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Abstract—Quantum secure direct communication (QSDC) is
capable of direct confidential communications over a quantum
channel, which is achieved by dispensing with the key agreement
channel of the well-known quantum key distribution (QKD).
However, to make QSDC a practical reality, we have to mitigate
its reliance on quantum memory, its immediate communication
interruption caused by eavesdropping and its low transmission
reliability due to the heavy qubit losses. Hence a new QSDC
protocol is proposed based on a sophisticated coded single-
photon DL04 QSDC protocol to tackle the open challenges.
In particular, quantum memory is dispensed with and a high-
accuracy secrecy capacity estimate is derived for this protocol by
conceiving dynamic joint encryption and error-control (JEEC)
coding. We demonstrate that this quantum-memory-free DL04
QSDC (QMF-DL04 QSDC) protocol inches closer to the quantum
channel’s capacity and significantly improves the original DL04
QSDC’s robustness. Moreover, a rate-compatible low-rate JEEC
coding scheme is designed for the proposed framework, and
the JEEC code advocated is shown to approach the secrecy
capacity, despite tolerating an extremely high loss of qubits in
the time-varying wiretap channel. Our simulations and experi-
mental results demonstrate that the QMF-DL04 QSDC scheme
significantly increases both the secure information rate and the
communication distance of the original DL04 protocol.

Index Terms—quantum communication, quantum secure direct
communication (QSDC), quantum-memory-free QSDC (QMF-
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I. INTRODUCTION

QUANTUM secure communication exploits the laws of
quantum physics for achieving the confidentiality of

messages. With the rapid development of quantum computing
[1]–[3], classical encryption algorithms that are based on
mathematical problems such as factorizing large numbers
become vulnerable. Hence, traditional secure communication
based on cryptographic encryption [4], [5] may face a seri-
ous security challenge. Nevertheless, using the principles of
quantum physics, quantum secure communication is capable of
eliminating any threats from quantum computers. Moreover, it
is also capable of estimating the secrecy capacity of a realistic
quantum channel, which is impervious to classical information
theoretic security approaches. Hence, quantum cryptography
has attracted wide attention [6]. The first quantum crypto-
graphic protocol was the widely studied BB84 quantum key
distribution (QKD) protocol [7], that was proposed by Bennett
and Brassard in 1984. However, QKD does not rely on the
transmission of a pre-determined key - it rather discusses and
agrees on the keys by relying onboth a quantum channel and
a classical channel. Then, the ciphertext is transmitted over
another classical channel. The ciphertext can be intercepted
and stored by an eavesdropper. If the keys are lost or the
ciphertext is not encrypted using the one-time-pad, then there
are potential security loopholes in the ciphertext. Hence, as
the terminology suggests, QKD is a quantum key agreement
protocol, rather than a communication protocol. By contrast,
QSDC directly transmits qubits securely without the need for a
prior key distribution. As a further compelling benefit, it is also
capable of quantifying the amount of information that might
be stolen by the eavesdropper (Eve) based on quantum me-
chanical principles. Therefore, the legitimate transmitter and
receiver can monitor the security status of the ciphertext and
detect any attacks on the communication channels. Explicitly,
QSDC prevents Eve from stealing the ciphertext and promises
ultimate practical security.

The idea of QSDC emerged in 2000 [8]. There have been
extensive theoretical and experimental studies on QSDC in
the last two decades. Its implementation can be broadly
divided into two classes, depending on the types of information
carriers. The first one is based on single photons, such as
the DL04 protocol [9], while the other is based on entangled
photons, such as the ‘two-step’ protocol of [8], [10], the
high-dimensional protocol of [11], and the multi-step protocol
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associated with the Green-Horne-Zeilinger state [12]. The
QSDC dialogue [13] and measurement-device-independent
QSDC [14]–[16] have further advanced the development of
quantum communication. Several remarkable verification ex-
periments have also been carried out, and these experiments
demonstrated the principles of both the DL04 and the two-step
QSDC schemes, [17]–[19]. Nonetheless, there are still three
main challenges in practical QSDC:

1) The availability of quantum memory is vital for all
existing QSDC protocols, since the carrier qubits have
to wait for the result of their eavesdropping check in the
memory before they are modulated with the information.
Regretfully, no practical quantum memory exists that can
keep photon quanta for a sufficiently long time with high
fidelity [17], [20].

2) It is a challenge to quantitatively estimate the secrecy
capacity of a quantum channel and to make effective
use of it. Hence the secure information rate remains low.
Furthermore, the communication process may be stalled
or even completely stopped when Eve becomes active,
even if she has a low capacity.

3) Due to the extremely high quantum channel loss and
noise, the reception rate of the single-photons remains
low and the error rate becomes high. Consequently, it
is necessary to develop forward error correction (FEC)
codes for enhancing the communication reliability.

QSDC relies on FEC coding, which is in stark contrast
to classic QKD, where coding-aided post-processing is used
[21]. In the pioneering contribution [22] the secrecy capacity
of a practical DL04 QSDC system was estimated, while the
security analysis of a two-step QSDC protocol was carried out
in [23]. Based on this success, Qi et al. conceived an error con-
trol coding scheme based on the concatenation of low-density
parity-check (LDPC) codes and pseudorandom sequences for
enhancing the communication reliability [22]. However, there
is still room for improvement, since the transmission rate is
still far from the capacity. The class of generalized LDPC
(GLDPC) codes is indeed capable of approaching the capacity
in classical wireless communication [24]–[26], but they have
not been specifically developed for QSDC systems [27]–[29].

To tackle these challenges in the implementation of practical
QSDC systems, here we evolve the relevant classic information
theory [30], [31] for employment in QSDC. In contrast to
the QSDC implementations of [17]–[19], [22], we design
a quantum-memory-free DL04 QSDC (QMF-DL04 QSDC)
protocol based on dynamic joint encryption and error-control
(JEEC) coding. The essential idea of QMF-DL04 QSDC is to
replace the quantum memory by an FEC scheme, where the
information frame is encrypted by a one-time-pad key into
a ciphertext, which is further FEC-coded by a secure coding
scheme and then mapped to the qubits bit-by-bit. Next the
transmitter, Alice, sends the encoded qubits directly to the
receiver, Bob. In this way, the use of a quantum memory will
be spared. This is reminiscent of using QKD and then sending
the ciphertext through a classical channel, but we will demon-
strate the striking difference between these two. Because the
codeword is transmitted quantum mechanically, its security

is monitored. Then, a secure key will be extracted from
the transmitted codeword for use in subsequent information
frames. In other words, the quantum-mechanically transmitted
codeword simultaneously represents the current ciphertext and
the key for future employment. If Eve intercepts the QMF
QSDC, we will demonstrate that this will be immediately
perceived by Alice and Bob, and Eve would only be able to
steal some of the codeword, but not the original information
itself. The simultaneous use and updates of secret key has also
been proven useful in quantum identity authentication in [32].

As a further benefit, we will demonstrate that the proposed
protocol is capable of tracking and even approaching the time-
varying secrecy capacity during communication. Due to the
high error rate of the quantum channel, existing encryption
schemes [33]–[35] may fail to guarantee a high reliability even
for low-rate quantum communications. Hence we conceive and
optimize a variable-rate code, the so-called rate-compatible
JEEC coding scheme and design the corresponding joint
decoding algorithm for the proposed protocol. More explic-
itly, we construct a class of low-rate GLDPC codes having
flexible code parameters based on Hadamard codes [25] and
repetition codes. By intrinsically amalgamating the secrecy
codes of [33] and low-rate GLDPC codes, the proposed rate-
compatible JEEC scheme improves the reliability vs. security
trade-off [36]. The primary contributions of this paper are as
follows:

1) We propose the general idea of QMF QSDC and design
the QMF-DL04 QSDC protocol, which does not require
quantum memory and thus it tackles one of the practical
QSDC challenges.

2) The secure information rate is significantly increased,
since our dynamic JEEC coding allows the system to
operate close to its ultimate secrecy capacity. Quantita-
tively, our simulation results demonstrate that we double
the secure information rate of [22].

3) Explicitly, our QMF-DL04 QSDC system realized se-
cure transmission at 100 bps over a distance of 18.5
kilometers at a clock-rate of 1 MHz.

The rest of paper is organized as follows. Section II reviews
the basic DL04 QSDC protocol and the channel model of
QSDC. In Section III, we present the proposed QMF-DL04
QSDC protocol. Our rate-compatible JEEC coding structure
and its joint decoding algorithm are given in Section IV, while
Section V provides the simulation and experimental results.
Finally, our conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, we briefly review the original DL04 protocol
[9] and the channel model of the QSDC system [22], [31]. All
the abbreviations in this paper are listed in Table I.

