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On the Age of Information in Multi-Source

Queueing Models

Mohammad Moltafet, Markus Leinonen, and Marian Codreanu

Abstract

Freshness of status update packets is essential for enabling services where a destination needs

the most recent measurements of various sensors. In this paper, we study the information freshness

of single-server multi-source queueing models under a first-come first-served (FCFS) serving policy.

In the considered model, each source independently generates status update packets according to a

Poisson process. The information freshness of the status updates of each source is evaluated by the

average age of information (AoI). We derive an exact expression for the average AoI for the case with

exponentially distributed service time, i.e., for a multi-source M/M/1 queueing model. Moreover, we

derive three approximate expressions for the average AoI for a multi-source M/G/1 queueing model

having a general service time distribution. Simulation results are provided to validate the derived exact

average AoI expression, to assess the tightness of the proposed approximations, and to demonstrate the

AoI behavior for different system parameters.

Index Terms– Information freshness, age of information (AoI), multi-source M/G/1 queueing model.

I. INTRODUCTION

Recently, various services in wireless sensor networks (WSNs) such as Internet of Things and

cyber-physical control applications have attracted both academic and industrial attention. In these

networks, low power sensors may be assigned to send status updates about a random process to

intended destinations [1]–[6]. Such a status update system can monitor, e.g., temperature of a

specific environment (room, greenhouse, etc.) [1], and a vehicular status (position, acceleration,
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etc.) [2]. One key enabler for these services is high freshness of the sensors’ information at a

destination. For instance, real-time control and decision making in the system requires that the

destination has very recent measurements of the various sensors.

The traditional metrics such as throughput and delay can not fully characterize the information

freshness [5]–[7]. Recently, the age of information (AoI) was proposed as a destination-centric

metric to measure the information freshness [7]–[9] in status update systems. A status update

packet contains the measured value of a monitored process and a time stamp representing the

time when the sample was generated. Due to wireless channel access, channel errors, and fading

etc., communicating a status update packet through the network experiences a random delay. If

at a time instant t, the most recently received status update packet contains the time stamp U(t),

AoI is defined as the random process ∆(t) = t−U(t). Thus, the AoI measures for each sensor

the time elapsed since the last received status update packet was generated at the sensor. The

most common metrics of the AoI are average AoI, peak AoI, and effective AoI [5], [10], [11].

In this work, we focus on the average AoI.

A. Related Works

The first queueing theoretic work on AoI is [7] where the authors derived the average AoI for

a single-source M/M/1 first-come first-served (FCFS) queueing model. The average AoI for an

M/M/1 last-come first-served (LCFS) queueing model with preemption was analyzed in [8]. In

[11], the authors proposed peak AoI as an alternative metric to evaluate the information freshness.

The average AoI and average peak AoI for different packet management policies in an M/M/1

queueing model were derived in [12]. The authors of [13] derived a closed-form expression for

the average AoI of a single-source M/G/1/1 preemptive queueing model (where the last entry

in the Kendall notation shows the total capacity of the queueing system; 1 indicates that there

is one packet under service whereas the queue holds zero packets). A closed-form expression

for the average AoI in a single-source M/G/1 queueing model was derived in [14]. The work

[15] considered a single-source LCFS queueing model where the packets arrive according to a

Poisson process and the service time follows a gamma distribution. They derived the average AoI

and average peak AoI for two packet management policies, LCFS with and without preemption.

Besides single-source setups, the work [16] was the first to investigate the average AoI in

a multi-source setup. The authors of [16] derived the average AoI for a multi-source M/M/1
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FCFS queueing model. The authors of [17] considered a multi-source M/G/1 queueing system

and optimized the arrival rates of each source to minimize the peak AoI. The closed-form

expressions for the average AoI and average peak AoI in a multi-source M/G/1/1 preemptive

queueing model were derived in [18]. In [6], the authors introduced a powerful technique based

on stochastic hybrid systems to evaluate the AoI in finite-state continuous-time queueing systems.

The AoI has also been applied as a novel metric in various networking problems. The AoI

in a carrier sense multiple access (CSMA) based vehicular network was studied via simulations

in [9]. The authors of [19] studied AoI and throughput in a shared access network having one

primary and several secondary transmitter-receiver pairs. The authors of [20] investigated the

AoI for ALOHA and time-scheduled based access techniques in WSNs. They concluded that

ALOHA access, while simple, leads to AoI that is inferior to a scheduled access case. The

authors of [21] considered a WSN, derived the average AoI and peak AoI for the system, and

minimized the average AoI and peak AoI by optimizing the probability of transmission of each

node. The authors of [22] analyzed the AoI in a CSMA based system using the stochastic hybrid

systems technique. They optimized the system’s average AoI by adjusting the back-off time of

each link. The authors of [23] analyzed the worst case average AoI for each sensor in a CSMA

based WSN.

B. Contributions

In this paper, we analyze the average AoI of the different sources in single-server multi-source

queueing models under an FCFS service policy with Poisson packet arrivals. First, derive an exact

expression for the average AoI for a multi-source M/M/1 queueing model. The setup was earlier

addressed in [6], [16], where the authors derived an approximate expression for the average

AoI by neglecting the statistical dependency between certain random variables (see Section IV).

Second, we point out the difficulties in an M/G/1 case and derive three approximate expressions

for the average AoI in a multi-source M/G/1 queueing model. We present simulation results to

1) validate the derived exact average AoI in a multi-source M/M/1 queueing model, 2) show

that the proposed approximations are relatively tight in both the M/M/1 case and the M/G/1 case

where the service time follows different distributions, and 3) exemplify the AoI behavior under

different system parameters.
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Fig. 1: The considered status update system modeled as a multi-source M/G/1 queueing model.

C. Organization

This paper is organized as follows. The system model, AoI definition, and a summary of

the main results are presented in Section II. The main steps required to derive the average AoI

for a multi-source M/G/1 queueing model are presented in Section III. The exact expression

for the average AoI in a multi-source M/M/1 queueing model is derived in Section IV. The

three approximate expressions for the average AoI in a multi-source M/G/1 queueing model

are derived in Section V. Numerical validation and results are presented in Section VI. Finally,

concluding remarks are expressed in Section VII.

II. SYSTEM MODEL AND SUMMARY OF RESULTS

We consider a system consisting of a set of independent sources denoted by C = {1, . . . , C}

and one server, as depicted in Fig. 1. Each source observes a random process, representing,

e.g., temperature, vehicular speed or location at random time instants. A remote destination is

interested in timely information about the status of these random processes. Status updates are

transmitted as packets, containing the measured value of the monitored process and a time stamp

representing the time when the sample was generated. We assume that the packets of source c

are generated according to the Poisson process with rate λc, c ∈ C.

For each source, the AoI at the destination is defined as the time elapsed since the last

successfully received packet was generated. Formal definition of the AoI is given next.

Definition 1 (AoI). Let tc,i denote the time instant at which the ith status update packet

of source c was generated, and t′c,i denote the time instant at which this packet arrives at the

destination. At a time instant τ , the index of the most recently received packet of source c is

DRAFT April 2, 2020



5

Time
A

g
e

o
f

In
fo

rm
a
ti

o
n

∆
(t

)

Qc,1

Qc,2
Qc,3

Qc,n

Q̄c

tc,1 tc,2 t′c,1 tc,3 t′c,2 t′c,3

∆0

Tc,2

Xc,2

Fig. 2: Age of information of source c as a function of time.

given by

Nc(τ) = max{i′|t′c,i′ ≤ τ}, (1)

and the time stamp of the most recently received packet of source c is Uc(τ) = tc,Nc(τ). The AoI

of source c at the destination is defined as the random process ∆c(t) = t− Uc(t).

