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Abstract

In wireless broadcast, random linear network coding (RLNC) over GF(2L) is known to asymptoti-

cally achieve the optimal completion delay with increasing L. However, the high decoding complexity

hinders the potential applicability of RLNC schemes over large GF(2L). In this paper, a comprehensive

analysis of completion delay and decoding complexity is conducted for field-based systematic RLNC

schemes in wireless broadcast. In particular, we prove that the RLNC scheme over GF(2) can also

asymptotically approach the optimal completion delay per packet when the packet number goes to

infinity. Moreover, we introduce a new method, based on circular-shift operations, to design RLNC

schemes which avoid multiplications over large GF(2L). Based on both theoretical and numerical

analyses, the new RLNC schemes turn out to have a much better trade-off between completion delay and

decoding complexity. In particular, numerical results demonstrate that the proposed schemes can attain

average completion delay just within 5% higher than the optimal one, while the decoding complexity

is only about 3 times the one of the RLNC scheme over GF(2).
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I. INTRODUCTION

Wireless broadcast is an important transmission scenario with a variety of applications. For

example, in a satellite or cellular network, a satellite or base station needs to broadcast a large

file or streaming multimedia packets to many users in a timely manner. Such applications require

cost efficient transmission techniques. Due to interference, fading or other channel imperfections,

packet loss often happens and it results in receivers losing different subsets of packets during

wireless broadcast. In the literature, linear network coding (LNC) has shown great ability to

substantially improve transmission efficiency in wireless broadcast with erasures, and two main

types of LNC techniques were extensively studied for wireless broadcast, namely random linear

network coding (RLNC) [1]–[9] and instantly decodable network coding (IDNC) [10]–[14].

RLNC [16] linearly combines all original packets at the sender with coefficients randomly

and independently selected from a finite field to generate coded packets for transmission without

feedback. IDNC [10], [17] can be regarded as a special type of deterministic LNC schemes,

defined over GF(2), for the wireless broadcast with feedback. Every coded packet generated by

IDNC is specially designed based on receivers’ side information obtained from the feedback,

so as to enable as many receivers as possible to recover an original packet upon receiving the

coded packet.

Though IDNC focuses more on the instantaneous decodability at receivers, compared with

RLNC, it requires higher completion delay, which is a fundamental metric for transmission

efficiency and refers to the total number of packets broadcast from the sender till all receivers

successfully recover all original packets. It is well-known that when the finite field is sufficiently

large, RLNC can achieve the optimal completion delay. However, a stringent issue that hinders

the potential applicability of RLNC schemes over a large finite field is the very high decoding

complexity. In the present paper, for wireless broadcast, we make a comprehensive analysis

of completion delay and decoding complexity for field-based RLNC schemes and introduce a

new method, based on circular-shift operations, to design RLNC schemes with a much better

trade-off between completion delay and decoding complexity. Only systematic RLNC schemes

are considered here because they can reduce the packet decoding delay and encoding/decoding

complexity [8] [12] [15]. The main contributions of the present paper are summarized as follows.

• For RLNC schemes over the finite field GF(2L), we provide explicit formulae for the

expected completion delay and theoretically analyze the decoding complexity in terms of
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the total number of binary operations required for decoding. One may note that Ref. [5]

analyzed the expected completion delay for a non-systematic RLNC scheme, but its analysis

cannot directly imply the results herein since we focus on systematic RLNC schemes, which

is more complicated to analyze than the non-systematic case.

• It is well-known that RLNC schemes over GF(2L) can asymptotically achieve the optimal

completion delay with increasing L. From another point of view, we prove that the RLNC

scheme over GF(2) can also asymptotically approach the optimal completion delay per

packet with the increasing packet number. To the best of our knowledge, this intriguing

property has never been revealed in the literature and cannot be deduced in a straightforward

manner from other related works of RLNC for wireless broadcast.

• Recent works [18]–[20] advocated LNC design by adopting simple circular-shift operations

in place of multiplications over a large finite field, and analyzed its performance in wireline

networks which are totally different from wireless broadcast. Inspired by them, we also

propose a new method to design RLNC schemes based on circular-shifts. Different from

them, the present new method does not introduce extra bits in the generation of coded

packets, and the justification of the decodability of the proposed schemes without redundant

bits is nontrivial. As a generalization of conventional RLNC schemes, the new method also

introduces a new parameter p0 to control the probability of coding coefficients to be zero.

• We analyze our proposed schemes both theoretically and numerically, which verifies that the

proposed schemes provide a much better trade-off between completion delay and decoding

complexity. In particular, the expected completion delay of the proposed schemes is proved

to be no larger than that of the conventional RLNC scheme over GF(q) with q ≤ 1/p0.

Moreover, numerical results demonstrate the average completion delay converges very fast

to the optimal one (e.g., when the packet number P ≥ 15, the average completion delay is

just within 5% higher than the optimal one), while the average number of binary operations

for decoding is just about 3 times that of the RLNC scheme over GF(2).

The remainder of the paper is organized as follows. Section II first establishes the system

model, and then analyzes the completion delay and decoding complexity of conventional field-

based RLNC schemes. Section III introduces and analyzes our proposed RLNC schemes based

on circular-shift operations. The performances are numerically compared in Section IV. Finally,

Section V concludes the paper.

In addition to the proof details of some theorems and lemmas, the frequently used important
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notations are listed in Appendix D for reference.

II. SYSTEM MODEL AND ANALYSIS OF CONVENTIONAL RLNC SCHEMES

A. System Model

Consider a single-hop erasure broadcast system without feedback, in which a unique sender

attempts to broadcast P packets to R receivers. Every packet consists of M bits. In each timeslot,

the sender can broadcast one packet to all receivers. The memoryless wireless channels between

the sender and the receivers are subject to random packet erasures with erasure probability 1−pr

at receiver r. Every receiver is interested in recovering all P original packets.

All RLNC transmission schemes studied in this paper are systematic, that is, in the first

phase of transmission, the sender will sequentially broadcast all P original (uncoded) packets

m1,m2, . . . ,mP . In the second phase of transmission, the sender will broadcast coded packets,

which are linearly generated based on P original packets, till every receiver can recover all P

original packets. The completion delay D of an RLNC scheme is the number of coded packets

transmitted by the sender in phase two.

The conventional RLNC scheme is defined over the extension field GF(2L), where every packet

is regarded as a row vector of M
L

symbols over GF(2L).1 Every packet broadcast by the sender is

a GF(2L)-linear combination of m1,m2, . . . ,mP . Specifically, every coded packet mP+d, d ≥ 1,

randomly generated by the source in phase two can be expressed as

mP+d =
∑P

j=1
γjmj , (1)

where the coding coefficients γj are independently and uniformly selected from GF(2L). In

order to indicate receivers how a packet mP+d =
∑P

j=1 γjmj is formed from the original P

packets, the coding vector fP+d = [γ1, . . . , γP ]
T consisting of P coding coefficients is appended

to mP+d as a header. The coding vectors for P original packets form an identity matrix of size

P , i.e., [fj ]1≤j≤P = IP . When a receiver r obtains P packets whose coding vectors are linearly

independent, the P original packets can be decoded at r.

When L is large enough, the RLNC scheme over GF(2L) can be approximately regarded as the

perfect RLNC scheme [13], in which arbitrary P packets generated by the source have linearly

1For simplicity, we assume L divides M . In practice, M is much larger than L and dummy bits can be padded into a packet

so that L divides M .
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independent coding vectors. The prefect RLNC scheme is optimal in terms of completion delay

D. However, the computational complexity of this scheme in both encoding and decoding is

high because multiplications in GF(2L) have to be invoked. On the contrary, the RLNC scheme

over GF(2), i.e. with L = 1, only requires bitwise additions among packets in both encoding

and decoding. As a result, it involves lowest computational complexity among RLNC schemes,

but its completion delay D is relatively higher.

As the conventional RLNC schemes will be the benchmarks for our new proposed RLNC

schemes, the following two subsections theoretically analyze their performance in terms of

completion delay and decoding complexity.