A. DL04 QSDC Protocol

The DL04 protocol is a QSDC protocol based on single
photons. It requires a quantum memory, which is shown in Fig.
1. As commonly used in quantum communication, Alice, Bob
and Eve represent the transmitter, receiver and eavesdropper,
respectively. In DL04, single photons (we interchangeably call



IEEE TRANSACTIONS ON COMMUNICATIONS 3

TABLE I: Abbreviations
QKD quantum key distribution
QSDC quantum secure direct communication
DL04 the QSDC protocol proposed by Deng and Long in 2004
LDPC low-density parity-check
GLDPC generalized LDPC
QMF quantum-memory-free

QMF-DL04 QSDC
the proposed quantum-memory-free QSDC

based on DL04 protocol
JEEC joint encryption and error-control
BSC binary symmetric channel
BEC binary erasure channel
SPC single parity check

GLHR
the proposed GLDPC code based on

the Hadamard codes and repetition codes
VN variable node
CN check node
LH A GLDPC code based on the Hadamard constraints
HCN Hadamard-check node
LLR log-likelihood ratio
APP a posteriori probability
MS min-sum

LPS
the concatenation of LDPC codes

with pseudorandom sequences
PEG progressive edge growth
BER bit error rate
FER frame error rate

them photons or qubits) are transmitted over the quantum
channel from Bob to Alice first and then back to Bob after
being modulated with the classical bit sequence Cnc over the
same quantum channel. Eve has to intercept the carrier qubits
during both the forward and backward channel transmission,
if she wants to obtain any confidential information about Cnc .
This may change the states of the carrier qubits that Alice
received from Bob due to the principles of quantum mechan-
ics. Hence, Alice can perform sampling based detection by
randomly selecting some qubits for estimating the secrecy
capacity Cs [22] of the channel, while the rest of the qubits
wait in the quantum memory to be modulated. Meanwhile, the
associated auxiliary data and control instructions, including
the result of eavesdropping detection, are transmitted through
the classical service channel 1. We assume that Eve has full
access to the classical service channel, but she cannot modify
the data. The same assumption is made in QKD. This will not
affect the secrecy capacity Cs , because the data in the service
channel have no correlation with the confidential information.

Let us now introduce the DL04 protocol. The quantum
state vectors of single-photon signals (qubits) are in the two-
dimensional Hilbert space, represented either by the polariza-
tion states or the phase states of the photon. In free space
communications typically the polarization states are used,
whereas in optical fiber the phase states are employed. Here
we provide a general abstract representation in terms of the
Hilbert space. The state of a single photon can be described by

1Both the QSDC system and the communication system equipped with
QKD need the classical channel. But there is a significant difference in the
functions of the classical channel. In the communication system that uses
QKD to generate and negotiate key, the classical channel is firstly used for
transmitting the associated auxiliary data of the quantum key distribution,
and then transmitting the classical message (ciphertext). However, in the
entire communication process of QSDC, the classical channel is only used
for transmitting the associated auxiliary data.
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Fig. 1: Illustration of the DL04 protocol and channel model.
The main channel represents a channel between the legitimate
transmitter and receiver, while the wiretap channel is between
the transmitter and eavesdropper. Both of them are discrete and
memoryless. The classical service channel is an authenticated
noiseless public channel. The black dotted lines carry qubits,
and the blue lines carry classical bits.

a set of orthogonal bases, Z:{|0〉, |1〉} or X:{|+〉, |−〉}, where

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
,

|+〉 =
1
√

2

[
1
1

]
, |−〉 =

1
√

2

[
1
−1

]
.

(1)

The encoding operations on a single photon are the identity
matrix I for 0, and U for 1, where U is a unitary matrix,

U =
[

0 1
−1 0

]
. (2)

The results of U acting on the basis states in (1) are

U|0〉 = −|1〉, U|1〉 = |0〉, U|−〉 = −|+〉, U|+〉 = |−〉. (3)

It shows that the operator U can change one state into another
in the same basis X or Z.

As Fig. 1 shows, the workflow of the DL04 QSDC protocol
contains the following eight steps.

1) Bob prepares a frame of qubits in one of the four initial
states in (1).

2) Then, Bob sends these qubits to Alice through the
quantum channel.

3) Alice randomly selects some of the received single
photons and measures them in basis X or Z. She then
informs Bob of the positions, the chosen basis and the
measured results of the selected photons over the classi-
cal service channel. The remaining photons are stored in
a quantum memory waiting for the results of the security
check. Bob checks the results of Alice’s measurement: if
the checked photons are measured in the same basis as
Bob’s basis during the preparation, their results should
be the same. Eve’s malicious action will perturb the state
of single photons, hence increasing the qubit error rate
quite significantly. Here ẽ to denotes the qubit error rate
estimated by the eavesdropping detection. Estimating ẽ
allows us to determine the capacity of Eve’s channel. If
the error rate ẽ becomes higher than a threshold, Alice
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and Bob become aware of the eavesdropping and will
terminate the process. Otherwise, they will continue to
estimate the secrecy capacity Cs experienced by this
frame, and go to the next step.

4) Once Cs has been estimated, Alice encodes the message
bits Mk into the codewords Cnc using a predetermined
coding scheme.

5) Alice applies either the identity operator I or the unitary
operator U in (2) to the stored photons to modulate them,
respectively according to the bit value ‘0’ or ‘1’ of the
Cnc .

6) Then Alice sends the modulated photons back to Bob.
7) Next, Bob demodulates them to obtain the received

codewords (C ′)nc .
8) Finally, Bob decodes (C ′)nc to obtain Y k ∈ {0, 1}k ,

which is the message received.
As mentioned above, the DL04 protocol provides a basic

method of transmitting classical bits in a two-way single-
photon system. Alice sends classical bits Cnc ∈ {0, 1}nc , while
Bob receives (C ′)nc . After transmitting a frame of photons,
Bob can estimate the qubit error rate e of the main channel.
Bob can also estimate what fraction of all the qubits he
has prepared was actually received by himself, denoted as
QBob . We will discuss the relationship of QBob , e, ẽ and the
communication capacity between Alice and Bob in the next
subsection.

B. Channel Model

Figure 1 summarizes the wiretap channel model of the
QSDC system [22], [37]. There are three types of channels:
the main channel, wiretap channel and service channel. All
vectors in this paper are row vectors, unless stated otherwise.

After detecting the eavesdropping perturbing the quantum
channel, the transmitter encodes a k-bit message Mk ∈ {0, 1}k
into Cnc ∈ {0, 1}nc , using a coding rate of R = k/nc . Then,
Bob’s receiver obtains (C ′)nc from the main channel, which
can be modeled as a cascaded channel consisting of a binary
symmetric channel (BSC) and a binary erasure channel (BEC)
concatenated in series [22]. The erasure probability of the BEC
is (1 − QBob), while the error probability of the BSC is e.
Finally, the receiver decodes (C ′)nc to obtain Y k ∈ {0, 1}k .
Thus, the capacity of the main channel from Alice to Bob is

Cm = QBob · [1 − h(e)], (4)

where h(e) = −e · log2 e − (1 − e) · log2(1 − e). Note that
Cm fluctuates during a communication session vs. time, as a
function of an optical channel owing to the weather, eaves-
dropping and other conditions, and they are reflected by the
different error rates of the eavesdropping detection results of
the photon blocks.

If Eve tries to intercept the message, she has to access
both the backward and forward quantum channel, which will
increase ẽ. According to [22], we can express the secrecy
capacity Cs as

Cs = max{I(A : B) − I(A : E), 0}
= max{Cm − Cw, 0}
= max{QBob · [1 − h(e)] −QEve · h(2ẽ), 0}, (5)

TABLE II: Notations in the QMF-DL04 QSDC protocol
Cs secrecy capacity
M the information bits
K the key taken from the key pool
m the length of M and K
Y the ciphertext, Y = M ⊕ K
k the length of the output of the precoding module
Rp the rate of the precoding module, m = kRP

X the codeword of the precoding module, with a length of k

Xi ∈ {0, 1}ki
part of X or a random sequence,

the input of the secure coding module in the i-th frame
Ri the rate of the secure coding in the i-th frame
ki the length of Xi

Ci ∈ {0, 1}nci a single codeword of secure coding in the i-th frame
nci the length of Ci

C′i the received sequence
Si the keys distilled from Ci

X′ the receiving result of X
X′i the output of the secure decoding in the i-th frame
Csi

the secrecy capacity in the i-th frame
Cmi

the capacity of the main channel in the i-th frame
Cwi

the capacity of the wiretap channel in the i-th frame

where I(A : B) is the mutual information between Alice and
Bob, and I(A : E) is the mutual information between Alice
and Eve, while QEve represents the maximum reception rate
of Eve. The capacity of the wiretap channel is

Cw = QEve · h(2ẽ). (6)

Section V-B will highlight how to estimate QEve in a practical
system. It is widely known that the secret key rate upper bound
of the BB84 protocol is

R = 1 − 2h(ẽ), (7)

where ẽ represents the quantum bit error rate. Thus, the
threshold of ẽ is 11%. As for the proposed protocol, the
secrecy capacity is

Cs = max{QBob · [1 − h(e)] −QEve · h(2ẽ), 0}, (8)

which leads to the upper bound

Csmax = 1 − h(ẽ) − h(2ẽ), (9)

when the channels are lossless (set e = ẽ, QBob = QEve).
Hence the threshold of ẽ is about 7.6%.