An example of evolution of the AoI is shown in Fig. 2. As it can be seen, ∆c(t) at the

destination increases linearly with time, until the reception of a new status update, when the AoI

is reset to the age of the newly received status update, i.e., the difference of the current time

instant and the time stamp of the newly received update.

The most commonly used metric for evaluating the AoI of a source at the destination is the

average AoI [5], [10], [11]. Next, we introduce this metric for the considered system model.

A. Average AoI

Let (0, τ) denote an observation interval. Accordingly, the time average AoI of the source c

at the destination, denoted as ∆τ,c, is defined as

∆τ,c =
1

τ

∫ τ

0

∆c(t)dt. (2)

The integral in (2) is equal to the area under ∆c(t) which can be expressed as a sum of disjoint

areas determined by a polygon Qc,1, Nc(τ)− 1 trapezoids Qc,i, i = 2, . . . , Nc(τ), and a triangle

Q̄c, as illustrated in Fig. 2. Following the definition of Nc(τ) in (1), ∆τ,c can be calculated as

∆τ,c =
1

τ

(
Qc,1 +

∑Nc(τ)
i=2 Qc,i + Q̄c

)
=
Qc,1 + Q̄c

τ
+
Nc(τ)− 1

τ

1

Nc(τ)− 1

∑Nc(τ)
i=2 Qc,i. (3)
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The average AoI of source c, denoted by ∆c, is defined as ∆c = limτ→∞∆τ,c. The term
Qc,1 + Q̄c

τ
in (3) goes to zero as τ → ∞, and the term

Nc(τ)− 1

τ
in (3) converges to the rate

of generating the status update packets of source c as τ →∞, i.e., λc = limτ→∞
Nc(τ)− 1

τ
.

Moreover, as τ →∞, the number of transmitted packets grows to infinity, i.e., Nc(τ)→∞. Thus,

assuming that the random process {Qc,i}i>1 is (mean) ergodic1 [5]–[7], the sample average term
1

Nc(τ)− 1

∑Nc(τ)
i=2 Qc,i in (3) converges to the stochastic average E[Qc,i]. Consequently, ∆c is

given by

∆c = λcE[Qc,i].

As shown in Fig. 2, Qc,i can be calculated by subtracting the area of the isosceles triangle

with sides (t′c,i − tc,i) from the area of the isosceles triangle with sides (t′c,i − tc,i−1). Let the

random variable

Xc,i = tc,i − tc,i−1 (4)

represent the ith interarrival time of source c, i.e., the time elapsed between the generation of

i− 1th packet and ith packet from source c. From here onwards, we refer to the ith packet from

source c simply as packet c, i. Moreover, let the random variable

Tc,i = t′c,i − tc,i (5)

represent the system time of packet c, i, i.e., the time interval the packet spends in the system

which consists of the sum of the waiting time and the service time. By using (4) and (5), Qc,i

can be calculated by subtracting the area of the isosceles triangle with sides Xc,i from the area

of the isosceles triangle with sides Xc,i + Tc,i (see Fig. 2), and thus, the average AoI of source

c is given as [16]

∆c = λcE[Qc,i] = λc

(
1

2
E[(Xc,i + Tc,i)

2]− 1

2
E[X2

c,i]

)
= λc

(E[X2
c,i]

2
+ E[Xc,iTc,i]

)
. (6)

Let Wc,i be the random variable representing the waiting time of packet c, i, and Sc,i the

random variable representing the service time of packet c, i. Consequently, the system time Tc,i

1Note that for the ergodicity assumption, it is necessary to have a stationary and stable system (for the stability condition it
is sufficient to have

∑
c∈C λc < µ, where µ is the mean service rate in the system).
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is given as the sum Tc,i = Wc,i + Sc,i, and the average AoI in (6) can be written as

∆c = λc

(E[X2
c,i]

2
+ E[Xc,i(Wc,i + Sc,i)]

)
. (7)

B. Summary of the Main Results

Here, we briefly summarize the main results of the paper. To evaluate the AoI of one source

in a queueing model with multiple sources of Poisson arrivals, we can consider two sources

without loss of generality. Thus, we proceed to evaluate the AoI of source 1 by aggregating

the other C − 1 sources into source 2 having the Poisson arrival rate λ2 =
∑

c′∈C\{1} λc′ . The

mean service time for each packet in the system is equal, given as E[S1,i] = E[S2,i] = 1/µ,

∀i. Let ρ1 = λ1/µ and ρ2 = λ2/µ be the load of source 1 and 2, respectively. Since packets

of each source are generated according to the Poisson process and the sources are independent,

the packet generation in the system follows the Poisson process with rate λ = λ1 + λ2, and the

overall load in the system is ρ = ρ1+ρ2 = λ/µ. Since we do not assume any specific probability

density function (PDF) for the service time, the considered model is referred to a multi-source

M/G/1 queueing model.

The main contributions of this paper are twofold: we derive 1) an exact expression for

the average AoI for a multi-source M/M/1 queueing model and 2) propose three approximate

expressions for the average AoI in a multi-source M/G/1 queueing model. The derived results

are summarized as follows.

Theorem 1. The exact expression for the average AoI of source 1 for a multi-source M/M/1

queueing model is given in (43) and has the following form:

∆1 =λ21(1− ρ)Ψ(µ, ρ1, λ2)+
1

µ

(
1

ρ1
+

ρ

1− ρ
+

(2ρ2 − 1)(ρ− 1)

(1− ρ2)2
+

2ρ1ρ2(ρ− 1)

(1− ρ2)3

)
,

where Ψ(µ, ρ1, λ2) is a function that is characterized by transient behavior of an M/M/1 queue

which is presented in (35).

Proof: The proof of Theorem 1 appears in parts in Sections III and IV of this paper.

The three approximate expressions for the average AoI of source 1 for a multi-source M/G/1

queueing model, denoted by ∆
app1
1 ,∆

app2
1 , and ∆

app3
1 , are given in (49), (52), and (55), and are
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of the following form:

∆
app1
1 ≈ E[W ] +

2

µ
+

2ρ2 − 1

λ1
+

2(1− ρ2)
λ1

LT (λ1) + (ρ2 − 1)L′T (λ1).

∆
app2
1 ≈ E[W ] +

2

µ
+

2ρ2 − 1

λ1
+

(
1

µ
+

2(1− ρ2)
λ1

)
LT (λ1) +

(
ρ2 − 1− λ1

µ

)
L′T (λ1).

∆
app3
1 ≈ E[W ] +

2

µ
+

2ρ2 − 1

λ1
+

(
λ2E[S2]

2(1− ρ2)
+

2(1− ρ2)
λ1

)
LT (λ1)+(

2ρ2 − 1− λ1λ2E[S2]

2(1− ρ2)

)
L′T (λ1)− λ1ρ2L′′T (λ1),

where E[W ] is the average waiting time of each packet in the system (which is given in (39)),

LT (λ1) is the Laplace transform of the PDF of the system time (which is given in (40)), and

L′T (λ1) and L′′T (λ1) are the first and second derivative of LT (·) at λ1. The calculations to derive

the approximate expressions are presented in Sections III and V of this paper.

III. AOI IN A MULTI-SOURCE M/G/1 QUEUEING MODEL

In this section, we present the main steps required to derive the average AoI in (7) for the

considered multi-source M/G/1 queueing model and point out the main difficulties regarding

the average AoI calculation. Then, in Section IV, we derive the exact expression for the M/M/1

case and in Section V, we derive the approximate expressions for the M/G/1 case with a general

service time distribution.

