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Abstract—Hierarchical Bayesian Kalman filter (HBKF) based
schemes are conceived for doubly-selective sparse channel esti-
mation in orthogonal space-time block coded (OSTBC) multiple-
input multiple-output (MIMO) orthogonal frequency division
multiplexing (OFDM) wireless systems. Initially, a pilot based
multiple measurement vector (MMV) model is formulated for
estimating the OSTBC MIMO-OFDM channel. This is fol-
lowed by the development of a low-complexity, online pilot-
based HBKF (P-HBKF) scheme for tracking the sparse time-
varying frequency-selective channel. The salient advantages of
the proposed P-HBKF technique are that it requires significantly
lower number of pilot subcarriers, while also exploiting the
inherent sparsity of the wireless channel. Subsequently, data
detection is also incorporated in the proposed framework, leading
to the development of a procedure for joint sparse doubly-
selective channel estimation and symbol detection. Recursive
Bayesian Cramér-Rao bounds and closed form expressions are
also obtained for the asymptotic mean square error (MSE)
based on the solution of the Riccati equation for the KF for
benchmarking the performance. Simulation results are presented
for validating the theoretical bounds and for comparing the
performance of the proposed and existing techniques.

Index Terms—MIMO-OFDM, OSTBC, channel estimation,
sparsity, sparse Bayesian learning, Riccati equation, hierarchical
Bayesian Kalman filter, frequency-selective, Cramér-Rao bound

I. INTRODUCTION

Multiple-input multiple-output (MIMO) schemes combined
with orthogonal frequency division multiplexing (OFDM), i.e.,
MIMO-OFDM, have found their way into various standardized
wireless systems such as the Long Term Evolution (LTE/
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LTEA), IEEE 802.11 ac, 802.11 ax, 5G NR and several others
due to the twin benefits of spatial multiplexing gains from
the MIMO schemes coupled with the robustness of OFDM to
multipath fading [1], [2]. Furthermore, orthogonal space time
block codes (OSTBCs) are also attractive for such systems due
to their diversity gain and simplified receiver architecture [3],
[4]. Therefore, OSTBC based MIMO-OFDM, which exploits
the combined advantages of both MIMO-OFDM and OSTBCs,
is eminently suitable for next generation wireless networks.
The enhanced performance gain and spectral efficiency of
such systems is critically dependent on the accuracy of the
channel state information (CSI) available at the receiver [1].
However, channel estimation is quite challenging for high-
Doppler wireless channels, since every time the Doppler
frequency is doubled, we have to double the pilot overhead.
Thus, it is imperative to design accurate channel estimation
schemes for achieving the best performance in OSTBC-based
MIMO-OFDM systems. Various existing contributions in the
literature have therefore addressed this challenging problem, to
varying degrees, using different approaches. A succinct review
of these contributions is presented next.

A. Review of Existing Works

The straightforward pilot based channel estimation tech-
nique has been lavishly studied for employment in OFDM-
based wireless standards, such as DVB-T [5]. However, the
increased pilot overheads can lead to inefficiency in spectrum
utilization, especially in doubly-selective channels, due to the
rapid variation of the channel coupled with a wide bandwidth.
Conventional techniques, such as frequency domain least
squares (LS)/ minimum mean squared error (MMSE) [6] as
well as time domain LS/ MMSE require the transmission
of a large number of pilot symbols, especially in channels
having high delay spreads. This is due to the fact that such
orthodox techniques require an overdetermined system for
channel estimation, and lead to an ill-posed problem when
the number of pilot transmissions is lower than the maximum
number of channel taps in the finite impulse response (FIR)
filter modeling the frequency-selective channel. However, the
conventional techniques do not exploit the sparsity of the
multipath wireless channel arising from the presence of only a
few significant non-zero channel taps in the channel response,
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which has an otherwise large delay spread. Exploiting this
sparsity can lead to a significant reduction in the number of
pilot transmissions required. In this context, the compressed
sensing (CS) techniques proposed in [7], [8] utilize a sparse
signal recovery model for channel estimation. The authors of
[9], [10], have demonstrated the applicability of techniques
such as simultaneous orthogonal matching pursuit (SOMP)
and modified OMP, respectively, for MIMO-OFDM systems.
However, the schemes proposed in [10] are greedy in nature
and their performance is sensitive both to the choice of the
dictionary matrix as well as to the stopping criterion. The
convex-relaxation based least absolute shrinkage and selection
operator (Lasso) [11] and the focal underdetermined system
solver (FOCUSS) [12], which are based on l1 and lp, p < 1
norm minimization, respectively, have also been successfully
exploited for sparse signal estimation. These techniques were
then extended to their respective versions for scenarios with
multiple observation vectors [13] and [14], termed as the group
Lasso (GRP-Lasso) and M-FOCUSS, respectively. However,
while the performance of Lasso depends critically on the
user-defined regularization parameter, that of FOCUSS suf-
fers from convergence problems. An approximate message
passing (AMP) approach has been developed in [15] with
its application to sparse channel estimation shown in [16].
However, a key drawback of the AMP technique is that
its performance deteriorates even for slightly ill-conditioned
dictionary matrices [17], thereby limiting its applicability in
many practical scenarios. To overcome these drawbacks, the
sparse Bayesian learning (SBL) [18] technique and its multiple
signal extension M-SBL [19] have been proposed for OFDM
based systems in [20], [21] for simultaneous sparse signal
recovery, wherein they were indeed seen to achieve improved
results in comparison to the existing schemes, especially upon
leveraging the expectation-maximization (EM) framework for
sparse channel estimation. Subsequently, Mishra et al. [22]
combined an SBL-based sparse channel estimation scheme
for OSTBC MIMO-OFDM systems. However, the schemes
proposed in all the above treatises consider a quasi-static
scenario, wherein the MIMO-OFDM channel is assumed to
be constant in each block with the different realizations being
independent identically distributed (i.i.d.) across the blocks.
Needless to say, such a model is impractical, since the wireless
channel is time-selective in nature, which leads to signif-
icant temporal correlation between the channel realizations
of successive blocks [23]. It is important to note that the
conventional compressed sensing techniques discussed above
are not suitable for such use cases due to their inability
to exploit the temporal correlation. In this regard, recent
contributions such as [21] have focused on the estimation of
a time-selective MIMO-OFDM channel jointly over multiple
transmission blocks. However, the schemes proposed therein
exhibit an increased processing delay and also require storing
the outputs corresponding to a large number of receive blocks
for the subsequent data detection process. Furthermore, the
algorithms in [21] are also computationally complex due to
the additional processing required for the implementation of
the Kalman filter smoother (KFS). Moreover, the waveform
therein does not consider OSTBC, which is popular for

practical implementation due to its low complexity. In this
context, the hierarchical Bayesian Kalman filter (HBKF) [24]
based online schemes, which have been shown to have a lower
processing delay and computational complexity, are further
developed in this work for online sparse channel estimation in
OSTBC-based MIMO-OFDM systems. The various contribu-
tions of this paper are summarized next.

B. Contributions of the Work

• Novel hierarchical Bayesian Kalman filter (HBKF) based
sparse channel estimation schemes are developed in this
work for doubly-selective OSTBC MIMO-OFDM sys-
tems, along with the supporting theoretical foundation.
These schemes are motivated by the MMSE optimality of
the KF for time-selective channel estimation [25] coupled
with the remarkable performance of SBL [18] for sparse
signal estimation.

• Moreover, since none of the existing contributions con-
sider an online approach for exploiting the temporal
correlation, this paper fills this gap in the literature. First,
the channel estimation model is developed, followed by
the pilot-based HBKF (P-HBKF) technique conceived for
doubly-selective MIMO-OFDM channel estimation.

• The recursive Bayesian Cramér-Rao lower bound
(BCRB) is also derived for analyzing the efficacy of the
proposed doubly-selective channel estimation scheme.

• Another novel contribution of the paper is to develop an
analytical framework for characterizing the asymptotic
MSE performance of the proposed scheme based on the
solution of the discrete-time Riccati equation for the KF.

• Subsequently, the D-HBKF is derived for joint channel
estimation and data detection, which successfully in-
corporates the OSTBC based maximum-likelihood (ML)
symbol detector in the HBKF framework for improved
performance. This is one of the key advantages of the
proposed HBKF framework, since none of the conven-
tional compressed sensing techniques are suitable for
such integration.

• Our simulation results demonstrate the benefits of the
proposed schemes over several performance benchmarks.

C. Organization of the paper

This paper is organized as follows. Section II presents
the OSTBC MIMO-OFDM system model followed by the
doubly-selective sparse channel model. Section III develops
the proposed P-HBKF technique for doubly-selective sparse
channel estimation. The recursive BCRB and asymptotic MSE
expressions characterizing the performance are derived in
Section IV and Section V, respectively. The joint doubly-
selective channel estimation and data detection framework is
followed by the proposed D-HBKF technique developed in
Section VI. Finally, our simulation results and concluding
remarks are offered in Sections VII and VIII, respectively.