B. Completion Delay Analysis

Throughout the paper, unless otherwise specified, for a considered RLNC scheme, let Dr

denote the number of coded packets transmitted in phase two by the source till receiver r is able

to successfully recover all P original packets. Then, the completion delay D can be defined as

D = max{D1, D2, . . . , DR}, (2)

and the expectation of D can be characterized as

E[D] =
∑

d≥0

Pr(D > d) =
∑

d≥0

(

1−
∏

1≤r≤R

Pr(Dr ≤ d)

)

(3)

Consider the conventional RLNC scheme over GF(q), where q = 2L. At receiver r, denote by

Ur the number of successfully received uncoded packets in phase one, and assume that for the Ur

uncoded packets and all the coded packets successfully received, the columnwise juxtaposition

of their coding vectors forms a matrix of rank Ur + j. When receiver r successfully obtains a

new coded packet, note that the probability for the new packet to be innovative, i.e., its coding

vector is linearly independent of the previous ones, is 1− qUr+j−P . For brevity, write

p′r,Ur+j = pr(1− qUr+j−P ). (4)

Assume Ur = u. When u = P , all the original packets have already been successfully received

during the first P rounds of transmissions, so that Dr = 0. When u < P , receiver r still requires

to receive P − u innovative coded packets. Thus, Dr can be expressed as

Dr = A1 + A2 + . . .+ AP−u, (5)
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where Aj , 1 ≤ j ≤ P − u, represents the number of packets obtained by receiver r during the

process that the number of innovative packets at receiver r increases from u + j − 1 to u + j.

Thus, for aj ≥ 1,

Pr(Aj = aj) = (1− p′r,u+j−1)
aj−1p′r,u+j−1. (6)

Consequently, for d > 0, the conditional probability of Dr is equal to d given Ur = u can be

characterized as

Pr(Dr = d|Ur = u) =











0, u = P, u < P − d

∑

a∈AP−u,d

P−u
∏

j=1

(1− p′r,u+j−1)
aj−1p′r,u+j−1, otherwise

(7)

where AP−u,d is defined as the collection of (P − u)-tuples a = (a1, . . . , aP−u) subject to

a1, . . . , aP−u ∈ Z
+ and a1 + . . . + aP−u = d. Note that u < P − d expresses the case that the

number of successfully received packets by receiver r is less than P , not sufficient to recover

all P original packets. Based on (7), the probability distribution of Dr can be formulated as

Pr(Dr = 0) = pPr and for d > 0,

Pr(Dr = d) =
P−1
∑

u=max{0,P−d}

(

P

u

)

pur (1− pr)
P−uPr(Dr = d|Ur = u). (8)

By plugging (8) into (3), we can get a formula to compute the expected value of D for the

conventional RLNC scheme over GF(q). Even though the computation of E[D] in terms of (3)

involves an infinite term summation, the term 1 −
∏

1≤r≤R Pr(Dr ≤ d) converges to 0 quickly

when d increases. Therefore, a very close approximate for E[D] can be obtained based on (3)

when P is not large.

Note that the above analysis on E[D] also applies to an odd prime power q, though such q is

not the focus of this paper.

When q increases, p′r,Ur+j tends to 1 for all Ur + j < P , so that the completion delay of

the RLNC scheme over GF(q) approaches to the one of the perfect RLNC scheme, where as

long as P packets are received by receiver r, the original P packets can be recovered. For the

perfect RLNC scheme, P + Dr follows the negative binomial distribution with the probability

mass function as Pr(Dr = d) =
(

P+d−1
P−1

)

pPr (1 − pr)
d, d ≥ 0. Recall that for positive integers a

and b, the regularized incomplete beta function Ix(a, b + 1) can be expressed in the following
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combinatorial manner Ix(a, b+1) =
∑b

j=0

(

a+j−1
a−1

)

xa(1−x)j . As a result, for the perfect RLNC

scheme, Pr(Dr ≤ d) = Ipr(P, d+ 1), and

E[D] =
∑

d≥0
(1−

∏

1≤r≤R
Ipr(P, d+ 1)). (9)

For a given packet number P , let DGF(2L), Dperf respectively denote the completion delay of

the RLNC scheme over GF(2L) and the perfect RLNC scheme. It is well known that DGF(2)

has the largest value. However, the next theorem unveils an inherent connection between DGF(2)

and Dperf .

Theorem 1. limP→∞E[DGF(2)]/P = limP→∞E[Dperf ]/P .

Proof: Please refer to Appendix-A.

Remark 1. Same as in the proof of Theorem 1, let Nr denote the number of successfully received

packets at a single receiver r till r can recover all P original packets. For non-systematic RLNC,

an upper bound on E[Nr] was derived in [8] and was recently tightened in [2]. In particular,

regardless of the choice of GF(2L), E[Nr] ≤ P +2. Based on this, it is straightforward to deduce

that limP→∞ E[D
GF(2)
r ]/P = limP→∞ E[Dperf

r ]/P . However, it is insufficient to further imply

Theorem 1, which considers the completion delay D of the whole system instead of a single

receiver. To the best of our knowledge, there was no claim similar to Theorem 1 in the literature.

Theorem 1 is of theoretical interest because it implies that for a fixed and extremely large

packet number, though impractical, the RLNC scheme over GF(2) is optimal for both completion

delay per packet and decoding complexity.

C. Decoding Complexity Analysis

For the conventional RLNC scheme over GF(2L), assume that receiver r has successfully

obtained Ur uncoded packets m
′
1, . . . ,m

′
Ur

and P − Ur coded packets m
′
Ur+1, . . . ,m

′
P whose

coding vectors are linearly independent. We next analyze the number of binary operations

required to recover the original P packets m1, . . . ,mP from m
′
1, . . . ,m

′
P . Assume mj = m

′
j

for all 1 ≤ j ≤ Ur.

Further, in this subsection, denote the coding vector for m
′
j by [γj1 . . . γjP ]

T, so that m′
j =

∑

1≤j′≤P γjj′mj′ .
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The decoding process consists of two phases. In phase I, receiver r removes the information of

uncoded packets m′
1, . . . ,m

′
Ur

from coded packets m′
Ur+1, . . . ,m

′
P . Specifically, for Ur < j ≤ P ,

reset m′
j as

m
′
j = m

′
j −

∑

1≤j′≤Ur

γjj′m
′
j′. (10)

After phase I, the coded packets m
′
Ur+1, . . . ,m

′
P are purely linear combinations of

mUr+1, . . . ,mP . Write A = A′ = {Ur + 1, . . . , P}.

The decoding process of phase II consists of two steps to recover mUr+1, . . . ,mP from

m
′
Ur+1, . . . ,m

′
P . In the first step of phase II, recursively perform the following procedure.

From A, select an index, say j0, such that there is only one nonzero coefficient, say γj0j′0 ,

in {γj0j′ : j′ ∈ A′}. Thus, m′
j0

= γj0j′0mj′
0
. Remove j0 and j′0 from A and A′ respectively.

Recover mj′
0

by the operation γ−1
j0j

′

0

m
′
j0

. For every remaining coded packet m′
j , j ∈ A, reset it

by subtracting mj′
0

from m
′
j via

m
′
j = m

′
j − γjj′

0
mj′

0
, (11)

so that m′
j keeps equal to

∑

j′∈A′ γjj′mj′ for all j ∈ A. The above recursive procedure ends till

for every j ∈ A, there are at least two nonzero coefficients in {γjj′ : j
′ ∈ A′}.

