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Abstract—Non-orthogonal multiple access (NOMA) is one of
the most significant technologies to meet the demand of high spec-
tral efficiency (SE) in the fifth generation (5G) cellular networks.
The utilization of simultaneous wireless information and power
transfer (SWIPT) contributes to prolonging the battery life of the
mobile users (MUs) and enhancing the system energy efficiency
(EE), especially in the NOMA scenario where the multi-user
interference can be reused for energy harvesting (EH). In this pa-
per, we study the achievable data rate maximization problem for
the downlink multi-carrier NOMA (MC-NOMA) network with
power splitting (PS)-based SWIPT, in which power allocation and
PS control are jointly optimized with the limitation of available
power budget as well as the requirement for EH. The considered
non-convex optimization problem is arduous to tackle, resulting
from the presence of the coupled variables and the multi-user
interference. To cope with the problem, a decoupled approach
is developed, in which the power allocation and PS control are
separated and the corresponding sub-problems are respectively
solved through Lagrangian duality method. Furthermore, an
alternative approach based on deep learning is proposed, which is
capable of effectively obtaining the approximate optimal solution
according to the empirical data. Simulation results confirm the
effectiveness of the proposed schemes, and demonstrate the
superiority of the combination of PS-based SWIPT with MC-
NOMA over SWIPT-aided single-carrier NOMA (SC-NOMA)
and SWIPT-aided orthogonal multiple access (OMA).

Index Terms—Multi-carrier non-orthogonal multiple access
(MC-NOMA), simultaneous wireless information and power
transfer (SWIPT), deep learning.

I. INTRODUCTION

With the exponential expansion of terminal equipments and
the increasing popularity of the wireless application scenarios
such as Internet of Things (IoT) and massive machine-type
communications (mMTC) [1], the booming fifth generation
(5G) wireless communication networks are increasingly re-
quired to supply services with much higher quality, including
higher data rate, lower latency, greater reliability and larger
connectivity. The non-orthogonal multiple access (NOMA)
scheme has been regarded as an irreplaceable technique for
future communication system to satisfy the aforementioned
demands [2], [3], due to its capability of enabling multiple
mobile users (MUs) to receive signals from the base station
(BS) through the same radio frequency (RF) channel. Com-
pared to those traditional orthogonal multiple access (OMA)
transmission schemes, the channel orthogonality elimination
enables the NOMA system to provide a considerably bet-
ter spectrum efficiency (SE). Nevertheless, the co-channel
interference caused by non-orthogonality hinders the further

improvement of SE to some extent. Hence, successive interfer-
ence cancellation (SIC) [4] is always employed in the receiving
ends of NOMA system to estimate the co-channel interference,
resulting in a much higher SE [5]. Based on this observation,
NOMA technique has attracted considerable attention and
the system-level performance superiority to the conventional
OMA has been confirmed. In [6], the downlink of NOMA
system with randomly distributed MUs was investigated, and
the results proved that NOMA outperformed OMA with regard
to the ergodic sum rates. In [7], the authors showed that a
great performance gain of achievable data rate of the system
compared to OMA system could be achieved in NOMA sce-
nario for both macro-cell and small-cell deployments. Similar
results for the performance of achievable data rate and power
efficiency of the system could also be found in [8] and [9]
respectively for multiple-input single-output (MISO) NOMA
network. Furthermore, the application of NOMA to other
advanced techniques has also been investigated, including
multiple-input multiple-output (MIMO) [10], cognitive radio
[11], multi-point cooperative relaying [12], [13], etc..

In addition to guaranteeing the requirements of high data
rate, low latency and ultra reliability, how to enhance the
endurance of numerous power-limited mobile devices is also a
significant matter in 5G networks, especially in the application
scenarios of IoT and mMTC. Motivated by the emergence as
well as the progress of wireless power transfer (WPT) [14], a
novel technique called simultaneous wireless information and
power transfer (SWIPT) was proposed in [15], which made
it possible to collect energy and receive information at the
same time. Nevertheless, the difference in signal sensitivity
between the information decoder and the rectifier circuit
hinders the application and promotion of SWIPT technology.
To overcome this difficulty, two practical receiving schemes,
time switching (TS) and power splitting (PS), were proposed in
[16], where information decoding (ID) and energy harvesting
(EH) were performed in different time domains and power
domains, respectively. Since part of RF signal is collected
for powering the mobile terminals, SWIPT makes it possible
to improve the system energy efficiency (EE) and hence
is regarded as a promising green communication solution
for future wireless networks [14]. Therefore, it has attracted
attention in both academic and industry [17]–[21]. Liang et
al. in [18] investigated the optimal PS solution to attain
the “rate-energy (R-E)” region for the single-input single-
output (SISO) system with SWIPT, and further expanded the
optimal PS solution to the SWIPT-based single-input multiple-
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output (SIMO) system. The signal-to-interference-plus-noise
ratio (SINR)-constrained and EH-constrained transmit power
minimization problem was studied in [19] for the multiple-
input single-output (MISO) downlink scenario with SWIPT,
in which the transmit beamforming as well as the receive PS
control was jointly optimized. In [20], the optimal dual-layer
solution for joint resource allocation was proposed to achieve
the maximum EE for the MIMO broadcast channel with TS-
based SWIPT, in which the maximum transmit power supply
was limited and the demand for quality-of-service (QoS) was
considered. In addition, SWIPT was also studied in various
multiple access schemes. In [21], SWIPT was applied both in
time division multiple access (TDMA)-based and orthogonal
frequency division multiple access (OFDMA)-based schemes,
aiming at maximizing the achievable data rate of the system
through dealing with the transmit power allocation and the
TS/PS control jointly. The results suggested that both SWIPT-
enabled TDMA and SWIPT-enabled OFDMA outperformed
the conventional ones in terms of achievable data rate of the
system. Besides, there are also many studies in the existing
literature on the application of SWIPT to the spectrum-efficient
NOMA systems [22]–[24].

A. Contributions

Previous literatures in [22]–[24] evaluated the system per-
formance of SWIPT-enabled NOMA system and confirmed
that the advantages of NOMA compared with OMA existed
in the system of SWIPT application. Nevertheless, most of
the existing studies focused on the single-carrier NOMA
(SC-NOMA) systems. On the other hand, the multi-carrier
waveform is considered to be the key characteristic in 5G. The
work in [25] addressed the achievable data rate maximization
problem in the downlink multi-carrier NOMA (MC-NOMA)
network and demonstrated that the considered system achieved
a remarkable performance improvement contrasted to the
traditional SC-NOMA system. However, the complexity of
SIC in MC-NOMA system is significantly higher than that in
SC-NOMA, especially for large number of users in practical
5G communication application scenarios, which is the main
challenge in using MC-NOMA over SC-NOMA. In addition,
the performance of the application of SWIPT to MC-NOMA
scenario is still an open topic. Inspired by this, we consider
a novel system which combines the spectrum-efficient MC-
NOMA and energy-efficient SWIPT.

Moreover, deep learning method, which has been widely
applied in various fields, is recently utilized for solving the
problems in the field of communication, such as route esti-
mation [26], mobility forecast [27], resource allocation [28],
etc.. Driven by the aforementioned studies, we develop an
alternative approach by applying deep learning to acquire the
approximated optimal solution to the intricate problem, which
achieves a balance between the optimality and the demand
for low latency. The main contributions of this work are
summarized as follows:
• We investigate a novel scenario where the PS-SWIPT

is applied in the MC-NOMA system. The joint power
allocation and splitting control problem is mathematically

modelled to maximize the achievable data rate of the
system with the constraints of transmit power and EH
requirement. The presence of the coupled variables and
the intra-interference lead to the non-convex and intricate
problem. To tackle this problem, two approaches are
developed.