Notation: The notation ℜ{·} and ℑ{·} denote the real and
imaginary parts of complex value. The notations ‖h‖2 and
‖H‖F denote l2-norm and Frobenius-norm of vector h and
matrix H, respectively. vec(H) denotes the vector equivalent
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Fig. 1. Frame structure for doubly-selective channel estimation

of the matrix H formed by stacking its columns as a single
column vector. diag(h) denotes the diagonal matrix with the
elements of vector h on its principal diagonal. The notations
IN , 0u×v and ⊗ are used to represent an N × N identity
matrix, u× v zero matrix and matrix Kronecker product.

II. SYSTEM AND CHANNEL MODEL

Consider an OSTBC-based MIMO-OFDM system [22],
having NT transmit antennas (TAs), NR receive antennas
(RAs) and N subcarriers. The transmission frame structure
is shown in Fig. 1. Each frame in this system is comprised of
R consecutive transmission blocks (TBs). Let Nc denote the
number of slots occupied by a single OSTBC codeword. The
OSTBC codeword matrix Xn(m) ∈ C

NT×Nc corresponding
to the mth subcarrier in the nth TB can be represented as [26]

Xn (m) = α

Ns∑

ns=1

Pns
ℜ{sns,n (m)}+ jQns

ℑ{sns,n (m)} ,

(1)
where sns,n(m), ∀ 1 ≤ ns ≤ Ns, denotes the symbol
that is drawn from a suitable constellation, Pns

and Qns

represent fixed matrices of size NT ×Nc that characterize the
OSTBC and Ns denotes the number of symbols per OSTBC
codeword. The symbols are normalized to have unit energy,
i.e., Es = E{|sns,n(m)|2} = 1. Only the initial Nc time slots
corresponding to a single codeword on a chosen set of pilot
subcarriers of each TB are reserved for pilot transmission.
The remaining time slots on all the subcarriers are used
for data transmission in each TB. In order to constrain the
transmit power to unity, the normalization factor α is set to

α =
√

Nc

NsNT
, which ensures E

{
Tr
(
Xn(m)XH

n (m)
)}

= 1.
Let the vector ht,r,n of length L denote the channel taps of

the FIR filter corresponding to the frequency-selective channel
between the tth TA and rth RA in the nth TB. Let the com-
plex scalar quantity Xt,nc,n(m) denote the (t, nc)th element
of the OSTBC codeword matrix Xn(m). For mathematical
convenience, these can be stacked across all the N subcarriers
to obtain the vector xt,nc,n ∈ C

N×1 that is defined as

xt,nc,n = [Xt,nc,n(1), Xt,nc,n(2), . . . , Xt,nc,n(N)]T . (2)

After cyclic prefix (CP) removal at the receiver followed by
the fast Fourier transform (FFT) operation, the signal yr,nc,n ∈
C

N×1 received by the rth RA in the nth TB can be expressed
as

yr,nc,n = [diag (x1,nc,n) , . . . , diag (xNT ,nc,n)]×

(INT
⊗ F)hr,n +wr,nc,n, (3)

where the concatenated channel vector hr,n ∈ C
LNT×1 across

all the TAs is defined as

hr,n =
[
hT
1,r,n,h

T
2,r,n, . . . ,h

T
NT ,r,n

]T
. (4)

The matrix F ∈ C
N×L is the truncated discrete Fourier

transform (DFT) matrix obtained by taking the first L columns
of the N × N DFT matrix that has ω(i−1)(k−1), ω =
exp(−j2π/N), as its (i, k)th entry. The vector wr,nc,n ∈
C

N×1 in (3) denotes the additive noise, which is assumed to
be comprised of symmetric zero-mean i.i.d. complex Gaussian
noise samples of variance σ2. Let the vectors yr,n ∈ C

NNc×1

and wr,n ∈ C
NNc×1 represent the concatenated receive and

noise vectors corresponding to the rth RA across all the Nc

time instants in each codeword, respectively, which are defined
as

yr,n =
[
yT
r,1,n,y

T
r,2,n, . . . ,y

T
r,Nc,n

]T
,

wr,n =
[
wT

r,1,n,w
T
r,2,n, . . . ,w

T
r,Nc,n

]T
. (5)

Finally, let Yn ∈ C
NNc×NR , Hn ∈ C

LNt×NR and Wn ∈
C

NNc×NR denote the overall concatenated received signal,
channel and noise matrices for the nth TB that can be defined
as

Yn = [y1,n, . . . ,yNR,n
],

Hn = [h1,n, . . . ,hNR,n] ,

Wn = [w1,n, . . . ,wNR,n] . (6)

The OSTBC-based MIMO-OFDM system model correspond-
ing to the nth TB can now be succinctly represented as

Yn = ΨnHn +Wn, (7)

where the MIMO-OFDM codeword matrix X̃n ∈ C
NNc×NNT

and the dictionary matrix Ψn ∈ C
NNc×LNt of the nth TB are

given by:

X̃n =




diag (x1,1,n) . . . diag (xNT ,1,n)
...

. . .
...

diag (x1,Nc,n) . . . diag (xNT ,Nc,n)


,

Ψn = X̃n (INt
⊗ F) . (8)

The above model can be recast in the convenient equivalent
vectorized format of

yn = vec (Yn) = Φnhn +wn, (9)

where Φn = (INR
⊗Ψn) ∈ C

NNcNR×LNTNR , hn =
vec (Hn) ∈ C

LNTNR×1 denote the effective dictionary matrix
and the stacked channel vector, respectively, for the nth TB.
The quantity wn = vec (Wn) ∈ C

NNcNR×1 denotes the
equivalent noise vector. In such scenarios, the time-evolution
of the sparse channel vector hn corresponding to the nth TB
can be readily represented by using the first order autoregres-
sive (AR1) model [27]

hn = ρhn−1 +
√

1− ρ2un, (10)

where hn−1 denotes the sparse channel vector of the (n−1)st
block and un ∈ C

LNRNT×1 represents the state innovation
noise process that has a sparsity profile identical to that of
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the channel vector hn. The latter assumption is justified by
the fact that the locations of the dominant components of the
channel vector hn do not change for several OFDM frames
[23], [28], [29], since the power delay profile is constant,
and has naturally been used in several contributions such
as [20], [21], [30]. Furthermore, upon considering the TB
duration TB to be well within the coherence time interval,
we can assume the channel hn to be constant over each TB.
The quantity ρ denotes the temporal correlation coefficient
corresponding to the channel vector hn and can be evaluated
from Jake’s model, as described later in Section VII. The
next section develops a pilot-based scheme for sparse doubly-
selective channel estimation in OSTBC-based MIMO-OFDM
systems.

III. PILOT-BASED DOUBLY-SELECTIVE CHANNEL

ESTIMATION

Let the number of pilot subcarriers be denoted by NP and
let P ⊆ {1, 2, . . . , N} represent the subset of pilot subcarriers.
Furthermore, let yP,r,nc,n ∈ C

NP×1 denote the received pilot
output vector corresponding to the rth RA that is formed by
extracting the elements of the vector yr,nc,n corresponding to
the pilot locations P , which can be determined as

yP,r,nc,n = [diag (xP,1,nc
) , . . . , diag (xP,NT ,nc

)]×

(INT
⊗ FP)hr,n +wP,r,nc,n. (11)

The vectors xP,t,nc
∈ C

NP×1, wP,r,nc,n ∈ C
NP×1 similarly

denote the subvectors corresponding to the pilot locations ex-
tracted from xt,nc,n, wr,nc,n, respectively, and FP ∈ C

NP×L

is a submatrix formed by extracting the corresponding rows
of the matrix F. Similar to (5), the concatenated pilot output
vector at the rth RA denoted by yP,r,n ∈ C

NpNc×1 and the
corresponding noise vector wP,r,n ∈ C

NpNc×1 are given as

yP,r,n =
[
yT
P,r,1,n,y

T
P,r,2,n, . . . ,y

T
P,r,Nc,n

]T
,

wP,r,n =
[
wT

P,r,1,n,w
T
P,r,2,n, . . . ,w

T
P,r,Nc,n

]T
.

The equivalent input-output model can be obtained corre-
sponding to the pilot locations similar to (54), using the various
quantities defined above, as

YP,n = ΨPHn +WP,n, (12)

where the pilot output matrix YP,n ∈ C
NPNc×NR , noise ma-

trix WP,n ∈ C
NPNc×Nr and the matrix ΨP ∈ C

NPNc×LNt

are given as

YP,n = [yP,1,n, . . . ,yP,NR,n] ,

WP,n = [wP,1,n, . . . ,wP,NR,n] ,

ΨP = X̃P (INt
⊗ FP) . (13)

The MIMO-OFDM codeword matrix X̃P ∈ C
NPNc×NPNT

corresponding to the pilot subcarriers is constructed as

X̃P =




diag (xP,1,1) . . . diag (xP,NT ,1)
...

