance.

Fig. 5(b) depicts the average EE as a function of the number
of antennas at the BS L. We can see that the EE of all
schemes is first increased and then slightly decreased at a
certain value of L. In MISO system, deploying more antennas
offers additional DoF, i.e., spatial diversity gain, which by its
turn increases the SE, but also consumes more power. When
L is small, the increase of SE is higher than that of the total
power consumption resulting in the increase of EE. Otherwise,
when L is sufficient large, the opposite effect is shown in
Fig. 5(b) with the same reason discussed in Fig. 5(c).

We now shift our focus to the effect of dynamic power
consumption ng" on average EE for three schemes with
different rates R as shown in Fig. 5(c). As expected, the
proposed HUP scheme offers a higher EE gain over the RUP
and MUB ones, especially at a small value of ng". The
reason is that for small ng", the power consumption in (15) is
dominated by the summation of beamforming power wi, wo
and V, leading to the energy-efficient for all schemes, from

which the proposed HUP scheme allocates the power more
optimal than the other ones. When Pgé’” is increased, all
schemes achieve almost the same energy efficiency and their
EE is reduced significantly because the power consumption
in (16) is now dominated by the circuit power consumption,
resulting in the poor EE performance. A further interesting
observation drawn from Fig. 5(c) is that the MUB scheme
undergoes considerable degradation in terms of EE compared
to HUP scheme when R is increased, which confirms that the
proposed HUP scheme can guarantee user-specific QoS at high
data rate regime.

Fig. 6(a) reveals effects of priority parameter o on the
average EE and EH. We set the target EH threshold E;, = —55
dBm, and the minimum rate requirement R, =R, =1
bps/Hz. As expected, the HUP scheme always shows its
superiority over other ones in terms of EE. As can be observed,
three schemes give the same average amount of harvested
power because the user pairing method has no effect on EH
users. When « is sufficient large, the EE-EH trade-off function
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reduces to the EEM problem, and the trade-off function (17)
reduces to the EH problem when « is relatively small, which
are consistent with observations in Remark 2.

In Fig. 6(b), we plot the trade-off between achieved EE and
total harvested power, which is accomplished by using the
same setup as Fig. 6(a) and sweeping the priority parameter o
over interval [0, 1]. As can be observed, with respect to «, the
average EE is decreased when the average harvested power
is increased. The reason is that when « is decreased, the EH
problem becomes increasingly dominant in (17), which results
in the increase of total harvested power. The opposite effect
can be made for EE when « is decreased.

VIII. CONCLUSIONS

In this paper, we proposed the hybrid user pairing beam-
forming in MU-MISO-NOMA systems with SWIPT to im-
prove the spectral and energy efficiencies under a practical
non-linear EH circuit model. To improve the SE and EE,
we developed the novel HUP scheme to optimally pair two
information users, which reduces the number of associa-
tion users. We then formulated the maximization problems
of spectral and energy efficiencies under user-specific QoS
requirements, EH constraint and power budget at the BS
by jointly optimizing beamformers and pairing matrix. By
introducing clever and efficient transformations to approximate
the non-convex design problems, we equivalently transformed
them into non-convex ones yet with more tractable forms,
where binary variables are relaxed to be continuous. The low-
complexity IA-framework-based algorithms were proposed
for their solutions, which arrive at least local optima with
convergence guaranteed. We further considered the general
EE-EH trade-off optimization problem which was flexibly
switched to the EEM or EH problems depending on the target
design of communication systems. Numerical results showed
the SE and EE improvements of the proposed HUP scheme

over state-of-the-art approaches, i.e., random user pairing and
conventional multiuser beamforming schemes.

APPENDIX A
PROOF OF PROPOSITION 1

We will show that constraints (20b)-(20e) are hold with
equalities at optimum. Denote by S* £ {w*, V* A* r* ~*}
the optimal solution of (20). Let us begin with the proof of
constraints (20d) and (20e) first by contradiction. Assuming
that inequalities of (20d) and (20e) are hold at optimum, i.e.,
In(1 + 1/~%,) > 7, for some m and In(1 + 1/4%) > r}
for some n. There exist Ar,,, > 0 and Ar,, > 0 that satisfy
In(1 4 1/4%) > 75 + Ary, and In(1 + 1/9%) > 7% + Ary,.
That is to say 7, + Ar,, and r; + Ar, are also feasible to
problem (20), meaning that a strictly larger objective (20a) can
be obtained. This contradicts with the assumption that S* is
an optimal solution. Thus, it proves that the constraints (20d)
and (20e) must hold with equalities at optimum. The similar
proof steps can be applied for constraints (20b) and (20c). The
optimal solution (w*, V*; A*) of (19) can be obtained easily
from the optimal solution set S* of (20), and then they share
the same optimal objective value.