• In the first proposed approach, we decouple the two
variables, i.e., transmit power and PS ratios, and develop
a dual-layer iterative method. We first solve the sub-
problem of optimizing PS ratio assignment under fixed
power allocation; then we turn to determine the optimal
solution of power allocation with given PS ratio. Both
the sub-problems are solved by applying the Lagrangian
duality method. This procedure is repeated until conver-
gence.

• An alternative approach based on deep learning is then
proposed to achieve the approximation of the optimal
solution to the optimization problem. Specifically, the
general deep belief network (DBN) model is adopted and
the learning-based approach involves three phases, i.e.,
data preparation, training and running.

• The effectiveness and superiority of our developed ap-
proaches are validated. More importantly, numerical re-
sults indicate that the considered PS-based MC-NOMA
system outperforms the existing wireless scenarios in
terms of achievable data rate, including PS-based SC-
NOMA system and PS-based OMA system.

B. Organization

The remainder of this paper is arranged as follows. In
Section II, the system model of MC-NOMA with PS-based
SWIPT is provided and the corresponding power-limited and
QoS-constrained achievable data rate maximization problem is
modelled mathematically. In Section III, a dual-layer iterative
strategy for joint transmit power allocation and PS control is
developed to solve the problem. Furthermore, an alternative
learning-based algorithm is proposed in Section IV. Lastly,
simulations and conclusions are respectively given in Section
V and Section VI.

Notation: The lower- and upper-case boldface letters denote
column vectors and matrixes, respectively. E[|x|2] and [x]T

denote the energy and the transposition of x, respectively.
CN (0, σ2) represents the complex Gaussian random variable
with zero mean and the variance of σ2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we firstly describe the system model of the
considered MC-NOMA with PS-based SWIPT, and then math-
ematically modelled the power-limited and QoS-constrained
achievable data rate maximization problem.

A. System Model

The considered downlink SWIPT-enabled MC-NOMA sys-
tem is presented in Fig. 1, in which a single antenna BS
provides service for K MUs through N subcarriers. All
the transceivers are equipped with a single antenna. Let
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Fig. 1: The system model of the downlink SWIPT-aided MC-NOMA
with PS-based receivers.

K = {1, 2, · · · ,K} and N = {1, 2, · · · , N} represent the
set of MUs’ indexes and the set of subchannels’ indexes,
respectively. The available bandwidth for the proposed system
is BW and it is allocated to N orthogonal subcarriers with
the equal value of BWn = BW/N . It is worth noting that the
transmission signals over any two subcarriers will not cause
interference to each other, owing to the setting of channel
orthogonality. Therefore, the observation in the k-th MU on
the n-th subchannel is given by

yn,k = hn,k

√pn,ksn,k +
∑

j∈K,j 6=k

√
pn,jsn,j

+ zn,k, (1)

where hn,k denotes the channel gain between the transmitter
and the k-th MU on the n-th subcarrier; pn,k(pn,j) represents
the transmit power allocated to the k-th (j-th) MU over the n-
th subchannel; sn,k(sn,j) denotes the transmitted data symbol
from the BS to the k-th (j-th) MU over the n-th subchannel,
which is an independent and identically distributed (i.i.d) cir-
cularly symmetric complex Gaussian (CSCG) random signal
with zero mean and unit variance, i.e., E[|sn,k|2](E[|sn,j |2]) =
1; zn,k ∼ CN (0, |σn,k|2) refers to the additive white Gaussian
noise (AWGN) to the k-th MU on the n-th subcarrier.

For the PS-based SWIPT setup, all the MUs are considered
as the combination of an information decoder and a rectifier
circuit. The received signal of each MU is divided into two
parts by a PS mechanism. More specifically, for the k-th MU,
the PS ratio

√
ρk and

√
1− ρk are the proportions of the

received signal for ID and EH, respectively. Accordingly, the
received signal for EH and ID are respectively given by

yEH
n,k = hn,k

j=K∑
j=1

√
(1− ρj)pn,jsn,j +

√
1− ρkzn,k, (2)

and

yID
n,k = hn,k

√
ρkpn,ksn,k︸ ︷︷ ︸

Intended signal

+hn,k
∑
j∈K,
j 6=k

√
ρkpn,jsn,j

︸ ︷︷ ︸
Interference signal

+
√
ρkzn,k + zID

n,k︸ ︷︷ ︸
Noise

,

(3)

where zID
n,k ∼ CN (0, |σID

n,k|2) corresponds to the additional
noise generated during power splitting.

The SIC technique is utilized by the information receivers to
mitigate the interference when decoding information. Denote
h̃n,k = |hn,k|2/|σn,k|2 as the channel to noise ratio (CNR) for
the k-th MU over the n-th subcarrier. In general, the decoding
order in the downlink NOMA system is always consistent with
the increasing order of the CNR. Thereby, the interference for
the k-th MU on the n-th subcarrier is given by

In,k = ρk|hn,k|2
∑
j∈K,

h̃n,j>h̃n,k

pn,j . (4)

Therefore, the SINR of the k-th MU on the n-th subcarrier
is formulated as

SINRn,k =
|hn,k|2ρkpn,k

In,k + ρk|σn,k|2 + |σID
n,k|2

. (5)

Furthermore, the available data rate of the k-the MU on the
n-th subcarrier is given by

Rn,k = BWn log2(1 + SINRn,k). (6)

On the other hand, the energy collected by the EH receiver
at the k-th MU on the n-th subcarrier can be modelled as

En,k = η(1− ρk)

|hn,k|2 K∑
j=1

pn,j + |σn,k|2
 , (7)

where η indicates the loss of the EH circuits for transferring
the received signal into battery energy.

Thus, the achievable data rate and energy for the k-th MU
are respectively given by

Rk =
N∑
n=1

Rn,k, (8)

Ek =
N∑
n=1

En,k. (9)

Accordingly, we can express the achievable data rate of the
considered SWIPT-enabled MC-NOMA system as

Rsum =
N∑
n=1

K∑
k=1

Rn,k =
K∑
k=1

Rk. (10)

B. Problem Statement

In this paper, we intend to obtain the maximum achievable
data rate of the PS-SWIPT aided MC-NOMA system by
jointly optimizing the power allocation and the PS control,
whilst satisfying the desired EH constraints and the transmit

Page 50 of 61

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

power limitation. Thus, the considered achievable data rate
maximization problem can be mathematically formulated as
follows

max
ρ,p

Rsum(ρ,p) (11)

s.t. Ek ≥ Ereq, ∀ k ∈ K, (12)
0 < ρk < 1, ∀ k ∈ K, (13)
pn,k ≥ 0, ∀ n ∈ N , ∀ k ∈ K, (14)
N∑
n=1

pn,k ≤ pmax
k , ∀ k ∈ K, (15)

where ρ = [ρ1, ρ2, · · · , ρK ]T and p = [p1,p2, · · · ,pN ]T with
the component pn = [pn,1, pn,2, · · · , pn,K ]T (1 ≤ n ≤ N).
The constraint (12) indicates that each MU is required to
collected at least EreqJ energy. The constraint (13) limits the
PS ratio for each MU to be in the range of (0, 1). The
constraint (14) guarantees the non-negativity of the power
allocated to the k-th MU on the n-th subcarrier. Constraint
(15) defines that the total power allocated to the k-th MU,
i.e.,

∑N
n=1 pn,k, can not exceed the threshold of pmax

k , which
guarantees the MUs’ proportional fairness to some extend [29].
Besides, the maximum total transmission power of the BS can
be implied from the constraint (15), i.e.,

∑K
k=1 p

max
k .