. . .
...

diag (xP,1,Nc
) . . . diag (xP,NT ,Nc

)


. (14)

The compact vectorized input-output model of the pilot sym-
bol locations is obtained following similar lines to (9) as

yP,n = ΦPhn +wP,n, (15)

where ΦP = (INR
⊗ΨP) ∈ C

NPNcNR×LNRNT , yP,n =
vec(YP,n) ∈ C

NPNcNR×1 is the stacked received pilot vector
and wP,n = vec(WP,n) ∈ C

NPNcNR×1 denotes the stacked
noise vector.

The conventional KF requires an overdetermined system,
which has NP ≥

LNT

Nc
, for the estimation of the time-selective

channel vector hn, which in turn leads to higher overheads and
reduced spectral efficiency. Interestingly, the orthodox KF does
not exploit the sparsity of the channel vector hn arising due to
the sparse multipath delay profile of a typical wireless channel.
This implies that the number of non-zero channel impulse
response (CIR) taps Ls is in practice much smaller than the
total number L of CIR taps. Needless to say, exploiting this
sparsity can lead to performance benefits associated with a
reduced pilot overhead. This motivates the development of an
online P-HBKF scheme for sparse doubly-selective MIMO-
OFDM channel estimation as described next.

A. P-HBKF for online doubly-selective channel estimation

Using the standard KF notation, let ĥn|n−1 and Mn|n−1 de-
note the prediction and the associated error covariance matrix,
respectively, of the unknown sparse channel vector hn in the
nth filtering block. Similarly, let ĥn|n and Mn|n represent
the updated channel estimate and the respective minimum
MSE matrix, in the nth block. These can be obtained using
the standard Kalman filter for the nth block, as detailed in
Appendix A. The P-HBKF procedure of estimating the doubly-
selective sparse channel during the nth TB is described next.
Let ŷP,n|n−1 = E {yP,n | yP,0, · · · ,yP,n−1} ∈ C

NPNcNR×1

denote the predicted measurement vector corresponding to the
pilot subcarrier locations in the nth TB. The measurement
error vector yP,e,n ∈ C

NPNcNR×1 can be defined and subse-
quently simplified as shown below

yP,e,n , yP,n − ŷP,n|n−1

= ρΦP

(
hn−1 − ĥn−1|n−1

)
+
√

1− ρ2ΦPun +wP,n

(16)

≈
√
1− ρ2ΦPun +wP,n. (17)

The simplification from (16) to (17) above is based on the
assumption that the estimation error, i.e., hn−1 − ĥn−1|n−1,
progressively decreases as n increases. The HBKF framework
assigns a parameterized Gaussian prior to the innovation noise
un in contrast to the standard Kalman filter that assumes it
to be fixed. Let ut,r,n ∈ C

L×1 denote the innovation noise
vector corresponding to the tth TA and rth RA, obtained by
extracting the subvector of un corresponding to the elements
from [(r − 1)NT + t− 1]L to [(r − 1)NT + t]L. The pa-
rameterized prior for the same can be defined in the HBKF
framework as

p(ut,r,n;Γn) =

L∏

l=1

(πγl,n)
−1 exp

(
−
|ut,r,n(l)|

2

γl,n

)
, (18)
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where the hyperparameter γl,n, 1 ≤ l ≤ L, denotes
the prior variance corresponding to the lth component of
ut,r,n and Γn , diag(γn) ∈ R

L×L is the diagonal ma-
trix of hyperparameters corresponding to the nth TB, where
γn = [γ1,n, γ2,n, · · · , γL,n]

T ∈ R
L×1. Furthermore, it can

be noted that the covariance matrix Γn is considered to be
unknown and it is estimated together with the sparse CIR
hn. The parameterized prior corresponding to the concatenated
innovation noise vector un is formulated as

p(un;Γn) =

NR∏

r=1

NT∏

t=1

p(ut,r,n;Γn). (19)

Using (17) and (18), the a posteriori probability density
function of the innovation noise vector un can be evaluated
as p(un|yP,e,n,Γn) ∼ CN (µn,Σn), where the quantities
µn ∈ C

LNRNT×1 and Σn ∈ C
LNRNT×LNRNT are determined

as [25]

µn = σ−2Σn

√
1− ρ2ΦH

P yP,e,n,

Σn =
(
σ−2

(
1− ρ2

)
ΦH

PΦP + (INRNT
⊗ Γn)

−1
)−1

, (20)

which can be seen to depend on the hyperparameter matrix
Γn. The HBKF approach chooses the hyperparameter matrix
Γ̂n and in turn the prior p

(
un; Γ̂n

)
that maximizes the

Bayesian evidence p(yP,e,n;Γn), given as log (yP,e,n;Γn) =
κ − log [det (ΣP,e,n)] − yH

P,e,nΣP,e,nyP,e,n, where κ =
−NPNcNR log(π) and ΣP,e,n = INPNcNR

+ (1 −
ρ2)ΦP (INRNT

⊗ Γn)Φ
H
P . As it can be readily seen, the

optimization objective above is non-concave. Hence, direct
maximization of the above cost-function for the estimation
of the hyperparameters γl,n becomes intractable. This imped-
iment can be overcome using the mathematical framework
of iterative expectation-maximization (EM) for achieving the
above likelihood maximization iteratively, which is eminently
suitable for practical implementation. As demonstrated in [18],
upon convergence of the EM procedure, the hyperparameter
estimates γl,n corresponding to the zero locations of the
innovation vector ut,r,n(l) are driven to zero, thereby leading
to a sparse estimate of the innovation vector. Since the
innovation noise vector un and the channel vector hn share
a common sparsity profile, this in turn leads to a sparse
estimate of the channel vector hn. The key steps of EM
procedure are described next. Let Γ̂(i−1)

n denote the estimate
of the hyperparameter matrix Γn in the (i−1)st EM iteration.
The expectation (E-step) in the ith EM iteration evaluates the
average log-likelihood L

(
Γn|Γ̂

(i−1)
n

)
of the complete data

{yP,e,n,un}, which is formulated as:

L
(
Γn|Γ̂

(i−1)
n

)
= E

un|yP,e,n;Γ̂
(i−1)

n

{log p (yP,e,n,un;Γn)}

= E
un|yP,e,n;Γ̂

(i−1)

n

{log p (yP,e,n|un;Γn)}

+ E
un|yP,e,n;Γ̂

(i−1)

n

{log p (un;Γn)} .

Subsequently, the maximization (M-step), which maximizes
L
(
Γn|Γ̂

(i−1)
n

)
with respect to the hyperparameter vector γn

can be formulated as

γ̂
(i)
n = argmax

γn

E
un|yP,e,n;Γ̂

(i−1)

n

{log p (yP,e,n|un;Γn)}

+E
un|yP,e,n;Γ̂

(i−1)

n

{log p (un;Γn)} .

(21)

The quantity within the first E{·} above, simplifies as

−NPNcNR log
(
πσ2

)
− σ−2

(
yP,e,n −

√
1− ρ2ΦPun

)H

(
yP,e,n −

√
1− ρ2ΦPun

)
,

which is observed to be independent of the hyperparameter
vector γn and can thus be ignored for the maximization.
Therefore, the equivalent optimization problem used for the
estimation of the hyperparameter vector γn is given as

γ̂
(i)
n = argmax

γn

E
un|yP,e,n;Γ̂

(i−1)

n

{log p (un;Γn)}

= argmax
γn

NR∑

r=1

NT∑

t=1

L∑

l=1

c1 − log γl,n −
Σ(i)

n (d, d) +
∣∣∣µ(i)

n (d)
∣∣∣
2

γl,n
,

(22)

where the constant c1 can be derived as c1 = − log π and
the index d is defined as d = [(r − 1)NT + t− 1]L+ l. The
quantities µ

(i)
n , Σ(i)

n denote the mean and covariance matrix
corresponding to the a posteriori probability density function
(PDF) p(un|yP,e,n; Γ̂

(i−1)
n ) = CN

(
µ

(i)
n ,Σ(i)

n

)
, which can be

obtained by substituting Γ̂
(i−1)
n in lieu of Γn in (20). It can

now be observed that the maximization problem formulated
above for the estimation of the hyperparameter vector γn

is decoupled with respect to each individual γl,n. This can
therefore be readily solved for obtaining the estimates γ̂

(i)
l,n in

the ith iteration of the EM algorithm as

γ̂
(i)
l,n =

1

NRNT

NR∑

r=1

NT∑

t=1

Σ(i)
n (d, d) +

∣∣∣µ(i)
n (d)

∣∣∣
2

. (23)

The estimate of the hyperparameter matrix at the ith EM
iteration in the nth TB follows as Γ̂