The classical service channel between the transmitter and
receiver is an authenticated noiseless two-way public channel.
The results of the eavesdropping detection and other control
signaling, labeled A in Fig. 1, are exchanged over this channel.
Eve is able to fully access A but cannot modify it.

III. QUANTUM-MEMORY-FREE DL04 QSDC PROTOCOL

In this section, we conceive a new QSDC protocol, namely
the QMF-DL04 QSDC, for circumventing the challenges faced
by the DL04 protocol. By combining quantum mechanics and
information theory, the proposed QMF-DL04 QSDC protocol
can dispense with quantum memory, provide a more accurate
secrecy capacity estimation, and operate at a rate close to the
near-instantaneous quantum channel capacity.

We list all the notations of the QMF-DL04 QSDC protocol
in Table II for readers’ convenience.
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Fig. 2: Structure of the proposed QMF-DL04 QSDC protocol and the data stream of the i-th frame. The black dotted lines
carry qubits, and the blue lines carry classical bits.

A. The QMF-DL04 QSDC Protocol
A detailed description of the proposed QMF-DL04 QSDC

protocol is now given as follows, where Alice and Bob
communicate over the quantum channel and with the aid of
the classical service channel. As depicted in Fig. 2, the trans-
mitter has an eavesdropping detection module, system control
module, key distillation module, JEEC encoding module,
modulator, key pool and the information source. The receiver
includes the Cs-calculation module, system control module,
key distillation module, joint decoding module, demodulator,
key pool and the information sink.

The symbols in the data stream are defined as follows: M ∈
{0, 1}m is the information bit sequence encoded by the JEEC
coding module; K is the key needed for JEEC encoding and
decoding, which is taken from the key pool and has the same
length, m, as M . The sequence Y represents the ciphertext,
which is the input of the precoding module, Y = M ⊕ K . A
(k, kRp) LDPC encoder of code length k and rate Rp is a
good choice for the precoding module, where m = kRP . A
codeword X of the (k, kRp) LDPC code with length k is the
output of the precoding module formulated by encoding the
input sequence Y . The sequence Xi ∈ {0, 1}ki is part of X or a
random bit sequence, which is the input of the secure coding
module in the i-th frame. Let Ri be the rate of the secure
coding in the i-th frame. Details of Ri and ki will be given
later. Let us assume that Ci ∈ {0, 1}nci is a single codeword
produced by encoding Xi , i.e. the output of the secure coding
module of Fig. 2. Then, Ci is transmitted to Bob over the
quantum channel.

After the transmission of Ci , Alice and Bob can infer
Cm, Cw and Cs of the system during the period in which
the i-th frame is sent; we denote them as Cmi , Cwi and
Csi , respectively. The received sequence C ′i is decoded by
an iterative decoding algorithm. Let Imax be the maximum
number of iterations. When the set Imax is reached, and not
all check sums of the decoding result of Ci multiplying the

transpose of associated parity-check matrix are equal to 0,
a decoding failure is reported to Alice through the classical
service channel. Then, the system has to re-transmit the
corresponding message by using a new secret key from the
key pool. If however all check sums are equal to 0, we exit
the decoding and output the decoded sequence X ′i , namely the
secure decoding result. Then, X ′i is successively stored in the
cache.

If Bob decodes C ′i correctly and flawlessly recovers Xi and
Ci , Alice and Bob can distill a common secret key Si from
Ci , according to the secrecy capacity Csi . After all parts of
X have been transmitted, if Bob cannot correctly decode C ′i
in several frames, the sequence X ′ = {X ′i } in the cache is
further decoded based on the precoding LDPC code. If X ′ is
decoded correctly to obtain both X and the ciphertext Y , Bob
can recover all transmitted codewords even if several received
sequences C ′i are decoded incorrectly. The distillation module
of Fig. 2 makes use of the universal hashing procedure [38]
for extracting the key [39], [40]. Alice and Bob can use the
same Toeplitz matrix for distilling a (nci ·Csi )-bit secret key Si
from Ci ∈ {0, 1}nci . For ensuring that Alice and Bob always
keep the same key pool, it can be designed as a first-in first-
out (FIFO) memory. The modulator and demodulator module
simply follow the DL04 protocol.

The basic quantum processes of communication and eaves-
dropping detection are the same as those of the DL04 scheme.
It is worth mentioning that the role of the secure coding
module is vital for approaching the secrecy capacity. Further-
more, the accurate estimation of the secrecy capacity after the
transmission allows us to distill a new key sequence from the
received codeword for later use. If the system transmits X
directly, namely without secure coding, the secrecy capacity
cannot be approached. As a consequence, Alice and Bob
cannot distill keys according to the measurement of the Cs .
This results in a sharp reduction in the number/length of
keys and we are unable to ascertain, how many keys we can
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distill. Hence, although X is already encrypted by the keys, the
system still needs the secure coding module for protecting X
transmitted over the quantum channel, whose secrecy capacity
varies.

Let us now concentrate on the three different phases of the
proposed QMF-DL04 QSDC protocol. As mentioned above,
we denote each frame transmitted over the quantum channel
as Ci (i = 1, 2, 3, . . .). Additionally, Ci is constituted of nci
bits. Then, we have the corresponding parameters given by
Xi , ki , Ri , C ′i , Si , Cmi , Cwi and Csi . Referring now to Fig. 2,
when Alice is going to send the i-th frame Ci :
• If i = 1, the key pool is empty: the precoding module

simply does not work, and Xi is constituted by random
bits using a random number generator [41], [42]. Alice
and Bob should select the appropriate values of Cw0 , k1,
R1 and Cm0 to meet (10). After Alice sends C1 to Bob
correctly, they can obtain Cm1 , Cw1 . If (10) is satisfied,
then they can obtain the same new key S1 by distilling C1.
The length of S1 is nc1 ·Cs1 . Note that Cw0 and Cm0 can
also glean prior knowledge from the preceding channel
estimation.

• If i > 1 and there is insufficient keys for encrypting a
m-bit M (the length of the keys in the pool is shorter
than m), then the precoding module also fails and Xi is
a random bit sequence. Then, the secure coding module
requires

ki
nci
≤ Ri − Cwi−1, Ri < Cmi−1, (10)

where Cwi−1 is the wiretap channel capacity of the (i−1)-
th frame, which is used as an estimate of Cwi and it is
defined by

Cwi−1 = QEve
i−1 · h(2ẽi−1) = g · QBob

i−1 · h(2ẽi−1), (11)

where g = QEve/QBob for convenience. After Alice
sends Ci to Bob correctly, they can obtain Cmi , Cwi and
Csi . If Cmi and Cwi satisfy (10), then they can obtain the
common new key Si by distilling the Ci . The length of
Si is nci · Csi .

• If i > 1 and there is enough key to encrypt M , then the
workflow contains the following ten steps, as seen in Fig.
2:

1) Alice uses K ∈ {0, 1}k′ to encrypt M ∈ {0, 1}k′ :
Y = M ⊕ K .

2) Y is precoded to produce X ∈ {0, 1}k .
3) Then, X is stored in a cache.
4) Alice chooses a ki-bit sequence from the cache to

carry out secure coding. Note that ki and Ri also
have to satisfy (10).

5) Alice modulates the carrier qubits and then sends
them over the quantum channel to Bob.