After the first step of phase II decoding, if A is empty, it means all P original packets have

been successfully recovered. Otherwise, continue to perform the second step. In step two, first

compute the inverse matrix of the square matrix [γjj′]j∈A,j′∈A′
2 of size |A|. Let D = [βj′j ]j′∈A′,j∈A

denote this inverse matrix. Then, the original packet mj′ , j
′ ∈ A′, can be recovered by

mj′ =
∑

j∈A
βj′jm

′
j . (12)

We now analyze the binary operation number involved in the above decoding process. Follow

the same consideration in [19], assume it takes L binary operations to compute the addition of

two elements in GF(2L), and at least 2L2 binary operations to compute the multiplication of

two elements in GF(2L). Since every packet contains M
L

symbols over GF(2L), it takes at least

M
L
(2L2 + L) binary operations to compute one term m

′
j − γjj′m

′
j′ for nonzero γjj′ in (10). In

addition, since the probability for γjj′ to be nonzero equals to (2L − 1)/2L, it can be easily

2Throughout the paper, [Aab]a,b denotes the matrix generated by Aab, with a and b respectively representing the column and

the row index.
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deduced that the number of binary operations required for receiver r in the decoding process of

phase I is

Ur(P − Ur)
2L − 1

2L
M

L
(2L2 + L) (13)

In the first step of phase II decoding, the recursive procedure takes P − Ur − |A| iterations,

where A refers to the index set defined at the end of the first step. The number of binary

operations required in this step at receiver r is

∑P−Ur

j=|A|+1
(
M

L
(2L2) + (j − 1)

2L − 1

2L
M

L
(2L2 + L)) (14)

In the second step of phase II decoding, it takes additional

φ(D)
M

L
(2L2) + (φ(D)− |A|)

M

L
L (15)

binary operations to recover the last |A| original packets according to (12), where φ(D) refers to

the number of nonzero entries in the decoding matrix D. We remark here that the computational

complexity to compute the inverse matrix D is ignored, because in practice the packet length

M and the number of symbols M
L

is much larger than the size |A| of D.

For the case that L is large, since every random coding coefficient is nonzero with high

probability, the probability to perform step one of phase II decoding is low. As a consequence,

we can assume that the decoding matrix D is of size P − Ur, and φ(D) = (P − Ur)
2. Based

on (13) and (15), the number of binary operations for decoding is approximated as M [(2L +

1)P − 1](P − Ur). As E[Ur] = Ppr and E[U2
r ] = Ppr(Ppr − pr + 1), the expected number of

binary operations for decoding is

MP [(2L+ 1)P − 1](1− pr) (16)

For the case L = 1, as there is no need to do multiplication in an extension field, it takes

UrM binary operations to compute (10). In addition, instead of (15), where φ(D) needs to be

approximated, we can choose an alternative lower bound M(|A| − 1) on the number of binary

operations required to recover the last |A| original packets from the coded packets in A. In total,

the expected number of binary operations for decoding is lower bounded by

M

2

[

(P 2 − P )pr(1− pr) + 3|A| − 2
]

. (17)
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III. PROPOSED CIRCULAR-SHIFT RLNC SCHEMES

For RLNC schemes over large GF(2L), though it can approach a near optimal completion

delay, the decoding complexity becomes much higher because the decoding process involves

heavy multiplications in GF(2L). One possible way to alleviate the decoding complexity imposed

by extension field multiplication is to use sparse encoding vectors. This inspired us to increase

the probability of zero coding coefficients in RLNC scheme design. Furthermore, in order to

avoid extension-field multiplication, Ref. [18]–[20] motivate us to adopt circular-shift operations

in RLNC design. It turns out that compared with the perfect RLNC scheme, the proposed

circular-shift RLNC schemes, have comparative completion delay but a much lower decoding

complexity.

A. Scheme Description

Hereafter in this paper, let L be an even integer such that L + 1 is a prime with primitive

root 2, that is, the multiplicative order of 2 modulo L + 1 is equal to L. Denote by CL+1 the

(L+1)× (L+1) cyclic permutation matrix





0 IL

1 0



. For a binary sequence m of length L+1,

the linear operation mC
l
L+1, 1 ≤ l ≤ L+ 1, is equivalent to a circular-shift of m by l bits to

the right. Define another L× (L+ 1) matrix G and (L+ 1)× L matrix H over GF(2) by

G = [IL 1],H = [IL 0]T, (18)

i.e., the first L columns in G and the first L rows in H are identity matrix, while all entries in

the last column in G equal to 1 and all entries in the last row in H equal to 0. 3 Write

C = {0,GCL+1H,GC
2
L+1H, . . . ,GC

L+1
L+1H}. (19)

Note that GC
L+1
L+1H = IL.

Same as in the previous section, regard every packet mj of M bits as a row vector

[sj,1, sj,2, . . . , sj,M
L
] of M

L
symbols, where every symbol sj,j′ itself is merely regarded as an

L-dimensional row vector over GF(2) rather than an element in GF(2L). For an L × L′ matrix

A, denote by A ◦mj the following linear operation on mj

A ◦mj = [sj,1A, sj,2A, . . . , sj,M
L
A], (20)

3Throughout the paper, 1 and 0 refer to an all-one matrix and an all-zero matrix, respectively. The size of 0 or 1, if not

explicitly explained, can be inferred in the context.
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that is, to perform symbol-wise multiplication by coefficient A on mj , so that each of the M
L

new symbols has length L′.

Same as in the conventional systematic RLNC schemes, for the proposed circular-shift RLNC

scheme, the sender will first sequentially broadcast P original M-bit packets m1,m2, . . . ,mP

and then random linear combinations mP+1,mP+2, . . . ,mP+D of the P original packets till

every receivers can recover all P original packets. The random linear combinations are based

on the linear operations ◦ with coefficients selected from C. Specifically, every coded packet

mP+d, d ≥ 1, can be expressed as

mP+d =
∑P

j=1
Γj ◦mj , (21)

where the coding coefficients Γj are randomly and independently selected from C according to

Pr(Γj = Γ) =







p0, Γ = 0

1−p0
L+1

, Γ ∈ C\{0}
(22)

Note that when coding coefficients are generated, there is a particular parameter p0 to control

the probability of 0 to occur. The more frequent occurrence of 0 in the coding coefficients will

help reduce the decoding complexity at receivers, but will increase the completion delay. We

shall assume that p0 is a rational number no smaller than 1/(L+ 2). When p0 = 1/(L+ 2), the

probability to choose 0 is the same as to choose a particular nonzero coding coefficient from C.

Since the proposed RLNC schemes inherit the linearity among vectors with the (matrix)

coefficients selected from C, they belong to vector linear network coding [21].

By a slight abuse of notation, define the coding vector of a packet to be a PL × L matrix

over GF(2) as follows. Every coding vector can be regarded as a P × 1 block matrix which is

a coding coefficient (matrix) belonging to C. For an original (uncoded) packet mj , 1 ≤ j ≤ P ,

the jth block in its coding vector Fj is the identity matrix IL, while all other blocks are L× L

zero matrices. Thus, [Fj ]1≤j≤P = IPL. For a coded packet mP+d =
∑P

j=1Γj ◦mj , its coding

vector FP+d is defined as FP+d = [ΓT
1 Γ

T
2 . . . Γ

T
P ]

T. As there are only L+ 2 possible choices

for coding coefficients, only ⌈P log2(L+2)⌉ bits are sufficient in the packet header to store the

coding coefficient information.

For J ≥ 2, assume that receiver r has successfully received J − 1 packets, and denote by

F the PL× (J − 1)L matrix over GF(2) obtained by column-wise juxtaposition of the coding

vectors for the J − 1 packets. For the J th successfully received packet with the coding vector

FJ , it is said to be innovative if rank([F FJ ])− rank(F) = L. As long as a receiver obtains P

11



innovative packets, that is, their coding vectors can be columnwise juxtaposed into a PL× PL

full rank matrix over GF(2), the P original packets can be decoded at r.

We next analyze the completion delay of the proposed circular-shift RLNC scheme. Note

that even though the works in [18]–[20] studied different LNC schemes based on circular-shift

operations, they targeted at wireline network models, totally different from wireless broadcast,

so they do not shed light on our desired completion delay analysis. Let 2 ≤ J ≤ P and q be

a prime power no larger than 1/p0. Consider a PL× JL matrix FJ,Γ = [Γjj′]1≤j≤J,1≤j′≤P over

GF(2) with Γjj′ ∈ C subject to

• the PL× (J − 1)L submatrix [Γjj′]1≤j<J,1≤j′≤P is full rank (over GF(2)),

• every ΓJj′ is randomly selected from C according to the distribution prescribed in (22),

and another P × J matrix FJ,γ = [γjj′]1≤j≤J,1≤j′≤P over GF(q) with γjj′ ∈ GF(q) subject to

• the P × (J − 1) submatrix [γjj′]1≤j<J,1≤j′≤P is full rank,

• every γJj′ is independently and randomly selected from GF(q) with Pr(γJj′ = γ) = 1/q

for all γ ∈ GF(q).