(i)
n = diag

(
γ̂
(i)
n

)
. Upon

convergence, the resultant hyperparameter matrix estimate is
denoted by Γ̂c

n. Note that Γ̂c
n also yields an estimate of the

sparsity-profile of the channel vector hn. This is subsequently
employed in (74) by setting the covariance of the innovation
un equal to the converged estimate Γ̂c

n of the hyperparameter
matrix. Finally, the channel estimate corresponding to the nth
TB is obtained using Equation (77) in the KF as ĥP,n =

ĥn|n. A schematic representation of the P-HBKF approach
is given in Fig. 2. In this figure, the EM block estimates the
hyperparameter matrix Γn aiding the update process of the
sparse channel estimate ĥn|n. Furthermore, the online nature
of the proposed algorithm helps to track variations in the
sparsity-profile of hn. A compact representation of the step-
by-step procedure for the proposed online P-HBKF technique
to estimate the doubly-selective sparse channel is presented
in Algorithm 1. The initialization procedure for the P-HBKF
scheme is described in the following subsection.
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Algorithm 1 P-HBKF algorithm for sparse doubly-selective
channel estimation
Input: Observation vector yP,n, Dictionary matrix ΦP , Cor-
relation coefficient ρ, Noise variance σ2, Stopping Parameters
ǫ and imax

Initialization: Γ̂c
−1 = IL, ĥ

(0)
−1|−1 = 0LNRNT×1

for n = 0, 1, 2 · · ·

Set counter i = 0 and Γ̂
(−1)
n = 0 and Γ̂

(0)
n = Γ̂c

n−1

while
(∥∥∥γ̂(i)

n − γ̂
(i−1)
n

∥∥∥
2
> ǫ && i < imax

)
do

i← i+ 1
Compute the measurement error yP,e,n using (76) in
Appendix A
E-step:

Σ(i)
n =

(
σ−2

(
1− ρ2

)
ΦH

PΦP +
(
I⊗ Γ̂(i−1)

n

)−1
)−1

µ(i)
n = σ−2Σ(k)

n

√
1− ρ2ΦH

P yP,e,n

M-step: Update hyperparameters γ̂
(i)
l,n using (23), set

Γ̂c
n = Γ̂

(i)
n = diag

(
γ̂
(i)
1,n, γ̂

(i)
2,n, · · · , γ̂

(i)
L,n

)

end while

Evaluate the filtered estimate ĥn|n using (77) in Appendix
A

end for

Fig. 2. Block diagram representation of the P-HBKF scheme for doubly-
selective sparse channel estimation in OSTBC MIMO-OFDM systems

B. P-HBKF Initialization

In the conventional HBKF framework [24], the estimate of
the channel, the MSE and the hyperparameter matrices are
initialized as

ĥ−1|−1 = 0LNRNT×1,M−1|−1 = ILNRNT
, Γ̂(0)

n = IL, ∀n.

However, even though this straightforward initialization pro-
cedure leads to fairly accurate estimates, a large number of
blocks n is required for MSE convergence, as also seen from
the simulation results of Section VII. In order to overcome this
shortcoming, a novel initialization method [31] is described
below for the P-HBKF.

The MSE matrix M−1|−1 can be initialized with the es-

timate of the hyperparameter matrix Γ̂
c

0, i.e., the converged
estimate of the hyperparameter matrix for the 0th block.
Furthermore, for the hyperparameter update procedure of
Algorithm 1, the hyperparameter matrix Γ̂

(0)
n of the nth block

is initialized to the converged hyperparameter matrix obtained

from the previous block, i.e. we have Γ̂
(0)
n = Γ̂c

n−1. This
initialization scheme is seen to achieve a significantly lower
MSE and requires much fewer blocks as well as EM iterations
for convergence to the steady state MSE in comparison to the
conventional HBKF initialization, as shown later in Section
VII. The BCRB for the proposed P-HBKF technique is pre-
sented next.

IV. BAYESIAN CRAMÉR-RAO LOWER BOUNDS

Let Jn ∈ C
LNTNR×LNTNR denote the Bayesian Fisher

information matrix (BFIM) for the doubly-selective channel
vector hn to be estimated in the nth TB. Using the results of
[32], this can be recursively determined as

Jn = G22
n −G21

n

(
Jn−1 +G11

n

)−1
G12

n , (24)

where the matrices G11
n ,G12

n ,G21
n and G22

n , all of size
LNTNR × LNTNR, are derived as

G11
n = −E

{
∂2L(hn | hn−1)

∂hn−1∂hH
n−1

}
, (25)

G12
n = −E

{
∂2L(hn | hn−1)

∂hn−1∂hH
n

}
=
(
G21

n

)H
, (26)

G22
n = −E

{
∂2L(hn | hn−1)

∂hn∂hH
n

}
− E

{
∂2L(yP,n | hn)

∂hn∂hH
n

}
.

(27)

Let Ru = E
{
unu

H
n

}
∈ C

LNTNR×LNTNR denote the co-
variance matrix of the innovation noise. Using the state and
measurement model Equations in (10) and (15), respectively,
the quantities L(hn | hn−1) and L(yP,n | hn) can be
evaluated as

L(hn | hn−1) = κ1 −
(hn − ρhn−1)

HR−1
u (hn − ρhn−1)

1− ρ2
,

(28)

L(yP,n | hn) = κ2 −
(yP,n −ΦPhn)

H(yP,n −ΦPhn)

σ2
,

(29)

where the constants κ1 = −LNRNT log π
(
1− ρ2

)
−

log det(Ru) and κ2 = −NPNcNR log
(
πσ2

)
. Substituting the

quantities L(hn | hn−1) and L(yP,n | hn) from (28), (29) into
(25)-(27) determines the matrices G11

n ,G12
n ,G21

n and G22
n .

These are in turn substituted into (24) followed by simpli-
fication to obtain the matrix Jn corresponding to the P-HBKF
estimate as

Jn =
(
ρ2Jn−1 +

(
1− ρ2

)
Ru

)−1
+

1

σ2
ΦH

PΦP . (30)

The BCRB for the MSE of the P-HBKF based channel
estimate is finally expressed as

MSE
(
ĥP,n

)
, E

{∥∥∥ĥP,n − hn

∥∥∥
2

2

}
≥ Tr{J−1

n }. (31)
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M̄n+1|n = ρ2M̄n|n−1 − ρ2M̄n|n−1Φ
T
n

(
σ2I+ΦnM̄n|n−1Φ

T
n

)−1
ΦnM̄n|n−1 +

(
1− ρ2

)
Γ̄n+1

= ρ2
(
M̄n|n−1 − M̄n|n−1Φ

T
n

(
σ2I+ΦnM̄n|n−1Φ

T
n

)−1
ΦnM̄n|n−1

)
+
(
1− ρ2

)
Γ̄n+1 (32)

M̄n+1|n+1 =
(
I− M̄n+1|nΦ

T
n+1

(
σ2I+Φn+1M̄n|n−1Φ

T
n+1

)−1
Φn+1

)
M̄n+1|n

= M̄n+1|n − M̄n+1|nΦ
T
n+1

(
σ2I+Φn+1M̄n|n−1Φ

T
n+1

)−1
Φn+1M̄n+1|n (33)

M̄−1
n+1|n =

((
1− ρ2

)
Γ̄n+1

)−1
−
((
1− ρ2

)
Γ̄n+1

)−1
ρ2
[
M̄−1

n|n + ρ2
((
1− ρ2

)
Γ̄n+1

)−1
]−1

×
((
1− ρ2

)
Γ̄n+1

)−1
(34)

V. ASYMPTOTIC MSE

This section derives the closed form expressions of the
asymptotic MSE for the P-HBKF scheme, as the block length
obeys n → ∞. Hence, the rate at which the MSE of the
proposed technique converges to the respective asymptotic
MSE value characterizes the efficiency of the proposed es-
timation technique. Let h̄n ∈ R

2LNTNR×1 denote the real-
valued equivalent of the CIR vector hn that is obtained
by stacking the real and imaginary components as h̄n =[
(ℜ(hn))

T
(ℑ(hn))

T
]T

. Also, let the real equivalent dictio-
nary matrix Φn corresponding to the P-HBKF scheme is given
as

Φn =

[
ℜ(ΦP) −ℑ(ΦP)
ℑ(ΦP) ℜ(ΦP)

]
. (35)

Using the KF notation similar to Appendix A, the prediction
error covariance matrix M̄n|n−1, the Kalman gain matrix K̄n

and the estimation error covariance matrix M̄n|n are defined
as

M̄n|n−1 = ρ2M̄n−1|n−1 +
(
1− ρ2

)
Γ̄n (36)

K̄n = M̄n|n−1Φ
H
n

(
σ2I+ΦnM̄n|n−1Φ

H
n

)−1

(37)

M̄n|n =
(
I− K̄nΦn

)
M̄n|n−1, (38)

where the matrix Γ̄n+1 ∈ C
2NRNTL×2NRNTL is a block

diagonal matrix with two block components, both of which are
identical to 1

2

(
INRNT

⊗ Γ̂n

)
. The prediction error covariance

matrix M̄n+1|n for the (n + 1)st block can be related to
the previous block M̄n|n−1, in steady state, as M̄n+1|n =
M̄n|n−1. Upon substituting the expression for M̄n|n from
(38), Equation (36) for the (n + 1)st block can be further
simplified to

M̄n+1|n =ρ2(I− K̄nΦn)M̄n|n−1 +
(
1− ρ2

)
Γ̄n+1

=ρ2M̄n|n−1 − ρ2K̄nΦnM̄n|n−1 +
(
1− ρ2

)
Γ̄n+1.