6) Bob demodulates the received qubits.
7) Bob decodes the secure coding of Step 4.
8) After Bob receives Ci correctly, both Alice and Bob

can obtain Cmi , Cwi and Csi .
9) If Cmi and Cwi satisfy (10), Alice and Bob are

capable of obtaining the same new key Si by
distilling Ci . The length of Si is nci · Csi . Now

we repeat Steps 4 to 9 until all parts of X are
transmitted. If Bob fails to correctly receive Ci in
several frames, the decoded sequence X ′ = {X ′i } in
the cache is further decoded to obtain both X and
those previously incorrectly received codewords Ci .

10) Finally, Bob uses the same K to decrypt Y : M =
Y ⊕ K = M ⊕ K ⊕ K = M . However, if X ′ = {X ′i }
cannot be correctly decoded, Bob informs Alice over
the classical service channel as to which received
codewords C ′i are incorrect.

The precoding, secure coding and their decoders of Fig.
2 will be discussed in the next section.

The main novelty of this contribution hinges on dispensing
with the use of quantum memory in QSDC and on optimizing
the performance attained. There are significant differences
between our QMF QSDC and QKD, although they both
use similar information theoretic security techniques, such as
for example the key distillation. QKD distills the key from
transmitted random bits and then sends the ciphertext in a
separate classical communications phase. In QMF QSDC,
the key is distilled from the transmitted codewords, which
encode and protect the ciphertext. The transmitted codewords
simultaneously represent both the coded ciphertext and the
raw key to be distilled for subsequent transmissions. Hence
QSDC relies on a single transmission phase instead of the
two separate transmission phases of QKD. More explicitly,
QSDC succeeds in this because it can monitor the transmission
of the codewords, followed by the accurate estimation of
the number/length of keys that can be distilled from the
transmitted codewords. Furthermore, QSDC is also capable
of performing the task of distributing keys.

B. Secure Information-Rate Improvement

In this protocol, the confidentiality of M is guaranteed with
the aid of the one-time pad. Moreover, secure coding is used
for protecting the codewords Ci from Eve by taking advantage
of the gap between Cmi and Cwi . Thus, we can distill the secret
key Si from Ci .

Proposition 1: The proposed QMF-DL04 QSDC protocol is
capable of increasing the practical secure information trans-
mission rate by the amount of δi = Cmi − Ri in the i-th frame,
over and above the original DL04 protocol.

Proof: Based on the QMF-DL04 QSDC protocol of Section
II-A, we can obtain a longer key after the transmission of the
i-th frame:

si = nci · Csi = nci · (Cmi − Cwi ) > nci · (Ri − Cwi ) = ki, (12)

where ki is the maximum number of information bits in the
i-th frame in Ref. [22]. Because the length of the information
word is equal to the length of the key in this proposed protocol,
the increment of the secure information rate of the i-th frame
is given by

δi = (si − ki)/nci = Cmi − Ri, (13)

which is exactly the gap between the capacity of the main
channel and the rate of the codes. This proves our proposition.
�
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As a result, the proposed QMF-DL04 QSDC protocol ap-
proaches the secure capacity Cs more closely than the original
protocol of [22].

Proposition 2: The QMF-DL04 QSDC has the capability of
key accumulating, and enables secure communication even if
the secure capacity Cs becomes zero for a short time, provided
that there are enough keys in the pool.

Proof: Without loss of generality, we assume that j frames
are transmitted and that Cmi > Cwi , for 1 ≤ i ≤ j. Then the
total length of the keys entered into the key pool is

sin =
j∑

i=1
[nci · (Cmi − Cwi )]. (14)

To transmit the ( j + 1)-st frame, the maximum total length of
the keys used by all the ( j + 1) frames is

sout =
j+1∑
i=1
[Rp · nci · (Ri − Cwi−1 )], (15)

where Ri > Cwi−1, for 1 ≤ i ≤ j, according to the proposed
protocol. Hence, the total length of the keys left in the pool
is

s = sin − sout

=

j∑
i=1
{nci ·[Cmi −Cwi −Rp ·(Ri−Cwi−1 )]}−Rp ·nc j+1 ·(Rj+1−Cwj )

>nmin
c ·

j∑
i=1
(Cmi −Cwi −Ri+Cwi−1 )−Rp ·nc j+1 ·(Rj+1−Cwj )

=nmin
c ·[(Cm j−Cwj )+(Cw0−R1)+

j−1∑
i=1
(Cmi−Ri+1)]−Rp·nc j+1·(Rj+1−Cwj )

>nmin
c ·[(Cm j−Cwj )+(Cw0−R1)+

j−1∑
i=1
(Cmi−Ri+1)]−nc j+1·(Rj+1−Cwj ) (16)

where nmin
c is the minimum value of {nci }, i = 1, 2, · · · , j. In

a practical QSDC system, we can let nmin
c = nc j+1 = nc . Then

s > nc ·[(Cm j −Cwj )+(Cw0−R1)+
j−1∑
i=1
(Cmi −Ri+1)−Rj+1+Cwj ]

= nc ·[
j∑

i=1
(Cmi −Ri+1)+(Cw0−R1)]. (17)

According to (10), Ri+1 < Cmi . In addition, Cw0 and R1 are
chosen by the system itself. Obviously it is plausible that in
most cases,

s > 0, (18)

which indicates that the ( j+1)-th frame is capable of conveying
secure information bits even if Csj+1 < 0. This proves the
proposition. �

According to Proposition 2, our QMF-DL04 QSDC protocol
is capable of improving the system’s robustness over that
of [22], because in [22] communications will inevitably be
interrupted, when Cs becomes zero.

IV. DYNAMIC JOINT ENCRYPTION AND ERROR-CONTROL
CODING

In this section, we design and optimize the JEEC coding
scheme of Fig. 2 for the QMF-DL04 QSDC protocol. A range
of impressive secrecy codes have been proposed in [33]–[35],
[43], [44], striving for a compelling trade-off between security
and reliability [36] for transmission over a wiretap channel.
There also have been some researches on the joint encryp-
tion and error-control coding in the wireless communication
[45]–[47]. However, the received photon-count reduction in
quantum communication is tremendous. For example, the
reception rate QBob of Bob may become lower than 0.0035
in a practical QSDC system [37]. Thus, these existing coding
schemes may suffer from severe performance loss in quantum
communications, and they can not be used in our protocol
directly.

Here, we propose to extend the traditional secrecy-LDPC
codes [33]–[35], which randomly select a single codeword
from the coset of a LDPC code, to the new class of low-rate
secrecy-GLDPC codes which we define in this section. Then,
a rate-compatible low-rate JEEC coding scheme is designed
based on the proposed secrecy-GLDPC codes for enhancing
the reliability and for achieving an increased secure informa-
tion rate of QSDC. The new class of low-rate JEEC coding
schemes is designed by replacing the single parity check
(SPC) codes at the check nodes (CNs) of a secrecy-LDPC
code by Hadamard codes [25] and concatenated repetition
codes. The proposed GLDPC code based on the Hadamard
codes and repetition codes (GLHR) allows us to appropriately
choose the length of the repetition codes. Furthermore, we can
use low-complexity Hadamard codes and still achieve good
performance.

Before we present the low-rate JEEC coding scheme, we
define and list all notations which will be used in the next
sections in Table III.

A. Low-Rate JEEC Coding Structure

A detailed description of the JEEC coding scheme based on
the GLHR codes which is designed for the protocol proposed
in Section III is given as follows. The entire structure of the
proposed JEEC coding is shown in Fig. 3. Recall the precoding
module defined in Section III. The (k, kRp) LDPC code C is
considered as the coding scheme in the precoding module, and
the output X is a single codeword of C. The codeword X is
divided into N parts, Xi ∈ {0, 1}ki , and stored in the cache,
where 1 < i ≤ (N + 1). Then, each part Xi is successively
input into the secure coding module, as shown in Fig. 2, in
the i-th frame.