APPENDIX B
PROOF OF PROPOSITION 2

We now provide a sketch of the proof to verify the conver-
gence of Algorithm 1, and that of Algorithms 2 and 3 follows
immediately. Let us denote by Rs~(Ssgy) and 7?(;:) (Sseu) the
objectives of (20) and (39), respectively. Due to the use of
inner convex approximations, it is true that

Ry~ (Ssm) > RYY (Ssem), (63)
and - -
Ry (Ski) = R (SE). (64)



Recalling that approximate functions presented in Sections III
satisfy property A given in [42]. That is to say, the optimal
solution obtained at iteration « is also feasible to the convex
program (39) at iteration (x + 1) for the SEM problem. As a
result, we have

Ry (S ) = REFV(SGHY) > RE(sg ™)

> RU(SG) = Ry (S (65)

This shows that S{& " is a better solution for (20) than S\
It also holds true for (19) due to Proposition 1. Since the
sequence {sé’g&} is bounded, there exists a stationary point
Sy SO that:

KE{POO RZ(Sé’g})q) = 7_QZ(SSEM)-

(66)

By [34, Theorem 1], the stationary point Sggy of the sequence
{Sé’g&} is a KKT point. As a result, Algorithm 1 generates a
non-decreasing sequence of objectives, i.e., 7_3('”1) > 73(”),
which is upper bounded due to the power constraint. Thus,
Algorithm 1 is probably convergent.

REFERENCES

[1] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V.
Poor, “Application of non-orthogonal multiple access in LTE and 5G
networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185-191, Feb. 2017.

[2] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey
of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 3, pp. 2294-2323, 3rd Quart. 2018.

[3] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-
orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15,
no. 1, pp. 537-552, 2016.

[4] H. V. Nguyen, V.-D. Nguyen, O. A. Dobre, D. N. Nguyen, E. Dutkiewicz,
and O.-S. Shin, “Joint power control and user association for NOMA-
based full-duplex systems,” IEEE Trans. Commun., vol. 67, no. 11, pp.
8037-8055, Nov. 2019.

[S] V.-D. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and O.-S. Shin,
“Precoder design for signal superposition in MIMO-NOMA multicell
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2681-2695,
Dec. 2017.

[6] M. S. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and
power allocation for uplink and downlink non-orthogonal multiple access
(NOMA) systems,” IEEE Access, vol. 4, pp. 6325-6343, Aug. 2016.

[71 Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G
nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Veh.
Tech., vol. 65, no. 8, pp. 6010-6023, Aug. 2016.

[8] T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and
J. Li, “Simultaneous wireless information and power transfer (SWIPT):
Recent advances and future challenges,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp. 264-302, 1st Quart. 2018.

[9] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical
non-linear energy harvesting model and resource allocation for SWIPT
systems,” [EEE Commun. Lett., vol. 19, no. 12, pp. 2082-2085, Dec.
2015.

[10] J. Guo and X. Zhu, “An improved analytical model for RF-DC con-
version efficiency in microwave rectifiers,” in IEEE MTT-S Int. Microw.
Symp. Dig. 1EEE, Jun. 2012, pp. 1-3.

[11] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal user
pairing for downlink non-orthogonal multiple access (NOMA),” IEEE
Wirel. Commun. Le., pp. 1-4, Jul. 2018.

[12] W. Liang, Z. Ding, Y. Li, and L. Song, “User pairing for downlink non-
orthogonal multiple access networks using matching algorithm,” IEEE
Trans. Commun., vol. 65, no. 12, pp. 5319-5332, Dec. 2017.

[13] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple
access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462—
1465, Aug. 2015.

[14] L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia,
“Millimeter-wave NOMA with user grouping, power allocation and
hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11,
pp. 5065-5079, Nov. 2019.

[15] L. Dai, B. Wang, M. Peng, and S. Chen, “Hybrid precoding-based
millimeter-wave massive MIMO-NOMA with simultaneous wireless in-
formation and power transfer,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 1, pp. 131-141, Jan. 2019.

[16] X. Chen, F-K. Gong, G. Li, H. Zhang, and P. Song, “User pairing
and pair scheduling in massive MIMO-NOMA systems,” IEEE Commun.
Lett., vol. 22, no. 4, pp. 788-791, Apr. 2017.

[17] Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, “Fairness of
user clustering in MIMO non-orthogonal multiple access systems,” IEEE
Commun. Lett., vol. 20, no. 7, pp. 1465-1468, 2016.