(39)

Substituting the value of K̄n from (37) into (39), the resultant
expression for M̄n+1|n can be simplified to the form shown
in (32). Employing the Woodbury Matrix Identity [25], the
expression in (32) can be modified as

M̄n+1|n = ρ2
(
M̄−1

n|n−1 + σ−2ΦT
nΦn

)−1

+
(
1− ρ2

)
Γ̄n+1.

(40)

The above equation can be recast as the standard prediction
Riccati equation of [33], using the notation defined therein for
mathematical convenience, as

M̄n+1|n = fp

(
M̄−1

n|n−1 + hT
p r

−1
p hp

)
fTp + qp, (41)

where the various quantities above can be seen to be given
from (40) as

qp =
(
1− ρ2

)
Γ̄n+1,hp = Φn, fp = ρI, rp = σ2I.

Similarly, for the estimator at steady state, it follows that
M̄n+1|n+1 = M̄n|n. On substituting the Kalman gain matrix
K̄n+1 given by Equation (37) into Equation (38), the matrix
M̄n+1|n+1 can be simplified to the form shown in Equation
(33). Using the Woodbury Identity [25] once again, Equation
(33) can be mathematically manipulated to obtain the follow-
ing equation

M̄n+1|n+1 =
(
M̄−1

n+1|n + σ−2ΦT
n+1Φn+1

)−1

. (42)

Further simplification of the above equation requires the evalu-
ation of M̄−1

n+1|n, which can be carried out as follows. Starting

with (40), one can simplify the expression for M̄−1
n+1|n using

the Woodbury matrix identity, to the form shown in (34). This
can now be substituted in (42) followed by a simplification to
obtain the expression for M̄n+1|n+1 as shown in (43), which
on further mathematical manipulation and rearrangement of
the terms yields (44). Upon comparison to the standard Riccati
equation of [33], the expression in (44) can also be represented
in the form

M̄n+1|n+1 = qe + fe

[
M̄−1

n|n + hT
e r

−1
e he

]−1

fTe , (45)

where the pertinent quantities above are defined as

qe =
[((

1− ρ2
)
Γ̄n+1

)−1
+ΦT

n+1σ
−2Φn+1

]−1

,

fe = ρqe

[(
1− ρ2

)
Γ̄n+1

]−1
, (46)

re = σ2I+Φn+1

(
1− ρ2

)
Γ̄n+1Φ

T
n+1 and he = ρΦn+1.

(47)

Finally, Equation (45) can now be solved using the standard
Discrete-time Algebraic Riccati Equation (DARE) solver [34],
after substituting the matrix Φn corresponding the P-HBKF
shown in (35), to obtain the numerical value of the steady
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M̄n+1|n+1 =
[ ((

1− ρ2
)
Γ̄n+1

)−1
−
((
1− ρ2

)
Γ̄n+1

)−1
ρ2
[
M̄−1

n|n + ρ2
((
1− ρ2

)
Γ̄n+1

)−1
]−1

×

((
1− ρ2

)
Γ̄n+1

)−1
+ΦT

n+1σ
−2Φn+1

]−1

(43)

M̄n+1|n+1 = qe + ρqe

((
1− ρ2

)
Γ̄n+1

)−1
×

[
M̄−1

n|n + ρΦT
n+1

[
σ2I+Φn+1

(
1− ρ2

)
Γ̄n+1Φ

T
n+1

]−1
ρΦn+1

]−1

ρqe

((
1− ρ2

)
Γ̄n+1

)−1
(44)

Fig. 3. Time-frequency block structure for data aided channel estimation

state error covariance matrix M̄∞ , limn→∞ M̄n|n. The
asymptotic MSE is then expressed as

MSE∞ = Tr
(
M̄∞

)
. (48)

To improve the performance further over that of the P-HBKF,
which exclusively employs pilot symbols, a technique for
HBKF based joint doubly-selective channel estimation and
data detection is presented in the next section.

VI. D-HBKF FOR JOINT DOUBLY-SELECTIVE CHANNEL

ESTIMATION AND DATA DETECTION

As illustrated in Fig. 3, in D-HBKF, K consecutive MIMO-
OFDM codewords are employed for channel estimation. In the
first MIMO-OFDM codeword, pilot symbols are transmitted
over NP pilot subcarriers in the interval of duration TP , while
the remaining non-pilot subcarriers in the interval TP and
all the subcarriers in the subsequent interval of duration TD

are used for data transmission. Thus, the pilot overhead in
D-HBKF is identical to that of P-HBKF. The proposed D-
HBKF technique exploits all the available outputs pertaining
to the pilot as well as the data subcarriers over the K
MIMO-OFDM codewords for joint channel estimation and
data detection, in turn leading to an improved estimate. Let
sk,ns,n(m), 1 ≤ ns ≤ Ns, denote the transmit symbols
drawn from a suitable constellation in the kth, 1 ≤ k ≤ K,
MIMO-OFDM codeword over mth subcarrier. The OSTBC
codeword matrix Xk,n(m) ∈ C

NT×Nc corresponding to the

mth subcarrier in the kth codeword can be obtained using (1)
as

Xk,n (m) = α

Ns∑

ns=1

Pns
ℜ{sk,ns,n (m)}+jQns

ℑ{sk,ns,n (m)} .

(49)
Let the complex scalar quantity Xk,t,nc,n(m) denote the
(t, nc)th element of the OSTBC codeword matrix Xk,n(m)
and let the vector xk,t,nc,n ∈ C

N×1 be defined as

xk,t,nc,n = [Xk,t,nc,n(1), Xk,t,nc,n(2), . . . , Xk,t,nc,n(N)]T .
(50)

The signal yk,r,nc,n ∈ C
N×1 received by the rth RA after CP

removal, followed by the FFT operation can be expressed as

yk,r,nc,n = [diag (xk,1,nc,n) , . . . , diag (xk,NT ,nc,n)]×

(INT
⊗ F)hr,n +wk,r,nc,n, (51)

where the vector wk,r,nc,n ∈ C
N×1 denotes the additive noise,

which is assumed to be comprised of symmetric zero-mean
i.i.d. complex Gaussian noise samples of variance σ2 and the
vector hr,n is defined in (4). Let the vectors yk,r,n ∈ C

NNc×1

and wk,r,n ∈ C
NNc×1 represent the concatenated receive and

noise vectors corresponding to the rth RA across all the Nc

time instants in the kth codeword, respectively, which are
defined as

yk,r,n =
[
yT
k,r,1,n,y

T
k,r,2,n, . . . ,y

T
k,r,Nc,n

]T
,

wk,r,n =
[
wT

k,r,1,n,w
T
k,r,2,n, . . . ,w

T
k,r,Nc,n

]T
. (52)

Let Yk,n ∈ C
NNc×NR and Wk,n ∈ C

NNc×NR denote the
overall concatenated received signal and noise matrices for
the kth codeword defined as

Yk,n = [yk,1,n, . . . ,yk,NR,n],

Wk,n = [wk,1,n, . . . ,wk,NR,n] . (53)

The OSTBC-based MIMO-OFDM system model correspond-
ing to the kth codeword in the nth TB can now be succinctly
represented as

Yk,n = Ψk,nHn +Wk,n, (54)

where the dictionary matrix Ψk,n ∈ C
NNc×LNt and the

corresponding MIMO-OFDM codeword matrix X̃k,n ∈
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C
NNc×NNT are given by:

Ψk,n = X̃k,n (INt
⊗ F) ,

X̃k,n =




diag (xk,1,1,n) . . . diag (xk,NT ,1,n)
...

. . .
...

diag (xk,1,Nc,n) . . . diag (xk,NT ,Nc,n)


.

