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Abstract—Wireless power transfer (WPT) is a viable source
of energy for wirelessly powered communication networks
(WPCNs). In this paper, we first consider WPT from an energy
access point (E-AP) to multiple energy receivers (E-Rs) to obtain
the optimal policy that maximizes the WPT efficiency. For this
purpose, we formulate the problem of maximizing the total
average received power of the E-Rs subject to the average
and peak power level constraints of the E-AP. The formulated
problem is a non-convex stochastic optimization problem. Using
some stochastic optimization techniques, we tackle the challenges
of this problem and derive a closed-form expression for the
optimal solution, which requires the explicit knowledge of the
distribution of channel state information (CSI) in the network.
We then propose a near-optimal algorithm that does not require
any explicit knowledge of the CSI distribution and prove that
the proposed algorithm attains a near-optimal solution within
a guaranteed gap to the optimal solution. We next consider
fairness among the E-Rs and propose a quality of service (QoS)
aware fair policy that maximizes a generic network utility
function while guaranteeing the required QoS of each E-R.
Finally, we study a practical wirelessly powered communication
scenario in which the E-Rs utilize their energy harvested through
WPT to transmit information to the E-AP. We optimize the
received information at the E-AP under its average and peak
transmission power constraints and the fairness constraints of
the E-Rs. Numerical results show the significant performance of
our proposed solutions compared to the state-of-the-art baselines.

Index Terms—Wireless power transfer, wirelessly powered
communication networks, fairness, stochastic optimization, non-
convex, min-drift-plus-penalty.

I. INTRODUCTION

Providing energy resources for wireless devices is a critical

issue in many emerging applications. For example, in sensor

networks, recharging the batteries of wireless nodes is a costly

and time-consuming process. In some other applications such

as medical implants inside human bodies, replacement of

the batteries is highly difficult and almost impractical. To

address the issues mentioned above, wireless power transfer

(WPT) is proposed as a key enabling technology to provide
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continuous, stable, and controllable energy resources to wire-

less devices over the air [2]. This technology is currently

being incorporated in many devices and applications, such

as mobile phones, electric toothbrushes, wirelessly powered

drones, wireless charging stations for electric vehicles, and

wirelessly transfer of the power gathered by solar-panel arrays

in the space, to name just a few [3].

WPT can be used as the source of energy for wirelessly

powered communication networks (WPCNs). In WPCNs, an

energy access point (E-AP) transfers energy to a number of

wireless nodes. Then, the nodes can utilize the harvested

energy to transmit their information back to the E-AP [4]–

[8]. The energy is transferred by magnetic induction or radio

frequency (RF). The latter technique covers longer transmis-

sion ranges, requires a simpler structure for the receivers,

and also better supports multiple receivers than the former

technique [9]. Considering these advantages and following

many previous works (e.g., see [10]–[15]), throughout this

paper, we focus on RF-based WPT (RF-WPT).

In order to improve the performance of WPCNs, opti-

mization of WPT policy is crucial. To optimize the WPT

policy, the E-AP needs to know the time-varying channel state

information (CSI) of its outgoing links, which is a random

variable with usually unknown distribution, in practice. Most

of the existing works in the literature consider the CSI of the

network as a known deterministic parameter in each timeslot.

As a consequence of such a naive simplification, they can

formulate the problem of finding the optimal WPT policy

with a deterministic optimization problem (e.g., see [10],

[16]), which is then solved in each timeslot, independently.

However, such short-term solutions lack a global view of the

long-term CSI and fail to incorporate the long-term channel

fluctuations in the optimization of the transmission policy.

For example, consider the case when a channel’s condition is

poor in a particular timeslot. Under a short-term optimization

policy, the transmission resources cannot be preserved for

a more effective utilization in the upcoming timeslots that

may have better CSI. In contrast, the long-term solutions,

obtained via the long-term optimization of the policy, can

avoid transmission in the case of poor channel conditions

and save the energy to be used for transmission in the later

timeslots when the CSI is better.

Despite the aforementioned advantages of the long-term

WPT solutions, there are still very few works on long-term

optimization in the related literature [17]–[22]. In [17], the

authors have considered an E-AP that transmits energy toward

http://arxiv.org/abs/1909.07700v1
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sensor nodes. The E-AP retains the average energy of the

sensor nodes near a constant value to keep them alive. The

works in [18] and [19] have studied the optimization of the

average throughput in a finite number of timeslots. The authors

in [20] have considered an E-AP that transfers energy to one

single-antenna node. The node stores and then utilizes the

received energy to transmit its information toward the E-AP.

Biason et al. in [21] have studied an E-AP that transfers energy

to two nodes and receives their uplink information. Using

Markov decision theory, they have proposed a transmission

policy for the E-AP that maximizes the minimum received

information rate of the nodes. Yet, none of the above works

have considered an infinite time horizon optimization problem

for more than two nodes. Finally, Choi et al. in [22] have

investigated a scenario in which the E-AP aims at stabilizing

the data queues of several battery-operated single-antenna

nodes while consuming the minimum transmission power.

In this paper, we first focus on improving WPT efficiency in

the network by maximizing the average total received power of

the E-Rs subject to the maximum and average power budget of

the E-AP. To this end, we first propose a stochastic optimiza-

tion formulation for the long-term optimization of WPT policy.

The stochastic optimization formulation is non-convex and

hence, highly non-trivial to solve. To address the challenges of

the formulated problem, we use some stochastic optimization

techniques and propose the optimal and near-optimal solutions

for the formulated problem. Furthermore, as the power budget

of the E-AP is limited, maximizing the total received power

of the E-Rs may lead to severe unfairness among them, due

to the near-far problem [16]. As such, in order to maintain

the fairness among the E-Rs, we next propose a quality of

service (QoS) aware fair WPT policy that maximizes a generic

network utility function while guaranteeing the required QoS

of each E-R. The considered network utility function includes

many well-known fairness models, such as max-min fairness,

proportional fairness, and α-fairness [23]. Finally, we focus

on WPT efficiency in a generic WPCN, where the E-AP first

transmits power to all the E-Rs, and then the E-Rs utilize

their harvested energy to transmit information in the uplink

to the E-AP. The average received information is maximized

subject to the fairness constraints and the E-AP’s average and

peak power constraints. Compared to the previous works, we

propose an algorithm that does not need the distribution of the

CSI, includes several well-known fairness criteria, and can be

applied to a wider range of scenarios, i.e., with any number of

multi-antenna E-Rs. It also considers maximizing the received

information over an infinite number of timeslots.

Note that the considered scenarios in this paper can be

deployed in many practical applications in the area of Internet

of Things (IoT), such as smart home and smart factory. The

sensor nodes in these applications are placed in different places

to monitor the environmental conditions, such as air pressure,

temperature, and humidity [4], [24]. These nodes are energy-

constrained and rely on the harvested energy from a central

node to continue their operation, as shown in an experimental

environment in [17]. They may also transmit their information

to the central node for monitoring purposes, for instance, via

a web portal as implemented in [25].

The main contributions of this paper can be summarized as

follows:

• A novel stochastic optimization problem formulation is

proposed for WPT of the E-AP to the E-Rs, which aims

at optimizing the long-term performance of the WPT

efficiency.

• A closed-form expression for the optimal WPT policy

is derived. In addition, a near-optimal algorithm is also

proposed, which does not require the CSI distribution.

Moreover, the optimality gap of the proposed algorithm is

analytically derived, which can be made arbitrarily small.

• Furthermore, to ensure fairness among the E-Rs, a generic

fair WPT problem formulation is considered, and a near-

optimal power transfer policy is proposed for the formu-

lated stochastic optimization problem.

• Finally, a generic wirelessly powered communication

scenario is studied, where the harvested energy by the

E-Rs is then utilized to transmit their data in the uplink

to the E-AP. The proposed scenario considers fairness

constraints, guarantees a minimum average throughput

for each E-R, and dynamically adjusts the portions of

each timeslot that are going to be used by each E-R for

its information transfer or energy harvesting. We propose

a near-optimal power transfer and time allocation policy

to maximize the total throughput of all the E-Rs.