Lemma 2. Pr(rank(FJ,Γ) = JL) ≥ 1− pP−J+1
0 ≥ Pr(rank(FJ,γ) = J).

Proof: Please refer to Appendix-B.

Consider the proposed circular-shift RLNC scheme with p0 ≥ 1/(L+2) and the conventional

RLNC scheme over GF(q) with q a prime power no larger than 1/p0. Denote by Dcirc and DGF(q)

their respective completion delay, as well as by Dcirc
r and D

GF(q)
r their respective completion

delay for receiver r. Thus, we have

Dcirc = max{Dcirc
1 , Dcirc

2 , . . . , Dcirc
R }

DGF(q) = max{D
GF(q)
1 , D

GF(q)
2 , . . . , D

GF(q)
R }.

(23)

Theorem 3. E(Dcirc) ≤ E(DGF(q)) and E(Dcirc
r ) ≤ E(D

GF(q)
r ).

Proof: Similar to (3),

E[Dcirc] =
∑

d≥0

(

1−
∏

1≤r≤R
Pr(Dcirc

r ≤ d)
)

,

E[DGF(q)] =
∑

d≥0

(

1−
∏

1≤r≤R
Pr(DGF(q)

r ≤ d)
)

.
(24)

Thus, it suffices to prove that for each receiver r and d ≥ 0,

Pr(Dcirc
r ≤ d) ≥ Pr(DGF(q)

r ≤ d) ∀d ≥ 0, (25)

12



whose proof can be found in Appendix-C. Since E(Dcirc
r ) =

∑

d≥0

(

1− Pr(Dcirc
r ≤ d)

)

,

E(D
GF(q)
r ) =

∑

d≥0

(

1− Pr(D
GF(q)
r ≤ d)

)

, Eq. (25) implies E(Dcirc
r ) ≤ E(D

GF(q)
r ).

The next corollary is a direct consequence of Theorem 1 and Theorem 3.

Corollary 4. When p0 ≤ 1/2, E(Dcirc) ≤ E(DGF(2)) and limP→∞ E[Dcirc]/P =

limP→∞ E[Dperf ]/P .

In the proposed RLNC scheme, the set C of L× L matrices for coding coefficient selection

is particularly designed, so that the decoding complexity of the proposed scheme can be

significantly reduced compared with the conventional RLNC scheme over GF(2L). The insights

are as follows.

First, for every symbol s, i.e., a binary row vector of length L, when it is (right) multiplied

by a binary matrix of size L, L(L− 1) binary operations are required in general. However, for

a nonzero matrix Γ = GC
l
L+1H in C, it only requires L− 1 binary operations to compute sΓ,

where the only binary operations are performed in computing sG while the complexity of a

circular-shift operation on a binary sequence can be ignored (See, e.g., [18], [19]). Moreover,

the next proposition justifies that to compute sΓ
−1 only takes L− 1 binary operations as well.

Proposition 5. For a nonzero matrix Γ = GC
l
L+1H in C,

ΓG = GC
l
L+1, (26)

Γ
−1 = GC

L−l+1
L+1 H. (27)

Proof: Observe that HG =





IL 1

0 0



 = IL+1+[0 1], where [0 1] refers to (L+1)× (L+1)

matrix with all-zero entries in the first L columns and all-one entries in the last column.

Consequently, (GC
l
L+1H)G = IL +GC

l
L+1[0 1]. Because C

l
L+1[0 1] = [0 1] and G[0 1] = 0,

GC
l
L+1[0 1] = 0. Eq. (26) is thus proved. Due to (26), (GC

l
L+1H)(GC

L−l+1
L+1 H) =

GC
l
L+1C

L−l+1
L+1 H = GIL+1H = IL.

Moreover, for a positive integer J , consider a full rank (over GF(2)) block matrix [Γjj′]1≤j,j′≤J

with every nonzero block Γjj′ = GC
ajj′

L+1H. We next provide a formula to concisely characterize

the inverse matrix D = [Bjj′]1≤j,j′≤J of [Γjj′]1≤j,j′≤J , where every block Bjj′ is also an L× L

matrix. It turns out that for every block Bjj′ in D, to compute sBjj′ requires at most L(L +

13



1)/2−2 binary operations, which are also fewer than the number L(L−1) of binary operations

to compute s multiplied by a general matrix.

Observe that the set R = {
∑L

l=0 alC
l
L+1, al ∈ GF(2)} forms a commutative ring of circulant

matrices of size L + 1. In R, for every Ψ =
∑L

l=0 alC
l
L+1, define σ(Ψ) of it as follows. If

the number of nonzero coefficients {a0, a1, . . . , aL} is larger than L/2, then σ(Ψ) =
∑L

l=0(1 +

al)C
l
L+1, i.e., σ(Ψ) = Ψ+ 1. Otherwise, σ(Ψ) = Ψ. In this way, σ(Ψ) is always a summation

of at most L/2 cyclic permutation matrices.

In addition, for every matrix [Ψjj′]1≤j,j′≤J over R, though it can be regarded as a matrix of

size J(L+ 1) over GF(2), we impose the computation of its determinant to be conducted over

R. Specifically, denote by Λ the determinant of ([Ψjj′]1≤j,j′≤J) over R

Λ = det ([Ψjj′]1≤j,j′≤J) =
∑

τ∈SJ

∏J

j=1
Ψjτ(j), (28)

where SJ refers to the permutation group consisting of all permutations on {1, 2, . . . , J}.

Theorem 6. Consider a full rank matrix [GΨjj′H]1≤j,j′≤J , where Ψjj′ ∈ R, its inverse matrix

can be represented as the block matrix D = [Bjj′]1≤j,j′≤J with every block of L×L matrix Bjj′

defined as

Gσ(Λ2L−2 det(Mjj′))H, (29)

where Mjj′ is the matrix obtained from [Ψjj′]1≤j,j′≤J by deleting its j′th block row and jth

block column, and its determinant is also computed over R.

Proof: For 1 ≤ j, j′ ≤ J , denote by B
′
jj′ ∈ R the (L+ 1)× (L+ 1) matrix

B
′
jj′ = Λ

2L−2 det(Mjj′), (30)

so that it is equivalent to show

[GΨjj′H]1≤j,j′≤J [Gσ(B′
jj′)H]1≤j,j′≤J = IJL. (31)

By application of Lemma 3 in [22], we can obtain the following proposition

[GΨjj′]1≤j,j′≤J [B
′
jj′H]1≤j,j′≤J = IJL. (32)

Further, since Eq. (26) in Proposition 5 implies that for Ψ1,Ψ2 ∈ R,

(GΨ1H)(GΨ2H) = GΨ1Ψ2H, (33)

14



the following can be deduced from Eq. (32)

[GΨjj′H]1≤j,j′≤J [GB
′
jj′H]1≤j,j′≤J = IJL. (34)

By the definition of σ, either σ(B′
jj′) = B

′
jj′ or σ(B′

jj′) = B
′
jj′ + 1. Since G1 = 0,

[GΨjj′H]1≤j,j′≤J [Gσ(B′
jj′)H]1≤j,j′≤J = [GΨjj′H]1≤j,j′≤J [GB

′
jj′H]1≤j,j′≤J = IJL. (35)

Example. Assume [Ψjj′]1≤j,j′≤3 =











I5 C5 C5

I5 C
2
5 C

3
5

I5 C
3
5 C

4
5











. One may check that det([Ψjj′]1≤j,j′≤3) =

I5+C
3
5, and [Mjj′]1≤j,j′≤3 =











0 I+C
4
5 C

3
5 +C

4
5

C
3
5 +C

4
5 C5 +C

4
5 C5 +C

3
5

C
2
5 +C

3
5 C5 +C

3
5 C+C

2
5











. Based on (29), [Bjj′]1≤j,j′≤3 =

(I3 ⊗ G)











0 C
2
5 +C

4
5 C5 +C

3
5

C5 +C
3
5 C5 C

3
5

I5 +C
2
5 C

3
5 C5 +C

4
5











(I3 ⊗ H), where ⊗ means the Kronecker product.