(55)

The matrix Hn denotes the resultant channel matrix corre-
sponding to the nth block as defined previously in (6). Finally,
the concatenated receiver noise and dictionary matrices corre-
sponding to nth block are denoted by YB,n ∈ C

KNNc×NR ,
WB,n ∈ ×CKNNc×NR and ΨB,n ∈ C

KNNc×LNT , respec-
tively, which can be obtained as

YB,n =
[
YT

1,n, . . . ,Y
T
K,n

]
,

WB,n =
[
WT

1,n, . . . ,W
T
K,n

]
,

ΨB,n =
[
ΨT

1,n, . . . ,Ψ
T
K,n

]
. (56)

Thus, the overall system model corresponding to the nth TB
follows as

YB,n = ΨB,nHn +WB,n. (57)

The vectorized form of the OSTBC-based MIMO-OFDM
system model formulated above for joint channel estimation
and data detection can be obtained as

yB,n = vec (YB,n) = ΦB,nhn +wB,n, (58)

where the effective block dictionary matrix can be expressed as
ΦB,n = (INR

⊗ΨB,n) ∈ C
KNNcNR×LNTNR and the stacked

noise vector is given by wB,n = vec (WB,n) ∈ C
KNNcNR×1.

The D-HBKF procedure of jointly estimating the doubly-
selective sparse channel and the OSTBC data codewords can
be formulated as follows. The measurement prediction error
vector yB,e,n in the HBKF framework can be defined as

yB,e,n = yB,n − ŷB,n|n−1 ≈
√

1− ρ2ΦB,nun +wB,n,
(59)

where the predicted measurement ŷB,n|n−1 may be deter-
mined using the standard KF, as shown in the Appendix
A. The D-HBKF begins its operation by assigning a Gaus-
sian parameterized prior similar to (19) to the innovation
noise vector un with the hyperparameter matrix Γn. The
complete data for this scenario is {yB,e,n,un}, while the
unknown parameter set is θn = {Γn,XD,n}, where the
matrix XD,n ∈ C

NT×(KN−NP )Nc corresponding to the un-
known data codewords is constructed as follows. Let Pc

denote the set of non-pilot or data subcarriers. The con-
catenated matrix of OSTBC codewords corresponding to the
non-pilot subcarriers for the first codeword duration can be
defined as XD,1,n = [X1,n(m1), . . . ,X1,n(mN−NP

)] ∈
C

NT×(N−NP )Nc , where mj ∈ P
c. Similarly, the concate-

nated matrix XD,k,n, k = 2, 3, . . . ,K, is constructed as
XD,k,n = [Xk,n(1), . . . ,Xk,n(N)] ∈ C

NT×NNc . The overall
block data codeword matrix XD,n can be further defined as
XD,n = [XD,1,n,XD,2,n, . . . ,XD,K,n]. The D-HBKF jointly
estimates the associated hyperparameters Γn and the data
codeword matrix XD,n using the EM procedure derived below.

Fig. 4. Block diagram representation of the D-HBKF scheme for joint doubly-
selective sparse channel estimation and data detection in OSTBC MIMO-
OFDM systems

Let X̂
(i−1)
D,n and γ̂

(i−1)
n denote the estimates of the overall

data codeword matrix and the hyperparameter vector obtained
after the completion of the (i − 1)st EM iteration, with

θ(i−1)
n =

{
X̂

(i−1)
D,n , γ̂(i−1)

n

}
. The E-step evaluates the average

log-likelihood L
(
θn|θ

(i−1)
n

)
in the ith iteration as

L
(
θn|θ

(i−1)
n

)
= E

un|yB,e,n;θ
(i−1)
n
{log p (yB,e,n,un;θn)}

= E
un|yB,e,n;θ

(i−1)
n
{log p (yB,e,n|un;XD,n)}

+ E
un|yB,e,n;θ

(i−1)
n
{log p (un;γn)} .

The quantity log p (yB,e,n|un;XD,n) is seen to be independent
of the hyperparameter vector γn. Furthermore, it can be
observed from (19) that the term log p(un;γn) is independent
of the block data codeword matrix XD,n. Therefore, the
M-step of the D-HBKF scheme reduces to the decoupled
maximization of the first and second terms of L

(
θn|θ

(i−1)
n

)

with respect to XD,n and γn, respectively. The log-likelihood
maximization with respect to γn in the ith iteration of the
M-step can be expressed as

γ̂
(i)
n = argmax

γn

E
un|yB,e,n;γ̂

(i−1)
n
{log p (un;γn)} . (60)

Similar to P-HBKF, the hyperparameter estimates γ̂
(i)
n for

D-HBKF are obtained as in (23) with the a posterior mean
vector µ(i)

B,n ∈ C
LNRNT×1 and the covariance matrix Σ

(i)
B,n ∈

C
LNRNT×LNRNT derived as

µ
(i)
B,n = σ−2

√
1− ρ2Σ

(i)
B,n

(
Φ

(i)
B,n

)H
yB,e,n, (61)

Σ
(i)
B,n =

((
1− ρ2

)

σ−2

(
Φ

(i)
B,n

)H
Φ

(i)
B,n +

(
I⊗ Γ̂

(i−1)

n

)−1
)−1

,

(62)

where the quantity Φ
(i)
B,n is obtained similar to ΦB,n using the

estimated data codeword matrix X̂
(i−1)
D,n after the (i−1)st EM

iteration. The estimate X̂
(i)
D,n at the ith iteration is obtained as

X̂
(i)
D,n = arg max

XD,n

E
hn|yB,n;θ

(i−1)
n
{log p (yB,n|hn;XD,n)} .

(63)

The above maximization leads to the decoupled optimization
problem in (68) for the evaluation of the individual estimates
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X̂
(i)
k,n(m). The quantity Ỹk,n(m) ∈ C

NR×Nc denotes the
output matrix for the kth codeword over the mth subcarrier in
the nth TB. The quantity Hn(m) ∈ C

NR×NT represents the
MIMO channel matrix corresponding to the mth subcarrier in
the nth TB, which is defined as

Hn (m) =



(Fh1,1,n)m (Fh2,1,n)m . . . (FhNT ,1,n)m

...
...

. . .
...

(Fh1,NR,n)m (Fh2,NR,n)m. . . (FhNT ,NR,n)m


,

(64)
where (Fht,r,n)m denotes the mth DFT coefficient of the
channel vector ht,r,n. For decoding the transmitted symbols,
one can define the quantities zk,n(m) = vec (Ỹk,n(m)) ∈

C
NRNc×1 and the symbol vector estimate â

(i)
k,n(m) =[ (

ℜ
{
ŝ
(i)
k,n(m)

})T (
ℑ
{
ŝ
(i)
k,n(m)

})T ]T
. The optimization

problem of evaluating the symbol estimate â
(i)
k,n(m) corre-

sponding to X̂
(i)
k,n(m) is now formulated in (69). This can be

further simplified as follows. Let the effective channel matrix
Cn (m) ∈ C

NRNc×2Ns for the nth TB be constructed as

Cn (m) = [Cp,n (m) ,Cq,n (m)] , (65)

where the matrices Cp,n(m) ∈ C
NRNc×Ns ,Cq,n(m) ∈

C
NRNc×Ns above are defined as [26]

Cp,n (m) = [vec (Hn (m)P1) , . . . , vec (Hn (m)PNs
)] ,
(66)

Cq,n (m) = [vec (Hn (m)Q1) , . . . , vec (Hn (m)QNs
)] .
(67)

Using the above quantities, together with the fact that the
noise is additive white Gaussian in nature, the log-likelihood
and also consequently the detector formulated in (69) can be
further simplified as shown in (70). Upon using the result
ℜ
{
C
H
n (m)Cn(m)

}
= ‖Hn(m)‖2F I2Ns

for OSTBCs [26]
followed by further simplification, the D-HBKF based symbol
vector estimate â

(i)
k,n(m) can be obtained as

â
(i)
k,n (m) =

ℜ

{(
Ĉ
(i)

n (m)

)H

zk,n (m)

}

ζ
(i)
n (m)

, (71)

where the estimate of the effective channel matrix Ĉ
(i)

n (m),
similar to (65), is obtained upon replacing Hn (m) by its

estimate Ĥ
(i)

n (m) obtained at the ith iteration in (66) and

(67). The a posteriori MIMO channel estimate Ĥ
(i)

n (m)
corresponding to the mth subcarrier can be constructed by
substituting the estimate ĥ

(i)
n|n, obtained using the KF equa-

tions outlined in Appendix A, with ΦP replaced by ΦB,n.
Furthermore, the quantity ζ

(i)
n (m) in the denominator of (71)

can be shown to be given as

ζ(i)n (m) =

∥∥∥∥Ĥ
(i)

n (m)

∥∥∥∥
2

F

+

NR∑

r=1

NT∑

t=1

(
M̃(i)

n

(
d̄, d̄
))

, (72)

where the index d̄ obeys d̄ = [(r − 1)NT + (t− 1)]N +

m, ∀ 1 ≤ r ≤ NR, 1 ≤ t ≤ NT and M̃
(i)
n = (INTNR

⊗

F)M
(i)
n|n(INTNR

⊗F)H ∈ C
NNTNR×NNTNR is obtained using

M
(i)
n|n computed as one of the outputs of the KF procedure in

Appendix A.
Upon convergence, the D-HBKF based joint estimates of the

MIMO channel and data symbols are given by ĥD,n = ĥ
(i)
n|n

and ŝ
(i)
k,n (m), respectively. The BCRB and the asymptotic

MSE for the D-HBKF based channel estimate can be derived
along similar lines to that of the P-HBKF upon replacing yP,n

and ΦP by yB,n and ΦB,n, respectively, in (29), (35). We note
that the Kalman filtering time-evolution model, also used in
[21], [35], requires the knowledge of the temporal correlation
ρ, which in turn depends on the Doppler shift of the channel,
and on the noise variance σ2. However, as shown in the results
of Section-VII(A), the performance of the proposed HBKF-
based techniques is robust to mismatches in the values of
the parameters ρ, σ2, thus making them eminently suited for
practical implementation.