Let us select the first m(i)1 rows of the matrix B to form the
parity-check matrix H(i)1 with a constant row weight ρ. Then,
the above submatrix of H(i)1 , H(i)2 , is an m(i)2 × n parity-check
matrix with a constant row weight ρ, whose null space defines
the (n, k(i)2 ) LDPC code C(i)2 . For transmitting each vector Xi

of length ki , Alice first randomly chooses a codeword c(i)



IEEE TRANSACTIONS ON COMMUNICATIONS 8

YCiphertext     

of length k𝑅𝑅𝑝𝑝 1
(k, k𝑅𝑅𝑝𝑝) 

LDPC code

2
Cache

3
(n, 𝑘𝑘𝑖𝑖) secrecy-

LDPC code

of 

length k
i

X
i  X of 

length k

4𝑐𝑐(𝑖𝑖) of 

length 𝑛𝑛 𝑐̂𝑐(𝑖𝑖) of 

length 𝑁𝑁𝐿𝐿(𝑖𝑖)
(𝑵𝑵𝑳𝑳(𝒊𝒊), 𝒌𝒌𝟐𝟐(𝒊𝒊)) LH code

(2𝜌𝜌−2, 𝜌𝜌 − 1) 

Hadamard code

(𝑤𝑤𝑖𝑖, 1) 

repetition code

5 𝑪𝑪𝒊𝒊 of  length𝑤𝑤𝑖𝑖𝑁𝑁𝐿𝐿(𝑖𝑖)
(𝒘𝒘𝒊𝒊𝑵𝑵𝑳𝑳(𝒊𝒊), 𝒌𝒌𝟐𝟐(𝒊𝒊)) GLHR code
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Fig. 3: Entire structure of the proposed JEEC coding

of the LDPC code C(i)2 if c(i) is a solution of the following
equation [33]:

H(i)1 (c
(i))T =

[
H(i)2
H̄(i)2

]
(c(i))T = [0 . . . 0︸︷︷︸

n−k
(i)
2

Xi]
T , (19)

where the j-th codeword bit c(i)j of c(i) is associated with the

j-th variable node (VN) of C(i)2 , 1 < i ≤ N + 1 and 0 ≤
j < n. Each check node (CN) having the degree-ρ of the
standard LDPC code C(i)2 can be considered as a (ρ, ρ − 1)
SPC code. Then, Alcie uses the variable codeword bits of the
randomly chosen codeword c(i) for encoding various low-rate
linear codes so that she can obtain a codeword of the low-rate
GLHR code.

To construct the low-rate GLHR code, first the SPC con-
straints imposed on the CNs of the standard LDPC code C(i)2
are replaced by the constraints based on other linear codes,
such as Hadamard codes and BCH codes. Again, we consider
the family of Hadamard codes for constructing the GLDPC
code subject to the Hadamard constraints, which were hence
termed as LH codes in [25] 2, where the SPC code used at
each CN in a standard LDPC code is replaced by a Hadamard
constituent code. A CN obeying the Hadamard constraints of
the LH code is termed as a Hadamard-check node (HCN).

For constructing the (N (i)L , k(i)2 ) LH code Ĉ(i)2 , all CNs of
C
(i)
2 are replaced by HCNs. For 0 ≤ l < m(i)2 , the first ρ −

1 codeword bits c(i)j ’s corresponding to the first ρ − 1 VNs

connected to the l-th CN of C(i)2 , j ∈ Nl\ jl , are encoded into
the codeword a(i)

l
of a (2r, r + 1) systematic Hadamard code

with the order of r = ρ−2 [25]. Thus, each bit c(i)j , j ∈ Nl\ jl ,

is equal to the codeword bit a(i)
l,t

of a(i)
l

at the l-th HCN for
t ∈ {0, 1, 2, 4, . . . , 2r−1}, respectively, which are termed as the
information bits. The other 2r − (ρ − 1) codeword bits of a(i)

l
are considered to be parity bits. It has been proven that the last
parity bit a(i)

l,2r−1 is equal to the bit c(i)jl associated with the last
VNjl connected to CNl [25], if r is even. Thus, the l-th HCN
of Ĉ(i)2 connects two types of VNs, if the row weight ρ is even.
The VNs of the first one are the original ρ VNs connected to
the l-th CN of C(i)2 , and those of the second one are new VNs

2A GLDPC code which is subject to the Hadamard constraints at each of
its CN is called as the LH code in this paper.

of degree-1 that correspond to the first 2r − r −2 parity bits of
the encoded codeword a(i)

l
of the (2r, r + 1) Hadamard code.

The SPC constraint is also satisfied in an HCN, if it is based
on a Hadamard code with an even order. For an HCN based
on an odd-order Hadamard code, the SPC constraint is also
satisfied by using a nonsystematic Hadamard code (which is
not considered in this paper).

Then, a codeword ĉ(i) = (ĉ(i)0 , ĉ
(i)
1 , . . . , ĉ

(i)

N
(i)
L −1
) of the LH

code Ĉ(i)2 is formed by the chosen codeword c(i) of the LDPC
code C(i)2 and the parity bit sequences, b(i)

l
, of all HCNs, i.e.,

ĉ(i) = (c(i), b(i)0 , b
(i)
1 , . . . , b

(i)

m
(i)
2 −1
), where 0 ≤ l < m(i)2 . The

parity-check matrix Ĥ(i)2 of Ĉ(i)2 is given in (20), where t ∈ Λ{,
hl, j is an all-zero column vector of length 2r − r − 1 if the
(l, j)-th element hl, j in H(i)2 is zero; otherwise, hl, j is equal to
the x-th column of Hh,r for x ∈ Λ, 0 ≤ l < m(i)2 and 0 ≤ j < n.

Next, each codeword bit in the codeword ĉ(i) of the
LH code Ĉ(i)2 is respectively mapped into a codeword of
the (wi, 1) repetition code to generate a sequence Ci =

(Ci,0,Ci,1, . . . ,Ci,N (i)L −1). For 0 ≤ j < N (i)L , the j-th codeword

bit ĉ(i)j , ‘0’ or ‘1’, in ĉ(i) is mapped to R(i)0 or R(i)1 , respectively,

i.e., if ĉ(i)j = 0, Ci, j = R(i)0 ; otherwise, Ci, j = R(i)1 . The

resultant sequence Ci of length nci = wiN
(i)
L is a codeword

of the (nci , k(i)2 ) GLHR code C̃(i)2 . Then, the codeword Ci is
the output of the secure coding module of Fig. 2 in the i-
th frame. The parity-check matrix H̃(i)2 of the GLHR code
C̃
(i)
2 is a (nci − k(i)2 ) × nci matrix. The bipartite Tanner graph

representation of a GLHR code based on a standard LDPC
code having a constant row weight ρ and a constant column
weight γ is shown in Fig. 4. Finally, Alice transmits the coded
sequence Ci to Bob over the main quantum channel. The rate
of secure coding based on the GLHR code in the i-th frame
is given as follows:

Ri = R(i)GLHR = k(i)2 /nci = k(i)2 /[wi · (n + m(i)2 (2
ρ−2 − ρ)], (21)

and the actual rate of the message vector Xi passed through
the secure coding module is

Rxi = ki/nci = [k
(i)
2 − k(i)1 ]/[wi(n + m(i)2 (2

ρ−2 − ρ)], (22)

where 1 < i ≤ N + 1. If we have 0 < Ri < Cmi−1 and

Rei = k(i)1 /nci = k(i)1 /[wi(n + m(i)2 (2
ρ−2 − ρ)] ≥ Cwi−1, (23)
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Fig. 4: Bipartite Tanner graph representation of a GLHR code
with Hadamard constraints and repetition codes.

then it may be deduced that we have to satisfy that Rxi ≤

Ri − Rei ≤ Ri − Cwi−1 ≤ Csi so that the message vector Xi is
transmitted securely and reliably according to (10). The total
secure information rate R of the data stream M , which is
transmitted by N frames, is given as follows:

R =
Rp

∑N+1
i=2 ki∑N+1

i=2 nci
=

Rp
∑N+1
i=2 (k

(i)
2 − k(i)1 )∑N+1

i=2 wi[n + m(i)2 (2
ρ−2 − ρ)]

, (24)

where Rp is the code rate of the LDPC code C used in the
precoding module of Fig. 2.

The entire encoding process of the proposed JEEC coding
scheme is summarized in Algorithm 1. In conclusion, we
have constructed a new class of low-rate JEEC codes having
flexible code parameters based on secrecy-LDPC codes and
the proposed GLHR codes.

B. Joint Decoding of the Proposed JEEC Codes

Given the hostile nature of the quantum channel, only
a fraction of the photons associated with each transmitted
sequence Ci can be received by Bob, and the received photons
may also have errors. Recall that the reception rate QBob of
Bob as well as the bit-error rate e between Alice and Bob was
defined in Section II. Bob successively receives N sequences
of C ′i = (C

′
i,0,C

′
i,1, . . . ,C

′

i,N (i)L −1
) from the demodulator, where

we have 1 < i ≤ N + 1. The detailed description of the joint
decoding algorithm conceived for our proposed JEEC code is
given as follows.

First, Bob successively decodes each received sequence C ′i
to obtain the decoded message sequence X ′i of Xi for 1 < i ≤
N + 1. Since Ci is obtained by mapping each codeword bit

Algorithm 1 Encoding of the constructed JEEC codes
1: The ciphertext Y is encoded into the codeword X of the

LDPC code C.
2: For 1 < i ≤ N + 1, the i-th part Xi of X is encoded one

randomly selected codeword c(i) of the LDPC code C(i)2
satisfying (19).