The achievable data rate maximization problem formulated
in (11)-(15) is neither convex nor linear as the result of the
coupling of multiple variables and the presence of multi-user
interference [30]. Additionally, the aforementioned maximiza-
tion problem is a widely-known NP-hard problem, and hence
the solution is complicated and can not be obtained directly.
The exhaustive search method by traversing all possible power
allocation and PS ratio assignment might be one of the solu-
tions to this problem. However, the computational complexity
of the exhaustive search method will mount dramatically as
the number of MUs or subcarriers grows. Consequently, this
method is far from practical, especially for the IoT scenario
with the demand for massive connections. In the following
sections, based on the Lagrangian duality theory and deep
learning technique, we propose two different approaches to
tackle the problem in (11)-(15).

III. ALGORITHM BASED ON LAGRANGIAN DUALITY

In this section, we develop the power allocation and PS
control strategy for the involved PS-SWIPT aided MC-NOMA
system. Since the coupled variables ρ and p make the orig-
inal problem (11)-(15) non-convex, it is extremely tough to
derive the optimal solution directly. According to [31], for
any optimization problem involving multiple variables, it is
practicable to deal with the sub-problem over part of variables
while considering the remainder as constants, and next turn
to handle the sub-problem over the remaining variables. As
a result, p and ρ are separated to develop the practical and
effective solution for the considered optimization problem.

A. PS Control With Fixed Power Allocation

We first consider the case where all the components of the
power allocation matrix p are constants. In this case, we focus

on optimizing the PS ratios under the fixed power allocation.
Hence, the corresponding sub-problem can be simplified as

max
ρ

Rsum(ρ) (16)

s.t. 0 < ρk < 1, ∀ k ∈ K, (17)
Ek ≥ Ereq, ∀ k ∈ K. (18)

According to (7), (9) and (18), ρk ( ∀ k ∈ K) is required to
satisfy the following condition

ρk ≤ 1−
Ereq

η
∑N
n=1 |hn,k|2

∑K
j=1 pn,j + |σn,k|2

, ρUB
k . (19)

Considering (17) and (19) together, the optimization prob-
lem (16)-(18) is infeasible unless

ρUB
k > 0, ∀ k ∈ K. (20)

Proposition 1: Suppose that the process of PS in the
receiving ends is almost idealized and the noise power for all
MUs on the n-the subchannel is equal, i.e., |σID

n,k|2 → 0 and
|σn,k|2 = |σn,j |2 = |σn|2(∀k, j ∈ K). Under the fixed power
allocation p satisfying (14), (15) and (20), the sub-problem
given in (16)-(18) is convex with regard to ρ.

Proof: Please refer to Appendix A. �
Consequently, it is possible to obtain the near-optimal

solution to (16)-(18) by employing the Lagrangian duality
based method [31]. The corresponding Lagrangian function is
formulated as (21) on the top of the next page, in which µ =
[µ1, · · · , µK ]T , ν = [ν1, · · · , νK ]T and ω = [ω1, · · · , ωK ]T

are non-negative Lagrange multipliers, and Cn,k is concretely
defined as equation (60) in Appendix A. More specifically,
µ and ν are corresponding to the constraint (17) while ω is
pertaining to the constraint (18).

Then the Lagrange dual objective function can be accord-
ingly written as

g(µ,ν,ω) = max
ρ
L(ρ,µ,ν,ω). (22)

Thus, the Lagrange dual problem can be modelled as
follows

min
µ,ν,ω

g(µ,ν,ω) (23)

s.t. µ � 0,ν � 0,ω � 0. (24)

To solve the Lagrange dual problem, we first optimize the
PS ratio ρ with the given dual variables {µ,ν,ω} through
gradient ascent method, and then update the dual variables
{µ,ν,ω} with the optimized ρ through well-known sub-
gradient scheme [32].

1) Optimizing ρ With Given Dual Variables {µ,ν,ω}: We
first calculate the gradient direction of the Lagrangian function
(21) regarding the PS ratio ρk ( ∀k ∈ K), which is given by
(25) at the top of the next page, where An,k, Bn,k and Cn,k
are respectively defined as (58), (59) and (60) in Appendix A.

Particularly, ρk can be sequentially updated according to the
following formula

ρk(n+ 1) = ρk(n) + ε(n)∇ρk(n)L, (26)
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L(ρ,µ,ν,ω) =
N∑
n=1

K∑
k=1

BWn log2

(
1 +

ρk|hn,k|2pn,k
ρk(|hn,k|2

∑
j∈K,h̃n,j>h̃n,k pn,j + |σn,k|2) + Cn,k

)

+
K∑
k=1

µkρk +
K∑
k=1

νk(1− ρk) +
K∑
k=1

ωk

 N∑
n=1

η(1− ρk)

|hn,k|2 K∑
j=1

pn,j + |σn,k|2
− Ereq

 .

(21)

∇ρkL =
N∑
n=1

BWn

ln 2
· An,kCn,k

(An,kρk +Bn,kρk + Cn,k)(Bn,kρk + Cn,k)
+ µk − νk − ωk

N∑
n=1

η

|hn,k|2 K∑
j=1

pn,j + |σn,k|2
 . (25)

where ρk(n) and ρk(n+1) denote the ρk in the n-th and (n+
1)-th iteration respectively, and ε(n) represents the updating
step for ρk in the n-th iteration, which is required to satisfy
the following condition

ε(n) = arg max
ε
L(ρ(n+ 1),µ,ν,ω)|ρ(n+1)=ρ(n)+ε∇ρ(n)L.

(27)
Process in (26) is repeated until |∇ρk(n)L| ≤ ε1 for any k ∈

K, and the optimal PS ratio is denoted as ρ∗. Therefore, the
Lagrange dual objective function in (22) is further determined
as

g(µ,ν,ω) = L(ρ∗,µ,ν,ω). (28)

2) Updating {µ,ν,ω} With the Optimized ρ∗: With the
obtained PS ratio ρ∗, the corresponding optimal Lagrange
multipliers {µ,ν,ω} can be determined accordingly through
solving the Lagrange dual problem in (23)-(24).

Obviously, the dual problem is convex on the set of
Lagrange multipliers {µ,ν,ω}. Therefore, one-dimensional
search scheme can be adopted to optimize the dual variables.
Nevertheless, the objective function (23) is not necessarily
differentiable and thus this gradient-based approach is not
always feasible. Otherwise, we apply the widely-used sub-
gradient method to determine the dual variables {µ,ν,ω},
for which the sub-gradient directions are given in Proposition
2.

Proposition 2: The sub-gradient of the Lagrange dual func-
tion regarding the Lagrange multipliers can be respectively
calculated by

∇µkg = ρ∗k, (29)

∇νkg = 1− ρ∗k, (30)

∇ωkg =
N∑
n=1

η(1− ρ∗k)

|hn,k|2 K∑
j=1

pn,j + |σn,k|2
− Ereq.

(31)
Proof: Please refer to [32] for more details. �
According to Proposition 2, the value of µk (νk, ωk)

should decrease if ∇µkg > 0 (∇νkg > 0, ∇ωkg > 0), and
vice versa. Based on this observation, we apply the binary
search algorithm [32] with the error tolerance ε2 to determine
the optimal Lagrange multipliers (denoted as {µ∗,ν∗,ω∗}).

The algorithms developed in 1) and 2) operate alternately
until the duality gap no longer changes, i.e.,

|Rsum(ρ∗)− g(µ∗,ν∗,ω∗)| = const, (32)

where const denotes a non-negative constant.