One may further check that (I3 ⊗G)[Ψjj′]1≤j,j′≤3(I3 ⊗H)[Bjj′]1≤j,j′≤3 = I12. �

Remark 2. Compared with the circular-shift LNC schemes considered in [19], the one proposed

in this paper does not introduce any redundant bit for transmission. The key is Eq. (26) and (27)

in Proposition 5, which guarantees the correctness of Theorem 6. The insight brought about from

(26) and (27) is that for the (wireline) networks as modeled in [19], every circular-shift LNC

scheme with redundant bits for transmission may be theoretically transformed to a vector LNC

scheme without redundant bits and with the coding coefficients selected from R. This topic is

beyond the scope of this paper and will be investigated elsewhere.

A detailed discussion on the decoding process and the decoding complexity are given in next

two subsections.

B. Decoding Algorithm

Assume that receiver r has successfully obtained P packets m
′
j =

∑

1≤j′≤P Γjj′ ◦ mj′ , 1 ≤

j ≤ P , such that the PL×PL matrix [Γjj′]1≤j,j′≤P over GF(2) is full rank. Write every coding

coefficient Γjj′ in the form of GCjj′H, with Cjj′ to be either a cyclic permutation matrix or
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the zero matrix of size L + 1. Without loss of generality, assume m
′
1, . . . ,m

′
Ur

are uncoded

packets, and m
′
j = mj for 1 ≤ j ≤ Ur. Receiver r remains to decode P − Ur original packets

mUr+1, . . . ,mP .

Denote by [Bjj′]1≤j,j′≤P the inverse matrix of [Γjj′]1≤j,j′≤P formulated in Theorem 6. Thus,

for Ur < j ≤ P , mj =
∑

1≤j′≤P Bjj′ ◦m
′
j′ . By making use of the property that Γjj = IL and

Γjj′ = 0 for 1 ≤ j ≤ Ur, j
′ 6= j, we can further refine the above decoding process without

directly calculating Bjj′ from [Γjj′]1≤j,j′≤P , as explicated below.

The refined decoding process of the proposed circular-shift RLNC scheme consists of two

phases. In phase I decoding, first update every received packet m′
j , 1 ≤ j ≤ P according to

m
′
j = G ◦m′

j , (36)

where ◦ is defined in (20), so that each of the M
L

symbols in m
′
j has length L+1. For Ur < j ≤ P ,

m
′
j is further updated as

m
′
j = m

′
j −

∑

1≤j′≤Ur

Cjj′ ◦m
′
j′ . (37)

Slightly different from (20), the operator ◦ in (37) works for row vectors of M
L

symbols with

symbol length L+1. Note that every updated coded packet m′
j , Ur < j ≤ P , can be represented

as m
′
j =

∑

Ur<j′≤P (Γjj′G) ◦mj′ =
∑

Ur<j′≤P (GCjj′) ◦mj′ , where the last equality holds due

to (26). In addition, the (P −Ur)L× (P −Ur)L matrix [Γjj′]Ur<j,j′≤P (= [GCjj′H]Ur<j,j′≤P ) is

full rank. Write A = A′ = {Ur + 1, Ur + 2, . . . , P}.

In the first step of phase II decoding, recursively perform the following procedure. From A,

select an index, say j0, such that there is only one nonzero coding coefficient among {Γj0j′ : j
′ ∈

A′}. Let Γj0j
′

0
(= GCj0j

′

0
H) denote this nonzero coefficient block. Thus, m′

j0
= (Γj0j

′

0
G)◦mj′

0
=

(GCj0j
′

0
) ◦mj′

0
. Remove j0 and j′0 from A and A′ respectively, and reset

m
′
j0
= C

−1
j0j

′

0

◦m′
j0
. (38)

The original packet mj′
0

is then equal to H ◦m′
j0

. Corresponding to every remaining index j in

A, reset the coded packet m′
j by

m
′
j = m

′
j −Cjj′

0
◦mj′

0
, (39)

The above recursive procedure ends till for every j ∈ A, there are at least two nonzero coding

coefficient blocks among {Γjj′ : j
′ ∈ A′}.

After the first step of phase II decoding, if A is empty, then all P original packets have been

successfully recovered. Otherwise, |A| = |A′| ≥ 2, and m
′
j =

∑

j′∈A′(Γjj′G) ◦mj′ for j ∈ A.
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Continue to perform the second step as follows. First, arbitrarily find an index j1 in A, and a

nonzero coefficient, say Γj1j
′

1
(= GCj1j

′

1
H), in {Γj1j′ : j

′ ∈ A′}. Reset

m
′
j1
= C

−1
j1j

′

1

◦m′
j1
. (40)

Next, remove j1 and j′1 from A and A′ respectively. For every j ∈ A, j′ ∈ A′, update m
′
j and

Γjj′ as

m
′
j = m

′
j −Cjj′

1
◦m′

j1
,Γjj′ = G(Cjj′ +Cj1j′C

−1
j1j

′

1

)H. (41)

After the update, m′
j keeps equal to

∑

j′∈A′(Γjj′G) ◦ mj′ . Since Cjj′ + Cj1j′C
−1
j1j

′

1

∈ R, the

inverse matrix of [Γjj′]j∈A,j′∈A′ can be computed based on Theorem 6. Following (29), express

this inverse matrix as [GΦj′jH]j′∈A′,j∈A, where the columns and rows are respectively indexed

by A′ and A, and every Φj′j ∈ R is a summation of at most L/2 cyclic permutation matrices.

For j′ ∈ A′, compute

m̃j′ =
∑

j∈A
Φj′j ◦m

′
j , (42)

and recover the original packet mj′ by setting mj′ = H ◦ m̃j′ . Finally, mj′
1

can be recovered

via

mj′
1
= H ◦

(

m
′
j1
−
∑

j′∈A′

(Cj1j′C
−1
j1j

′

1

) ◦ m̃j′

)

(43)

C. Decoding Complexity Analysis

We now analyze the number of binary operations involved in the refined decoding process

described in the above subsection. The number of binary operations required in (36) to update

packet m′
j for all 1 ≤ j ≤ P is

P
M

L
(L− 1) (44)

After the update, each of the M
L

symbols in m
′
j has length L + 1. Since the symbol-wise

multiplication C
l
L+1 ◦m

′
j involves no binary operations, and the nonzero probability for Cjj′ is

1− p0, the number of binary operations required at a receiver for (37) in phase I is

(P − Ur)Ur(1− p0)
M

L
(L+ 1). (45)

In the first step of phase II decoding, the number of required binary operations is

∑P−Ur

j=|A|+1

M

L
(j − 1)(1− p0)(L+ 1). (46)
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where A refers to the index set defined at the end of the first step. In the second step of phase II

decoding, it takes negligible binary operations to compute (40), and (|A| − 1)(L+ 1)M
L

binary

operations to update m
′
j in (41). Moreover, in (42), every block Φj′j ∈ R can be expressed

as σ(Λ2L−2 det(Mjj′)) according to Theorem 6 and is a summation of at most L/2 cyclic

permutation matrices. Thus, it takes at most M
L
(L
2
− 1)(L+1) binary operations to compute one

term Φj′j ◦mj′ in (42). It takes each receiver at most

(|A| − 1)2(
L

2
− 1)

M

L
(L+ 1) + (|A| − 1)(|A| − 2)

M

L
(L+ 1) (47)

binary operations to compute (42). Note that same as in the analysis of conventional RLNC

schemes, we ignore the number of operations involved in obtaining [GΦj′jH]j′∈A′,j∈A, since

|A| is relatively small. The number of binary operations in the final procedure (43) to recover

the original packet mP−|A|+j0 is M/L(|A| − 1)(1 − p0)(L + 1), where 1 − p0 represents the

probability for every term Cj1j′ in (43) to be nonzero.