The paper is organized as follows: Section II introduces the

system model. The proposed stochastic optimization problem

formulation for maximizing the long-term power transfer

efficiency as well as the proposed optimal and near-optimal

solutions are presented in Section III. Section IV considers

fairness among the E-Rs and presents the proposed fair near-

optimal solution. Section V illustrates the considered generic

wirelessly powered communication scenario and presents the

associated formulated problem and the proposed solution.

Numerical results are presented in Section VI. Finally, Section

VII concludes the paper.

II. SYSTEM MODEL

We consider a network consisting of one E-AP (that is

connected to a stable power source) and K E-Rs, as shown

in Fig. 1. The E-AP and the E-Rs are equipped with N and

M antennas, respectively, where N > M . The E-AP transfers

energy to the E-Rs by transmitting a tone signal (for the sake

of saving bandwidth) and employing beamforming techniques

(e.g., see [7], [8], [10]) to focus the transmitted power toward

the E-Rs.

As illustrated in Fig. 2, we consider a time-slotted system

in which the time domain is divided into timeslots of fixed

length. At the beginning of each timeslot, a small portion

of the timeslot (with a fixed duration of τs) is reserved for

channel estimation of the outgoing channels by the E-AP. The

CSI can be estimated via pilot aided methods (e.g., see [10]).

The rest of the timeslot is divided into two phases used for

wireless power transfer from the E-AP to the E-Rs (WPT

phase) and sequential information transfer from the E-Rs to the

E-AP (energy utilization phase), respectively. The duration of

each of the two phases (denoted by τ0 and τu, respectively) is
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E-AP

E-R1

E-RK

E-R2

Fig. 1. Illustration of the considered system model.

Fig. 2. The considered time-slotted structure for the time domain.

dynamically changing according to the WPT policy in order to

maximize the WPT efficiency in the network. Note that since

the channel estimation is beyond the scope of this paper, we

assume τs to be fixed. Moreover, without loss of generality,

we assume that τ0 + τu = 1. Finally, similar to the previous

works (e.g., see [10], [26]), we consider a quasi-static flat-

fading channel model for the channels between the E-AP and

the E-Rs, where the CSI remains constant during each timeslot

and varies from one timeslot to the next one.

A. Power Transfer by the E-AP

In the WPT phase, of each timeslot l, the transmitted signal

from the E-AP, denoted by x ∈ CN×1, is determined by the

adopted WPT policy of the E-AP. The received signal of E-Ri
in timeslot l is given by

yi(t) = Hi[l]x[l] + zi(t), lT + τs ≤ t < lT + τs + τ0,

∀i ∈ {1, ...,K}, (1)

where T is the length of a timeslot, yi ∈ CM×1 denotes

the baseband signal of E-Ri, x[l] is the signal of the E-

AP in timeslot l, and zi ∈ CM×1 represents the noise

at E-Ri. Moreover, Hi[l] denotes the equivalent baseband

channel matrix of the links between the E-AP and E-Ri in

the lth timeslot. It is a complex matrix where its (m,n) entry

represents the CSI of the link between the mth antenna of

E-Ri and the nth antenna of the E-AP. This channel matrix

remains constant during a timeslot and is independent and

identically distributed (i.i.d.) in successive timeslots. More-

over, H [l] , (H1[l], ...,HK [l]) represents the CSI of the

network in timeslot l, and H(l) , (H [0],H [1], ...,H [l])
represents the CSI history of the network until timeslot l.

Fig. 3. The structure of an E-R.

Fig. 4. The considered structure for each timeslot.

B. The Energy Reception by the E-Rs

The structure of an E-R is shown in Fig. 3. As can be

seen in this figure, the E-R first utilizes a rectifier to convert

the received RF signal to a DC current. This current then

charges the battery of the E-R. The amount of the harvested

energy of E-Ri during timeslot l is denoted by Qi[l]. Note that

similar to the previous works (e.g., see [27]), we neglect the

energy contribution of noise. Therefore, Qi[l] can be written

as follows:

Qi[l] = ητ0 ‖Hi[l]x[l]‖2 = ητ0Tr(Wi[l]x[l]x
H [l]),

∀i = 1, 2, ...,K, (2)

where Wi[l] , HH
i [l]Hi[l] and η ∈ [0, 1) represents the en-

ergy conversion efficiency. Moreover, Tr(A) and AH are the

trace and transpose hermitian of square matrix A, respectively.

C. Energy Utilization for the E-Rs’ Information Transfer

In Section V, we consider a generic wirelessly powered

communication scenario that in each timeslot, the E-Rs utilize

their harvested energy during the WPT phase to transmit

their information sequentially to the E-AP, during the energy

utilization phase. As shown in Fig. 4, the energy utilization

phase duration (τu) is shared by the E-Rs for their infor-

mation transfer to the E-AP, in a sequential way. Each E-

Ri is allocated with a duration of τ iu which is dynamically

determined by the joint energy and information transmission

policy. Consequently, the throughput of E-Ri in timeslot l is

Di[l] = τ iu[l] log |I +H ′
i[l]Si[l]H

′H
i [l]|, ∀i = 1, 2, ...,K,

(3)

where Si[l] is the covariance matrix of the transmission signal

of E-Ri, and H ′
i[l] is the uplink channel matrix of E-Ri.

III. PROBLEM FORMULATION AND THE PROPOSED WPT

POLICIES

As aforementioned in Section I, we are interested in long-

term power transfer optimization. In this section, we first

formulate the problem of finding the optimal WPT policy.

Assuming the channel statistics are available, we then derive



4

the optimal solution for the formulated problem, in a closed-

form expression. The optimal WPT policy provides a useful

insight for finding an effective policy for the general case when

the CSI distribution is not available. Finally, based on this

insight, we propose a transmission policy that does not require

any explicit knowledge of the CSI distribution and determines

the beamforming vector in each timeslot based on the observed

instantaneous CSI realizations of the current timeslot and the

transmission history.

A. Problem Formulation

As the transmission power from the E-AP in timeslot l

equals Tr(x[l]xH [l]), the expected value of the time-averaged

transmission power of the E-AP can be written as follows:

Q̄AP = lim
L→∞

1

L

L−1
∑

l=0

E[Tr(x[l]xH [l])], (4)

where the expectation is with respect to the randomness of

the CSI of the channels. Similarly, the expected value of the

time-averaged received power at E-Ri will be

Q̄i = lim
L→∞

1

L

L−1
∑

l=0

ηE[Tr(Wi[l]x[l]x
H [l])], ∀i = 1, ...,K.

(5)

An optimal WPT policy of the E-AP aims at maximizing

the power transfer efficiency by maximizing the total received

power of the E-Rs while satisfying the average and peak power

level constraints of the E-AP. Consequently, the problem of

finding the optimal WPT policy can be formulated as the

following optimization problem:

maximize
{x(H(l))}

lim
L→∞

1

L

L−1
∑

l=0

K
∑

i=1

ηE[Tr(Wi[l]x[l]x
H [l])], (6a)

subject to lim
L→∞

1

L

L−1
∑

l=0

E[Tr(x[l]xH [l])] ≤ Pavg , (6b)

Tr(x[l]xH [l]) ≤ Ppeak, ∀l ≥ 0, (6c)

where constraints (6b) and (6c) denote the physical layer

limitations on the average and instantaneous transmission

power levels of the E-AP, respectively.

Note that problem formulation (6) is a stochastic optimiza-

tion problem which is highly non-trivial and involves some

challenges that need to be tackled appropriately: First of all,

the problem is clearly non-convex due to its objective function.

Moreover, the expectation terms involved in the objective

function and constraint (6b) do not have any closed-form

expression since the distributions of the CSI of the channels

are not available in practice.

B. Optimal Power Transfer Policy

The following theorem describes the optimal solution for

problem formulation (6). The proof is presented in Appendix

A.