The first term in (7) is easy to compute. Namely, since the interarrival time of source 1 follows

the exponential distribution with parameter λ1, we have E[X2
1,i] = 2/λ21. The second term in (7)

can be written as

E[X1,i(W1,i + S1,i)]
(a)
= E[X1,iW1,i] + E[X1,i]E[S1,i] = E[X1,iW1,i] +

1

λ1µ
, (8)

where equality (a) follows because the interarrival time and service time of the packet 1, i are

independent. Since the random variables X1,i and W1,i are dependent, the most challenging part

in calculating (7) is E[X1,iW1,i] which is derived in the following.

In order to calculate E[X1,iW1,i], we follow the approach of [16] and characterize the waiting
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time W1,i by means of two events EB
1,i and EL

1,i as

EB
1,i =

{
T1,i−1 ≥ X1,i

}
, EL

1,i =
{
T1,i−1 < X1,i

}
. (9)

Here, brief event EB
1,i is the event where the interarrival time of packet 1, i is brief, i.e., the

interarrival time of packet 1, i is shorter than the system time of packet 1, i−1. On the contrary,

long event EL
1,i refers to the complementary event where the interarrival time of packet 1, i is

long, i.e., the interarrival time of packet 1, i is longer than the system time of packet 1, i− 1.

Next, we characterize the waiting time for packet 1, i. Under the event EB
1,i, the waiting time

of packet 1, i (W1,i) contains two terms: 1) the residual system time to complete serving packet

1, i − 1, and 2) the sum of service times of the source 2 packets that arrived during X1,i and

must be served before packet 1, i according to the FCFS policy (see Fig. 3(a)). Under the event

EL
1,i, the waiting time of packet 1, i contains two terms: 1) the possible residual service time of

a source 2 packet that is under service at the arrival instant of packet 1, i, and 2) the sum of

service times of source 2 packets in the queue that must be served before packet 1, i according

to the FCFS policy (see Fig. 3(b)). For the event EB
1,i, let

RB
1,i = T1,i−1 −X1,i (10)

represent the residual system time to complete serving packet 1, i− 1 and let

SB
1,i =

∑
i′∈MB

2,i
S2,i′ (11)

represent the sum of service times of source 2 packets that arrived during X1,i and must be

served before packet 1, i where MB
2,i is the set of indices of queued packets of source 2 that

must be served before packet 1, i under the event EB
1,i, where |MB

2,i| = MB
2,i. Similarly for the

event EL
1,i, let

SL
1,i =

∑
i′∈ML

2,i
S2,i′ (12)

represent the sum of service times of source 2 packets that must be served before packet 1, i

where ML
2,i is the set of indices of packets of source 2 that are in the queue (but not under

service) at the arrival instant of packet 1, i conditioned on the event EL
1,i and, thus, must be

served before packet 1, i, where |ML
2,i| = ML

2,i. Thus, by means of the two events in (9) and

April 2, 2020 DRAFT
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X1,i−1 T1,i−1

X1,i T1,i

W1,i S1,i

Arrivals of source 2 Departures of source 2

(MB
2,i packets) (MB

2,i packets)

RB
1,i

(a)

X1,i−1 T1,i−1

X1,i
T1,i

W1,i

S1,iArrivals of source 2

Departures of source 2

Arrivals of source 2

Departures of source 2

RL
2,i

(JL
2,i packets)

(ML
2,i packets)

(b)

Fig. 3: Illustration of the key quantities in characterizing the waiting time in (13) under (a) brief event EB
1,i and

(b) long event EL
1,i.

definitions (10), (11), and (12), the waiting time for packet 1, i can be expressed as

W1,i =

S
B
1,i +RB

1,i, EB
1,i

SL
1,i +RL

2,i, EL
1,i,

(13)

where RL
2,i is a random variable that represents the possible residual service time of the packet

of source 2 that is under service at the arrival instant of packet 1, i conditioned on the event

EL
1,i.

Based on (13), E[X1,iW1,i] in (8) can be expressed as

E[X1,iW1,i] =

(
E[RB

1,iX1,i|EB
1,i] + E[SB

1,iX1,i|EB
1,i]

)
P (EB

1,i)+ (14)

E[(SL
1,i +RL

2,i)X1,i|EL
1,i]P (EL

1,i),

where P (EB
1,i) and P (EL

1,i) denote the probabilities of the events EB
1,i and EL

1,i, respectively.

Next, we derive the expressions for P (EB
1,i) and P (EL

1,i) in (14). Then, by referring to

E[RB
1,iX1,i|EB

1,i], E[SB
1,iX1,i|EB

1,i], and E[(SL
1,i + RL

2,i)X1,i|EL
1,i] in (14) as the first, the second,

and the third conditional expectation terms of (14), we present elaborate derivations of the first

and second terms in Sections III-1 and III-2, respectively, and in Section III-3 we point out the
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difficulties involved in computing the third term for a generic service time distribution.

The following lemma gives the expressions for P (EB
1,i) and P (EL

1,i) in (14).

Lemma 1. The probabilities of the events EB
1,i and EL

1,i in (9) are calculated as follows:

P (EB
1,i) =

LS(λ1)(λ+ (ρ− 1)λ1)− λ2
λLS(λ1)− λ2

, (15)

P (EL
1,i) =

(1− ρ)λ1LS(λ1)

λLS(λ1)− λ2
, (16)

where LS(λ1) is the Laplace transform of the PDF of the service time S at λ1; note that the

service times of all packets are stochastically identical as S1,i =st S2,i =st S, ∀i.

Proof: See Appendix A.

1) The First Conditional Expectation in (14): Let us now focus on the first conditional

expectation term E[RB
1,iX1,i|EB

1,i] in (14). According to (10), this term is expressed as follows:

E[RB
1,iX1,i|EB

1,i] = E[T1,i−1X1,i|EB
1,i]− E[X2

1,i|EB
1,i] (17)

=

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt−
∫ ∞
0

x2fX1,i|EB
1,i

(x)dx,

where fX1,i|EB
1,i

(x) is the conditional PDF of the interarrival time X1,i given the event EB
1,i and

fX1,i,T1,i−1|EB
1,i

(x, t) is the conditional joint PDF of the interarrival time X1,i and system time

T1,i−1 given the event EB
1,i. They are given by the following lemma and corollary.

Lemma 2. The conditional PDF fX1,i,T1,i−1|EB
1,i

(x, t) is given by

fX1,i,T1,i−1|EB
1,i

(x, t) =


0 x > t

λ1e
−λ1xfT1,i−1

(t)

P (EB
1,i)

x ≤ t.
(18)

Proof: See Appendix A.

The conditional PDF fX1,i|EB
1,i

(x) is determined by the following corollary, which is an

immediate consequence of Lemma 2.
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Corollary 1. The conditional PDF fX1,i|EB
1,i

(x) is given by

fX1,i|EB
1,i

(x) =
λ1e

−λ1x(1− FT1,i−1
(x))

P (EB
1,i)

, (19)

where FT1,i−1
(x) is the cumulative distribution function of T1,i−1.