As E[Ur] = Ppr and E[U2
r ] = Ppr(Ppr − pr + 1), the expected number of binary operations

for the whole decoding process is

M

L
[P (L− 1) + (L+ 1)(P 2pr(1− p0)(1− pr) + (|A| − 1)2(

L

2
− 1)

+(|A| − 1)(|A| − p0))] +
∑P−Ur

j=|A|+1

M

L
(j − 1)(1− p0)(L+ 1).

(48)

Remark 3. If we allow one bit redundancy per symbol for transmission, then the proposed

circular-shift RLNC scheme can be modified by randomly selecting the nonzero coding

coefficients from the set {GCL+1,GC
2
L+1, . . . ,GC

L+1
L+1} instead of from C. Once the coding

coefficients have been randomly selected, the formed code essentially belongs to the same type

of circular-shift linear network codes with 1-bit redundancy originally proposed in [19] for

wireline networks. In this way, every packet transmitted from the source in the modified scheme

still consists M
L

symbols, but every symbol contains L + 1 bits. Based on (26), every packet

transmitted by the modified scheme can be expressed as
∑P

j=1(ΓjG) ◦mj . As a consequence,

what the receiver received in the modified scheme are directly the packets obtained after (36).

The decoding process described in the previous subsection can thus be slightly simplified so that

a total of P M
L
(L− 1) binary operations (to perform (36)) can be saved at decoding. This is at

a cost of M
L

extra bits per packet to be transmitted.
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Fig. 1. Average completion delay per packet.

IV. NUMERICAL ANALYSIS

In this section, we present numerical results to compare the performance of the proposed

RLNC schemes with conventional RLNC schemes. Note that even though IDNC is also a type

of network coding schemes designed for wireless broadcast, it requires feedback from every

receiver after every packet broadcast to indicate whether the packet is received, and hence has

a different network assumption from ours. As a result, in the present paper, same as in other

studies [1]–[9] about RLNC in wireless broadcast, we shall not compare the performance of our

proposed schemes with IDNC. We assume that the system has 60 receivers and in each round of

successful transmission of P packets to all receivers, the packet erasure probability per receiver

is a fixed value uniformly selected between 0.1 and 0.2. In the figure legend, the conventional

RLNC scheme over GF(2L) is labeled as “GF(2L)”, the proposed circular-shift RLNC scheme

with zero entry probability p0 is labeled as “C-S p0-0”, and the circular-shift RLNC scheme

with 1-bit redundancy per symbol is labeled as “C-S.R p0-0”.

Fig. 1 compares the average completion delay per packet of different RLNC schemes as a

function of the number of packets P . One may observe the followings from this figure. First, the

average completion delay of every RLNC scheme, including the conventional one over GF(2),

converges to the one of perfect RLNC, which means linear independence among arbitrary P
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Fig. 2. Average number of binary operations for decoding per packet bit.

packets generated by the source, and thus has the smallest completion delay. This result is in

line with Theorem 1 and Corollary 4. In particular, regardless of the choice of L and p0, the

convergence rates of our proposed scheme is higher than that of the conventional RLNC scheme

over GF(2), and the average completion delay of the proposed scheme is always smaller than
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that of the conventional RLNC scheme over GF(2). This is justified by Theorem 3. Second,

when p0 = 1/4, the average completion delays of the proposed schemes for both L = 4 and

L = 10 are smaller than that of the conventional RLNC scheme over GF(22) too. This observation

numerically verifies Theorem 3 once more and demonstrates that the theoretical upper bound in

Theorem 3 becomes tighter with the decrease of p0. Third, for fixed L, the completion delays of

the proposed schemes are lower bounded by the conventional RLNC schemes over GF(2L), and

the gap is vanishing with the increase of P and the decrease of p0. In particular, when P ≥ 15

and p0 = 1/4, the gap becomes negligible. Last, with the decrease of p0 or the increase of L,

the average completion delay can be reduced, but the benefit from the latter is not as obvious

as the former.

Fig. 2.(a) and (b) shows the decoding complexity performance of different RLNC schemes

as a function of P . The decoding complexity is measured by the average number of binary

operations required in the decoding process described in Sec. II-C and Sec. III-B. Specifically,

the decoding complexities for RLNC schemes over GF(24) and GF(210) are based on (13), (14)

and (15), the one for the RLNC scheme over GF(2) is based on (17), and the ones for the

proposed RLNC schemes are based on (48), all with the average value for the variable Ur and

|A| obtained via simulation. The average number of binary operations for decoding depicted in

Fig. 2 is normalized by the packet number P and the packet length M . From Fig. 2.(a), we can

see that with increasing P , the decoding complexity of every RLNC scheme increases, while the

increasing rates of our proposed schemes are much smaller than that of the conventional RLNC

scheme over GF(24) and are close to that of the conventional RLNC over GF(2).

Fig. 2.(b) depicts a clearer comparison of the decoding complexity between our proposed

schemes and the RLNC scheme over GF(2). It illustrates that under the same symbol length

L, the larger the p0 is, the closer the decoding complexity is to GF(2). Note that the decoding

complexity in Fig. 2 for the RLNC scheme over GF(2) is based on (17), so it is a lower bound on

the actual number of binary operations required for decoding. Despite of this, one may observe

that for the case L = 4 and p0 = 1/4, when P ≥ 15, the proposed new scheme has the average

binary operation number for decoding only about 3 times the one of the RLNC scheme over

GF(2), while its the average completion delay is merely within 5% higher than the perfect RLNC

scheme.

Recall that in the proposed circular-shift RLNC scheme without redundancy and the counter-

part scheme with 1 bit redundancy per symbol as described in Remark 3, a smaller p0 yields
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Fig. 3. Trade-off between the average completion delay, which is normalized by the one of perfect RLNC, and the average

number of binary operations for decoding, which is normalized by the one of the RLNC scheme over GF(2).

a higher decoding complexity but a lower average completion delay. In Fig. 3, we evaluate

the interesting delay-complexity trade-off for these schemes with fixed L = 4. The decoding

complexity is again measured as the average number of binary operations for decoding, and it

is normalized by the one of the RLNC scheme over GF(2). The average completion delay is

normalized by the one of the perfect RLNC. The RLNC scheme over GF(2) is also included as

the benchmark scheme. It can be observed that for all possible P , the completion delay can be

reduced by increasing allowable decoding complexity in both the proposed new scheme and the

counterpart scheme with redundancy, but there is such a point that the completion delay cannot

benefit much more from the further increase of allowable decoding complexity. Moreover, for

relatively large P , the scheme without redundancy generally provides a better delay-complexity

trade-off than the scheme with redundancy per symbol. For instance, when P ≥ 20, under

a same allowable decoding complexity, the completion delay of the proposed scheme without

redundancy is always lower than that of the scheme with redundancy. However, for smaller P and

relatively small allowable decoding complexity, the scheme with redundancy in turn provides a

good supplement to the delay-complexity trade-off. For instance, when P = 10 and the allowable

decoding complexity is smaller than 3, a scheme with redundancy can be specially designed (by

appropriately choosing p0) to tune the (normalized) completion delay to between 1.33 and 1.66,
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where 1.66 reaches the one of the GF(2)-RLNC scheme. In the case that the lowest decoding

complexity is desired, the GF(2)-RLNC scheme can be adopted directly at the cost of the highest

completion delay.

V. CONCLUDING REMARKS

For wireless broadcast without feedback, this paper made a comprehensive study on various

systematic random linear network coding (RLNC) schemes from the perspective of completion

delay and decoding complexity. In particular, the proposed method to design RLNC schemes

is based on circular-shift operations and a new parameter to control the zero-coding coefficient

probability, and it presents itself as a new paradigm for RLNC design to have a much better

trade-off between completion delay and decoding complexity. As potential future works, it is

interesting to rigorously define a metric on the trade-off between the completion delay and

decoding complexity, obtain a tighter upper bound on the average completion delay of the

proposed RLNC schemes, and explore the applicability of the proposed RLNC schemes to

deadline constrained wireless broadcast and wireless broadcast with relays.