B. Power Allocation With Fixed PS Ratio

After obtaining the optimal solution of the PS ratio ρ∗,
now we aimed at optimizing the power allocation p under
the optimized ρ∗. Correspondingly, the original optimization
problem in (11)-(15) is predigested into the following sub-
problem

max
p

Rsum(p) (33)

s.t. Ek ≥ Ereq, ∀ k ∈ K, (34)
pn,k ≥ 0, ∀ n ∈ N , ∀ k ∈ K, (35)
N∑
n=1

pn,k ≤ pmax
k , ∀ k ∈ K. (36)

Proposition 3: Suppose that |σID
n,k|2 → 0 and |σn,k|2 =

|σn,j |2 = |σn|2(∀k, j ∈ K). The sub-problem (33)-(36) is
convex if the feasible domain is non-empty.

Proof: Please refer to Appendix B. �
Similar to section III.A, the Lagrangian duality based algo-

rithm is also employed here to obtain the near-optimal power
allocation p.

Based on (67)-(69) given in Appendix B, the correspond-
ing Lagrangian function for the sub-problem (33)-(36) can
be written as (37) on the top of the next page, in which
α = [α1, · · · , αK ]T , β = [β1, · · · ,βN ]T with βn =
[βn,1, · · · , βn,K ]T and γ = [γ1, · · · , γK ]T are non-negative
multipliers with respect to (34), (35) and (36), respectively.

Accordingly, the Lagrange dual objective function is given
by

g̃(α,β,γ) = max
p
L̃(p,α,β,γ), (38)

Thus, the corresponding dual optimization problem can be
formulated as follows

min
α,β,γ

g̃(α,β,γ) (39)

s.t. α � 0,β � 0,γ � 0. (40)

The proposed algorithm to solve the aforementioned prob-
lems consists of two steps, and more specific details are
developed as follows.

1) Optimizing p Under Fixed Lagrange Multipliers
{α,β,γ}: The gradient ascent method is employed to de-
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6

L̃(p,α,β,γ) =
N∑
n=1

K∑
i=1

BWn log2

(
1 +

|hn,π(i)|2pn,π(i)
|hn,π(i)|2

∑K
j=i+1 pn,π(j) + |σn|2

)

+
K∑
i=1

αi

 N∑
n=1

η(1− ρ∗i )

|hn,π(i)|2 K∑
j=1

pn,π(j) + |σn|2
− Ereq

+
N∑
n=1

K∑
i=1

βn,ipn,π(i) +
K∑
i=1

γi

(
pmax
k −

N∑
n=1

pn,π(i)

)
.

(37)

∇pn,π(i)
L̃ =

BWn

ln 2
·

(
|hn,π(1)|2

|hn,π(1)|2Θn,π(1) + |σn|2
+

i∑
i′=2

( |hn,π(i′)|2

|hn,π(i′)|2Θn,π(i′) + |σn|2
−

|hn,π(i′−1)|2

|hn,π(i′−1)|2Θn,π(i′) + |σn|2

))

+ βn,i − γi +
K∑
j=1

αjη
(
1− ρ∗j

)
|hn,π(j)|2.

(41)

termine the optimal power allocation p∗. Firstly, we analyze
the gradient direction of the Lagrangian function given in (37)
with regard to the power allocation component pn,π(i), which
is calculated as (41) on the top of the next page.

On the n-th (1 ≤ n ≤ N ) subchannel, the power alloca-
tion for each MU can be successively updated through the
following expressions

pn,π(1)(1) 99K pn,π(K)(1)︸ ︷︷ ︸
The 1-st iteration

99K pn,π(1)(t) 99K pn,π(K)(t)︸ ︷︷ ︸
The t-th iteration

→ pn,π(1)(t+ 1) 99K pn,π(K)(t+ 1)︸ ︷︷ ︸
The (t+ 1)-th iteration

,

(42)

pn,π(i)(t+ 1) = pn,π(i)(t) + ε̃(t)∇pn,π(i)(t)L̃, (43)

where t and t+ 1 indicate the number of iterations; and ε̃(t)
represents the updating step in the t-th iteration, which is
obtained through a similar way to ε(t) (given by equation
(27)).

The updating process (42)-(43) for the power allocation
on the n-th subchannel proceeds until |∇pn,π(i)

L̃| ≤ ε3
for any 1 ≤ i ≤ K. Correspondingly, the optimal power
allocation on the n-th subcarrier is expressed as p∗n and thus
p∗ = [p∗1, · · · ,p∗N ]T . Then, the dual objective function in (38)
can be reformulated as

g̃(α,β,γ) = L̃(p∗,α,β,γ). (44)

2) Optimizing {α,β,γ} Under the Obtained p∗: Similar
to section III.A, sub-gradient approach is employed here to
tackle the optimization of Lagrange multipliers {α,β,γ}, for
which the sub-gradient directions are respectively denoted as
follows

∇αi g̃ =
N∑
n=1

η(1−ρ∗i )

|hn,π(i)|2 K∑
j=1

pn,π(j) + |σn|2
−Ereq,

(45)
∇βn,i g̃ = pn,π(i), (46)

∇γi g̃ = pmax
k −

N∑
n=1

pn,π(i). (47)

The binary search method with the error tolerance ε4 is
applied to determine the optimal solution of the Lagrange
multipliers here, which are denoted as {α∗,β∗,γ∗}.

The algorithms developed in 1) and 2) are repeated alter-
nately until the duality gap no longer changes, i.e.,

|Rsum(p∗)− g̃(α∗,β∗,γ∗)| = const. (48)

C. Complete Solution for Joint Power Allocation and Splitting
Control

Up to now, the solutions to the sub-problems for opti-
mizing ρ and p have been proposed in section III.A and
III.B, respectively. Now we develop the complete solution for
jointly optimizing the original problem (11)-(15), which is
summarized in Algorithm 1.

Proposition 4: The complete solution converges to an opti-
mal set of {ρ∗,p∗} which maximizes the achievable data rate
of the system to Rsum(ρ∗,p∗).

Proof: Suppose that the solution ( not the optimal solution
of problem (11)-(15) ) in the l-th iteration of Algorithm 1 is
denoted as {ρ(l),p(l)} and the corresponding achievable data
rate of the system is Rsum(ρ(l),p(l)). The process in the (l+1)-
th iteration is described as follows:

1) Under the fixed power allocation p(l), we optimize the
PS ratio assignment and denote it as ρ(l+1). Hence, the
corresponding achievable data rate of the system is written
as Rsum(ρ(l+1),p(l)). It is necessary that Rsum(ρ(l+1),p(l)) ≥
Rsum(ρ(l),p(l)) always holds, otherwise ρ(l+1) is not the
optimal solution to the sub-problem (16)-(18) in the (l + 1)-
th iteration. This is because that there exists at least one
other solution, such as ρ(l), which enables the objective
function to achieve a larger value, i.e., Rsum(ρ(l+1),p(l)) <
Rsum(ρ(l),p(l)).