[18] B. Su, Q. Ni, and W. Yu, “Robust transmit beamforming for SWIPT-
enabled cooperative NOMA with channel uncertainties,” IEEE Trans.
Commun., vol. 67, no. 6, pp. 4381-4392, Jun. 2019.

[19] X. Zhang, Y. Wang, F. Zhou, N. Al-Dhahir, and X. Deng, “Robust
resource allocation for MISO cognitive radio networks under two practical
non-linear energy harvesting models,” IEEE Commun. Lett., vol. 22, no. 9,
pp. 1874-1877, Sept. 2018.

[20] Z. Sheng, H. D. Tuan, T. Q. Duong, and H. V. Poor, “Beamforming
optimization for physical layer security in MISO wireless networks,”
IEEE Trans. Signal Process., vol. 66, no. 14, pp. 3710-3723, Jul. 2018.

[21] Y. Xu, C. Shen, Z. Ding, X. Sun, S. Yan, G. Zhu, and Z. Zhong, “Joint
beamforming and power-splitting control in downlink cooperative SWIPT
NOMA systems,” IEEE Trans. Signal Process., vol. 65, no. 18, pp. 4874—
4886, Sept. 2017.

[22] O. Tervo, A. Tolli, M. Juntti, and L. Tran, “Energy-efficient beam
coordination strategies with rate-dependent processing power,” IEEE
Trans. Signal Process., vol. 65, no. 22, pp. 6097-6112, Nov. 2017.

[23] O. Tervo, L.-N. Tran, H. Pennanen, S. Chatzinotas, B. Ottersten,
and M. Juntti, “Energy-efficient multicell multigroup multicasting with
joint beamforming and antenna selection,” IEEE Trans. Signal Process.,
vol. 66, no. 18, pp. 4904-4919, Sept. 2018.

[24] O. Amin, E. Bedeer, M. H. Ahmed, and O. A. Dobre, “Energy
efficiency—spectral efficiency tradeoff: A multiobjective optimization ap-
proach,” IEEE Trans. Veh. Tech., vol. 65, no. 4, pp. 1975-1981, 2015.

[25] J. Tang, D. K. So, E. Alsusa, K. A. Hamdi, and A. Shojaeifard,
“On the energy efficiency—spectral efficiency tradeoff in MIMO-OFDMA
broadcast channels,” IEEE Trans. Veh. Tech., vol. 65, no. 7, pp. 5185—
5199, Jul. 2015.

[26] Q.-D. Vu, L.-N. Tran, R. Farrell, and E.-K. Hong, “An efficiency
maximization design for SWIPT,” IEEE Signal Process. Lett., vol. 22,
no. 12, pp. 2189-2193, 2015.

[27] Z. Chang, L. Lei, H. Zhang, T. Ristaniemi, S. Chatzinotas, B. Ottersten,
and Z. Han, “Energy-efficient and secure resource allocation for multiple-
antenna NOMA with wireless power transfer,” IEEE Trans. Green Com-
mun. Netw., vol. 2, no. 4, pp. 1059-1071, Jul. 2018.

[28] V.-D. Nguyen and O.-S. Shin, “An efficient design for NOMA-assisted
MISO-SWIPT systems with AC computing,” IEEE Access, vol. 7, pp.
97 094-97 105, Jul. 2019.

[29] S. Mao, S. Leng, J. Hu, and K. Yang, “Power minimization resource
allocation for underlay MISO-NOMA SWIPT systems,” IEEE Access,
vol. 7, pp. 17247-17 255, Jan. 2019.

[30] Y. Yuan, P. Xu, Z. Yang, Z. Ding, and Q. Chen, “Joint robust beamform-
ing and power-splitting ratio design in SWIPT-based cooperative NOMA
systems with CSI uncertainty,” IEEE Trans. Veh. Tech., vol. 68, no. 3,
pp. 2386-2400, Mar. 2019.

[31] Q. Qi, X. Chen, and D. W. K. Ng, “Robust beamforming for NOMA-
based cellular massive IoT with SWIPT,” IEEE Trans. Signal Process.,
vol. 68, p. 211, Dec. 2020.

[32] O. Tervo, L.-N. Tran, and M. Juntti, “Optimal energy-efficient trans-
mit beamforming for multi-user MISO downlink,” IEEE Trans. Signal
Process., vol. 63, no. 20, pp. 5574-5588, 2015.

[33] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems.” IEEE Trans. Signal
Process., vol. 64, no. 1, pp. 76-88, 2016.

[34] B.R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Operations research, vol. 26,
no. 4, pp. 681-683, 1978.

