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Abstract

This paper presents a finite length analysis of multi-slot type frameless ALOHA based on a dynamic

programming approach. The analysis is exact, but its evaluation is only feasible for moderate number

of users due to the computational complexity. The analysis is then extended to derive continuous

approximations of its key parameters, which, apart from providing an insight into the decoding process,

make it possible to estimate the packet error rate with very low computational complexity. Finally, a

feedback scheme is presented in which the slot access scheme is dynamically adapted according to the

approximate analysis in order to minimize the packet error rate. The results indicate that the introduction

of feedback can substantially improve the performance of frameless ALOHA.

I. INTRODUCTION

Random access protocols find applications in scenarios where there is a number of users

sharing a common transmission medium and there exists uncertainty regarding which users

are active. They can be used both in the initial phase of grant-based access, where the active
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users contend with metadata in order to reserve the uplink resources for the subsequent data

transmissions, or in grant-free access, where the active users contend directly with packets

containing data. The former approach forms the basis of mobile cellular access, e.g., [3].

However, the latter approach has been gaining research momentum recently, e.g., [4], due its

lower signaling overhead which makes it suitable for systems such as Internet of things (IoT),

where the amount of exchanged data is small but the number of contending users may be

large [5].

The first and still widely used random access protocols are ALOHA and slotted ALOHA [6].

Assuming a collision channel model, these two protocols offer low peak throughput (1/2e and

1/e, respectively) and high packet error rate (PER) even for low channel load. However, it has

been shown how the introduction of successive interference cancellation (SIC) at the receiver

can lead to higher performance by leveraging on coding-theoretic tools [7], [8]. In practice, this

implies storing and processing the receiver waveform and leads to higher receiver complexity.

The results presented in [8] inspired a strand of works that applied various concepts from codes-

on-graphs to design SIC-enabled slotted ALOHA schemes [9]–[14], which are usually referred

to by using the umbrella term of coded slotted ALOHA.

Frameless ALOHA [11], [15] is a version of SIC-enabled slotted ALOHA that exploits ideas

originating from the rateless-coding framework [16]. In its original version, frameless ALOHA

is characterized by a contention period that consists of a number of slots that is not defined a

priori, and by a slot access probability for the users to independently transmit their packets in

a slot. An asymptotic optimization of the slot access probability that maximizes the expected

throughput was performed in [11], while a similar optimization in a cooperative, multi-base

station scenario was recently considered in [17]. In [18], an evolution of frameless ALOHA

was proposed which makes use of feedback, ZigZag decoding, and a dynamical variation of the

slot access probability to improve performance. A joint assessment of the optimal slot access

probability and the contention termination criteria in non-asymptotic, i.e., finite-length scenarios

were assessed by means of simulations in [15].

The finite-length performance of frame-based coded slotted ALOHA schemes has been studied

in [14], [19]–[22]. Here we remark that, due to the fact that in such schemes every user selects

a random set of slots in a frame in which to transmit, interdependencies among slots are

introduced; thus, the finite-length analytical model is in essence intractable, and one has to

resort to approximations. The error floor of coded slotted ALOHA over the collision channel



in the finite length regime was studied in [19]. A frame asynchronous coded slotted ALOHA

scheme was analyzed in [14], [20]. The scaling laws of coded slotted ALOHA were derived in

[21]. In [22], the performance of several advanced random access protocols was compared over

the collision channel and over the additive white Gaussian noise channel.

The focus of this paper on finite-length analysis of frameless ALOHA and of its reliability-

latency performance with and without feedback. In particular, the considered feedback takes the

form of an update of the slot access probability of frameless ALOHA, which is the default degree

of freedom that can be used to optimize performance. This feedback induces multiple slot types

in the contention, which substantially expands the design space, but also poses some challenges in

terms of modeling and analytical performance optimization. The analysis presented in the paper

characterizes statistically the reliability of muli-slot type frameless ALOHA for a predefined

latency target, which in our context translates to a fixed number of slots in the contention period.

The motivation of this approach stems from the fact that mission-critical services typically feature

a given latency budget, which is also reflected in the proverbial reliability requirement of 10−5

under the latency of 1 ms in the context of 5G ultra-reliable low-latency service category [23].1

The feedback scheme proposed in this paper exploits the flexibility that frameless ALOHA

offers with respect to the frame-based schemes. Specifically, the considered scheme assesses the

reliability at predefined intermediate checkpoint within a contention period and uses feedback

to drive the contention process towards maximizing the number of decoded users, and thereby

the reliability, given the latency target. In particular, the feedback sent by the access point to

the users consists of an update on the slot access probability that should be subsequently used.

This feedback induces a multi-slot type contention, since a new slot type is created whenever

the slot access probability is changed. The proposed scheme adapts to the reliability-latency

performance observed at multiple points, which allows for a finer control of the contention

process. This paradigm change is a clear indicator of an enlarged design space compared to the

frame-based designs that focus on just a single time instant, placed at the end of the latency

budget. Finally, we show that the proposed feedback scheme outperforms frame-based schemes.