Theorem 1. The following transmission policy maximizes (6a)

and satisfies constraints (6b) and (6c): In each timeslot, the

E-AP estimates the CSI of its outgoing links and determines

the beamforming vector as:

x∗[l] =

{

Ppeaku
W ′

max[l], λW
′

max[l] ≥ λW
′

Th ,

0, otherwise,
(7)

where uW ′

max is the eigenvector of matrix W ′[l] ,
∑K

i=1 Wi[l]
associated with the largest eigenvalue (λW

′

max[l]) and

λW
′

Th = F−1

λW ′

max

(1− Pavg

Ppeak
), (8)

where F−1
λW ′

max

is the inverse cumulative distribution function of

λW
′

max.

The optimal transmission policy, introduced by Theorem

1, is a two-level policy, in which the E-AP transmits with

maximum power when the quality of the channel is high;

otherwise, it stops transmission. Moreover, when transmitting,

the E-AP concentrates the transmission beam toward a virtual

E-R with a channel matrix equal to the sum of all the

channel matrices. Under this policy, the power transmission

beam is always biased toward the E-Rs which have higher

quality. Moreover, in order to calculate the optimal threshold

in (8), the E-AP needs to know the distribution of the largest

eigenvalue of the sum of the channel matrices, which may

not be available in practice. Although the above issue makes

finding the optimal policy impractical in many applications,

finding the optimal solution can serve as an upper bound for

the performance of any other policy and sheds light upon the

structure of a proper sub-optimal transmission strategy.

C. Near-Optimal Power Transfer Policy

In this part, based on the Min-Drift-Plus-Penalty (MDPP)

algorithm [28],we propose a near-optimal power transmis-

sion policy, that does not require the CSI distribution. The

MDPP algorithm is a general framework for solving stochastic

optimization problems with average constraints. This frame-

work includes a deterministic inner optimization problem that

should be addressed for each specific problem formulation,

properly. Here, it can be shown that the problem formulation

described in equation (6) conforms with the MDPP framework,

and hence, in order to propose a near-optimal solution, it

suffices to solve the associated deterministic inner problem.

The pseudo-code of the proposed solution is presented

in Algorithm 1. The proposed WPT policy only needs the

instantaneous CSI realizations and adapts to variations in the

CSI distribution. The proposed policy follows a similar two-

level transmission strategy as in the optimal solution derived

in Section III-B. In this algorithm, variable l indicates the

timeslot index, and the process Z represents a virtual queue

that captures the deviation of the transmitted power from Pavg .

In fact, the variable Z[l] is an indicator of the accumulative

deviation of the transmission power so far (i.e., up to timeslot

l) from the allowed transmission power in each timeslot im-

posed by constraint (6b). Furthermore, the beamforming vector

is determined in lines 5-10 of Algorithm 1. The parameter V

involved in these lines is a control parameter of the MDPP

algorithm (for more details on this parameter see [28]). We will
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show via numerical simulations that this parameter maintains

a trade-off between the optimality and the convergence time

of the algorithm (that is defined as the number of timeslots

that needs to be passed until the average power constraint is

nearly satisfied with a certain bounded deviation gap). Finally,

similar to the optimal solution in Theorem 1, the beamforming

vector in Algorithm 1 is determined by uW ′

max[l], which is the

eigenvector associated with the largest eigenvalue of the sum

channel matrix W ′[l].
Under the proposed Algorithm 1, at the beginning of each

timeslot l, the E-AP estimates the CSI of its outgoing links and

calculates the sum channel matrix W ′[l]. Then, if the largest

eigenvalue of W ′[l], denoted by λW
′

max[l], is greater than
Z[l]
V

, the E-AP will transmit with its maximum power in the

direction of the uW ′

max[l]; otherwise, the E-AP will not transmit

any power. Note that this condition (i.e., λW
′

max[l] ≥ Z[l]
V

) does

not require the CSI distribution and replaces the condition

λW
′

max[l] ≥ λW
′

Th in the optimal solution (7). Moreover, it

clearly shows the effects of CSI, virtual queue backlog, and

control parameter V on the transmission policy in the current

timeslot. For example, if the quality of the channels is high

in the current timeslot, then with a high probability, the E-AP

will transmit power to the E-Rs. In addition, a larger value for

the virtual queue backlog Z[l] indicates that the transmission

power deviates much from the average power constraint.

Accordingly, a more power conservative transmission policy

should be adopted which transmits less often. Furthermore,

as V increases, the transmission policy becomes less sensitive

to Z[l]. Therefore, the values of Z[l] can increase without

affecting the transmission in the current timeslot, and hence,

the convergence time will increase, as well. Finally, at the end

of each timeslot, the virtual queue backlog Z , which is an

indicator of the transmission history, is updated.

Note that using the Householder transformations [29] for

the eigenvalue decomposition of W ′, in each timeslot, the

computational complexity of both the optimal and near-

optimal solutions would be O(N3), which is polynomial in

terms of the number of the E-AP’s antennas. Finally, the

following theorem shows that under the proposed policy, the

expectation of the total time-averaged received power, denoted

by Q̄MDPP
PL , is always within a bounded distance of the one

under the optimal policy, denoted by Q̄
Opt
PL . The proof of this

theorem is presented in Appendix B.

Theorem 2. The E-AP transmission policy given in Algorithm

1:

(a) is a feasible solution to problem formulation (6) (i.e., it

satisfies constraints (6b) and (6c)).

(b) yields a total average received power within a maximum

distance of B
V

from the optimal solution, i.e., Q̄
Opt
PL ≤

Q̄MDPP
PL ≤ Q̄optPL + B

V
, where B = 1

2P
2
peak.

IV. CONSIDERING FAIRNESS AMONG THE E-RS

Although the proposed transmission policy in Algorithm 1 is

near-optimal in terms of the total received power of the E-Rs, it

is highly biased in favor of those E-Rs that are nearer to the E-

AP. This is because nearer E-Rs will receive more power than

Algorithm 1 The proposed near-optimal WPT algorithm.

1: Initialization: l ← 0, Z[0]← 0.

2: while (true) do

3: Estimate Hi, ∀i = 1, 2, . . . ,K .

4: Wi[l]←HH
i [l]Hi[l], ∀i = 1, 2, . . . ,K .

5: W ′[l]←∑K

i=1 Wi[l].

6: if λW
′

max[l] ≥ Z[l]
V

then

7: x[l]← Ppeaku
W ′

max[l].
8: else

9: x[l]← 0.

10: end if

11: Z[l + 1]← max{Z[l] + Tr(x[l]xH [l])− Pavg, 0}.
12: l ← l + 1.

13: end while

farther E-Rs if the same amount of power is transmitted toward

them. To address this issue in the design of WPT policy, in

this section, we aim to ensure fairness among the E-Rs and

support their required QoS. For this purpose, we consider a

generic network utility function that is concave1, continuous,

and non-decreasing with respect to the average received power

of the E-Rs. It is noted that the considered network utility

function includes many well-known fairness models, such as

max-min fairness, proportional fairness, and α-fairness [23].

Furthermore, we guarantee a minimum required power for

each E-R, denoted by Pmin. Therefore, the considered QoS-

aware fair WPT problem can be formulated as

maximize
{x(H(l))}

Q̄φ , φ(Q̄) (9a)

subject to lim
L→∞

1

L

L−1
∑

l=0

ηE[Tr(Wi[l]x[l]x
H [l])] ≥ Pmin,

∀i = 1, ...,K, (9b)

lim
L→∞

1

L

L−1
∑

l=0

E[Tr(x[l]xH [l])] ≤ Pavg, (9c)

Tr(x[l]xH [l]) ≤ Ppeak, ∀l ≥ 0, (9d)

where φ(.) is the generic network utility function described

above and Q̄ , (Q̄1, ..., Q̄K) is the aggregated vector of the

E-Rs’ average received power, as defined in (5). Constraint

(9b) guarantees the minimum required power of each E-R.