A. Computational Complexity Analysis

Due to lack of space, the detailed derivations of the compu-
tational complexity had to be relegated to our technical report
in [36]. The key implications of the results in Table I and II
therein are discussed below. It is evident that the joint channel
estimation and data detection of the K MIMO-OFDM code-
words in the D-HBKF scheme leads to a higher complexity
of O(L3N3

RN
3
T +N3

RN
3
TN

2L + K2N2N2
cN

3
RLNT ), which

arises due to the fact that it necessitates the processing of the
KNNcNR × 1 vector yB,n followed by the subsequent data
detection procedure using the EM framework. By contrast,
the P-HBKF technique described in Section III employs the
NPNcNR × 1 vector yP,n for channel estimation, which is
extracted from the first MIMO-OFDM pilot codeword of each
TB. Note that the number of pilot subcarriers and the total
number of subcarriers obey NP << N . Moreover, since the
data detection procedure in P-HBKF is decoupled from the EM
framework, this leads to a lower computational complexity of
O
(
L3N3

RN
3
T +N2

PN
2
cN

3
RLNT

)
. Naturally, while the overall

complexity of the P-HBKF scheme is lower in comparison to
D-HBKF, as shown in the simulation results of Section VII,
the performance of the former is also poor in comparison to
that of the D-HBKF algorithm.

VII. SIMULATION RESULTS

An OSTBC coded MIMO-OFDM system having NR = 2
RAs and NT ∈ {2, 4} TAs is considered. The number of
subcarriers is set to N = 64 with a bandwidth of 5 MHz. The
OFDM symbols have a duration of 12.8 µs and a cyclic prefix
of duration 6.4 µs. Quadrature phase shift keying (QPSK)
modulation is considered for the symbols followed by OSTBC
encoding, with the performance demonstrated both for the full-
rate Alamouti code [3], as well as for the rate- 34 non-square
OSTBCs described in [26]. The {Ns, Nc, NT } parameter set
is fixed as {2, 2, 2} and {3, 4, 4}, respectively. In each OFDM
symbol, a total of NP = 22 pilots are loaded across the
uniformly-spaced subcarriers, for each TA. The transmission
frame is comprised of R = 10 TBs. For P-HBKF, the pilot
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X̂
(i)
k,n (m) = arg max

Xk,n(m)
E
Hn(m)|Ỹk,n(m);X̂

(i−1)
k,n

(m)

{
log p

(
Ỹk,n (m) |Hn (m) ;Xk,n (m)

)}
(68)

â
(i)
k,n (m) = arg max

ak,n(m)
E
Hn(m)|zk,n(m);â

(i−1)
k,n

(m)
{log p (zk,n (m) |Hn (m) ;ak,n (m))} (69)

â
(i)
k,n (m) = arg min

ak,n(m)
E
Hn(m)|zk,n(m);â

(i−1)
k,n

(m)

{
‖zk,n (m)− Cn (m)ak,n (m)‖2

}
(70)
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performance comparison for Alamouti coded 2 × 2 MIMO-OFDM by varying number of subcarriers used as pilots, for the following techniques: Agnostic
2D-MMSE [36], OMP [37], FOCUSS [12], SBL [18], P-HBKF, D-HBKF along with their respective BCRBs (31).

duration TP in each TB is set to the number of slots Nc

occupied by a single OSTBC codeword, while for D-HBKF,
it is assumed to be equal to K = 3 OSTBC codeword slots,
i.e., TP = 3Nc. The hyperparameters for the P-HBKF and
D-HBKF schemes are initialized as indicated in Algorithm
1. The initial estimates of the data symbols on the non-pilot
subcarriers â

(0)
k,n(m), ∀ m ∈ Pc, 1 ≤ k ≤ K, 1 ≤ n ≤ R,

for the D-HBKF algorithm, are obtained by using the P-

HBKF channel estimate for detection. The stopping parameters
ǫ and imax are set as 10−5 and 50, respectively, for both
the schemes. The frequency-selective channel’s CIR vector
ht,r,n is assumed to have L = 32 taps, which is equal to
the CP length. The approximately sparse channel is gener-
ated using the standard Rayleigh fading vehicular-A channel
model of [38] with Ls = 6 non-zero channel taps until
specified otherwise. The MIMO-OFDM system is considered
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to be deployed in the 2.5 GHz band at a mobile velocity
of v = 30 km/h, leading to a Doppler shift of fD = 69
Hz. The coherence time is set to Tc = 2.1 ms with a block
length of TB = Tc. Substituting the values of fd and TB

in Jake’s model, the temporal correlation parameter ρ of the
time varying channel model in (10) is ρ = J0(2πfdTB) ≈ 0.8.
For the parameters Nc, TP , TD set as above, considering the
transmission of 39 OSTBC MIMO-OFDM data codewords,
it follows that TB = TP + TD = 40 × 51.2 µs = 2 ms.
This is well within the coherence time Tc = 2.1 ms. Thus,
for this scenario, the wireless channel can be assumed to be
approximately constant in each duration of length TB .

The performance of the proposed P-HBKF and D-HBKF
techniques for doubly-selective MIMO-OFDM channel es-
timation is also compared with that of the other popular
sparse channel estimation techniques such as SBL [18], OMP
[37] and FOCUSS [12]. The stopping criterion for the OMP
is set for ensuring that the algorithm terminates when the
residual error E(i) between the consecutive iterations obeys
E(i + 1) − E(i) < σ2. The regularization parameter for
MFOCUSS is set as the noise variance σ2, the norm parameter
p = 0.8 and the stopping threshold is set as 10−5 with
the maximum number of iterations set to 800. The stopping
parameters for SBL are set identical to that of the P-HBKF
and D-HBKF schemes. The performance of the proposed
schemes is also compared to 2D-MMSE [6], [36], which is
an MMSE approach that estimates the channel’s frequency
response (CFR) using time-frequency correlation.

A. MSE Performance Comparison

The MSE performance of the channel estimates is presented
next. The popular full-rate Alamouti OSTBC [3] associated
with NT = NR = 2 is considered first. Fig. 5(a) plots the MSE
performance versus SNR of the proposed P-HBKF and D-
HBKF techniques along with that of the OMP, SBL, FOCUSS
and 2D-MMSE. Furthermore, the BCRB corresponding to the
doubly-selective sparse channel estimate obtained in (31) is
also included in the figure. It can be observed that the proposed
P-HBKF scheme achieves a lower MSE in comparison to the
existing sparse approaches, viz. OMP, SBL and FOCUSS,
which do not utilize the temporal correlation across multi-
ple measurements. The Agnostic 2D-MMSE, which has no
knowledge of the channel power delay profile (PDP) and hence
assumes a typical exponential PDP, can be seen to perform
poorly in terms of MSE of channel estimation. In contrast,
the P-HBKF that also has no knowledge of the PDP, i.e.,
either of the non-zero tap locations or their respective powers,
yields a significantly improved performance. The Genie 2D-
MMSE, which assumes knowledge of the true channel PDP,
has an MSE that is close to the BCRB. However, due to
its ideal nature, it can act only as a performance benchmark
to lower bound the performance of the proposed schemes.
Finally, it is also interesting to note that the Genie 2D-MMSE,
which is a block estimation scheme has a slightly improved
performance than the BCRB, since the BCRB as derived in the
paper is evaluated only for the forward Kalman iteration and
lacks a smoothing step, in order to maintain the online nature

of the P-HBKF technique. Moreover, the MSE performance
of the P-HBKF and D-HBKF techniques is close to that
of the corresponding BCRB bounds, which is worth noting
since the proposed P-HBKF and D-HBKF techniques do not
require prior knowledge of the PDP, while the respective
benchmarks do. Fig. 5(b) plots the MSE of the proposed and
existing schemes versus number of blocks (n) at an SNR
of 10dB, for an Alamouti-coded system. The performance
is benchmarked with respect to the sparsity-agnostic KF,
conventional-HBKF and BCRB. From the figure, it can be
seen that the Agnostic-KF has the worst MSE performance that
naturally arises owing to the fact that it ignores the channel-
sparsity. It can be observed that the proposed P-HBKF and
D-HBKF schemes achieve a significantly lower MSE than the
conventional HBKF and also require significantly fewer blocks
for convergence owing to the sparse initialization of the error
covariance matrix and hyperparameter vector, as described in
Subsection III-B. This also validates the assumption employed
in the simplification of the HBKF in (16), which is met by
the P-HBKF and D-HBKF due to the sparse initialization. By
contrast, the conventional HBKF satisfies this criterion only
after several blocks, thus leading to its slower convergence
and to a significant performance gap with respect to the
proposed techniques. Both the P-HBKF and D-HBKF yield
performance curves that are significantly improved in com-
parison to the existing approaches, while also being close to
the corresponding BCRBs. Fig. 5(b) also shows the asymptotic
MSE performance, the analysis of which has been presented
in Section V based on the solution of the discrete-time Riccati
equation. It can be seen that the P-HBKF and D-HBKF
schemes closely approach their asymptotic MSE benchmarks
determined in (48) within as few as n = 10 blocks, thus
demonstrating the rapid convergence of the proposed online
estimation schemes.