2) Under the fixed PS ratio ρ(l+1), we then optimize
the power allocation which is indicated as p(l+1). Accord-
ingly, the achievable data rate of the system is written
as Rsum(ρ(l+1),p(l+1)). It is necessary that the expression
Rsum(ρ(l+1),p(l+1)) ≥ Rsum(ρ(l+1),p(l)) always holds. The
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Algorithm 1 Complete Solution for Joint Power Allocation
and Splitting Control

1: Initialize p and stop criteria ε1, ε2, ε3, ε4,.
2: repeat
3: Step 1: optimize the PS ratio under fixed power allocation:
4: repeat
5: initialize dual variables {µ,ν,ω};
6: solve the problem (22) to obtain the optimal ρ∗

according to (25)-(26) until
|∇ρk(n)L| ≤ ε1(∀k ∈ K);

7: determine the optimal dual variables {µ∗,ν∗,ω∗}
according to Proposition 2;

8: until Rsum(ρ∗) = g(µ∗,ν∗,ω∗).
9: Step 2: optimize the power allocation with fixed PS ratio:

10: repeat
11: initialize the PS ratio assignment as ρ∗;
12: solve the problem (38) to acquire the optimal power

allocation p∗ according to (41)-(43)
until |∇pn,π(i)

L̃| ≤ ε3(∀i ∈ K);
13: determine the optimal dual variables {α∗,β∗,γ∗}

according to (45)-(47);
14: until Rsum(p∗) = g̃(α∗,β∗,γ∗).
15: until Rsum(ρ∗) = Rsum(p∗).

reason for this is similar to that described in 1), and hence it
is omitted here for the sake of simplicity.

In short, it can be concluded that

Rsum(ρ(l+1),p(l+1)) ≥ Rsum(ρ(l),p(l)) ≥ · · · ≥ Rsum(ρ(1),p(1)).
(49)

On the other hand, it is impossible that the achievable
data rate of the considered system grows infinitely owing to
the transmit power limitation. Hence, as the number of the
iterations increases, we have

Rsum(ρ(l+1),p(l+1))→ Rsum(ρ∗,p∗), (50)

which completes the proof of Proposition 4. �
e complete algorithm can be regarded as a dual-layer process.
In the inner-layer, the complexity of the gradient decent
algorithm is O(K) and the number of this loop iteration is
approximately O log(1/ε21) [33]; and the complexity of the
binary search method with error tolerance ε2 is O log(1/ε22).
Similarly, in the outer-layer, the computational complexity of
the gradient algorithm method is O(NK) and the number
of this loop iteration is approximately O log(1/ε23); and the
complexity of the binary search method is O log(1/ε24). To
summarize, the computational complexity of the complete
solution is O(NK2 log(1/ε21) log(1/ε22) log(1/ε23 log(1/ε24)).

IV. ALTERNATIVE ALGORITHM BASED ON DEEP
LEARNING

Since the computational complexity of the complete algo-
rithm summarized in Algorithm 1 grows considerably as the
number of MUs and subchannels increases, it is difficult to
simultaneously satisfy the demands for high data rate and low
latency. To get over this difficulty, we propose an alternative

Fig. 2: An example of the framework of DBN.

approach based on empirical data and the deep learning
framework to obtain the approximate solution that maximizes
the achievable data rate of the considered SWIPT-aided MC-
NOMA system. In particular, we choose DBN to complete
the deep learning-based approach due to its capability of
modelling highly abstracted dependencies between the inputs
and the outputs. In the conventional deep neural networks
(DNNs), as the depth of the network increases, it is easy to
fall into a local minimum while iterating, and thus causing the
failure of training. Compared to the conventional DNNs, DBN
is a multi-layer neural network composed of several RBMs,
which are pre-trained one by one before stacking into a DBN.
The major advantage is that before supervised training with
back-propagation algorithm, the network parameters can be
initialized to a better local optimal point or even the global
optimal point through the process of unsupervised pre-training.
Therefore, we apply the DBN to complete the deep learning-
based approach.

First of all, we make a brief introduction to the DBN, which
is one of the typical deep learning models and can effectively
capture the intrinsic relationship between the input and the
output data [34]. As presented in Fig. 2, the model of DBN
contains an input layer, several hidden layers and an output
layer, among which two adjacent layers (serving as visible
layer and hidden layer respectively) are regarded as a restricted
Boltzmann machine (RBM). Note that the neurons between
two adjacent layers are fully connected while the neurons in
the same layer are disconnected from each other.

Then, we develop the DBN-based learning algorithm includ-
ing preparation, training and running, which are presented as
follows.

1) Data preparation phase – to obtain the training set and
the testing set. Since the DBN-based learning method is based
on a considerably great amount of empirical data, we first
prepare a data set in this part, which includes the input and
the corresponding output of the DBN model. In this work,
the vector of the randomly generated channel gains serves as
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the input x of the DBN. Besides, the output yl of the DBN
is provided by the corresponding optimal solution {p∗,ρ∗},
which is obtained through the complete algorithm developed
in Section III or the well-known genetic algorithm.

Note that the BS communicates with K MUs through
N subchannels in our considered MC-NOMA network, the
set of optimal solution {ρ∗,p∗} is composed of NK + K
components. Hence, it is required to estimate totally NK+K
parameters through the well-trained DBNs, which are denoted
as DBNl (1 ≤ l ≤ NK +K).

2) Training phase – to establish a well-trained DBN for each
component of {ρ∗, p∗}. After obtaining lots of data samples in
the previous part, now we turn to train DBNl one by one. The
process of the training involves two stage, i.e., unsupervised
learning and supervised learning. Let v and h respectively
represent the visible and the hidden layer of the RBM in
DBNl. Denote Ψ = {w,bv,bh}, in which w denotes the
weight between v and h while bv and bh respectively denote
the biases related to the v and h.

In the unsupervised learning phase, the set Ψ is updated
according to the following formula

Ψ(t+1) = Ψ(t) + ξ
∂ log Pr(v(t))

∂Ψ(t)
, (51)

in which t and ξ indicate the number of updates and the cor-
responding learning rate, respectively. Besides, Pr(v(t)) repre-
sents the probability distribution of v(t) and can be determined
according to the joint probability distribution Pr(v(t),h(t)),
which is given by

Pr(v(t)) =
∑
h(t)

Pr(v(t),h(t))

=
∑
h(t)

exp(−E(v(t),h(t)))∑
v(t)
∑

h(t) exp(−E(v(t),h(t)))
.

(52)

In (52), E(v(t),h(t)) denotes the energy function of v(t) and
h(t), which is calculated by

E(v(t),h(t)) = −v′(t)w(t)h(t) − b′(t)v v(t) − b′(t)h h(t). (53)

In the supervised learning phase, the set Ψ is fine-tuned
based on the back-propagation method, which is written by

Ψ(t′+1) = Ψ(t′) − ξ̃ ∂Sl
∂Ψ(t′)

, (54)

in which t′ and ξ̃ indicate the number of fine-tunings and the
corresponding learning rate. Besides, Sl represents the cross
entropy which is applied to measure the estimation error of
DBNl. Mathematically, the fine-tuning procedure is equivalent
to the cross entropy minimization problem, and the cross
entropy Sl is given by

Sl = − 1

D

D∑
i=1

(
y
(i)
l log(ŷ

(i)
l + (1− y(i)l ) log(1− ŷ(i)l )

)
,

(55)

in which D is the size of the data set used to train DBNl.
Besides, y(i)l is the output of the i-th data sample and ŷ

(i)
l

denotes the output that estimated by DBNl with the input x(i).
3) Running phase – to obtain the approximated solution

based on the well-trained DBNs. In this part, the DBNs
that have been fully trained are loaded to estimate the solu-
tion to the optimization problem (11)-(15). First of all, the
channel coefficients hn,k(n ∈ N , k ∈ K) are randomly
generated and the input layers of all DBNs are given by
x = [h1,1, · · · , h1,K , · · · , hN,1, · · · , hN,K ]T . With the fully-
trained DBNl(1 ≤ l ≤ NK + K) and the input x, the
output of DBNl can be calculated directly, which is denoted
as ŷl(1 ≤ l ≤ NK +K). Thus, the approximated solution to
the original problem (11)-(15) is formed as follows

ρ̂ = [ŷ1, · · · , ŷK ]T , (56)

p̂ = [ŷK+1, · · · , ŷ2K , · · · , ŷNK+1, · · · , ŷNK+K ]T . (57)

To summarize, the alternative DBN-based learning approach
is presented in Algorithm 2.