Moreover, same as before, constraints (9c) and (9d) denote

the physical layer limitations on the average and instantaneous

transmission power levels of the E-AP, respectively.

Note that the formulated problem in (9) is non-convex and

highly non-trivial since the objective function and constraints

(9b) and (9c) include expectation terms which and do not

have any closed-form expressions. To address these challenges

and solve the problem, we use the MDPP technique and

propose a policy, named as quality-of-service-aware fair WPT

(QF-WPT), that maximizes the generic utility function while

1Note that the concavity assumption reduces the difference between the
received power of the E-Rs at the cost of reducing the total received power.
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satisfying the constraints. Note that similar to the policies

in Section III, the proposed QF-WPT policy follows a two-

level structure and concentrates the transmission beam toward

a virtual E-R.

The pseudo-code of the proposed policy is presented in

Algorithm 2. The E-AP estimates the CSI of its outgoing

links at the beginning of each timeslot and calculates W ′[l],
which is determined as a weighted sum of the channel matrices

of all the E-Rs. The weights are determined by the virtual

queues Gi, Zi, ∀i = 1, 2, . . . ,K . The backlogs of Gi and

Zi are more for the E-Rs which have received less power

compared to the others, and the E-Rs which have received

less than the minimum required power, respectively. As a

consequence, such E-Rs have a higher weight in the weighted-

sum channel matrix and receive more power in the current

timeslot. Then, in lines 11 and 12, the backlogs of Gi’s,

which are responsible for ensuring fairness among the ERs,

are updated. It can be easily inferred from line 11 that the

value of γi has an inverse relationship with the value of Gi.

Hence, the backlog of Gi increases more for E-Rs that have

less Gi and E-Rs that have received less power in the current

timeslot. Such E-Rs will receive more power in the subsequent

timeslots as their weights in W ′ increase more compared to

the others. Finally, the virtual queues corresponding to the

minimum required power and the average transmitted power

constraints are updated in lines 13 and 14.

Note that clearly, the optimization problem in line 11 of

the algorithm is convex. Therefore, it can be easily solved

using the barrier methods, with a computational complexity of

O(N log (N)) [30]. Moreover, using the Householder trans-

formations, the computational complexity of computing the

eigenvalue decomposition of matrix W ′ in line 6 of Algorithm

2 would be O(N3) [29]. Consequently, the total per-iteration

timeslot complexity of our proposed algorithm will be O(N3).
Finally, the following theorem derives the optimality gap of

the proposed QF-WPT policy. The proof of this theorem is

presented in Appendix C.

Theorem 3. The QF-WPT policy for the E-AP transmission,

described by Algorithm 2:

(a) satisfies constraints (9b)–(9d).

(b) yields a near-optimal solution that is within a maximum

distance of B
V

from the optimal solution, i.e., Q̄
Opt
φ − B

V
≤

Q̄MDPP
φ ≤ Q̄

Opt
φ , where Q̄MDPP

φ and Q̄
Opt
φ denote the

maximum Q̄φ under the QF-WPT policy and the optimal

policy, respectively and B = 2K+1
2 P 2

peak .

V. ENERGY UTILIZATION FOR WIRELESS INFORMATION

TRANSFER

In this section, we consider a scenario in which the E-

Rs utilize their harvested energy during the WPT phase to

successively transmit information to the E-AP during the en-

ergy utilization phase. This scenario widely appears in wireless

sensor networks (WSNs) and IoT networks in which several

low-complexity E-Rs rely on receiving energy from an E-AP

to transmit their information back to it (e.g., see [2] and [8]).

We aim to find an efficient wireless power and information

Algorithm 2 The proposed QoS-aware Fair WPT (QF-WPT)

algorithm.

1: Initialization: l ← 0, ZAP [0] ← 0, Zi[0], Gi[0] ←
0, ∀i = 1, 2, ...,K .

2: while (true) do

3: Estimate Hi[l], ∀i = 1, 2, . . . ,K .

4: Wi[l]←HH
i [l]Hi[l], ∀i = 1, 2, . . . ,K .

5: W ′[l]←∑K

i=1(Zi[l] +Gi[l])Wi[l]− ZAP [l]I.

6: if λW
′

max[l] ≥ 0 then

7: x[l]← Ppeaku
W ′

max[l].
8: else

9: x[l]← 0.

10: end if

11: Solve minγ −V φ(γ) +
∑K

i=1Gi[l]γi[l], where γ ,

(γ1[l], ..., γK [l])

s.t. γi[l] ≤ Ppeak, ∀i ∈ {1, . . . ,K}.
12: Gi[l + 1] ← max{Gi[l] + γi[l] −

Tr(Wi[l]x[l]x
H[l]), 0}, ∀i = 1, 2, ...,K .

13: Zi[l + 1] ← max{Zi[l] + Pmin −
Tr(Wi[l]x[l]x

H[l]), 0}, ∀i = 1, 2, ...,K .

14: ZAP [l+1]← max{ZAP [l]+Tr(x[l]xH[l])−Pavg, 0}.
15: l ← l + 1.

16: end while

transmission policy that maximizes a generic network utility

function while guaranteeing a minimum average throughput

for each E-R as well as the physical layer constraints for the

transmission power of the E-AP.

To formulate the aforementioned problem, first note that fol-

lowing equation (3), the expected value of the time-averaged

throughput for E-Ri can be written as

D̄i = lim
L→∞

1

L

L−1
∑

l=0

E[τ iu[l] log |I +H ′
i[l]Si[l]H

′H
i [l]|]. (10)

Therefore, the considered problem can be formulated as fol-

lows:

maximize
y(H(l))

D̄φ , φ(D̄) (11a)

subject to D̄i ≥ Dmin, ∀i = 1, ...,K, (11b)

lim
L→∞

1

L

L−1
∑

l=0

E[τ0[l]Tr(SAP [l])] ≤ Pavg, (11c)

Tr(SAP [l]) ≤ Ppeak, ∀l, (11d)

τ iu[l]Tr(Si[l]) ≤ τ0[l]Tr(Wi[l]SAP [l]), ∀l, ∀i,
(11e)

τ0[l] +
K
∑

i=1

τ iu[l] = 1, ∀l. (11f)

where y(H(l)) ,

(

SAP (H
(l)), {Si(H(l))}i=1:K , τ (H(l))

)

is the set of optimization variables that are functions of

the CSI history of the network until timeslot l (i.e., H(l)).
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φ(.) is a generic concave, continuous, and entrywise non-

decreasing fair utility function of the throughput of the E-

Rs, SAP , xx∗, and D̄ , (D̄1, ..., D̄K). Constraint (11b)

guarantees the required QoS (in terms of the minimum average

throughput) for each E-R. Moreover, constraints (11c) and

(11d) are the average and peak power transmission constraints

for the E-AP. Furthermore, constraint (11e) ensures that in

each timeslot, the consumed energy of each E-R does not ex-

ceed its harvested energy. Finally, constraint (11f) guarantees

that the total duration of the WPT phase and the utilization

phase in each timeslot equals to one.

Note that the formulated problem is non-convex due to its

objective function and constraints (11c) and (11e). In addition,

due to the expectation terms involved, the objective function

and constraints (11b) and (11c) do not have any closed-

form expressions. In the rest of this section, we tackle these

challenges and propose a near-optimal MDPP-based solution

and analyze its performance. The proposed solution has a

two-level structure in which the E-AP decides to transmit

power or stop transmission based on the CSI quality and the

transmission history. In the case of transmission, the E-AP

transmits power toward the E-R which has better CSI quality

or has transmitted less information in the previous timeslots.

Assuming the E-AP has a large number of antennas compared

to the number of the E-Rs, it can generate a sharp beam toward

this E-R to transfer all its power to it [31]. Then, this E-R uses

the harvested energy to transmit its information with the goal

of maximizing its throughput under the fairness and the E-

AP’s average and peak power level constraints.