APPENDIX

A. Proof of Theorem 1

Define two new random variables Nr and Yr,Nr
as follows. Nr (Nr ≥ P ) represents the number

of successfully received packets at receiver r till r can recover all P original packets from them,

and Yr,Nr
(Yr,Nr

≥ P ) represents the number of packets transmitted by the source till receiver r

successfully obtains Nr packets. Equivalently,

Pr(DGF(2)
r = d) =

d
∑

n=0

Pr(Nr = P + n)Pr(Yr,Nr
= P + d|Nr = P + n)

=

d
∑

n=0

Pr(Nr = P + n)Pr(Yr,P+n = P + d). (49)

Note that Dperf
r = Yr,P , and generally Yr,P+n also follows the negative binomial distribution and

Pr(Yr,P+n = P + d) =

(

P + d− 1

P + n− 1

)

pP+n
r (1− pr)

d−n (50)

In order to calculate Pr(Nr = P + n), let U denote the number of uncoded packets among Nr

successfully received packets, so that Pr(Nr = P +n) can be further calculated by conditioning
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on U . In the case U = P , Pr(Nr = P |U = P ) = 1 and Pr(Nr = P + n|U = P ) = 0 for n > 0.

In the case U = u < P , write

AP−u =

P−u
∏

j=1

(1− 2−j) =

P−u−1
∏

j=0

(1− 2u+j−P ), (51)

so that

Pr(Nr = P + n|U = u) =







AP−u, n = 0

AP−u

∑

u≤k1≤k2≤...≤kn<P 2(k1−P )+(k2−P )+...+(kn−P ), n > 0

=







AP−u, n = 0

AP−u

∑

0<k1≤k2≤...≤kn≤P−u 2
−(k1+k2+...+kn), n > 0

(52)

As U follows the binomial distribution with parameter (P, pr),

Pr(Nr = P + n) =

P
∑

u=0

Pr(U = u)Pr(Nr = P + n|U = u)

=

P
∑

u=0

(

P

u

)

pur (1− pr)
P−uPr(Nr = P + n|U = u). (53)

We next analyze the expression of Pr(Nr = P + n|U = u) in (52). For j ≥ 1, write A′
j1 = 1

and recursively define A′
jk =

∑j
j′=1 2

−j′A′
j′(k−1) for k > 0. When n > 0 and u < P , Pr(Nr =

P + n|U = u) can be expressed in terms of A′
jk as

Pr(Nr = P + n|U = u) = AP−u

P−u
∑

j′=1

2−j′A′
j′n, (54)

where AP−u is defined in (51). Because A′
jk can be alternatively expressed as

A′
jk = 2−jA′

j(k−1) + A′
(j−1)k,

it can be inductively deduced that Pr(Nr = P+n|U = u) exponentially decreases and converges

to 0 when n increases, and Pr(Nr = P + n|U = u) also converges as P − u increases. For

instance, Table I lists the probability Pr(Nr = P + n|U = u) under different choices of u and

n. As a result, when P − u is larger than a threshold δu (say, e.g., δu = 20), we may assume

Pr(Nr = P + n|U = u, P − u ≥ δu) = Pr(Nr = δu + n|U = 0) = Ān, (55)

where Ān is equal to Aδu when n = 0 and denotes Aδu

∑δu
j′=1 2

−j′A′
j′n when n > 0 for simplicity.

Moreover, because
∑P

u=P−δu
Pr(U = u) =

∑P

u=P−δu

(

P

P−δu

)

pur (1− pr)
P−u also tends to 0 as

P increases, we may assume that when P is large enough,

Pr(Nr = P + n) = Ān.
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TABLE I

THE VALUE OF Pr(Nr = P + n|U = u) UNDER DIFFERENT CHOICES OF u AND n

P − u

n
0 1 5 10 20

1 0.5 0.25 1.5625 × 10−2 4.8828 × 10−4 4.7684 × 10−7

5 0.298 0.2887 2.9395 × 10−2 9.4518 × 10−4 9.2387 × 10−7

10 0.2891 0.2888 3.0256 × 10−2 9.7466 × 10−4 9.5274 × 10−7

15 0.2888 0.2888 3.0283 × 10−2 9.7558 × 10−4 9.5364 × 10−7

20 0.2888 0.2888 3.0284 × 10−2 9.7561 × 10−4 9.5367 × 10−7

It turns out that when P is large enough, Eq. (49) can be reduced to

Pr(DGF(2)
r = d) =

d
∑

n=0

ĀnPr(Yr,P+n = P + d). (56)

Similar to (3), E[D
GF(2)
max ] =

∑

d≥0

(

1−
∏

1≤r≤R Pr(D
GF(2)
r ≤ d)

)

, it remains to further

analyze Pr(D
GF(2)
r ≤ d). Stemming from (56), we have

Pr(DGF(2)
r ≤ d) =

d
∑

d′=0

d′
∑

n=0

ĀnPr(Yr,P+n = P + d′)

=
d
∑

n=0

Ān

d
∑

d′=n

Pr(Yr,P+n = P + d′)

=
d
∑

n=0

ĀnIpr(P + n, d− n + 1)

Because Ipr(P +n, d−n+1) ≤ Ipr(P, d+1) for every 0 ≤ n ≤ d, and Ān decays exponentially

to 0 as n increases, there exists a bounded integer δn subject to

Pr(DGF(2)
r ≤ d) ≥ Ipr(P + δn, d− δn + 1) (57)

for all receiver r and all P and d ≥ δn. It turns out that

E[DGF(2)
max ] ≤ δn +

∑

d≥δn

(

1−
∏

1≤r≤R

Ipr(P + δn, d− δn + 1)

)

(58)

Recall that E[Dperf
max] =

∑

d≥0

(

1−
∏

1≤r≤R Ipr(P, d+ 1)
)

. Because when P increases, the

difference between Ipr(P, d + 1) and Ipr(P + δn, d − δn + 1) tends to 0 for all d ≥ δn, we

can now conclude that E[D
GF(2)
max ]/P converges to E[Dperf

max]/P when P goes to infinity.
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B. Proof of Lemma 2

Since γJj′, 1 ≤ j′ ≤ P , are independently and uniformly chosen from GF(q), Pr(rank(FJ,γ) =

J) = 1− (1/q)P−J+1. Since q ≤ 1/p0,

Pr(rank(FJ,γ) = J) ≤ 1− pP−J+1
0 . (59)

It remains to prove that Pr(rank(FJ,Γ) = JL) ≥ 1 − pP−J+1
0 . Since L + 1 is a prime with

primitive root 2, we have the following properties to utilize (See, e.g., [19])

• there is an element in GF(2L), denoted by β, with multiplicative order L+1, i.e., βL+1 = 1.

• For a polynomial f(x) over GF(2L), if the evaluation f(β) 6= 0, then f(βl) 6= 0 for all

1 ≤ β ≤ L.

Based on the above properties and in the same way to prove Theorem 1 in [20], it can be proved

that rank(FJ,Γ) = JL if and only if the P × J matrix [βjj′]1≤j≤J,1≤j′≤P over GF(2L) has full

rank J , where

βjj′ =







βljj′ , if Γjj′ = GC
ljj′

L+1H

0, if Γjj′ = 0

(60)

Consequently, it is equivalent to show that

Pr(rank(FJ,β) = J) ≥ 1− pP−J+1
0 , (61)

where FJ,β = [βjj′]1≤j≤J,1≤j′≤P is a P × J matrix defined over GF(2L) with βjj′ ∈

{0, β, β2, . . . , βL+1} ⊆ GF(2L
′

) subject to

• the P × (J − 1) submatrix [βjj′]1≤j<J,1≤j′≤P is full rank,

• every βJj′ is randomly selected from {0, β, β2, . . . , βL+1} according to the distribution

Pr(βJj′ = β ′) =







p0, β ′ = 0

1−p0
L+1

, β ′ = βl, 1 ≤ l ≤ L+ 1
(62)

As p0 is a rational number, write p0 = a/b. Expand the set {0, β, β2, . . . , βL+1} into a multiset

Mβ of cardinality b(L+ 1) as follows:

• the multiplicity of 0 is a(L+ 1), i.e., Mβ contains a(L+ 1) duplicate 0.

• for 1 ≤ l ≤ L+ 1, the multiplicity of βl is b− a, i.e., Mβ contains b− a duplicate βl.