Algorithm 2 Learning Approach to Approximating the Power
Allocation and Splitting Control

1: Initialize the stop criteria ε5 and ε6.
2: Data preparation part:
3: generate plenty of training data samples {x, y}.
4: Network training part:
5: for l = 1 : NK +K
6: for m = 1 : M
7: initialize the parameter set Ψ for the m-th RBM;
8: i. unsupervised learning phase:
9: repeat

10: calculate Ψ according to (51);
11: until ‖Ψ(t+1) −Ψ(t)‖ ≤ ε5;
12: ii. supervised learning phase:
13: repeat
14: fine-tune Ψ according (54);
15: until ‖Ψ(t′+1) −Ψ(t′)‖ ≤ ε6.
16: end
17: end
18: Solution running part:
19: generate channel gains randomly and denote x =

[h1,1, · · · , h1,K , · · · , hN,1, · · · , hN,K ]T ;
20: load the well-trained DBNs;
21: for l = 1 : NK +K
22: estimate ŷl according to the input x and the well-trained

DBNl;
23: end
24: form the approximation of solution ρ̂ and p̂ according

to (56)-(57).

V. NUMERICAL RESULTS

In this section, simulation results are provided to examine
the superiority of the considered downlink SWIPT-aided MC-
NOMA system in terms of achievable data rate of the system,
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where the effectiveness of our developed iterative algorithm
and deep learning-based is evaluated. Suppose that the BS
is placed in the center of a circular cell with a radius of
300m and all MUs are randomly and independently distributed
within the cell. The total frequency band of the system is set to
BW = 100MHz. Referring to the classic 3GPP propagation
environment [35], the transmission channel between a pair
of transceivers consists of i.i.d Rayleigh block fading, Log-
Normal shadowing with standard deviation of 8 dB and path
loss given by (d0d )v . In particular, d represents the actual prop-
agation distance from the BS to the MU, d0 = 2.5 corresponds
to the reference distance and v = 3.76 represents the path-loss
exponent, respectively. Besides, the power spectrum density
(PSD) of the channel noise is assumed to −96dBm/Hz and the
PSD of the additional noise emerged during power splitting is
assumed to −192dBm/Hz. The loss of the EH receivers is set
to η = 38%.

The widely-known programming tool Tensorflow r1.8 is
adopted, which is implemented in the platform Python 3.6.0
to perform the constructing, training and running of the DBN
models. Specifically, 10000 data samples {x, y} are prepared
to train the DBNs in each case of various system parameters
setting. The number of neurons of each hidden layer in
the DBN model is taken as 32, 64 and 32, respectively.
Additionally, the learning rates in the unsupervised training
and the supervised training are taken as ξ = 1e−4 and
ξ̃ = 1e−4 respectively; the number of training epoches is taken
as 3000; and the precisions in the unsupervised training and
the supervised training are set to ε5 = 1e−3 and ε6 = 1e−3,
respectively.

In the first simulation, we investigate the convergence
performance of the developed Lagrangian duality-based ap-
proach, and measure the effectiveness of the proposed DBN-
based learning algorithm. We take a SWIPT-based MC-NOMA
system with two subchannels and two MUs as an example,
where the maximum power supply of the BS and the minimum
demand for EH are set to 4W and 0.01J respectively. As shown
in Fig. 3, it is evident that the proposed Lagrangian duality-
based approach is gradually converged to the optimal value
acquired by the exhaustive search algorithm. This confirms
our theoretical analysis of the convergence performance of our
developed approach. On the other hand, the achievable data
rate obtained by the proposed DBN-based learning approach
is very close to the optimal value, approximately with the
gap of 0.08. Although there is a certain gap between the
DBN-based approximation and the optimal solution, it is
acceptable to some extent because the sacrifice of a small
amount of achievable data rate can bring a great improvement
in processing efficiency, which is beneficial for the systems
with strict requirement for low latency.

Then, we examine the performance of the proposed La-
grangian duality-based approach as well as DBN-based learn-
ing approach with different number of MUs. In this simulation,
the available transmit power supply and the EH constraint for
each MU are set to 10W and 0.01J, respectively. As shown
in Fig. 4, the maximum achievable data rate of the system
achieved by our developed schemes is monotonically non-
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Fig. 3: The convergence behavior of the proposed Lagrangian duality-
based approach and the effectiveness evaluation of the proposed
DBN-based learning approach.
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Fig. 4: Performance evaluation of the proposed Lagrangian duality-
based and DBN-based approaches (achievable data rate of the system
vs number of MUs).

decreasing as the number of MUs grows. More specifically,
the achievable data rate of the system grows dramatically
with a small number of MUs, and then slowly approaches an
asymptote. This is because that the co-channel interference,
which can be fully utilized by the EH receivers, enhances as
the number of MUs grows. Hence, a smaller value of PS ratio
for EH is needed to fulfill the demand for EH. Accordingly,
the PS ratio for ID becomes larger, leading to the increase
in the data rate. However, in the power-limited system, the
achievable data rate of the system is bounded and hence it
tends to converge to an asymptote at last. Besides, the results
achieved by the DBN-based learning approach are very close
to those achieved by the Lagrangian duality-based method.

In the next simulation, the performance of the developed
schemes with diverse constraints is evaluated. Two different
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Fig. 5: Performance evaluation of the proposed Lagrangian duality-
based and DBN-based approaches (achievable data rate of the system
vs maximum transmit power).

scenario settings are taken for comparison, i.e., N = 2,K = 2
and N = 4,K = 4. We firstly focus on the influence of
the power budget on the achievable data rate of the system.
Suppose that the EH constraint for each MU is Ereq = 0.1J
and the transmit power budget varies from 2W to 20W. It
is clearly presented in Fig. 5 that the maximum achievable
data rate of the system is monotonically increasing with the
growth of the transmit power supply. The reason is that as
the available transmit power increases, the received signal is
more likely to be used for ID once the EH demand for each
MU is fulfilled, leading to the improvement in the achievable
data rate of each MU and the system. Then we investigate
the performance under different minimum EH requirements.
Specifically, it is assumed that the available power supply is
limited to 10W and the EH requirement changes from 0.1J
to 1J. It is depicted in Fig. 6 that the achievable data rate of
the system declines with increasing minimum EH requirement.
This results from the fact that the received signal is more likely
to be collected by the EH receivers to meet the demand for
EH and accordingly the signal for ID is cut off. Similarly,
the results derived from the DBN-based learning approach
are also in line with the near-optimal results obtained by the
Lagrangian duality-based method, which further demonstrates
the validity of the DBN-based learning approach. Furthermore,
we can concluded from Fig. 4-6 that our proposed approaches
are superior to the equal power allocation scheme in terms of
achievable data rate of the system.