Algorithm 3 describes the proposed QoS-aware general

fair policy for information transmission (QGF-IT). In this

algorithm, the transmission history of the E-Rs and the E-

AP are captured by virtual queues Gi, Zi, ∀i = 1, ...,K ,

and ZAP . At the beginning of each timeslot, the CSI of the

E-Rs is estimated. Then, the E-R that yields the maximum

product of its throughput and summation of queue backlogs

(i.e., fobji , Di(Gi + Zi)) is found among all the E-Rs.

For this purpose, first for each E-R, the condition in line

8 determines whether it is better to transmit power toward

this E-R or to save the transmission power for the subsequent

timeslots. Noted that this condition will be satisfied for any E-

Ri if the queue backlog ZAP is small enough, the summation

of the queue backlogs Zi and Gi is large enough, or the CSI

quality of E-Ri is good enough. This condition is checked for

all the E-Rs, and if it is not satisfied for all the E-Rs, the

E-AP will stop transmission in the current timeslot; otherwise

the optimal values of beamforming vectors and sub-timeslots’

duration regarding each E-R are obtained through lines 9-12.

Accordingly, the E-R that results in the best objective function

(i.e., fobj) is chosen in line 17, and the optimal values of

the beamforming vector (i.e., x[l]) and the duration of the

sub-timeslots (i.e., τi’s) corresponding to the chosen E-R are

determined in lines 18-19. Finally, the increments in the queue

backlogs Gi’s (denoted by γi’s) are obtained by solving the

optimization problem in line 21, and the transmission history

is updated in lines 22-24, accordingly.

Regarding the computational complexity of the proposed

algorithm, first note that using Householder transformations

[29], the singular value decomposition (SVD) in line 5 of Al-

gorithm 3 has a total computational complexity of O(KN3).
Moreover, the optimization problem in line 21 is convex,

and hence, using barrier methods [30], it can be solved with

a computational complexity of O(N logN). Accordingly, in

each timeslot, the total computational complexity of the pro-

posed algorithm is O(KN3). Finally, the following theorem

expresses the optimality gap between the proposed solution in

Algorithm 3, denoted by D̄MDPP
φ , and the optimal solution

of problem formulation (11), denoted by D̄
opt
φ . The proof of

this theorem is presented in Appendix D.

Theorem 4. The proposed QGF-IT policy described by Algo-

rithm 3:

1) satisfies constraints (11c)–(11f).

2) yields a near-optimal solution within a maximum distance

of B
V

from the optimal solution, i.e., D̄
opt
φ − B

V
≤

D̄MDPP
φ ≤ D̄opt

φ , where B = 2K+1
2 P 2

peak.

VI. NUMERICAL RESULTS

We consider a WPCN with one E-AP (located at (0, 0) in

the two-dimensional Cartesian space) and K E-Rs, as depicted

in Fig. 1. We set the carrier frequency fc = 2.4GHz, the

noise variance of the wireless channels σ2 = −100dBm,

the E-AP’s peak power level Ppeak = 2W , and the energy

conversion efficiency of the E-Rs η = 0.5. Unless otherwise

stated, the numbers of antennas are considered to be 30 and 4

for the E-AP and each E-R, respectively. Moreover, Rayleigh

fading channel model along with a path loss exponent of 3 is

considered for all the wireless channels in the network.

We first consider two E-Rs located at (1.2, 1.2) and (2
√
2, 0)

in the two-dimensional Cartesian space. Fig. 5 shows the

total average received power of the E-Rs in the optimal and

near-optimal (i.e., Algorithm 1) solutions versus the control

parameter V for several E-AP’s average power levels. As

can be seen in this figure, as the parameter V increases,

the gap between the near-optimal solution and the optimal

solution decreases and eventually goes to zero. Furthermore,

Fig. 6 shows the convergence time of Algorithm 1 (which is

defined as the total number of timeslots until the deviation of

the E-AP’s average transmit power from the average power

constraint in (6b) falls behind 0.001Pavg) versus the control

parameter V . It can be realized from these two figures that

as the parameter V increases, the near-optimal solution gets

closer to the optimal one with the cost of increasing the

convergence time.

Next, we evaluate the performance of the proposed QoS-

aware fair policy in Algorithm 2 for two well-known fair utility

functions, max-min fairness (MMF) and proportional fairness

(PF), and compare it to the performance of the proposed

algorithm without considering fairness (Algorithm 1). For

these simulations, we have considered Pavg = 0.4 W. First,

Fig. 7 shows the average received power of each E-R versus

the distance ratio of the E-Rs, which is defined as dr ,
df
dc

,

where df and dc are the distances of the E-AP to the farther

and the closer E-Rs, respectively (Note that in order to increase

dr, we move the farther E-R away from the E-AP). As can

be seen from this figure, when dr = 1, the E-Rs receive
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Algorithm 3 The proposed QoS-aware general fair algorithm

for information transmission (QGF-IT) in WPCNs.

1: Initialization: l ← 0, ZAP [0] ← 0, Zi[0], Gi[0] ←
Dmin, ∀i = 1, ...,K.

2: while (true) do

3: Estimate Hi[l], ∀i = 1, ...,K.
4: for i=1:K do

5: Calculate the singular value decomposition (SVD)

of H ′

i [l]
√

Gi[l] + Zi[l] = Ui[l]Θi[l]V
H
i [l].

6: βi[l] ← 1
ri[l]

(
λWi,1

[l]

Gi[l]+Zi[l]
− ∑ri[l]

j=1
1

|θij [l]|
2 ), where

ri[l] , Rank(H ′
i[l]), θij [l] , Θi[l](j, j), and

λWi,1[l] is the maximum eigenvalue of Wi[l].

7: αi[l]← 1
ri[l]

∑ri[l]
j=1 log |θ2ij [l]|+

ZAPPpeak

ri[l](Gi[l]+Zi[l])
−1.

8: if (βi[l]e
αi[l] ≥ −e−1) then

9: δi[l]← 1
βi[l]
W(βi[l]e

αi[l]).

10: ωi[l]← δi[l]PpeakλWi,1
[l]

(Gi[l]+Zi[l])
∑ri[l]

j=1 ψij
[l]

, where ψij [l] ,

max (0, 1− δi[l]
θ2ij

[l]
), ∀j = 1, ..., ri.

11: Si[l]← Gi[l]+Zi[l]
δi[l]

Vi[l]Ψi[l]V
H
i [l].

12: τ0i [l] ← 1
1+ωi[l]

, τ iu[l] ← ωi[l]
1+ωi[l]

, fobji [l] ←
(Zi[l] +Gi[l])Di[l].

13: else

14: δi[l]← 0, τ0i [l]← 0, τ iu[l]← 1, fobji [l]← 0.

15: end if

16: end for

17: Ind← argmaxi∈{1,...,K}fobji [l].
18: τ0[l]← τ0Ind

[l], τ iu[l]← 0, ∀i 6= Ind.

19: x[l] ←
√

PpeakuWInd,1[l], where uWInd,1[l] is

the eigenvector corresponding to the eigenvalue

λWInd,1[l].

20: Di[l] ← τ iu[l] log |I +H ′
i[l]Si[l]H

′H
i [l]|, ∀i =

1, ...,K .

21: Solve minγ −V φ(γ) +
∑K

i=1Gi[l]γi[l], where γ ,

(γ1[l], ..., γK [l]),

s.t. γi[l] ≤M log (1 +
Ppeak

σ2 ), ∀i = 1, ...,K .

22: Gi[l + 1] ← max{Gi[l] + γi[l] − Di[l], 0}, ∀i =
1, ...,K .

23: Zi[l + 1] ← max{Zi[l] + Dmin − Di[l], 0}, ∀i =
1, ...,K .

24: ZAP [l + 1] ← max{ZAP [l] + τ0[l]Tr(x[l]x
H [l]) −

Pavg, 0}.
25: l← l + 1.