[35] Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint transmit beamforming and
receive power splitting for MISO SWIPT systems,” IEEE Trans. Wireless
Commun., vol. 13, no. 6, pp. 3269-3280, 2014.

[36] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for
NOMA downlink and uplink transmission based on signal alignment,”
IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438—4454, Jun. 2016.

[37] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming
for MISO interference channels with QoS and RF energy transfer,” IEEE
Trans. Wireless Commun., vol. 13, no. 5, pp. 2646-2658, 2014.



[38] D. Nguyen, L.-N. Tran, P. Pirinen, and M. Latva-aho, “On the spec-
tral efficiency of full-duplex small cell wireless systems,” IEEE Trans.
Wireless Commun., vol. 13, no. 9, pp. 48964910, 2014.

[39] K. Wang, Y. Liu, Z. Ding, A. Nallanathan, and M. Peng, “User
association and power allocation for multi-cell non-orthogonal multiple
access networks,” IEEE Trans. Wireless Commun., Aug. 2019.

[40] O. Arnold, F. Richter, G. Fettweis, and O. Blume, “Power consumption
modeling of different base station types in heterogeneous cellular net-
works,” in 2010 Future Network Mobile Summit, vol. 2010. IEEE, Jun.
2010, pp. 1-8.

[41] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp.
369-395, 2004.

[42] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric
convex approximation method with applications to nonconvex truss
topology design problems,” J. Global Optim., vol. 47, no. 1, pp. 29-51,
May 2010.

[43] V.-D. Nguyen, T. Q. Duong, H. D. Tuan, O.-S. Shin, and H. V. Poor,
“Spectral and energy efficiencies in full-duplex wireless information and
power transfer,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2220-2233,
2017.

[44] V. Nguyen, H. V. Nguyen, O. A. Dobre, and O. Shin, “A new design
paradigm for secure full-duplex multiuser systems,” IEEE J. Sel. Areas
Commun., vol. 36, no. 7, pp. 1480-1498, Jul. 2018.

[45] Z. Chen, Z. Ding, and X. Dai, “Beamforming for combating inter-cluster
and intra-cluster interference in hybrid NOMA systems,” IEEE Access,
vol. 4, pp. 4452-4463, 2016.

[46] K.-C. Toh, M. J. Todd, and R. H. Titiincii, “SDPT3—a MATLAB
software package for semidefinite programming, version 1.3, Optim.
Methods Softw., vol. 11, no. 1-4, pp. 545-581, Jan. 1999.

[47] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput. Aided Control Syst. Design,
vol. 3. Taipei, Taiwan, Sept. 2004.

Toan-Van Nguyen (S’19) received the B.S. degree
in electronics and telecommunications engineering
and the M.S. degree in electronics engineering from
Ho Chi Minh City University of Technology and
Education, Vietnam, in 2011 and 2014, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engineer-
ing in Graduate School, Hongik University, Republic
of Korea. His current research activity is focused
on the mathematical modeling of 5G networks and
machine learning for wireless communications.

}

Van-Dinh Nguyen (S’14-M’19) received the B.E.
degree in electrical engineering from Ho Chi Minh
City University of Technology, Vietnam, in 2012 and
the M.E. and Ph.D. degrees in electronic engineer-
ing from Soongsil University, Seoul, South Korea,
in 2015 and 2018, respectively. He is currently a
Research Associate with the Interdisciplinary Centre
for Security, Reliability and Trust (SnT), University
of Luxembourg. He was a Postdoc Researcher and
| a Lecturer with Soongsil University, a Postdoctoral

Visiting Scholar with University of Technology Syd-
ney, AUS (July-August 2018) and a Ph.D. Visiting Scholar with Queen’s
University Belfast, U.K. (June-July 2015 and August 2016). His current
research activity is focused on the mathematical modeling of 5G cellular
networks and machine learning for wireless communications.

Dr. Nguyen received several best conference paper awards, the Exem-
plary Editor Award of IEEE COMMUNICATIONS LETTERS 2019, IEEE
TRANSACTION ON COMMUNICATIONS Exemplary Reviewer 2018 and IEEE
GLOBECOM Student Travel Grant Award 2017. He has authored or co-
authored in some 40 papers published in international journals and conference
proceedings. He has served as a reviewer for many top-tier international
journals on wireless communications, and has also been a Technical Pro-
gramme Committee Member for several flag-ship international conferences
in the related fields. He is an Editor for the IEEE OPEN JOURNAL OF THE
COMMUNICATIONS SOCIETY and IEEE COMMUNICATIONS LETTERS.