3: For 1 < i ≤ N + 1 and 0 ≤ l < m(i)2 , the first
ρ − 1 codeword bits connected with each CN of the
LDPC code C(i)2 is encoded into one codeword a(i)

l
of

a (2r, r + 1) systematic Hadamard code with the order
of r = ρ − 2. Then, parity bit sequence b(i)

l
of a(i)

l

is successively attached to c(i) to obtain the codeword
ĉ(i) = (ĉ(i)0 , ĉ

(i)
1 , . . . , ĉ

(i)

N
(i)
L −1
) = (c(i), b(i)0 , b

(i)
1 , . . . , b

(i)

m
(i)
2 −1
).

4: For 1 < i ≤ N + 1 and 0 ≤ j < N (i)L , if ĉ(i)j = 0, ĉ(i)j
is mapped to R(i)0 ; otherwise ĉ(i)j is mapped to R(i)1 , to
generate the codeword Ci = (Ci,0,Ci,1, . . . ,Ci,N (i)L −1) of

the GLHR code C̃(i)2 .
5: For 1 < i ≤ N + 1, each encoded result Ci of the JEEE

coding scheme is transmitted to Bob, successively.

ĉ(i)j in ĉ(i) = (ĉ(i)0 , ĉ
(i)
1 , . . . , ĉ

(i)

N
(i)
L −1
) to a single codeword of the

(wi, 1) repetition code, the original log-likelihood ratio (LLR)
sequence Ui = (Ui,0,Ui,1, . . . ,Ui,N

(i)
L −1) of the corresponding

ĉ(i) is expressed as

Ui, j = ln
Pr(C ′i, j |ĉ

(i)
j
= 0)

Pr(C ′
i, j |ĉ

(i)
j
= 1)

= ln
(1 − e)t0, j · et1, j

(1 − e)t1, j · et0, j
= (t0, j−t1, j ) ln

1 − e
e

,

(25)
where 1 < i ≤ N + 1 and 0 ≤ j < N (i)L . The LLR sequence
Ui represents the reliability of the original messages invoked
for decoding the codeword ĉ(i) of the (N (i)L , k(i)2 ) LH code
during the i-frame. The LDPC-Hadamard decoder designed for
decoding the LH code is presented in [25], which iteratively
uses the message-passing algorithm at the VN update and
the a posteriori probability (APP) decoding of the Hadamard
codes at the HCN update. By using the LDPC-Hadamard
decoder presented in [25] and the LLR sequence Ui , Bob
extracts the decoded sequence z(i) corresponding to Alice’s
randomly chosen codeword c(i) of the LDPC code C(i)2 , where
1 < i ≤ N + 1.

Next, Bob computes the product

X ′i = H̄(i)2 (z
(i))T (26)

for obtaining the estimated X ′i of the message Xi , where
1 < i ≤ N + 1. Finally, Bob decodes the sequence X ′ =
(X2

′, X3
′, . . . , X ′N+1) of length k for recovering the ciphertext
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TABLE III: All notations in the proposed JEEC coding scheme
C

(k, kRp ) LDPC code of code length k,
information length kRp and code rate Rp

H (k − kRp ) × k parity-check matrix of C

X
one codeword of C and X is

divided into N parts
Xi the i-th part of X for 1 < i ≤ (N + 1)
ki length of Xi ,

∑N+1
i=2 ki = k

B mr × n parity-check matrix of a rate-
compatible LDPC code with row weight ρ

H(i)1 =

[
H(i)2
H̄(i)2

]
m
(i)
1 × n submatrix of B, ki < m

(i)
1 ≤ mr

H(i)2
m
(i)
2 × n above submatrix

of H(i)1 , m(i)2 = m
(i)
1 − ki

H̄(i)2 ki × n below submatrix of H(i)1
k
(i)
1 k

(i)
1 = n −m

(i)
1

k
(i)
2 k

(i)
2 = n −m

(i)
2 = ki + k

(i)
1

hl = (hl,0, hl,1, . . . , hl,n−1) the l-th row of H(i)2 , 0 ≤ l < m
(i)
2

Nl = { j : 0 ≤ j < n, hl, j , 0}
index set for each row l of

H(i)2 , 0 ≤ l < m
(i)
2

jl
maximum value in Nl ,

i.e., the last index in Nl

ρ constant row weight of H(i)2

C
(i)
2

(n, k
(i)
2 ) LDPC code defined by

the null space of H(i)2
c(i) = (c(i)0 , c

(i)
1 , . . . , c

(i)
n−1) one codeword of C(i)2

r r = ρ − 2

a(i)
l
= (a

(i)
l,0, a

(i)
l,1, . . . , a

(i)

l,2r −1)
one codeword of a (2r , r + 1) systematic

Hadamard code with the order of r

b(i)
l

parity bit sequence including all parity bits
(except the last parity bit a(i)

l,2r −1) in a(i)
l

Hh,r = [p0, p1, . . . , p2r −1]
(2r − r − 1) × 2r parity-check matrix of
a (2r , r + 1) systematic Hadamard code

Λ = {0, 1, 2, 4, . . . , 2r−1, 2r − 1} index set of |Λ | = r + 2 elements
Λ{ = {0, 1, 2, 3, . . . , 2r − 1}\Λ index set of |Λ{ | = 2r − r − 2 elements
N
(i)
L N

(i)
L = n +m

(i)
2 (2

r − r − 2)

Ĉ
(i)
2

(N
(i)
L , k

(i)
2 ) GLDPC code formed by

C
(i)
2 and (2r , r + 1) Hadamard codes

Ĥ(i)2
m
(i)
2 (2

r − r − 1) × N
(i)
L

parity-check matrix of Ĉ(i)2
ĉ(i) = (ĉ(i)0 , ĉ

(i)
1 , . . . , ĉ

(i)

N
(i)
L
−1
) one codeword of Ĉ(i)2

R(i)0 = (R
(i)
0,0, R

(i)
0,1, . . . , R

(i)
0,wi−1)

all zero codeword of the (wi, 1) repetition
code, i.e., R(i)0, t = 0 for 0 ≤ t < wi

R(i)1 = (R
(i)
1,0, R

(i)
1,1, . . . , R

(i)
1,wi−1)

all one codeword of the (wi, 1) repetition
code, i.e., R(i)1, t = 1 for 0 ≤ t < wi

nci nci = wiN
(i)
L

C̃
(i)
2

(nci , k
(i)
2 ) GLHR code of code

length nci and rate R
(i)
GLHR = k

(i)
2 /nci

H̃(i)2 parity-check matrix of C̃(i)2
Ci = (Ci,0,Ci,1, . . . ,C

i,N
(i)
L
−1
) one codeword of C̃(i)2

Ci
′ = (C′i,0,C

′
i,1, . . . ,C

′

i,N
(i)
L
−1
)

received sequence of length nci
from the demodulator in the i-th frame

C′i, j = (y
(i)
j,0, y

(i)
j,1, . . . , y

(i)
j,wi−1)

y
(i)
j, t is equal to 0, ? or 1, with “?”

representing an erasure for 0 ≤ t < wi

t0, j , | {y
(i)
j, t = 0 |0 ≤ t < wi } | the number of “0” values in C′i, j

t1, j , | {y
(i)
j, t = 1 |0 ≤ t < wi } | the number of “1” values in C′i, j

Ui = (Ui,0,Ui,1, . . . ,U
i,N
(i)
L
−1
)

original log-likelihood ratio sequence
of the corresponding ĉ(i)

z(i) decoding result of c(i)

X′ = (X2
′, X3

′, . . . , X′N+1)
X′i is decoding result

of Xi for 1 < i ≤ N + 1
X′′ = (X2

′′, X3
′′, . . . , X′′N+1) decoding result of X

TABLE IV: Code parameters of all codes in the simulation
examples

Parameters N k Rp n k2 wi wp w
′

i
Example 1 100 50000 0.985 1000 500 63 384 64

Example 2 25 50000 0.985 4000 2000 61 372
131 792

Example 3 1 4000 2000

Y based on the (k, kRp) LDPC code C by the scaling Min-
Sum (MS) algorithm of [48]. The entire joint decoding of the
proposed JEEC coding scheme is summarized in Algorithm 2.

Algorithm 2 Decoding of the constructed JEEC codes
1: For 1 < i ≤ N + 1, initialize the original LLR sequence

Ui using (25).
2: For 1 < i ≤ N + 1, each LLR sequence Ui is decoded

by using the LDPC-Hadamard decoder [25] to obtain the
decoded sequence z(i).