Now, having introduced the conditional PDFs in Lemma 2 and Corollary 1, we can compute

the conditional expectation E[RB
1,iX1,i|EB

1,i] in (17). Using Lemma 2, the first term in (17) is

calculated as

E[T1,i−1X1,i|EB
1,i] =

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt (20)

=
1

P (EB
1,i)

∫ ∞
0

∫ t

0

txλ1e
−λ1xfT1,i−1

(t)dxdt

=
1

P (EB
1,i)

∫ ∞
0

(
− t2e−λ1t − t

λ1
e−λ1t +

t

λ1

)
fT1,i−1

(t)dt

1

P (EB
1,i)

(
− E[T 2e−λ1T ]− E[Te−λ1T ]

λ1
+

E[T ]

λ1

)
(a)
=

1

P (EB
1,i)

(
− L′′T (λ1) +

L′T (λ1)

λ1
+

E[W ] + 1/µ

λ1

)
,

where in equality (a) the first and second derivative of the Laplace transform of the PDF of

the system time, L′T and L′′T at λ1, respectively, were obtained using the feature of the Laplace

transform that for any function f(y), y ≥ 0, we have [24, Sect. 13.5]

Lynf(y)(a) = (−1)n
dn(Lf(y)(a))

dan
, (21)

and consequently,

E[T ne−aT ] = (−1)n
dn(LT (a))

dan
. (22)

Using Corollary 1, the second term E[X2
1,i|EB

1,i] in (17) is calculated as

E[X2
1,i|EB

1,i] =

∫ ∞
0

x2fX1,i|EB
1,i

(x)dx =
1

P (EB
1,i)

∫ ∞
0

x2λ1e
−λ1x

(
1− FT1,i−1

(x)
)
dx (23)

=
1

P (EB
1,i)

(∫ ∞
0

x2λ1e
−λ1xdx− λ1

∫ ∞
0

e−λ1x
(
x2FT1,i−1

(x)
)
dx

)
=

1

P (EB
1,i)

(
2

λ21
− λ1Lx2FT1

(x)(λ1)

)
.
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The Laplace transform Lx2FT1
(x)(λ1) in (23) is given by the following lemma.

Lemma 3. Lx2FT1
(x)(λ1) is given as follows:

Lx2FT1
(x)(a)

∣∣∣∣
a=λ1

=
λ1L

′′
T (λ1)− 2L′T (λ1)

λ21
+

2LT (λ1)

λ31
. (24)

Proof: See Appendix A.

Thus, applying Lemma 3, the conditional expectation in (23) is given as

E[X2
1,i|EB

1,i] =
1

P (EB
1,i)

(
2

λ21
− L′′T (λ1) +

2L′T (λ1)

λ1
− 2LT (λ1)

λ21

)
. (25)

Finally, substituting (20) and (25) in (17), the first conditional expectation E[RB
1,iX1,i|EB

1,i] in

(14) is given by

E[RB
1,iX1,i|EB

1,i] =
1

P (EB
1,i)

(
E[W ] + 1/µ

λ1
− L′T (λ1)

λ1
+

2LT (λ1)

λ21
− 2

λ21

)
. (26)

2) The Second Conditional Expectation in (14): Next, we derive the second term

E[SB
1,iX1,i|EB

1,i] in (14). First, let us elaborate the quantity MB
2,i which is an integral part of

calculating (14). Recall that MB
2,i is defined as the number of queued packets of source 2 that must

be served before packet 1, i according to the FCFS policy under the event EB
1,i = {T1,i−1 ≥ X1,i}.

Thus, MB
2,i is equal to the number of arrived (and thus, queued) packets of source 2 during

the (brief) interarrival time X1,i. Consequently, we have a Markov chain T1,i−1 ↔ X1,i ↔MB
2,i

conditioned on the event EB
1,i, i.e., MB

2,i is independent of T1,i−1 given X1,i under the event EB
1,i.

Accordingly, the conditional expectation E[SB
1,iX1,i|EB

1,i] in (14) can be expressed as

E[SB
1,iX1,i|EB

1,i] =

∫ ∞
0

xE
[∑

i′∈MB
2,i
S2,i′|EB

1,i, X1,i = x

]
fX1,i|EB

1,i
(x)dx (27)

(a)
=

1

µ

∫ ∞
0

xE
[
MB

2,i|X1,i = x

]
fX1,i|EB

1,i
(x)dx

(b)
=

ρ2
P (EB

1,i)

∫ ∞
0

x2λ1e
−λ1x(1− FT1,i−1

(x))dx

=
ρ2

P (EB
1,i)

(∫ ∞
0

x2λ1e
−λ1xdx−

∫ ∞
0

x2λ1e
−λ1tFT1,i−1

(x)dx

)
(c)
=

ρ2
P (EB

1,i)

(
2

λ21
− L′′T (λ1) +

2L′T (λ1)

λ1
− 2LT (λ1)

λ21

)
,

where equality (a) follows because (i) the service time S2,i′ is independent of all other random
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variables in the system and (ii) by the Markov chain property T1,i−1 ↔ X1,i ↔MB
2,i conditioned

on EB
1,i, M

B
2,i is independent of T1,i−1 given X1,i = x under the event EB

1,i; equality (b) comes

from Corollary 1 and the fact that E[MB
2,i|X1,i = x] = λ2x; equality (c) comes from Lemma 3.

3) The Third Conditional Expectation in (14): The third term E[(SL
1,i+R

L
2,i)X1,i|EL

1,i] in (14)

can be calculated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]=

∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′ |X1,i=x, T1,i−1 = t, EL

1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

+

∫ ∞
0

∫ ∞
0

xE
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt, (28)

where the first term on the right hand side can be calculated as∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′|X1,i=x, T1,i−1 = t, EL

1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

(a)
=

1

µ

∫ ∞
0

∫ ∞
0

xE
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt (29)

=
1

µ

∫ ∞
0

∫ ∞
0

x
∑∞

m=0mPr[ML
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i]fX1,i,T1,i−1|EL
1,i

(x, t)dxdt,

where equality (a) follows because (i) the service time S2,i′ is independent of all other

random variables in the system and (ii) the expectation of a sum of random number N

independent and identically distributed random variables Yn, n = 1, . . . , N, is equal to the

expectation of the random number E[N ] times the expectation of a random variable E[Yn],

i.e., E[
∑N

n=1 Yn] = E[N ]E[Yn] [25, Sect. 11.2].

Remark 1. The second term on the right hand side of (28) and the final expression in (29)

reveal two critical issues in deriving the third conditional expectation term of (14). The second

term on the right hand side of (28) contains the possible residual service time of the packet

of source 2 that is under service at the arrival instant of packet 1, i, RL
2,i, which cannot be

further simplified. In the final expression of (29), we need to calculate the time-dependent

probability of the number of packets in an M/G/1 queue with source 2 packet arrivals, i.e.,

Pr[ML
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i]. Computing this time-dependent probability in an M/G/1

queueing model is complicated and needs the transient analysis of an M/G/1 queueing model.

While characterizations of the transient behavior of an M/G/1 queue are investigated in some

works such as [26], to the best of our knowledge, such a time-dependent probability has not been

derived before in closed form so that it could be used in deriving the conditional expectation in
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(29).

Fortunately, these difficulties can be overcome when the service time is exponential, i.e., in

an M/M/1 queueing model. Thus, we proceed as follows. We derive an exact expression of the

average AoI in a multi-source M/M/1 queueing model in Section IV. In Section V, we propose

three approximations for (28) and derive three approximate expressions for the average AoI in

a multi-source M/G/1 queueing model.