Daniel Benevides da Costa (S’04-M’08-SM’14)
was born in Fortaleza, Ceard, Brazil, in 1981. He
received the B.Sc. degree in Telecommunications
from the Military Institute of Engineering (IME),
Rio de Janeiro, Brazil, in 2003, and the M.Sc.
and Ph.D. degrees in Electrical Engineering, Area:
Telecommunications, from the University of Camp-
inas, SP, Brazil, in 2006 and 2008, respectively.
His Ph.D thesis was awarded the Best Ph.D. Thesis
in Electrical Engineering by the Brazilian Ministry
of Education (CAPES) at the 2009 CAPES Thesis
Contest. From 2008 to 2009, he was a Postdoctoral Research Fellow with
INRS-EMT, University of Quebec, Montreal, QC, Canada. Since 2010, he has
been with the Federal University of Ceard, where he is currently an Associate
Professor.

Prof. da Costa is currently Executive Editor of the IEEE COMMUNI-
CATIONS LETTERS and Area Editor of IEEE OPEN JOURNAL OF THE
COMMUNICATION SOCIETY — Area: Green, Cognitive, and Intelligent Com-
munications and Networks. He is also Editor of the IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS, IEEE TRANSACTIONS ON COMMUNICATIONS,
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and IEEE TRANS-
ACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING. He has
also served as Associate Technical Editor of the IEEE COMMUNICATIONS
MAGAZINE. From 2012 to 2017 and from March 2019 to August 2019, he
was Editor and Senior Editor, respectively, of the IEEE COMMUNICATIONS
LETTERS. He has served as Lead Guest Editor and Guest Editor of several
Journal Special Issues. He has been involved on the Organizing Commit-
tee of several conferences. He is currently the Latin American Chapters
Coordinator of the IEEE Vehicular Technology Society. Also, he acts as a
Scientific Consultant of the National Council of Scientific and Technological
Development (CNPq), Brazil, and he is a Productivity Research Fellow of
CNPq. From 2012 to 2017, he was Member of the Advisory Board of the
Cearé Council of Scientific and Technological Development (FUNCAP), Area:
Telecommunications. Currently, he is Vice-Chair of Americas of the IEEE
Technical Committee of Cognitive Networks (TCCN), Director of the TCCN
Newsletter, and Chair of the Special Interest Group on “Energy-Harvesting
Cognitive Radio Networks” in IEEE TCCN.

Prof. da Costa is the recipient of four conference paper awards. He received
the Exemplary Reviewer Certificate of the IEEE WIRELESS COMMUNICA-
TIONS LETTERS in 2013 and 2019, the Exemplary Reviewer Certificate of the
IEEE COMMUNICATIONS LETTERS in 2016, 2017, and 2019, the Certificate
of Appreciation of Top Associate Editor for outstanding contributions to IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY in 2013, 2015 and 2016, the
Exemplary Editor Award of IEEE COMMUNICATIONS LETTERS in 2016, and
the Outstanding Editor Award of IEEE ACCESS in 2017, and the Certificate of
Appreciation for notable services and contributions to IEEE ACCESS in 2018
and 2019. He is a Distinguished Lecturer of the IEEE Vehicular Technology
Society. He is a Senior Member of IEEE, Member of IEEE Communications
Society and IEEE Vehicular Technology Society.

Beongku An received the B.S. degree in electronic
engineering from Kyungpook National University,
Republic of Korea, in 1988, the M.S. degree in
electrical engineering from the New York University
(Polytechnic), NY, USA, in 1996 and Ph.D. degree
from New Jersey Institute of Technology (NJIT),
NIJ, USA, in 2002, respectively. After graduation, he
joined the Faculty of the Department of Software and
Communications Engineering, Hongik University,
Republic of Korea, where he is currently a Professor.
From 1989 to 1993, he was a senior researcher in
RIST, Pohang, Republic of Korea. He also was lecturer and RA in NJIT from
1997 to 2002. He was a president of IEIE Computer Society (The Institute
of Electronics and Information Engineers, Computer Society) in 2012. From
2013, he also works as a General Chair in the International Conference,
ICGHIT (International Conference on Green and Human Information Tech-
nology). His current research interests include mobile wireless networks and
communications such as ad-hoc networks, sensor networks, wireless cognitive
radio networks, cellular networks. In particular, he is interested in cooperative
communication, multicast routing, QoS routing, energy harvesting, physical
layer security, M2M/D2D, IoT, visible light communication (VLC), cross-
layer technology, 5G/Beyond 5G, NOMA, SWIPT, Machine Learning &
Block Chain, mobile cloud computing. Professor An was listed in Marquis
Who’s Who in Science and Engineering, and Marquis Who’s Who in the
World, respectively.