In this way,

Pr(rank(FJ,β) = J) = 1−
Aβ

(b(L+ 1))P
, (63)
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where Aβ represents the number of (possibly duplicate) column vectors in {[βJj′]1≤j′≤P :

βJj′ ∈ Mβ} that can be written as a GF(2L)-linear combination of the J − 1 column vectors

[β1j′]1≤j′≤P , . . . , [β(J−1)j′]1≤j′≤P .

As the P×(J−1) matrix [βjj′]1≤j<J,1≤j′≤P has rank J−1, it contains J−1 linearly independent

rows. Without loss of generality, assume rank([βjj′]1≤j,j′<J) = J−1. Thus, for each of the (b(L+

1))J−1 column vectors [βJj′]1≤j′<J with βJj′ ∈ Mβ, there are unique α1, α2, . . . , αJ−1 ∈ GF(2L)

subject to
∑

1≤j<J αj [βjj′]1≤j′<J = [βJj′]1≤j′<J . Moreover, for J ≤ j′ ≤ P ,
∑

1≤j<J αjβjj′ may

or may not be in Mβ. If
∑

1≤j<J αjβjj′ ∈ Mβ, then it has at most a(L + 1) duplicates in

Mβ, since we assume p0 =
a
b
≥ 1

L+2
so that a(L + 1) ≥ b − a. Thus, Aβ is upper bounded by

(b(L+ 1))J−1(a(L+ 1))P−J+1 and hence,

Pr(rank(FJ,β) = J) = 1−
Aβ

(b(L+ 1))P
≥ 1− (a/b)P−J+1. (64)

C. Proof of Theorem 3

It remains to prove Pr(Dcirc
r ≤ d) ≥ Pr(D

GF(q)
r ≤ d) for all d ≥ 0. Same as the discussion

in Sec.II-B, denote by Ur the number of successfully received uncoded packets at receiver r in

phase one, and assume that Ur = u with u < P . Since when u + d < P , Pr(Dcirc
r ≤ d) =

Pr(D
GF(q)
r ≤ d) = 0, we further assume that d ≥ P − u. Similar to (5), Dcirc

r and D
GF(q)
r can

be respectively expressed as

Dcirc
r = Acirc

1 + Acirc
2 + . . .+ Acirc

P−u,

DGF(q)
r = A

GF(q)
1 + A

GF(q)
2 + . . .+ A

GF(q)
P−u ,

(65)

where Acirc
j and A

GF(q)
j respectively represent the number of coded packets obtained by

receiver r, under the proposed circular-shift RLNC scheme and under the conventional RLNC

scheme over GF(q), during the process that the number of innovative packets at receiver r

increases from u + j − 1 to u + j. Thus, Acirc
j and A

GF(q)
j follow the geometric distribution

with the respective parameter p′circr,u+j−1 = prPr (rank(Fu+j,Γ) = (u+ j)L) and p′
GF(q)
r,u+j−1 =

prPr (rank(Fu+j,γ) = u+ j), where Fu+j,Γ and Fu+j,γ are in line with the definition above

Lemma 2 with the setting J = u+ j. Consequently,

Pr(Dcirc
r = d|Ur = u) =

∑

a∈AP−u,d

P−u
∏

j=1

(1− p′
circ
r,u+j−1)

aj−1p′
circ
r,u+j−1,

Pr(DGF(q)
r = d|Ur = u) =

∑

a∈AP−u,d

P−u
∏

j=1

(1− p′
GF(q)
r,u+j−1)

aj−1p′
GF(q)
r,u+j−1,

(66)
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where AP−u,d is defined in the same way as in (7), that is, every (P−u)-tuple a = (a1, . . . , aP−u)

of positive integers satisfies a1 + . . .+ aP−u = d.

For 0 ≤ n < P and d ≥ n, define a function fn,d of an n-tuple Xn = (x1, . . . , xn) of variates

according to

fn,d(Xn) =
∑

a∈An,d

n
∏

j=1

(1− xj)
aj−1xj . (67)

Thus,

Pr(Dcirc
r ≤ d|Ur = u) =

d
∑

d′=P−u

fP−u,d′(℘
circ),

Pr(DGF(q)
r ≤ d|Ur = u) =

d
∑

d′=P−u

fP−u,d′(℘
GF(q)),

(68)

where ℘circ = (p′circr,u , p
′circ
r,u+1, . . . , p

′circ
r,P−1), and ℘GF(q) = (p′GF(q)

r,u , p′
GF(q)
r,u+1 , . . . , p

′GF(q)
r,P−1)

For d ≥ n = 1,
∑d

d′=1 f1,d′(x) =
∑d

d′=1(1− x)d
′−1x = 1− (1− x)d. Thus, for x < 1,

(

d
∑

d′=1

f1,d′(x)

)′

= d(1− x)d−1 > 0, (69)

where the symbol ′ means the derivative operation. For d ≥ n ≥ 2 and arbitrary 1 ≤ j ≤ n, by

conditioning on the possible value d′′ for aj , one may readily deduce

d
∑

d′=n

fn,d′(Xn)

=

d
∑

d′=n

d′+1−n
∑

d′′=1

fn−1,d′−d′′(Xn\xj)f1,d′′(xj)

=
d
∑

d′=n

fn−1,d′−1(Xn\xj)
d+1−d′
∑

d′′=1

f1,d′′(xj), (70)

where the last equation can be obtained by changing the way to enumerate all
(d+2−n)(d+1−n)

2

possible choices. Thus, for 0 < x1, . . . , xn < 1,

∂
(

∑d
d′=n fn,d′(Xn)

)

∂xj

=

∑d
d′=n fn−1,d′−1(Xn\xj)∂

(

∑d+1−d′

d′′=1 f1,d′′(xj)
)

∂xj

> 0, (71)

where the last inequality stems from (69) and the fact that fn,d(Xn) > 0 for all d ≥ n ≥ 1

and 0 < x1, . . . , xn < 1. It turns out that for Xn = (x1, . . . , xn), X ′
n = (x′

1, . . . , x
′
n) with

0 < xj ≤ x′
j < 1 for all 1 ≤ j ≤ n,

∑d
d′=n fn,d′(Xn) ≤

∑d
d′=n fn,d′(X

′
n).
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Since p′circr,u+j−1 ≥ p′
GF(q)
r,u+j−1 for all 1 ≤ j ≤ P − u,

Pr(Dcirc
r ≤ d|Ur = u) =

d
∑

d′=P−u

fP−u,d′(℘
circ)

≥

d
∑

d′=P−u

fP−u,d′(℘
GF(q)) = Pr(DGF(q)

r ≤ d|Ur = u),

(72)

and hence

Pr(Dcirc
r ≤ d) =

P−1
∑

u=max{0,P−d}

Pr(Dcirc
r ≤ d|Ur = u)Pr(Ur = u)

≥
P−1
∑

u=max{0,P−d}

Pr(DGF(q)
r ≤ d|Ur = u)Pr(Ur = u) = Pr(DGF(q)

r ≤ d).

(73)

D. List of Notation

P : the number of original packets.

R: the number of receivers.

M : the number of symbols in a packet.

L: the number of bits representing a symbol.

pr: the probability of successfully receiving a packet at receiver r.

D: the completion delay of an RLNC scheme.

Dr: the completion delay of an RLNC scheme corresponding to receiver r.

mj : the transmitted packet, which is a row vector of M/L symbols.

m
′
j : the received packet.

γ: the coding coefficient selected from GF(2L) in the conventional RLNC scheme.

Γ: the L× L coding coefficient matrix over GF(2) in the proposed RLNC scheme.

Ur: the number of successfully received uncoded packets by receiver r in phase I.

IL: the L× L identity matrix.

CL+1: the (L+ 1)× (L+ 1) cyclic permutation matrix.
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G: the L× (L+ 1) matrix defined in (18).

H: the (L+ 1)× L matrix defined in (18).

C: the set of coding coefficients defined in (19).

p0: the probability of a random coding coefficient to be 0 in the proposed scheme.

◦: the symbol-wise multiplication defined in (20).
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