26: end while

the same amount of power, as expected. Moreover, it can be

verified from this figure that, unlike the no-fairness algorithm

(i.e., Algorithm 1) that allocates almost all the available power

of the E-AP to the closer E-R, the proposed MMF QF-WPT

policy allocates an equal amount of power to both the E-Rs
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Fig. 5. The average total received power of the E-R versus the control
parameter V for the proposed near-optimal Algorithm 1 and the optimal
solution.
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Fig. 6. The convergence time of Algorithm 1 versus the control parameter
V .

irrespective of the value of dr. However, such an approach may

lead to a drastic degradation in the total received power of the

E-Rs when the distances between the E-Rs and the E-AP are

highly different. In contrast, the proposed PF QF-WPT policy

decreases the received power of the farther E-R smoothly as

a function of dr. Hence, the proposed PF QF-WPT policy

results in a smooth increasing of the gap between the received

power of the E-Rs when dr increases. Moreover, the E-AP

guarantees the required power level of the farther E-R even if

the value of dr is much greater than one.

Fig. 8 shows the total average received power of the E-Rs

(PR,T ) versus dr, and compares the proposed policies with

and without fairness. It can be seen from this figure that when

considering fairness (either by the proposed MMF QF-WPT or

the proposed PF QF-WPT schemes), the total received power

of the E-Rs reduces with the increase in the distance ratio.

More specifically, under the proposed MMF QF-WPT policy,

the total received power of the E-Rs is minimized. Moreover

under both the proposed MMF QF-WPT and the proposed PF
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QF-WPT schemes, the value of PR,T in our proposed QF-

WPT policy, i.e., Algorithm 2, is a monotonically decreasing

function of dr. It can also be verified from this figure that

the proposed PF QF-WPT policy achieves a good trade-off

between the proposed MMF QF-WPT policy and the no-

fairness policy.

Finally, Fig. 9 compares the performance of our proposed

QGF-IT algorithm to the performance of the algorithm pro-

posed in [22] (both for the objective function φ(D̄) =
∑K

i=1 D̄i) in terms of the total throughput, versus the numbers

of the E-AP’s antennas. Similar to [22], we consider a network

topology consisting of one E-AP with Pavg = 0.03 W and

10 E-Rs (each equipped with one antenna) that are uniformly

located at the same distance of 3 meters from the E-AP. As

can be seen in Fig. 9, for the same number of the EAP’s

antennas, the proposed QGF-IT algorithm always outperforms

the algorithm in [22] with a significant gap. Moreover, as the
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Fig. 9. The total throughput of the E-Rs versus the number of the E-AP’s
antennas.

number of antennas increases, the performance gap between

our proposed algorithm and the algorithm in [22] increases.

This is mainly due to the diversity gain achieved in the

uplink information reception of our proposed solution. More

specifically, in each timeslot of the proposed algorithm, the

E-AP first utilizes all of its antennas for power transmission,

and then, for information reception; but, the work in [22]

has allocated a dedicated antenna for information reception

and the remaining antennas for power transfer. Hence, for the

same number of the E-AP’s antennas, the diversity gain of the

proposed algorithm is always greater than of the work in [22].

VII. CONCLUSION

In this paper, we have studied wireless power transfer as a

viable solution to prolong the lifetime of WPCNs. First, we

have focused on the problem of maximizing the total average

received power of the E-Rs subject to the average and the

peak power level constraints of the E-AP. We have formulated

the problem as a non-convex stochastic optimization problem

and proposed optimal and near-optimal WPT policies to solve

this problem. Moreover, we have proved that the proposed

near-optimal solution attains a guaranteed gap to the optimal

solution. Next, we have focused on the fairness issue among

the E-Rs, which is a result of the near-far phenomenon.

For addressing this issue, we have proposed a QoS-aware

general fair policy for the wireless power transmission from

the E-AP to the E-Rs. Finally, we have investigated a generic

wirelessly powered communication scenario in which the E-

AP wirelessly transfers power to the E-Rs in the downlink, and

the E-Rs utilize their harvested energy to successively transmit

their information to the E-AP in the uplink. For this scenario,

we have proposed a generic fair policy, referred to as QoS-

aware general fair policy for information transmission (QGF-

IT), for the fair transmission of information from the E-Rs.

Through various numerical simulations, we have evaluated the

performance of the proposed algorithms and compared them

to the state-of-the-art baselines.
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APPENDIX A

PROOF OF THEOREM 1

First, we note that according to [28, Theorem 4.5], there ex-

ists a stationary solution for the optimization problem defined

in equation (6), such that in each timeslot l, the decision for

the transmission signal of the E-AP (i.e., x) is only a function

of H [l] and is independent of the transmission history. Hence,

considering only the stationary solutions, we can omit the

timeslot index l and the time-averages in equations (6a) and

(6b) and rewrite the optimization problem as follows:

maximize
{x(H)}

E[PxTr(W
′x̃x̃H)] (12a)

subject to E[Px] ≤ Pavg, (12b)

Px ≤ Ppeak, (12c)

‖x̃‖2 = 1, (12d)

where x = Pxx̃. The problem defined in equation (12) can be

solved for x̃ independent of the value of Px. Specifically, for

a given W ′ and all values of Px, the term PxTr(W
′x̃x̃H)

is maximized with respect to x̃ at x̃ = uW ′

max [32], and the

maximum value equals Pxλ
W ′

max. Now, we set x̃ = uW ′

max and

show that

Px =

{

Ppeak, λW
′

max[l] ≥ λW
′

Th ,

0, otherwise,
(13)

maximizes (12a). Note that Px defined in equation (13)

satisfies constraint (12b) as follows:

E[Px] = PpeakP (λ
w′

max ≥ λw
′

Th) = Ppeak(1− Fλw′

max
(λw

′

Th))

= Pavg.

Consider an alternative policy, denoted by x̄, for the transmis-

sion signal that satisfies constraint (12b). We have,

E[λmaxP̄x]− E[λmaxPx]

= P (λmax ≥ λTh)E[λmaxP̄x|λmax ≥ λTh]
+ P (λmax < λTh)E[λmaxP̄x|λmax < λTh]

− P (λmax ≥ λTh)E[λmaxPx|λmax ≥ λTh]
= P (λmax ≥ λTh)E[λmax(P̄x − Ppeak)|λmax ≥ λTh]
+ P (λmax < λTh)E[λmaxP̄x|λmax < λTh]

≤ λTh
(

P (λmax ≥ λTh)(E[(P̄x − Ppeak)|λmax ≥ λTh])

+ P (λmax < λTh)E[P̄x|λmax < λTh]

)

= λTh(E[P̄x]− E[Px]) = λTh(E[P̄x]− Pavg) ≤ 0,

where P̄x denotes the transmission power under x̄. It shows

that the value of the objective function under the alternative

policy is always less than or equal to the one under the

proposed policy. This completes the proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Algorithm 1 is based on the MDPP technique, which uses

the Lyapunov optimization method. The following definitions

are considered for quadratic Lyapunov function and Lyapunov

drift, respectively:

L(Z[l]) ,
1

2
Z2[l], (14)

∆(Z[l]) , E[(L(Z[l + 1])− L(Z[l]))|Z[l]]. (15)

Let us define the drift-plus-penalty function as

∆(Z[l]) + V E
[

−
K
∑

i=1

Qi[l]|Z[l]
]

, (16)

where Qi[l] = Tr(Wi[l]x[l]x
H[l]). The first term in equation

(16) is a measure of the expected total backlog increment in the

virtual queue, and the second term is negative of the expected

received power of all the E-R’s, where both are conditional

expectation given the current queue backlog (i.e., Z[l]). The

intuition behind the MDPP technique is to propose a proper

policy that minimizes this function. As a result, this policy

maximizes the total received power and reduces the length of

the virtual queue backlog. We derive an upper bound for the

drift-plus-penalty function as follows:

Z2[l + 1]
(a)

≤ Z2[l] + α2
AP [l] + 2Z[l]αAP [l]

⇒∆(Z[l]) ≤ Z[l]E[αAP [l]|Z[l]] +
1

2
E[α2

AP |Z[l]]

⇒∆(Z[l]) + V E
[

−
K
∑

i=1

Qi[l]|Z[l]
]

≤B + V E
[

−
K
∑

i=1

Qi[l]|Z[l]
]

+ Z[l]E[αAP [l]|Z[l]]], (17)

where αAP [l] , Tr(x[l]xH [l]) − Pavg , B , 1
2P

2
peak , and

(a) results from the virtual queue update equation (line 11

of Algorithm 1). The transmitted signal at the E-AP has a

maximum power of Ppeak , so 1
2E[αAP [l]

2|Z[l]] ≤ 1
2P

2
peak =

B. The ratio B
V

is the optimality gap of the proposed solution

as mentioned in property (b) of Theorem 2.