3: For 1 < i ≤ N + 1, if z(i)(H(i)2 )
T = 0, let fi = 1; otherwise

fi = 0.
4: For 1 < i ≤ N + 1, compute X ′i using (26) to obtain the

decoded sequence X ′ = (X ′2, X
′
3, . . . , X

′
N+1).

5: If X ′HT = 0, exit decoding and output the ciphertext Y ;
otherwise, go to Step 6.

6: Decode X ′ = (X ′2, X
′
3, . . . , X

′
N+1) by using the scaling

Min-Sum algorithm [48] to obtain the decoded sequence
X ′′ = (X ′′2 , X

′′
3 , . . . , X

′′
N+1) of X ′.

7: For 1 < i ≤ N + 1, if fi = 1, let X ′′i = X ′i .
8: If X ′′HT = 0, exit decoding and output the ciphertext Y ;

otherwise, exit decoding and indicate failure.

V. SIMULATION AND SYSTEM IMPLEMENTATION

In this section, we compare the reliability and secure
information rate of the proposed low-rate JEEC codes to those
of the scheme conceived in [22]. We will show that our
JEEC coding scheme significantly improves both the reliability
and the communication distance of QSDC compared to those
of other low-rate codes. Moreover, the experimental results
characterize the proposed QSDC framework.

A. Simulation Results

For the sake of convenience, in this section, we assume
that the capacities Cmi and Cwi of each frame are the same
as Cm and Cw . A time-varying Cwi will be considered in a
practical system experiment later in more detail for each frame
according to a different ẽ. The parameters of all codes in the
next examples are listed in Table IV.

First, we only compare the reliability of the proposed JEEC
coding scheme to that of other low-rate codes of similar code
rates and lengths, such as the concatenation of LDPC codes
with pseudorandom sequences (LPS) used in [22]. Simulations
are conducted for transmission over the cascaded channel
model consisting of a BEC and a BSC, which is considered
to be a realistic main quantum channel model for the QSDC
system defined in Section II. Let QBob be the reception rate of
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Fig. 5: BERs/FERs of the GLHR code with Rp = 0.985, the
GLHR code with Rp = 1 and the LPS code.

Bob; then, the erasure probability of the BEC is 1−QBob . The
error probability e of the BSC is set to 0.01 in the simulations.
Let us furthermore use k2 = k(i)2 = ki = k/N , and let the
code length nci of each sequence Ci transmitted over the main
quantum channel be equal to the same value nc . Then, the total
information rate R of the data stream M transmitted through
the proposed QSDC framework is equal to R = Rpk

Nnc
=

Rpk2
nc

.

Example 1: Let k = 50, 000 and N = 100. Thus, k(i)2 =

k2 = ki = 500. Let the (n, k(i)2 ) LDPC code C(i)2 defined in
Section IV be a (1000, 500) LDPC code of code rate 0.5 and
a constant row weight 6, which is constructed by using the
progressive edge growth (PEG) algorithm [49]. Let the LDPC
code C in the precoding module be a (50000, 49250) LDPC
code of rate Rp = 0.985 and a constant column weight 3 using
the PEG algorithm. The LDPC code C(i)2 is extended to the
GLHR code in each frame. The order of the Hadamard codes
in the GLHR code constructed is equal to 4, and the length
wi of the repetition codes is set to 63. Hence, the codeword
length of the constructed GLHR code in each frame is equal to
378,000. The actual message rate R of the JEEC code based
on the GLHR code and the precoding code C is 0.001303.
Finally we set the maximum number Imax of iterations for
the LDPC-Hadamard decoder to 50 for decoding the GLHR
code and the Imax of the scaling MS algorithm [48] to 90 for
decoding the precoding code.

In this example, we further consider the JEEC coding
scheme without the precoding module, i.e., the rate Rp is
equal to 1. For comparison, the LDPC code C(i)2 is respectively
extended to a LPS code based on pseudorandom sequences of
length wp = 384 and one GLHR code based on Hadamard
codes of order 4 and repetition codes of length w

′

i = 64 in
each frame. The codeword lengths of both these two codes are
384,000. Hence, the actual information rates R of the proposed
JEEC codes (without precoding) based on the GLHR code and
on the LPS code are both 0.001302. Let us use Imax = 50 for
the LDPC-Hadamard decoder for decoding this GLHR code.
The LPS code is decoded by the scaling MS algorithm using
Imax = 100. As shown in Fig. 5, the GLHR code conceived

0.5 1 1.5 2 2.5 3 3.5 4

QBob
×10-3

10-5

10-4

10-3

10-2

10-1

B
E

R

LPS       R=0.00134

GLHR    R=0.00135

capacity R=0.00134

LPS       R=0.00063

GLHR    R=0.00063

capacity R=0.00063

Fig. 6: BERs of the constructed GLHR and LPS codes with
various code parameters.

with precoding outperforms the GLHR code without it at the
bit error rate (BER) of 10−6 and the frame error rate (FER) of
10−5. Moreover, both GLHR codes have better performance
than the LPS code.

Example 2: Let N = 25 and the precoding code C be
a (50000, 49250) LDPC code of rate Rp = 0.985 identical
to that constructed in Example 1, using the parameters of
Table IV. Let us also consider a (4000, 2000) random MacKay
LDPC code [50] of rate 0.5 with column weight 3 and row
weight 6 [50] as the LDPC code C(i)2 . This LDPC code is
used for constructing the GLHR and LPS codes, respectively.
The lengths wi of the repetition codes are chosen to be 61
and 131 to construct the (1464000, 2000) GLHR code of
rate 0.00137 and the (3144000, 2000) GLHR code of rate
0.00064, respectively. Hence, the actual information rates R
of the proposed JEEC codes with precoding based on the
(1464000, 2000) GLHR code and the (3144000, 2000) GLHR
code are 0.00135 and 0.00063, respectively. The lengths wp

of the pseudorandom sequences are chosen to be 372 and
792 for constructing the (1488000, 2000) LPS code (without
precoding) of rate R = 0.00134 and the (3168000, 2000) LPS
code (without precoding) of rate R = 0.00063, respectively.
We set Imax = 30 for the LDPC-Hadamard decoder for
decoding the GLHR code and Imax = 30 for the scaling MS
algorithm [48] for decoding the precoding code C. We set
Imax = 65 for the scaling MS algorithm for decoding the LPS
codes. As expected, the proposed GLHR codes perform better
than the LPS codes for similar codeword lengths and rates as
seen in Fig. 6. Moreover, our JEEC codes based on the GLHR
codes are capable of operating close to the corresponding
channel capacity of the main channel at these low code rates.

Next, we consider the secure information rate of the pro-
posed JEEC coding scheme for transmission over a practical
quantum channel, which has been considered in [22]. The
parameters of this quantum channel are the same as those in
[22]: the initial total channel loss is 24.5 dB at a distance of a
0 kilometer fiber with an initial received rate QBob of 0.00345
at Bob’s side. And the gap between QBob and QEve is set to
2.4. Each kilometer of increased distance corresponds to 0.4
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Fig. 7: Secure information transmission rates of the proposed
JEEC coding scheme and the secure coding based on LPS
codes for a practical QSDC system, without the consideration
of the loss caused by the delay fiber.

dB of increased total channel loss imposed by the concatenated
forward and backward quantum channel transmission between
Alice and Bob. The bit-error rate e between Alice and Bob
over this quantum channel is usually approximately 0.6% [22].
In our simulations, the bit-error rate e is set to 1%. The
capacity of the wiretap channel Cw is given by (11). Let
k(i)2 = k2, k(i)1 = k1, and ki = k2 − k1 in our JEEC coding
scheme. The code length nci of each transmitted sequence Ci

over the main channel is equal to the same value nc . According
to (21) and (23), it is necessary that we have Ri =

k2
nc

< Cm

and Rei =
k1
nc
≥ Cw for maintaining the desired security vs

reliability trade-off. According to (24), the secure information
rate R of our scheme is equal to

R = Rp(k2 − k1)/nc . (27)

Example 3: We compare the secure information rate of our
proposed JEEC coding scheme and the secure coding based
on the LPS codes presented in [22] for transmission over the
above practical QSDC system, using the parameters of Table
IV. In this example, the precoding rate Rp of the (k, kRp)

LDPC code C is set to 1. The secure coding module of
the proposed JEEC coding scheme is constructed based on
a rate-compatible LDPC code of a constant block length 4000
and row weight 6. We fix the value of k2 to 2000 for the
various reception rates QBob , so the LDPC code C(i)2 is a
(4000, 2000) LDPC code of rate 0.5 and row weight 6. We
set Imax = 50 for the LDPC-Hadamard decoder. The optimal
lengths of the repetition codes used in the JEEC coding scheme
are separately obtained by computer search for various QBob

values when the BER of the LDPC-Hadamard decoding is
about 10−5.