IV. EXACT EXPRESSION FOR THE AVERAGE AOI IN A MULTI-SOURCE M/M/1 QUEUEING

MODEL

In this section, we derive the exact expression of the average AoI in (7) for a multi-source

M/M/1 queueing model that was stated in Theorem 1 in Section II.B. Recall that in Section III,

we already derived general expressions (for an M/G/1 case) for the key terms needed to describe

the average AoI, i.e., the three conditional expectation terms of (14), which are given in (26),

(27), and (28), respectively. Next, we specify these three terms to the case with exponentially

distributed service time. We start by deriving an exact expression for the most challenging term,

i.e., the third term (28), followed by the calculation of (26) and (27).

Focus now on (28). Due to the memoryless property of the exponentially distributed service

time, the possible residual service time of the packet of source 2 that is under service at the

arrival instant of packet 1, i for event EL
1,i is also exponentially distributed; thus, the waiting time

is the sum of M̂L
2,i exponentially distributed random variables, where M̂L

2,i is the total number

of source 2 packets in the system (either in the queue or under service) at the arrival instant of

packet 1, i conditioned on the event EL
1,i [27, p. 168]. Therefore, the waiting time in (28) can

be expressed as

W1,i = SL
1,i +RL

2,i =
∑

i′∈M̂L
2,i
S2,i′ , (30)

where M̂L
2,i is the set of indices of packets of source 2 that are in the system at the arrival

instant of packet 1, i for event EL
1,i, with |M̂L

2,i| = M̂L
2,i.

By (30), E[W1,iX1,i|EL
1,i] (cf. (28)) can be calculated as

E[W1,iX1,i|EL
1,i] =

∫ ∞
0

∫ ∞
0

xE
[∑

i′∈M̂L
2,i
S2,i′ |X1,i = x, T1,i−1 = t, EL

1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

=
1

µ

∫ ∞
0

∫ ∞
0

xE
[
M̂L

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt (31)
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=
1

µ

∫ ∞
0

∫ ∞
0

x
∑∞

m=0mPr[M̂L
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i]fX1,iT1,i−1|EL
1,i

(x, t)dxdt.

Next, we calculate Pr[M̂L
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i] in (31) by introducing an auxiliary

random variable JL
2,i that represents the number of source 2 packets in the system at the departure

instant of packet 1, i − 1 for event EL
1,i (see Fig. 3(b)). Using the law of total expectation,

Pr[M̂L
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i] in (31) is written as

Pr[M̂L
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i] (32)

=
∑∞

j=0 Pr[M̂L
2,i = m|JL

2,i = j,X1,i = x, T1,i−1 = t, EL
1,i]Pr[JL

2,i = j|X1,i = x, T1,i−1 = t, EL
1,i],

where

Pr[JL
2,i = j|X1,i = x, T1,i−1 = t, EL

1,i]
(a)
= Pr[JL

2,i = j|T1,i−1 = t, EL
1,i]

(b)
= e−λ2t

(λ2t)
j

j!
, (33)

where equality (a) follows because JL
2,i is conditionally independent of X1,i given T1,i−1 and

EL
1,i; equality (b) follows because (i) under the long event EL

1,i, all JL
2,i source 2 packets that are

in the system at the departure instant of packet 1, i−1 must have arrived during the system time

T1,i−1 (see Fig. 3(b)), and (ii) the probability of having j Poisson arrivals of rate λ2 during the

time interval T1,i−1 = t is e−λ2t (λ2t)
j

j!
[27, Eq. (2.119)].

Focus now on term Pr[M̂L
2,i = m|JL

2,i = j,X1,i = x, T1,i−1 = t, EL
1,i] in (32). Note that during

the time interval between the departure of packet 1, i − 1 and the arrival of packet 1, i (i.e.,

(t′1,i−1, t1,i) in Fig. 2) the queue receives packets only from source 2 and, therefore the system

behaves as a single-source M/M/1 queue. Thus, Pr[M̂L
2,i = m|JL

2,i = j,X1,i = x, T1,i−1 = t, EL
1,i]

in (32) represents the probability that a single-source M/M/1 queueing system with arrival rate

λ2 and which initially holds j packets (either in the queue or under service) ends up holding

m packets after τ = x − t seconds. We denote this probability compactly by P̄m|j(τ) and it is

given by the transient analysis of an M/M/1 queueing system as [28, Eq. (6)], [27, Eq. (2.163)]

P̄m|j(τ) = e−(λ2+µ)τ
[
ρ
(m−1)/2
2 Im−1(2

√
µλ2τ) + ρ

(m−j−1)/2
2 Im+j+1(2

√
µλ2τ)

]
(34)

+ ρm2 (1− ρ2)
(
1−Qm+j+2(

√
2λ2τ ,

√
2µτ)

)
.

where Ik(·) represents the modified Bessel function of the first kind of order k, and Qk(a, b) is

the generalized Q-function.
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Substituting (32), (33), and (34) into (31), we have

E[W1,iX1,i|EL
1,i]=

1

µ

∫ ∞
0

∫ ∞
0

x
∑∞

m=0

∑∞
j=0mP̄m|j(x− t)e−λ2t

(λ2t)
j

j!
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

(a)
=
λ1(1− ρ)

P (EL
1,i)

∫ ∞
0

∫ ∞
0

(t+τ)e−µ(t+ρ1τ)
(∑∞

m=0

∑∞
j=0mP̄m|j(τ)

(λ2t)
j

j!

)
dτdt (35)

,
λ1(1− ρ)

P (EL
1,i)

Ψ(µ, ρ1, λ2),

where (a) follows from the substitution τ = x− t and Lemma 4 (below) which derives the

conditional PDF fX1,i,T1,i−1|EL
1,i

(x, t). Note that the double integral in Ψ(µ, ρ1, λ2) needs to be in

general numerically calculated.

Lemma 4. The conditional PDF fX1,i,T1,i−1|EL
1,i

(x, t) is given by

fX1,i,T1,i−1|EL
1,i

(x, t) =


0 x < t

λ1e
−λ1xfT1,i−1

(t)

P (EL
1,i)

x ≥ t.
(36)

Proof: The proof of Lemma 4 follows from the similar steps as used for Lemma 2.

By substituting the probabilities P (EB
1,i) and P (EL

1,i) given by Lemma 1 and the three derived

conditional expectation terms (26), (27), and (35) into (14), E[X1,iW1,i] can be expressed as

E[X1,iW1,i] =
E[W ]

λ1
+ λ1(1− ρ)Ψ(µ, ρ1, λ2) +

2(ρ2 − 1)

λ21
+

1

λ1µ
+

2(1− ρ2)
λ21

LT (λ1) (37)

+
2ρ2 − 1

λ1
L′T (λ1)− ρ2L′′T (λ1).