According to the Lyapunov optimization theorem [28, Theo-

rem 4.8], a feasible policy which minimizes the right hand side

(RHS) of equation (17) in each timeslot satisfies the properties

(a) and (b) of Theorem 2. Hence, in order to prove Theorem

2, it suffices to show that Algorithm 1 minimizes the RHS of

equation (17). Specifically, we show that Algorithm 1 solves

the following problem

minimize
x[l]

− V
K
∑

i=1

Qi[l] + Z[l]αAP [l] (18a)

subject to Tr(x[l]xH [l]) ≤ Ppeak. (18b)

Using the definitions for αAP [l] and Qi[l] in equation (2),

the problem defined in equation (18) can be rewritten as

maximize
x[l]

Tr((W ′[l]− Z[l]

V
I)x[l]xH [l]) (19a)

subject to Tr(x[l]xH [l]) ≤ Ppeak. (19b)
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where W ′[l] ,
∑K

i=1 Wi[l]. The solution of optimization

problem formulation (19) is [32]

x[l] =

{

Ppeaku
W ′

max[l], λW
′

max[l] ≥ Z[l]
V
,

0, otherwise.
(20)

It can be verified that the transmission signal of the E-AP

(i.e., x) calculated in lines 6 to 10 of Algorithm 1 follows

the same rule as in equation (20). This completes the proof of

Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

We solve the optimization problem defined in equation

(9) using the MDPP approach. However, this approach is

not directly applicable to this problem since the objective

function of the problem is a function of the time-averaged

received power, which does not conform to the standard MDPP

framework. Accordingly, we follow the same approach as in

[28, Chapter 5] and introduce the vector of slack variables

γ[l] = (γ1[l], ..., γK [l]) to convert the problem from maxi-

mizing a utility function of time averages to maximizing a

time average of the utility function. It has been shown in [28,

Chapter 5] that the optimal solution of the modified problem

is the same as the original problem. The modified optimization

problem is as follows:

maximize
{y(H(l))}

φ(γ) (21a)

subject to γ̄i ≤ Q̄i, ∀i = 1, ...,K, (21b)

lim
L→∞

1

L

L−1
∑

l=0

ηE[Tr(Wi[l]x[l]x
H[l])] ≥ Pmin,

(21c)

lim
L→∞

1

L

L−1
∑

l=0

E[Tr(x[l]xH [l])] ≤ Pavg, (21d)

Tr(x[l]xH [l]) ≤ Ppeak, ∀l ≥ 0, (21e)

where y(H(l)) ,
(

x(H(l)),γ(H(l))
)

and

φ(γ) , lim
L→∞

1

L

L−1
∑

l=0

E[φ(γ1[l], ..., γK [l])],

γ̄i , lim
L→∞

1

L

L−1
∑

l=0

E[γi[l]].

The modified optimization problem is a time-averaged stochas-

tic optimization problem similar to optimization problem for-

mulation (6). Hence, similar to Appendix B, we have to define

the virtual queues Gi, Zi, ∀i = 1, ...,K , and ZAP correspond-

ing to constraints (21b), (21c), and (21d), respectively. Then,

the MDPP approach suggests that a policy which solves the

following problem in each timeslot satisfies the properties (a)

and (b) of Theorem 3.

minimize
γ,x[l]

− V φ(γ) + ZAP [l](Tr(x[l]x
H[l])− Pavg)

+Gi[l](γi[l]−Qi[l])
+ Zi[l](Pmin −Qi[l]) (22a)

subject to Tr(x[l]xH [l]) ≤ Ppeak. (22b)

Now, we show that Algorithm 2 solves problem formulation

(21) in each timeslot. This problem can be decoupled to two

optimization subproblems. The optimal value of γ is obtained

via solving the following optimization problem

minimize
γ

− V φ(γ) +
K
∑

i=1

Gi[l]γi[l] (23a)

subject to 0 ≤ γi[l] ≤ Ppeak, ∀i ∈ {1, ...,K}. (23b)

Noted that in the above formulation, it is considered that the

maximum of γi[l] in each timeslot is Ppeak , which is the max-

imum possible received power. The optimization subproblem

to find the optimal value of x[l] is

minimize
x[l]

−
K
∑

i=1

(Gi[l] + Zi[l])Tr(Wi[l]x[l]x
H [l])

+ ZAP [l]Tr(x[l]x
H[l]) (24a)

subject to Tr(x[l]xH [l]) ≤ Ppeak. (24b)

The optimal solution of this problem is [32]

x[l] =

{

Ppeaku
W ′

max[l], λW
′

max[l] ≥ 0,
0, otherwise,

(25)

where W ′[l] ,
∑K

i=1(Zi[l] +Gi[l])Wi[l]−ZAP [l]I. Now, it

can be verified that Algorithm 2 solves problem formulation

(21) in each timeslot. The policy for determining γ, which

is in line 11 of Algorithm 2, follows optimization problem

formulation (24) and the policy for determining x[l], which is

in lines 6 to 10 of Algorithm 2, follows equation (25). This

completes the proof of Theorem 3.

APPENDIX D

PROOF OF THEOREM 4

Problem formulation (11) is a function of the time-averaged

received throughput. With similar arguments to Appendix C,

the slack variable vector γ[l] = (γ1[l],...,γK[l]) is introduced to

convert the optimization problem from optimizing a function
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of time averages to optimizing time average. The modified

problem can be written as follows:

maximize
y(H(l))

φ(γ) (26a)

subject to D̄i ≥ γ̄i, ∀i ∈ {1, ...,K}, (26b)

D̄i ≥ Dmin, ∀i ∈ {1, ...,K}, (26c)

lim
L→∞

1

L

L−1
∑

l=0

E[τ0[l]Tr(SAP [l])] ≤ Pavg ,

(26d)

Tr(SAP [l]) ≤ Ppeak, ∀l, (26e)

τ iu[l]Tr(Si[l]) ≤ τ0[l]Tr(Wi[l]SAP [l]), ∀l, ∀i,
(26f)

τ0[l] +

K
∑

i=1

τ iu[l] = 1, ∀l, (26g)

where

y(H(l)) ,
(

γ(H(l)),SAP (H
(l)), {Si(H(l))}, τ (H(l))

)

.