In order to study the performance with respect to general
non-square OSTBCs using a practical channel model, Fig.
6(a) demonstrates the performance of a rate- 34 non-square
OSTBC using NT = 4 TAs and NR = 8 RAs [26] for
the 3GPP spatial channel model (SCM) described in [38]. A
power delay profile with Ls = 6 non-zero channel taps is
considered as stipulated by the vehicular-A model provided
in the SCM link level parameters (Table 4.1 of [38]). The
MSEs of the proposed and existing schemes are compared in
Fig. 6(a) along with their respective BCRBs with the time
domain samples of the channel generated using the SCM
Matlab-package [39]. The P-HBKF and D-HBKF can once
again be seen to outperform the existing schemes, which
demonstrates their viability for practical applications. Fig. 6(b)
depicts the MSE performance of the Alamouti OSTBC with
NT = NR = 2, as the number of pilot subcarriers NP is
varied. The MSE performance of both the OMP and P-HBKF
techniques is seen to improve upon increasing the number
of pilot subcarriers, which can be attributed to the increased
number of measurements. Furthermore, it can be observed
that the performance of the P-HBKF scheme with NP = 22
subcarriers is comparable to that of the OMP scheme with all
the N = NP = 64 subcarriers designated as pilot subcarriers,
which demonstrates a significant reduction of around 65%
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Fig. 7. (a) MSE versus mismatched correlation coefficient ρ (b) MSE versus
mismatched noise variance σ2 for an Alamouti coded 2 × 2 MIMO-OFDM
system for the following techniques: OMP [37], FOCUSS [12], P-HBKF, D-
HBKF.

in pilot overheads that can potentially be achieved by the
proposed approach.

Fig. 7(a) and 7(b) present the MSE performance of the
proposed P-HBKF and D-HBKF techniques in the presence
of mismatches in the values of the correlation coefficient ρ
and noise variance σ2, respectively, at the receiver, for the
Alamouti OSTBC using NT = NR = 2 and SNR= 20
dB. The true underlying values of these quantities are set
as ρ = 0.8 and σ2 = 0 dB. One can once again see
that the HBKF-based schemes are robust to the effects of
mismatch in the correlation coefficient ρ. The proposed D-
HBKF technique exploits all the available KNNc received
measurements corresponding to the pilot as well as the data
subcarriers over the K MIMO-OFDM codewords for channel
estimation, whereas the P-HBKF technique is only able to
leverage the NPNc measurements corresponding to the pilot
subcarriers. Thus, the large number of measurements makes
D-HBKF robust against the parameter mismatches.

B. BER Performance Comparison

Fig. 8(a) compares the BER performance of the proposed
and existing schemes for the full-rate Alamouti OSTBC with

NT = NR = 2 in a MIMO-OFDM system. This is bench-
marked against a hypothetical genie receiver having perfect
CSI. The sparse channel estimation accuracy improvement
of the proposed HBKF based schemes is reflected in the
BER reduction achieved by the P-HBKF in comparison to the
existing schemes. The D-HBKF approach can be seen to lead
to a further reduction in the BER, which can be attributed to
its improved accuracy of channel estimation coupled with the
modified ML detector derived in (71) that also incorporates the
posteriori covariance matrix M

(i)
n|n of the channel estimation

error. The theoretical BER values are computed utilizing the
analytical expression in [22] by substituting the asymptotic
covariance matrices obtained on solving Equation (45) for the
P-HBKF and D-HBKF schemes. Fig. 8(b) considers the rate-
3
4 non-square OSBTC MIMO-OFDM system using NT = 4
TAs and NR = 2 RAs for our BER performance comparison.
It shows a trend similar to that of Fig. 8(a), with the D-HBKF
yielding the best overall performance. The theoretical BER
values for the square as well as non-square OSTBCs seen
in Fig. 8(a), Fig. 8(b), respectively, are observed to be close
to the corresponding values obtained via simulation. Thus,
the improved estimation/ BER performance of the proposed
P-HBKF and D-HBKF techniques coupled with the low-
complexity online sparse channel estimation procedure makes
them ideally suited for practical implementation in OSTBC-
based MIMO-OFDM systems.

C. Extension of the Proposed Schemes to Next-Generation

Systems

It is worth mentioning that the sparse channel estimation
schemes developed in this work are not limited to the existing
sub-6GHz MIMO-OFDM systems, and can be readily ex-
tended to large antenna array based next-generation millimeter
wave (mmWave) and massive MIMO systems. As described in
[40], [41], we can consider a millimeter wave hybrid MIMO
architecture having NT

RF = 4 radio frequency (RF) chains
at the transmitter and NR

RF = 2 RF chains at the receiver,
i.e., a 2 × 4 MIMO in the baseband, and NT >> 4 and
NR >> 2 TAs and RAs. In such systems, the RF precoder
FRF ∈ C

NT×NT
RF maps the output of the NT

RF transmit
RF chains to NT transmit antennas, while its counterpart at
the receiver, namely the RF combiner WH

RF ∈ C
NR

RF×NR

similarly maps the output of the NR receive antennas to
the NR

RF receive RF chains. The pertinent channel estima-
tion schemes for such systems have been proposed in [40]–
[42], which exploit the sparsity inherent in the angular do-
main representation of the mmWave MIMO channel. Thus
the proposed P-HBKF and D-HBKF techniques can also
be suitably extended for time-selective channel estimation
in mmWave hybrid MIMO systems. Following the channel
estimation process, one can consider the equivalent baseband
channel Heq = WH

RFHFRF , so that the end-to-end baseband
channel is of size NR

RF×N
T
RF . Subsequently, the conventional

MMSE/ LS-based baseband combiner can be employed for
data detection.
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Fig. 8. (a) BER versus SNR performance comparison for a 4-PSK Alamouti coded 2× 2 MIMO-OFDM wireless system (b) BER versus SNR performance
comparison for a 4-PSK rate 3

4
non-square space time block coded 2× 4 MIMO-OFDM wireless system for the following techniques: OMP [37], FOCUSS

[12], P-HBKF, D-HBKF and Genie receiver.

VIII. CONCLUSIONS

We conceived HBKF-based schemes for sparse channel es-
timation in doubly-selective OSTBC MIMO-OFDM systems.
The proposed P-HBKF technique successfully amalgamated
the conventional KF with the SBL framework for improved
tracking of the sparse MIMO-OFDM channel. The D-HBKF
developed next was shown to further improve the performance
by intrinsically integrating data detection with sparse channel
estimation in the HBKF framework. The BCRBs and asymp-
totic MSE expressions were also derived for analytically char-
acterize the MSE lower bound of the proposed techniques. Our
simulation results demonstrated the performance improvement
attained over the existing techniques, both in terms of the MSE
and BER, while also validating the analytical bounds.

APPENDIX A
P-HBKF STEPS

Prediction:

ĥn|n−1 = ρ ĥn−1|n−1 and ŷP,n|n−1 = ΦP ĥn|n−1 (73)

Prediction MSE:

Mn|n−1 = ρ2Mn−1|n−1 +
(
1− ρ2

) (
INRNT

⊗ Γ̂c
n

)
(74)

Kalman Gain Matrix:

Kn = Mn|n−1Φ
H
P

(
σ2INPNcNR

+ΦPMn|n−1Φ
H
P

)−1

(75)

Measurement Error:

yP,e,n = yP,n − ŷP,n|n−1 (76)

Correction:

ĥn|n = ĥn|n−1 +KnyP,e,n (77)

MSE Matrix:

Mn|n = (ILNRNT
−KnΦP)Mn|n−1 (78)
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