Finally, by substituting (37) and (8) into (7), the average AoI of source 1 for a multi-source

M/M/1 queueing model is expressed as:

∆1 =E[W ] + λ21(1− ρ)Ψ(µ, ρ1, λ2) +
2

µ

(
λ2
λ1

+ 1

)
− 1/λ1 +

2(1− ρ2)
λ1

LT (λ1) (38)

+ (2ρ2 − 1)L′T (λ1)− λ1ρ2L′′T (λ1),

where the average waiting time of each packet in the system, E[W ], is given as [29, Sect. 3]

E[W ] =
E[S2]λ

2(1− ρ)
, (39)

where E[S2] = 2/µ2 is the second moment of the service time, LT (λ1) is a function of the
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Laplace transform of the PDF of the service time given by [30, Sect. 5.1.2]

LT (λ1) =

(
1− ρ

)
λ1LS(λ1)

λ1 − λ
(
1− LS(λ1)

) , (40)

and L′T (λ1) and L′′T (λ1) are the first and second derivative of LT (·) at λ1, respectively, as

L′T (λ1) =
d(LT (a))

da

∣∣∣∣
a=λ1

= (1− ρ)
λL2

S(λ1) +
(
λ21 − λ1λ

)
L′S(λ1)− λLS(λ1)(

λ1 − λ
(
1− LS(λ1)

))2 , (41)

L′′T (λ1) =
d2(LT (a))

da2

∣∣∣∣
a=λ1

= (1− ρ)

(
λL′′S(λ1)

(
λ21 − λ1λ

)
+ 2L′S(λ1)

(
λ1 − λ+ λLS(λ1)

)(
λ1 − λ

(
1− LS(λ1)

))2
−

2(λL2
S(λ1) +

(
λ21 − λ1λ

)
L′S(λ1)− λLS(λ1))(1 + λL′S(λ1))

(λ1 − λ (1− LS(λ1)))
3

)
,

where L′S(λ1) and L′′S(λ1) for the exponential service time are computed according to (21) as

LS(λ1) =

∫ ∞
0

µe−(µ+λ1)sds =
µ

µ+ λ1
, L′S(λ1) = −

∫ ∞
0

sµe−(µ+λ1)sds = − µ

(µ+ λ1)2
, (42)

L′′S(λ1) =

∫ ∞
0

s2µe−(µ+λ1)sds =
2µ

(µ+ λ1)3
.

Finally, by substituting E[W ], LT (λ1), L′T (λ1), and L′′T (λ1) into (38) we get the result in Theorem

1 in Section II-B, i.e., the average AoI of source 1 for a multi-source M/M/1 queueing model

is given as

∆1 =λ21(1− ρ)Ψ(µ, ρ1, λ2)+
1

µ

(
1

ρ1
+

ρ

1− ρ
+

(2ρ2 − 1)(ρ− 1)

(1− ρ2)2
+

2ρ1ρ2(ρ− 1)

(1− ρ2)3

)
. (43)

Remark 2. It is worth noting that (43) does not coincide with the prior result [6, Theorem. 1]

and [16, Eq. (16)]. The dissimilarity is explained in the following. The authors of [6], [16]

considered a similar two-source FCFS M/M/1 queueing model, with the aim of deriving a

closed-form expression for the average AoI of source 1 (∆1). Let us focus on [16, Eq. (33)]

where the authors compute a conditional expectation equivalent to our E[W1,iX1,i|EL
1,i] given by

(35), which by (30) can be expressed as

E[W1,iX1,i|EL
1,i] = E

[∑
i′∈M̂L

2,i
S2,i′X1,i|EL

1,i

]
. (44)

The authors of [16] tacitly assumed conditional independency between
∑

i′∈M̂L
2,i
S2,i′ and

X1,i under the event EL
1,i = {T1,i−1 < X1,i}, and calculated (44) as a multiplication of two
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expectations as

E[W1,iX1,i|EL
1,i] = E

[∑
i′∈M̂L

2,i
S2,i′|T1,i−1 < X1,i

]
E
[
X1,i|T1,i−1 < X1,i

]
. (45)

The critical point is that even if X1,i is independent of T1,i−1, they become dependent when

conditioned on the event EL
1,i = {T1,i−1 < X1,i}, as in (44). This conditional dependency is

violated by the separation of the expectations in (45) because the quantity M̂L
2,i in general

depends on both T1,i−1 and X1,i, and, thus, the multiplicative quantities
∑

i′∈M̂L
2,i
S2,i′ and X1,i

are dependent under the event EL
1,i. Note that we incorporate this conditional dependency in

calculating E[W1,iX1,i|EL
1,i] by using the conditional joint PDF fX1,i,T1,i−1|EL

1,i
(x, t).

Remark 3. It is worth to note that (43) neither coincides with our prior result [31, Eq. (25)].

The dissimilarity comes from the fact that in [31], we wrongly used steady-state properties of a

queueing system in calculating E
[
M̂L

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
in (31).

V. APPROXIMATE EXPRESSIONS FOR THE AVERAGE AOI IN A MULTI-SOURCE M/G/1

QUEUEING MODEL

In this section, we derive the three approximate expressions of the average AoI in (7) for a

multi-source M/G/1 queueing model that were presented in Section II.B. Recall that the exact

expressions for the first and second conditional expectation terms of (14) are given by (26) and

(27), respectively. From (28) and (29), the third conditional expectation is given as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]=
1

µ

∫ ∞
0

∫ ∞
0

xE
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

+

∫ ∞
0

∫ ∞
0

xE
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt. (46)

Next, we propose three approximate calculations for the third conditional expecta-

tion term of (14), given by (46), differing in the way we approximate the terms

E
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
and E

[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
.

Approximation 1: First, we neglect the possible residual service time of source 2 packet that

is under service at the arrival instant of packet 1, i. Second, we assume that the average number

of packets of source 2 that must be served before packet 1, i is equal to the average number of

packets of source 2 that are queued during the system time of packet 1, i− 1 (T1,i−1). Thus, we

assume E
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
= E

[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
, where, as defined
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previously, the random variable JL
2,i represents the number of source 2 packets in the system at

the departure instant of packet 1, i − 1 for the long event EL
1,i. With the simplifications above,

(46) can be approximated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]≈
1

µ

∫ ∞
0

∫ ∞
0

xE
[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

(a)
= ρ2

∫ ∞
0

∫ ∞
0

txfX1,i,T1,i−1|EL
1,i

(x, t)dxdt (47)

(b)
=

ρ2
P (EL

1,i)

∫ ∞
0

∫ ∞
t

xtλ1e
−λ1xfT1,i−1

(t)dxdt

=
ρ2

P (EL
1,i)

∫ ∞
0

(
t2e−λ1tfT1,i−1

(t) +
te−λ1t

λ1
fT1,i−1

(t)

)
dt

(c)
=

ρ2
P (EL

1,i)

(
L′′T (λ1)−

L′T (λ1)

λ1

)
,

where (a) comes from the fact that E
[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
= λ2t, (b) follows from

Lemma 4, and (c) follows from (22).

By substituting the probabilities P (EB
1,i) and P (EL

1,i) given by Lemma 1 and the three derived

conditional expectation terms (26), (27), and (47) into (14), an approximation for E[X1,iW1,i]

can be expressed as

E[X1,iW1,i] ≈
1

λ1

(
E[W ] +

1

µ
+

2(ρ2 − 1)

λ1
+

2(1− ρ2)
λ1

LT (λ1) + (ρ2 − 1)L′T (λ1)

)
. (48)

By substituting (48) and (8) into (7), an approximation for the average AoI of source 1 in a

multi-source M/G/1 queueing model is given as

∆
app1
1 ≈ E[W ] +

2

µ
+

2ρ2 − 1

λ1
+

2(1− ρ2)
λ1

LT (λ1) + (ρ2 − 1)L′T (λ1), (49)

where the quantities E[W ], LT (λ1), and L′T (λ1) are calculated by (39) – (42) for a specific

service time distribution.