Finally, the performance comparison in terms of maximum
achievable data rate of the system is investigated among our
proposed PS-based MC-NOMA and other schemes in the
existing literatures. Specifically, the proposed scheme is com-
pared to 1) the PS-based OMA scheme [36] to demonstrate the
improvement of NOMA over OMA; 2) PS-based SC-NOMA
scheme [37] to illustrate the superority of MC-NOMA over
SC-NOMA; and 3) the TS-based MC-NOMA [38] to evaluate
the suitability of different types of SWIPT scheme. Fig. 7
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Fig. 6: Performance evaluation of the proposed Lagrangian duality-
based and DBN-based approaches (achievable data rate of the system
vs minimum EH requirement).
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Fig. 7: Performance comparison in terms of achievable data rate of
the system among different system model - OMA, SC-NOMA, TS-
based MC-NOMA and PS-based MC-NOMA, K=4

shows the performance comparison under various available
power budget. The demand for EH of each MU and the number
of MUs are set to Ereq = 0.1J and K = 4 respectively,
and the number of subchannels for two MC-NOMA systems
is set to N = 3. It can be clearly seen in Fig. 7 that the
PS-based NOMA schemes, including SC-NOMA and MC-
NOMA, always outperform the PS-based OMA scheme in
terms of achievable data rate of the system, which indicates
that the NOMA system is more spectrum-efficient than the
OMA system. More importantly, the PS-based MC-NOMA
system is superior to the PS-based SC-NOMA system, which
demonstrates the advantage of multi-carrier waveform for
enhancing the performance of the achievable data rate of
the system. In Fig. 8, we consider the simulation with a
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Fig. 8: Performance comparison among PS-based MC-NOMA, SC-
NOMA and OMA under various number of MUs (achievable data
rate of the system vs number of MUs).
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Fig. 9: Performance comparison for the case where the number of
MUs in MC-NOMA is larger than that in OMA.

larger number of MUs, which is more in line with the actual
communication application scenarios such as IoT and mMTC.
Specifically, the performance comparison among MC-NOMA,
SC-NOMA and OMA with PS-based SWIPT under different
number of MUs is conducted, in which the demand for EH of
each MU is set to Ereq = 0.1J and the number of subchannels
for MC-NOMA scheme is set to N = 4. It can be observed
from Fig. 8 that for the considered PS-based MC-NOMA
scheme, the achievable data rate of the system first increases as
the number of MUs increases, and then it gradually decreases
as the number of MUs continues to increase. The reason
for the decrease in the achievable data rate is that when
the number of MUs exceeds a certain range, the total EH
demand for the whole system is too large that it cannot
be satisfied by intra-interference alone. Thus, extra power is
required to achieve the EH requirement, which decreases the
achievable data rate. More importantly, Fig. 8 shows that the

proposed PS-based MC-NOMA scheme outperforms both the
PS-based SC-NOMA and the PS-based OMA in terms of
achievable data rate of the system, and hence the advantage
of SWIPT enabled MC-NOMA has been demonstrated. In
Fig. 9, with a fixed number of subchannels (i.e., N = 5),
the performance comparison between PS-based MC-NOMA
and PS-based OMA is conducted. Note that in OMA scheme,
the maximum number of MUs is 5 if N = 5, otherwise the
orthogonality of the channel cannot be guaranteed. As shown
in Fig. 9, it is clear that the proposed MC-NOMA scheme
always outperforms OMA scheme regardless of the number
of users, which demonstrates the superiority of MC-NOMA
to OMA in terms of both the performance of achievable data
rate and the number of serving users.

VI. CONCLUSIONS

In this paper, we have investigated the achievable data rate
maximization problem for the downlink SWIPT-aided MC-
NOMA system with PS receivers under the constraints of
the maximum transmit power budget and the minimum EH
requirement. The coupling of multiple variables as well as
the presence of co-channel interference resulted in the fact
that the maximization problem was non-convex and therefore
it was strenuous to obtain the optimal solution directly. To
tackle this problem, we proposed a decoupled approach where
the coupled variables, i.e., the power allocation and the PS
ratio assignment, were separated. Then the corresponding sub-
problems were solved by employing the Lagrangian duality-
based method. An alternative approach based on deep learning
technique was then put forward to obtain the approximated so-
lution to the original problem. Numerical results demonstrated
that the proposed approaches outperformed the equal power
allocation scheme. More importantly, it was confirmed that
the considered PS-based MC-NOMA was superior to other
existing schemes in terms of the performance of the achievable
data rate of the system, including PS-based SC-NOMA and
PS-based OMA.

Nevertheless, the complexity of SIC in MC-NOMA system
is significantly higher than that in SC-NOMA, especially
for large number of users in practical 5G communication
application scenarios, which is the main challenge in using
MC-NOMA over SC-NOMA with SWIPT. Therefore, our
future concern includes implementing a promising solution
with considerably lower complexity in a dense scenario.
Furthermore, owing to the fact the EE optimization balances
the achievable data rate and the power consumption of the
system and accordingly it is consistent with the concept of
green communication, the EE optimization problem for a non-
linear power model will also be considered in the future work,
where subchannel scheduling, power allocation and splitting
will be jointly considered.

APPENDIX A
PROOF OF PROPOSITION 1

To certify the convexity of the optimization (16)-(18), we
first check that the feasible PS ratio region is non-empty and
convex. The feasible region of PS ratio is non-empty due to the
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restriction in (20), and its convexity can be acquired according
to (18) and (19).

Then we come to prove that the objective function in (16)
is concave on ρ. Let

An,k = |hn,k|2pn,k, (58)

Bn,k = |hn,k|2
∑
j∈K,

h̃n,j>h̃n,k

pn,j + |σn,k|2, (59)

Cn,k = |σID
n,k|2. (60)

Thus, (16) is further simplified as follow

Rsum(ρ) =
N∑
n=1

Rn

=
N∑
n=1

K∑
k=1

BWn log2

(
1 +

An,kρk
Bn,kρk + Cn,k

)
,

(61)

where Rn =
∑K
k=1BWn log2

(
1 +

An,kρk
Bn,kρk+Cn,k

)
denotes the

achievable data rate on the n-th subchannel.
Then the first-order derivative of Rn with respect to ρk is

calculated by

∂Rn
∂ρk

=
BWn

ln 2
· An,kCn,k

(An,kρk +Bn,kρk + Cn,k)(Bn,kρk + Cn,k)
.

(62)

Furthermore, the second-order derivative of Rn with respect
to ρk is given by (63)-(64) on the top of the next page. Let
Hk = ∂2Rn

∂ρ2k
. Hence, the corresponding Hessian matrix H is

given by

H =


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 0 HK

 . (65)

Denote Q = −H and the m-th order principal minor of the
matrix Q can be denoted as follow

Qm =

∣∣∣∣∣∣∣∣∣
−H1 0 0 0

0 −H2 0 0
...

...
. . .

...
0 0 · · · −Hm

∣∣∣∣∣∣∣∣∣ = (−1)m
m∏
j=1

Hj . (66)

According to (63), it is clear that Hk ≤ 0 for all k ∈ K.
Hence, Qm ≥ 0(1 ≤ m ≤ K) always holds, which indicates
that Q = −H � 0 and correspondingly H � 0. Consequently,
it can be concluded that Rn is concave with regard to ρ.

Since the finite summation of concave functions will main-
tain the concavity, the objective function Rsum(ρ) in (16) is
concave on ρ. This completes the proof of Proposition 1. �

APPENDIX B
PROOF OF PROPOSITION 3

Note that the feasible domain of the sub-problem (33)-(36)
is assumed to be non-empty and its convexity can be clearly
derived according to the constraints in (34)-(36).

Then we turn to analyze the concavity of the objective
function (33) with regard to p. Specifically, we define the
relationship between the k-th MU and its decoding order as
k = π(i). Since |σID

n,k|2 is negligibly small and |σn,k|2 =
|σn,j |2 = |σn|2(∀k, j ∈ K), the objective function can be
further reduced as

Rsum(p) =
N∑
n=1

Rn, (67)

where

Rn =
K∑
k=1

BWn log2

1 +
|hn,k|2pn,k

|hn,k|2
∑

j∈K,
h̃n,j>h̃n,k

pn,j + |σn|2


=

K∑
i=1

BWn log2

(
1 +

|hn,π(i)|2pn,π(i)
|hn,π(i)|2

∑K
j=i+1 pn,π(j) + |σn|2

)
.