We have to define the virtual queues ZAP , Zi’s, and Gi’s,

∀i = 1, ...,K corresponding to constraints (26b), (26c), and

(26d), respectively. Then, the following deterministic opti-

mization problem must be solved in each timeslot to obtain

the near-optimal solution:

minimize
γ,SAP , {Si}, τ

− V φ(γ) + ZAP (τ0Tr(SAP )− Pavg)

+

K
∑

i=1

Zi(Dmin −Di)

+

K
∑

i=1

Gi(γi −Di) (27a)

subject to Tr(SAP ) ≤ Ppeak, (27b)

τ iuTr(Si) ≤ τ0Tr(WiSAP ), (27c)

τ0 +

K
∑

i=1

τ iu = 1. (27d)

Note that in the above formulation, the slot index (l) is

omitted for brevity. The above problem is non-convex due

to its objective function and constraint (27c). To resolve this

issue, we introduce slack variables S
′

i = τ iuSi, ∀i = 1, ...,K

and S
′

AP = τ0SAP and reformulate the problem as follows:

minimize
γ,S′

AP , {S′

i}, τ
− V φ(γ) + ZAP (Tr(S

′

AP )− Pavg)

+

K
∑

i=1

Zi(Dmin −Di)

+

K
∑

i=1

Gi(γi −Di) (28a)

subject to Tr(S′

AP ) ≤ τ0Ppeak, (28b)

Tr(S′

i) ≤ Tr(WiS
′

AP ), (28c)

τ0 +

K
∑

i=1

τ iu = 1. (28d)

Note that Di = τ iu log |I +H
′

i
S′

i

τ i
u
H

′H
i [l]| is a perspective of

the function log |I +H
′

iS
′
iH

′H
i [l]|, hence is concave [30]. In

addition, φ(γ) is also concave. As an immediate result, the

objective function (28a) is convex. Since all the constraints

are linear, the optimization problem (28) is convex. Moreover,

it is easy to verify that the Slater’s qualification condition holds

for an achievable Dmin. Therefore, we can solve this problem

by solving its dual problem, which can be written as

maximize
δ, ζ, ξ

min
γ,{S′

i},S
′

AP ,τ
L(γ, {S′

i},S′
AP , τ , δ, ζ, ξ)

(29a)

subject to δi, ξ ≥ 0, ∀i ∈ {1, ...,K}, (29b)

where δ , (δ1, ..., δK) and

L , −V φ(γ) +
K
∑

i=1

[

Zi(Dmin −Di) +Gi(γi −Di)

+ δi
(

Tr(S′
i)− Tr(WiS

′
AP )

)

]

+ ZAP (Tr(S
′
AP )− Pavg)

+ ζ(τ0 +

K
∑

i=1

τ iu − 1) + ξ(Tr(S′
AP )− τ0Ppeak). (30)

The alternating optimization method is used to solve opti-

mization problem formulation (29). First, the variables ξ, γi’s,

S′
AP and S′

i’s are optimized. Then, their optimal solution is

put into the optimization problem formulation (29), and the

optimal values for the remaining parameters are obtained.

For ξ, it is easy to verify that if 0 < τ0 < 1, then we

must have ξ = ζ
Ppeak

. To obtain the optimal values of γi’s,

the following optimization problem must be solved:

minimize
γ

− V φ(γ) +
K
∑

i=1

Giγi (31a)

subject to γi ≤ Dmax, ∀i ∈ {1, ...,K}, (31b)

where Dmax is an upperbound of the maximum throughput

of all the E-Rs (a rough approximation is M log (1 +
Ppeak

σ2 )).
The optimization of this problem depends on φ(.) and is done

in line 21 of Algorithm 3. Next, we consider the optimization

problem regarding S′
AP , which can be written as follows:

minimize
S′
AP

Tr

(

(

(ZAP + ξ)I −
K
∑

i=1

δiWi

)

S′
AP

)

. (32a)
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The optimal solution of this problem is [32]

S
′

AP =

{

τ0PpeakuB,1u
H
B,1, λB,1 ≥ ZAP + ξ,

0, otherwise,
(33)

where B ,
∑K

i=1 δiWi and λB,1 and uB,1 are its maximum

eigenvalue and the corresponding eigenvector. We assume that

the E-AP has a large number of antennas compared to the

total number of all the ERs’ antennas2 (i.e., N ≫ KM ), so

the eigenvectors of matrix B is the union of the eigenvectors

of Wi’s [31]. Hence, uB,1 is the eigenvector of one of the

Wi’s, and the E-AP transfers power in the direction of the

corresponding E-R. We consider K cases regarding the E-R

who receives power in the current timeslot and then, choose

the one which has the minimum value of the objective function

(29a). Without loss of generality, we assume that E-Ri receives

the power and formulate the corresponding subproblem for S′
i

as follows:

minimize
S′
i

− (Zi +Gi)τ
i
u log |I +H ′

i[l]
S′
i[l]

τ iu[l]
H

′H
i [l]|

+ δiTr(S
′
i). (34a)

The slack variable S′′
i , δi

Gi+Zi

S′

i

τ i
u

is introduced, and the

above problem is reformulated as follows:

maximize
S′′
i

log |I +
H ′′
i√
δi
S′′
i

H
′′H
i√
δi
| − Tr(S′′

i ), (35a)

where H ′′
i , H ′

i

√
Gi + Zi. To obtain the optimal S′′

i , we

calculate the SVD decomposition of H ′′
i = UiΘiV

H
i , where

Ui ∈ CN×N and Vi ∈ Cri×ri (ri is the rank of H ′′
i ) are

singular left and right vectors of H ′′
i , respectively. Now, the

optimal solution of the problem defined in equation (35) can

be written as follows [33]:

S
′′

i = ViΨiV
H
i ⇒ S

′

i = τ iu
Gi + Zi

δi
ViΨiV

H
i , (36)

where Ψi is a ri× ri diagonal matrix with diagonal elements

ψij = max(0, 1− δi
θ2ij

), ∀j ∈ {1, ..., ri} (θij ’s are the diagonal

elements of Θi).

The obtained optimal values for ξ, γi’s, S′
AP , and S′

i are put

into the problem (29), and hence, the following optimization

problem can be written for the remaining parameters:

maximize
δ, ζ

min
τ

τ iuri(Gi + Zi)

[

log (δi)−
δi

ri

ri
∑

j=1

1

|θij |2

+ 1− 1

ri

ri
∑

j=1

log |θij |2
]

+ ζ(τ iu − 1)

+ (
ζ

Ppeak
+ ZAP − λ1,B)τ0Ppeak (37a)

subject to δi, ζ ≥ 0, ∀i ∈ {1, ...,K}. (37b)

It should be noted that as E-Ri receives almost all the power

(the E-AP transfers power toward this E-R), τ ju will be zero

2As in practical scenarios, each ER has a low number of antennas, this
assumption is almost the same as the E-AP has a large number of antennas
compared to the number of the ERs. Though, the obtained solution may be
suboptimal for the case that N is comparable to KM .

∀j 6= i. The above problem is a linear function of τ0 and τ iu. In

order to have a nonzero throughput, we must have τ0, τ
i
u > 0,

and as a result, the slopes of τ0 and τ iu must be zero in the

optimal solution. Therefore, the following equations can be

written:

− log δi +
1

ri

ri
∑

j=1

log |θij |2 − 1 +
δi

ri

ri
∑

j=1

1

|θij |2

− ζ

ri(Gi + Zi)
= 0, (38)

λB,1 − ZAP −
ζ

Ppeak
= 0, (39)

where λB,1 = δiλWi,1 and λWi,1 is the maximum eigenvalue

of Wi. Using equations (38) and (39), the optimal δi can be

written as follows:

δi =
1

βi
W(βie

αi), (40)

where W(.) is the Lambert W function and

αi ,
1

ri

ri
∑

j=1

log |θij |2 +
ZAPPpeak

ri(Gi + Zi)
− 1, (41)

βi ,
1

ri
(
λWi,1Ppeak

Gi + Zi
−

ri
∑

j=1

1

|θij |2
). (42)

The Lambert W function has real values for βie
αi ≥ −e−1,

which means that if this inequality does not hold for the

obtained optimal values, then the objective function value for

E-Ri will be zero. Without loss of generality, we assume

that E-Ri has the minimum objective value among all the E-

Rs. Then, τ0 and τ iu can be obtained using the related KKT

conditions of problem formulation (29) as follows:

Tr(S′
i) = Tr(WiS

′
AP ), (43)

τ0 + τ iu = 1. (44)

Using equations (33) and (36) for S′
AP and S′

i, the optimal

τ0 and τ iu can be obtained as follows:

τ0 =
1

1 + ωi
, τ iu = ωiτ0, (45)

where ωi ,
δiPpeakTr(WiuB,1u

H
B,1)

(Gi+Zi)
∑ri

j=1 ψij

. This completes the proof

of Theorem 4.
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