Approximation 2: First, we assume that the average residual service time of source 2 packet

that is under service at the arrival instant of packet 1, i is equal to the average service time of

one packet in the system. Thus, we assume that E
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
=

1

µ
. Second,

for the term E
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
we use the same approximation as we used

for Approximation 1, i.e., E
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
= E

[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
.
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Based on these simplifications, (46) can be approximated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]≈
1

µ

∫ ∞
0

∫ ∞
0

xE
[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

+
1

µ

∫ ∞
0

∫ ∞
0

xfX1,i,T1,i−1|EL
1,i

(x, t)dxdt (50)

=ρ2

∫ ∞
0

∫ ∞
0

txfX1,i,T1,i−1|EL
1,i

(x, t)dxdt+
1

µ

∫ ∞
0

∫ ∞
0

xfX1,i,T1,i−1|EL
1,i

(x, t)dxdt

=
1

P (EL
1,i)

(
ρ2L

′′
T (λ1)−

(
ρ2
λ1

+
1

µ

)
L′T (λ1) +

LT (λ1)

µλ1

)
.

Using (50) and following the steps used to derive (48), an approximation for E[X1,iW1,i] under

Approximation 2 is given as

E[X1,iW1,i] ≈
1

λ1

(
E[W ]+

1

µ
+

2(ρ2−1)

λ1
+

(
1

µ
+

2(1−ρ2)
λ1

)
LT (λ1)+

(
ρ2−1−λ1

µ

)
L′T (λ1)

)
.

(51)

By substituting (51) and (8) into (7), an approximation for the average AoI of source 1 in a

multi-source M/G/1 queueing model is given as

∆
app2
1 ≈ E[W ]+

2

µ
+

2ρ2−1

λ1
+

(
1

µ
+

2(1−ρ2)
λ1

)
LT (λ1)+

(
ρ2−1−λ1

µ

)
L′T (λ1). (52)

Approximation 3: We assume that the queue is in the stationary state. In other words,

first, we assume that the average residual service time of source 2 packet that is under

service at the arrival instant of packet 1, i is equal to the average residual service time

of a stationary M/G/1 queue that has only source 2 packet arrivals. Thus, we assume that

E
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
=
λ2E[S2]

2
[29, Eq. (3.52)]. Second, we assume that the

average number of source 2 packets that must be served before packet 1, i is equal to the

average number of packets in a stationary M/G/1 queue with only source 2 packet arrivals.

Thus, we assume E
[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
=

λ22E[S2]

2(1− ρ2)
[29, Eq. (3.43)]. Thus, the

third conditional expectation in (46) is approximated as follows:

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]≈
λ22E[S2]

2µ(1− ρ2)

∫ ∞
0

∫ ∞
0

xfX1,i,T1,i−1|EL
1,i

(x, t)dxdt

+
λ2E[S2]

2

∫ ∞
0

∫ ∞
0

xfX1,i,T1,i−1|EL
1,i

(x, t)dxdt (53)
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=
λ2E[S2]

2(1− ρ2)P (EL
1,i)

(
LT (λ1)

λ1
− L′T (λ1)

)
.

Using (53) and following the steps used to derive (48), an approximation for E[X1,iW1,i] under

Approximation 3 is given as

E[X1,iW1,i] ≈
1

λ1

(
E[W ] +

1

µ
+

2(ρ2 − 1)

λ1
+

(
λ2E[S2]

2(1− ρ2)
+

2(1− ρ2)
λ1

)
LT (λ1)+ (54)(

2ρ2 − 1− λ1λ2E[S2]

2(1− ρ2)

)
L′T (λ1)− λ1ρ2L′′T (λ1)

)
.

By substituting (54) and (8) into (7), an approximation for the average AoI of source 1 in a

multi-source M/G/1 queueing model is given as

∆
app3
1 ≈ E[W ] +

2

µ
+

2ρ2 − 1

λ1
+

(
λ2E[S2]

2(1− ρ2)
+

2(1− ρ2)
λ1

)
LT (λ1)+ (55)(

2ρ2 − 1− λ1λ2E[S2]

2(1− ρ2)

)
L′T (λ1)− λ1ρ2L′′T (λ1).

A. Single-Source M/G/1 Queueing Model

For λ2 → 0, we have a single-source M/G/1 queueing model. In this case, it can be shown

that (49) and (55) provide the following expression for the average AoI:

∆ = E[W ] +
2

µ
+

2LT (λ1)

λ1
− L′T (λ1)−

1

λ1
. (56)

Using (39), (40), and (41), the quantities E[W ], LT (λ), and L′T (λ) are calculated as

E[W ] =
E[S2]λ

2(1− ρ)
, LT (λ) = 1− ρ, L′T (λ) =

(1− ρ)(LS(λ)− 1)

λLS(λ)
.

By substituting E[W ], LT (λ), and L′T (λ) in (56), we have

∆ =
1

µ
+

λE[S2]

2(1− ρ)
+

1− ρ
λLS(λ)

, (57)

which is an exact expression for the average AoI of the single-source M/G/1 queueing case

derived in [14, Eq. (22)].

VI. VALIDATION AND SIMULATION RESULTS

In this section, we first evaluate the average AoI in a multi-source M/M/1 queueing model

and compare our exact expression in (43) with the results in existing works [16] and [31]. Then,
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Fig. 4: The average AoI of source 1 as a function of λ1 with λ2 = 0.6 and µ = 1.

we evaluate the accuracy of the proposed three approximate expressions for the M/G/1 queueing

model in (49), (52), and (55) under various service time distributions.

A. Multi-Source M/M/1 Queueing Model

Fig. 4 depicts the average AoI of source 1 (∆1) as a function of λ1 with λ2 = 0.6 and µ = 1.

As it can be seen, the simulation result and our proposed solution overlap perfectly. We used

“integral2” command in MATLAB software to calculate the double integral in (35). Due to the

calculation errors in [16] and [31], both curves have a gap to the correct average AoI value.

The effect of λ2 on the average AoI of source 1 is shown in Fig. 5. When λ2 increases, the

increased overall load in the system results in longer waiting time for packets of source 1 (and

source 2), which increases ∆1. Note, however, that when λ2 increases, the optimal value of λ1

that minimizes ∆1 decreases. The figures illustrate that generating the status update packets too

frequently or too rarely does not minimize the average AoI. Moreover, Fig. 5 depicts the gap

between the exact and approximate average AoI expressions. As it can be seen, the proposed

approximations are relatively close to the exact one in the M/M/1 queueing model.

Fig. 6 depicts the average delay of source 1 as a function of λ1 for different values of λ2 with

µ = 1. The average delay is defined as the summation of the average waiting time and average

service time i.e., E[W ]+1/µ. As the number of arrivals of source 2 packets increases, the queue

becomes more congested and the average delay of source 1 increases. By comparing Figs. 5 and

6 one can see that the delay does not fully capture the information freshness, i.e., minimizing

the average system delay does not necessarily lead to a good performance in terms of AoI and,
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Fig. 5: The average AoI of source 1 as a function of λ1 for different values of λ2 with µ = 1.
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Fig. 6: The average delay of source 1 as a function of λ1 for different values of λ2 with µ = 1.

reciprocally, minimizing the average AoI does not minimize the average system delay.

B. Multi-Source M/G/1 Queueing Model

In the section, we examine the accuracy of the proposed three approximations using the

following service time distributions: i) Gamma distribution, ii) hyper-exponential distribution,

iii) log-normal distribution, and iv) Pareto distribution. In the following, we first define the

distributions and then show the accuracy of the proposed approximations for each distribution.

Definition 1 (Gamma distribution). The PDF of a random variable S following a gamma

distribution is defined as fS(s) = Gamma(s;κ, β) =
βκsκ−1 exp(−βs)

Γ(κ)
, for s > 0, and

parameters κ > 0 and β > 0, where Γ(κ) is the gamma function at κ. The mean and variance

of this random variable is E[S] = κ/β and Var[S] =
κ

β2
, respectively.
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Definition 2 (Hyper-exponential distribution). The PDF of a random variable S following a

hyper-exponential distribution is defined as fS(s) =
∑N

k=1 fYk(s)pk, where Yk is an exponentially

distributed random variable with parameter γk, and pk is the weight factor of random variable

Yk such that
∑N

k=1 pk = 1. The mean and variance of this random variable are E[S] =
N∑
k=1

pk
γk

and Var[S] =
∑N

k=1

2pk
γ2k
−
(∑N

k=1

pk
γk

)2

, respectively.