(68)

Let Θn,i =
∑K
j=i pn,π(j), Θn,i+1 =

∑K
j=i+1 pn,π(j) and

Θn,K+1 = 0. Then Rn given in (68) can be rewritten as

Rn =
K∑
i=1

BWn log2

( |hn,π(i)|2Θn,i + |σn|2

|hn,π(i)|2Θn,i+1 + |σn|2

)

= BWn

K∑
i=1

log2(|hn,π(i)|2Θn,i + |σn|2)

−BWn

K∑
i=1

log2(|hn,π(i)|2Θn,i+1 + |σn|2).

(69)

Firstly, we analyze the first-order derivative of Rn with
regard to pn,π(i) in different cases.

Case 1: i = 1. In this case, the k-th MU (k = π(i))
will decode information before any other MUs and thus
the corresponding power allocation pn,π(i) does not cause
interference to other MUs on the n-th subcarrier. Therefore,
the first-order derivative of Rn about pn,π(i) is given by

∂Rn
∂pn,π(i)

=
BWn

ln 2
·

|hn,π(1)|2

|hn,π(1)|2Θn,1 + |σn|2
. (70)

Case 2: 2 ≤ i ≤ K. In this case, the relevant power
allocation pn,π(i) will bring interference to MUs which decode
information before the k-th MU (k = π(i)). Thus, the first-
order derivative of Rn about pn,π(i) can be calculated by (71)
on the top of the next page. It is evident that the first-order
derivative (70) in Case 1 is a special case of (71) in Case
2. Hence, the first-order derivative of Rn about pn,k can be
uniformly expressed as (71).

Additionally, the second-other derivative of Rn can be given
by (72) on the top of this page, in which j = min{i, l}. Let
H

(n)
i = ∂2Rn

∂p2
n,π(i)

and H
(n)
i,l = ∂2Rn

∂pn,π(i)∂pn,π(l)
. According to
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∂2Rn
∂ρ2k

= −BWn

ln 2
· An,kCn,k (2(An,k +Bn,k)Bn,kρk + 2Bn,kCn,k +An,kCn,k)

[(An,kρk +Bn,kρk + Cn,k)(Bn,kρk + Cn,k)]2
, (63)

∂2Rn
∂ρm∂ρn

= 0 ( m 6= n ). (64)

∂Rn
∂pn,π(i)

=
BWn

ln 2
·

(
i∑

i′=1

|hn,π(i′)|2

|hn,π(i′)|2Θn,π(i′) + |σn|2
−

i−1∑
i′=1

|hn,π(i′)|2

|hn,π(i′)|2Θn,π(i′+1) + |σn|2

)

=
BWn

ln 2
·

(
|hn,π(1)|2

|hn,π(1)|2Θn,π(1) + |σn|2
+

i∑
i′=2

( |hn,π(i′)|2

|hn,π(i′)|2Θn,π(i′) + |σn|2
−

|hn,π(i′−1)|2

|hn,π(i′−1)|2Θn,π(i′) + |σn|2

))
.

(71)

∂2Rn
∂pn,π(i)∂pn,π(l)

= −BWn

ln 2
·

|hn,π(1)|4

(|hn,π(1)|2Θn,π(1) + |σn|2)2

− BWn

ln 2
·

j∑
i′=2

( |hn,π(i′)|4

(|hn,π(i′)|2Θn,π(i′) + |σn|2)2
−

|hn,π(i′−1)|4

(|hn,π(i′−1)|2Θn,π(i′) + |σn|2)2

)
.

(72)

(72), it is clearly that

H
(n)
i,l =

{
H

(n)
i , i ≤ l;

H
(n)
l , otherwise.

(73)

Therefore, the Hessian matrix of Rn on pn can be expressed
as

H(n) =


H

(n)
1 H

(n)
1 · · · H

(n)
1

H
(n)
1 H

(n)
2 · · · H

(n)
2

...
...

. . .
...

H
(n)
1 H

(n)
2 · · · H

(n)
K

 . (74)

Secondly, if n 6= m, it is obvious that the first-order and
the second-order derivative of Rn with regard to pm,π(i) are
equal to 0, which is given as

∂Rn
∂pm,π(i)

= 0, (75)

∂2Rn
∂pm,π(i)∂pm,π(l)

= 0. (76)

In summary, the Hessian matrix of Rn with respect to p is
expressed as

H{p} =


H(1) 0 · · · 0

0 H(2) · · · 0
...

...
. . .

...
0 0 · · · H(N)

 . (77)

Define the negative matrix of H{p} as Q{p} = −H{p}.
Then the principal minor of the matrix Q{p} is given as
follows:

Case 1: 1 ≤ m ≤ K. In this case, we have

|Q{p}m | =

∣∣∣∣∣∣∣∣∣∣
−H(1)

1 −H(1)
1 · · · −H(1)

1

−H(1)
1 −H(1)

2 · · · −H(1)
2

...
...

. . .
...

−H(1)
1 −H(1)

2 · · · −H(1)
m

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
−H(1)

1 −H(1)
1 · · · −H(1)

1

0 H
(1)
1 −H(1)

2 · · · H
(1)
1 −H(1)

2
...

...
. . .

...
0 0 · · · H

(1)
m−1 −H

(1)
m

∣∣∣∣∣∣∣∣∣∣
=

{
−H(1)

1 , m = 1;

−H(1)
1

∏m
m′=2(H

(1)
m′−1 −H

(1)
m′ ), 2 ≤ m ≤ K.

(78)

According to (72), it can be easily inferred that

−H(1)
1 =

BW1

ln 2
·

|h1,π(1)|4

(|h1,π(1)|2Θ1,π(1) + |σ1|2)2
, (79)

which is always non-negative.
Besides, we have

H
(1)
m′−1 −H

(1)
m′ =

BW1

ln 2
·

|h1,π(m′)|4

(|h1,π(m′)|2Θ1,π(m′) + |σ1|2)2

− BW1

ln 2
·

|h1,π(m′−1)|4

(|h1,π(m′−1)|2Θ1,π(m′) + |σ1|2)2
.

(80)

Since h̃1,π(m′) > h̃1,π(m′−1) and accordingly |h1,π(m′)|2 >
|h1,π(m′−1)|2, it can be inferred that H(1)

m′−1−H
(1)
m′ ≥ 0 always

holds.
Case 2: K < m̃ ≤ NK. In this case, we have
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|Q{p}m̃ | =

∣∣∣∣∣∣∣∣∣
−H(1) · · · 0 0

...
. . .

...
...

0 · · · −H(ñ) 0
0 · · · 0 Q

{p}
m

∣∣∣∣∣∣∣∣∣
= |Q{p}m | ·

ñ∏
ñ′=1

(| −H(ñ′)|),

(81)

where m̃ = ñK + m (1 ≤ m ≤ K). Actually, we have
| − H(1)| = [|Q{p}m |]m=K , and hence it is non-negative.
Similarly, | −H(ñ)| ≥ 0.

Therefore, any principal minor of the matrix Q{p} is non-
negative, which implies that Q{p} � 0 and H{p} � 0.
Consequently, Rn is concave with respect to p. And Rsum
is also concave on p due to the fact that the sum of a finite
number of concave functions remains concave. This completes
the proof of Proposition 3. �
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