The secure coding based on LPS codes [22] is constructed
based on the (4000, 2000) random MacKay LDPC code [50]
of rate 0.5 used in Example 2 of Table IV. We set Imax = 65
for the scaling MS algorithm for decoding the LPS codes. The
optimal lengths of the pseudo-random sequences invoked for
the secure coding based on LPS codes are also obtained by a

computer search for various QBob values when the BER of the
MS decoding is about 10−5. As shown in Fig. 7, the secure
information rate area of the proposed JEEC coding scheme
is much larger than that of the secure coding in [22]. The
secure information rate of our coding scheme is always higher
than 0, if the total channel loss is lower than 32 dB. Hence,
our scheme is capable of reliable and secure communication
for a maximum communication distance of approximately 19
kilometers (km), while that of the coding scheme in [22]
is only about 10 km. Furthermore, the difference between
secrecy capacity and secure information rate decreases as the
communication distance increases. For example, it is about
9× 10−4 bit/pulse at 0 km (total loss 24.3 dB) and 2.5× 10−4

bit/pulse at 14 km (total loss 29.9 dB). But the ratio of secure
information rate and secrecy capacity also decreases as the
communication distance increases. For example, it is about
0.591 at 0 km and 0.375 at 14 km.

B. System Implementation

We have implemented a verification experiment on the
basis of the proposed protocol in an optical fiber system.
We summarize the key experimental parameters in Table V
and discuss them below. Meanwhile, the performance of our
system has also been compared to [22].

An optical fiber based system is used for supporting the
basic measurements and operations in the original DL04
scheme, which is an improved version of our previous work
[22]. The main benefit of our new optical system is that we do
not need a storage-delay line (quantum memory). The method
of modulating a ‘0’ or ‘1’ bit onto a photon is based on
the time-bin coding of [51]. We use a weak coherent pulse
source having a wave length 1550 nm as the single-photon
source. The pulse repetition frequency f of the laser can be
set to less than 16 MHz. The attenuator sets the mean photon
count to 0.1. A commercial fiber channel is used both for
transmitting the quantum signal, with a loss of 0.2 dB/km, and
the classical signals of the service channel between Alice and
Bob. However, the service channel carries a classical optical
signal, while the quantum channel carries single photons.

In a practical system, there is a time-varying Cw for each
frame Ci according to the different ẽ representing the qubit
error rate of the eavesdropping detection module of Fig.
2. The average channel parameters associated with different
communication distances (d km) are shown in Table V. The
average secrecy capacity can be obtained from (5) and (11).
The initial total loss at a distance of 0 km is 24.3 dB. We define
the variable g as the ratio of g = QEve/QBob for characterizing
the channel, which can be determined by accounting for the
losses in the system using the following equation,

g = 10LB/10 = 10(LSPD+Lf+Lb)/10 = 10[1.5+2.3+(0.2×d)]/10, (28)

where LB is the total loss of the quantum channel between
Alice and Bob at a distance of d km. When the modulated
photons are conveyed from Alice to Bob over the quantum
channel, Eve is assumed to be as close to Alice as possible.
Thus, g also depends on LB, as seen in (28). LSPD = 1.5
dB is the loss of the superconducting nanowire single-photon
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TABLE V: Performance Comparison of Our QSDC Experiment System and the System in [22]

Experiment Systems f (MHz) d (km) g e 2ẽ QBob Cs Cw R RM (bps)
DL04 System 1 1.5 2.57 0.0060 0.0165 0.00291 0.00184 0.00091 0.00005 50

QMF-DL04 System 1

1.5 2.57 0.0029 0.0070 0.00320 0.00261 0.00049 0.00177 1770
6.0 3.16 0.0039 0.0081 0.00210 0.00157 0.00045 0.00102 1020

13.0 4.37 0.0072 0.0087 0.00110 0.00069 0.00035 0.00043 430
18.5 5.62 0.0096 0.0123 0.00068 0.00026 0.00037 0.00010 100

∗ represents the average value of “*”.
The BER of information is required to be less than 1 × 10−5 in these two systems.

detector used in the system, Lf = 2.3 dB is the fixed loss of
the optical component and Lb is the loss of the optical fiber. In
this experiment, the secure coding of the JEEC coding scheme
is constructed based on a rate-compatible LDPC code having
a constant block length of 4000 and a row weight 6 to match
the varying Cwi . The precoding rate Rp is 1. We set Imax = 50
for the LDPC-Hadamard decoder.

This experimental system is capable of successfully trans-
mitting voice, images, text and so on. The performance at-
tained by our experimental system and by the system presented
in [22] at different distances is shown in Table V. To demon-
strate the advantages of the proposed QSDC framework, the
pulse repetition frequency of the laser was set to f = 1 MHz,
which is the same as that in [22]. Let us denote the actual
average secure information rate by R , while RM = R · f is
the message bits transmission rate per second on average. In
[22], when d = 1.5 km, R is equal to 0.00005, while Cs is
equal to 0.00184. Hence, there is a ratio of 0.00184/0.00005
= 36.8 between the information rate and secrecy capacity.
Our experimental system achieves a maximum communication
distance of approximately d = 18.5 km. In our system, when
d = 1.5 km, we have R = 0.00177 and Cs = 0.00261. Hence,
the rate-ratio is only 0.00261/0.00177 = 1.47, indicating that
the proposed system approaches the secrecy capacity more
closely. Moreover, the gain in terms of the secure information
rate at 1.5 km between our system and the system in [22]
is approximately 1770/50 = 35.4. We have also increased f
to 16 MHz, and the information rate attained is in excess
of 27 kbps at a distance of 1.5 km. Additionally, the pulse
repetition frequency of the laser, f, can be further increased to
100 MHz and above. Last but not least, although [22] verifies
the feasibility of a QSDC system, it is still a major challenge
to implement a practical system relying on a quantum memory.
Beneficially, this QSDC system dispenses with the dependence
on quantum memory for the first time.

However, the secure information rate is still rather low - on
the order of kbps. As mentioned above, the small QBob is the
real bottleneck, which results in a low capacity for the main
channel. There are three main factors:

1) It results in many empty pulses (more than 90 %) by
replacing the single-photon source with a weak coherent
pulse source.

2) The optical components used for measurement introduce
a further attenuation.

3) The qubits are attenuated by the fiber channel by 0.2
dB/km.

Fortunately, QBob could be substantially improved by more
efficient optical devices and simpler optical processing.

VI. CONCLUSIONS

A quantum-memory-free DL04 QSDC protocol has been
proposed. This has solved one of the main obstacles in the
way of the practical implementation of QSDC at the time
of writing. The analysis indicates that our QMF-DL04-QSDC
protocol is capable of improving the secure information rate,
whilst enhancing the system’s robustness. The design and
optimization of this new rate-compatible low-rate JEEC coding
scheme was detailed. It was shown to be approaching the
secrecy capacity and be able to tolerate an extremely high
loss of qubits. It is also adaptive to the time-varying nature
of the wiretap quantum channel. Our numerical simulations
revealed that the QMF-DL04-QSDC protocol relying on the
dynamic JEEC coding scheme enhances the reliability of
QSDC. Explicitly, it achieves a higher secure information
rate as well as longer communication distance. In conclusion,
we have demonstrated that practical QSDC is feasible for a
practical long distance without the use of quantum memory.

Again, QKD requires both a quantum channel and a
classical channel for key agreement, where information is
transmitted in the form of ciphertext by relying on another
classical communication session. By contrast, QSDC systems
transmit their information directly over the quantum channel.
Moreover, QSDC is capable of performing key distribution
and lends itself to the design of other cryptographic protocols.
Our numerical results reveal that the QMF QSDC protocol
using the proposed dynamic JEEC coding scheme substantially
improves the reliability of QSDC, whilst increasing the secure
information rate as well as the communication distance.

Finally, we suggest several important tasks for future stud-
ies. First, we should improve the optical system design to
reduce the deleterious channel effects. For instance, we should
reduce the number of optical components to reduce the intrin-
sic attenuation caused by these components. Second, a higher
pulse repetition frequency is required for increasing the secure
information rate of the QSDC system. Third, there is still room
for designing better coding schemes for further reducing the
gap between the secure information rate and secrecy capacity.
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