Definition 3 (Log-normal distribution). The PDF of a random variable S following a log-

normal distribution is defined as fS(s) =
1

sσ
√

2π
exp

(
−(ln (s)− ν)2

2σ2

)
, for s > 0 and

parameters σ > 0 and ν ∈ (−∞,+∞). The mean and variance of this random variable are

E[S] = exp

(
ν +

σ2

2

)
and Var[S] = exp(2ν + σ2) (exp(σ2)− 1) , respectively.

Definition 4 (Pareto distribution). The PDF of a random variable S following a Pareto

distribution is defined as fS(s) =
αωα

sα+1
, for s ∈ [ω,∞] and parameters ω > 0 and α > 0.

The mean and variance of this random variable are

E[S] =


∞ α ≤ 1

αω

α− 1
α > 1,

Var[S] =


∞ α ≤ 2

αω2

(α− 1)2(α− 2)
α > 2.

Figs. 7, 8, 9, and 10 depict the average AoI of source 1 as a function of λ1 for different service

time distributions under both heavy (a larger value of λ2) and light (a smaller value of λ2) traffic

conditions of source 2. Fig. 7 illustrates the average AoI of source 1 for different values of λ2

with the service time following a gamma distribution with parameters κ = 2, β = 2, and µ = 1

in Fig. 7(a) and κ = 1, β = 3, and µ = 3 in Fig. 7(b). Fig. 8 illustrates the average AoI of

source 1 for different values of λ2 with the service time following a Pareto distribution with

parameters ω = 0.5, α = 4, and µ = 1.5 in Fig. 8(a) and ω = 0.25, α = 3, and µ = 8/3

in Fig. 8(b). Fig. 9 illustrates the average AoI of source 1 for different values of λ2 with the

service time following a log-normal distribution with parameters ν = 1, σ = 1, and µ = 0.2231

in Fig. 9(a) and ν = 0.1, σ = 0.2, and µ = 0.8869 in Fig. 9(b). Fig. 10 illustrates the average

AoI of source 1 for different values of λ2 with the service time following a hyper-exponential

distribution with parameters N = 3, γ1 = 0.5, γ2 = 1, γ3 = 1.5, pk = 1/N, ∀k ∈ {1, 2, 3}, and

µ = 0.8182 in Fig. 10(a) and N = 3, γ1 = 1.5, γ2 = 2.5, γ3 = 3.5, pk = 1/N, ∀k ∈ {1, 2, 3},

and µ = 2.2183 in Fig. 10(b). As it can be seen, Approximation 1 and Approximation 3 are
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Fig. 7: The average AoI of source 1 as a function of λ1 for different values of λ2 with the service time following
a gamma distribution with parameters (a) κ = 2, β = 2, and µ = 1, and (b) κ = 1, β = 3, and µ = 3.

relatively tight for both the heavy and light traffic conditions under the gamma, Pareto, and

log-normal distributions. By comparing the curves of Approximation 1 and Approximation 2,

we can see the effect of approximating the residual service time of source 2 packet that is under

service at the arrival instant of packet 1, i by the average service time of one packet in the

system as compared to completely ignoring it. Finally, as expected, the average AoI provided

by Approximation 2 is always higher than that of Approximation 1.

VII. CONCLUSIONS

We considered a single-server multi-source FCFS queueing model with Poisson arrivals and

analyzed the average AoI of each source. We derived 1) an exact expression for the average

AoI for a multi-source M/M/1 queueing model and 2) three approximate expressions for the
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Fig. 8: The average AoI of source 1 as a function of λ1 for different values of λ2 with the service time following
a Pareto distribution with parameters (a) ω = 0.5, α = 4, and µ = 1.5, and (b) ω = 0.25, α = 3, and µ = 8/3.

average AoI for a multi-source M/G/1 queueing model. The simulation results showed that the

approximate expressions for the average AoI are relatively accurate for different service time

distributions. In addition, the results pointed out the significance of the AoI as a metric in

time-sensitive control applications: minimizing merely the average delay does not minimize the

AoI.
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APPENDIX A

PROOF OF LEMMA 1, 2, AND 3

A. Proof of Lemma 1

Using the facts that T1,i−1 and X1,i are independent and the PDF of X1,i is fX1,i
(x) = λ1e

−λ1x,

P (EB
1,i) can be written as

P (EB
1,i) =

∫ ∞
0

P (T1,i−1 ≥ X1,i|T1,i−1 = t)fT1,i−1
(t)dt (58)
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Fig. 10: The average AoI of source 1 as a function of λ1 for different values of λ2 with the service time following a
hyper-exponential distribution with parameters (a) N = 3, γ1 = 0.5, γ2 = 1, γ3 = 1.5, pk = 1/N, ∀k ∈ {1, 2, 3},
and µ = 0.8182, and (b) N = 3, γ1 = 1.5, γ2 = 2.5, γ3 = 3.5, pk = 1/N, ∀k ∈ {1, 2, 3}, and µ = 2.2183.

= 1−
∫ ∞
0

e−λ1tfT1,i−1
(t)dt

(a)
= 1− LT (λ1),

where equality (a) follows because the system times of different packets are stochastically

identical, i.e., T1,i =st T2,i =st T , ∀i [5], [16]; and LT (λ1) denotes the Laplace transform

of the PDF of the system time T at λ1. Because EL
1,i is the complementary event of EB

1,i, we

have

P (EL
1,i) = 1− P (EB

1,i) = LT (λ1). (59)

The relation between the Laplace transforms of the PDFs of the system time T and service
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time S is given as [30, Sect. 5.1.2]

LT (a) =

(
1− ρ

)
aLS(a)

a− λ
(
1− LS(a)

) . (60)

Finally, substituting (60) in (58) and (59) results in the expressions (15) and (16), respectively.

B. Proof of Lemma 2

To prove Lemma 2, we use the fact that for random variables Y1 and Y2 and a certain event

A, the conditional PDF fY1,Y2|A(y1, y2) is given by [32, Sect. 4.4]

fY1,Y2|A(y1, y2) =


fY1,Y2(y1, y2)

P (A)
(y1, y2) ∈ A

0 otherwise.
(61)

In Lemma 2, Y1 and Y2 are X1,i and T1,i−1, respectively, which are two independent random

variables, and event A is EB
1,i.

C. Proof of Lemma 3

According to the feature of the Laplace transform, for any function f(y), y ≥ 0, we have [24,

Sect. 13.5]:

L∫ y
0 f(b)db

(a) =
Lf(y)(a)

a
. (62)

Therefore, using (21) and (62), we have

Lx2FT1
(x)(a)

∣∣∣∣
a=λ1

= Lx2
∫ x
0 fT1 (b)db

(a)

∣∣∣∣
a=λ1

=

d2

(
LT (a)

a

)
da2

∣∣∣∣
a=λ1

(63)

=
aL′′T (a)− 2L′T (a)

a2
+

2LT (a)

a3

∣∣∣∣
a=λ1

=
λ1L

′′
T (λ1)− 2L′T (λ1)

λ21
+

2LT (λ1)

λ31
.
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