This paper builds on preliminary results from [1] and [2]. In [1] an exact finite-length analysis

of frameless ALOHA was presented for the case in which all slots are statistically identical. This

1We also remark that extending indefinitely the contention period in frameless ALOHA will always be beneficial in terms of

reliability; this is a general feature of the rateless-coding framework. However, a practical design target always involves limited

latency, which in this case maps to limited number of overhead slots.



analysis was then extended in [2] to multiple slot types, sketching how the analysis could be

changed to accommodate this extension without actually providing a full proof. The contributions

in this paper are the following. We present in detail an exact, self-contained finite-length analysis

of multi-slot type frameless ALOHA. Due to computational complexity, the analysis is only

feasible for moderate number of users. This has been the motivation to extend the analysis

towards deriving continuous approximations of the expected ripple size (the number of slots

containing only one transmission) and its standard deviation. Based on these approximations,

we propose a method to estimate the PER with very low complexity. Finally, we exploit this

estimation of the packet error rate to propose a feedback based scheme in which the slot access

probability of frameless ALOHA is adapted dynamically.2 We investigate the performance of

the dynamic version of the scheme and show that it achieves a rather favorable performance,

which progressively improves with the number of feedback opportunities at the expense of an

increased computational burden.

The remainder of the paper is organized as follows. Section II provides a brief overview of

frameless ALOHA and describes the system model. Section III presents the finite-length analysis,

which can be used to obtain the exact probability mass function of the number of unresolved

users for a given duration of the contention period. In Section IV, a low complexity approximate

analysis of the frameless ALOHA decoder is presented, which is then used to estimate the

packet error rate. Section V shows how it is possible to largely improve the performance of

frameless ALOHA by introducing feedback and applying the analysis derived in this paper.

Finally, Section VI concludes the paper.

II. BACKGROUND AND SYSTEM MODEL

A. Background: Frameless ALOHA

Frameless ALOHA [11] can be regarded as a variant of slotted ALOHA with SIC that is

inspired by rateless codes [16]. The time in frameless ALOHA is divided into equal-length slots

and slots are organized into contention periods, whose length is a-priori not known. In order to

2Note that, although the paper ultimately proposes the approximate method in order to deal with the computational complexity,

the nature of the approximation is substantially different from the approximations employed in [14], [19]–[22]. Specifically, in

our case, the exact model and analysis of the problem are at hand, as shown in the paper, and one can, in principle, exactly assess

the quality of the approximation. In case of the methods employed in [14], [19]–[22], the analysis is from the very beginning

approximate due to the interdependencies among slot selections by the users.
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Fig. 1: An example of contention in Frameless ALOHA. All three users randomly and

independently decide on a slot basis whether to transmit or not. Slot 1 and slot 2 are collision

slots; the colliding transmissions can not be decoded and the access point (AP) stores the slots

(i.e., the signals observed in them) for later use. Slot 4 is a singleton slot and the AP decodes

a replica of the packet of user 2 from it. The AP also learns that a replica of packet of user 2

occurred in slot 1, and removes (cancels) it from the stored signal. Slot 1 now becomes singleton

and a replica of the packet of user 1 becomes decoded. In the same manner, the successive process

of replica removal and decoding of a new packet replica occurs in slot 2. As all three users have

become resolved, the AP terminates the contention period after slot 4, and starts a new one.

transmit a packet, users must first wait until a new contention period starts. Next, in each slot of

the contention period, every contending user transmits a replica of its packet with a predefined

slot-access probability. This happens independently from the transmission in other slots and

independently of the actions of any other contending user. Furthermore, the assumption is made

that each packet replica contains information about the slots in which the other replicas of the

same packet are placed. This could be accomplished by, e.g., enriching the packet header with

the seed of a random number generator and the transmit decisions are determined by the output

of this generator. Hence, when a packet replica is decoded, it provides information about the

timing of all other replicas. The access point (AP) is required to store the waveform of the whole

contention period and processes slots sequentially, leveraging SIC to remove the interference

caused by replicas of decoded packets. Since every packet contains a pointer to the location of

all its replicas, when a packet is successfully decoded, the receiver can determine the location

of all its replicas and remove them from the received waveform. This reduces the interference in

those slots containing replicas of the decoded packets and it may enable the receiver to decode

more packets within those slots. This process is repeated until no more packets can be decoded.
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Fig. 2: The clouds and the ripple.

This SIC process is not exclusive to frameless ALOHA, but common to all SIC-enabled slotted

ALOHA schemes. The peculiarity of frameless ALOHA is the fact that the contention period

(also known as frame) duration need not be a priori defined. The AP can trigger the SIC process

after the reception of every slot, and decide whether to end the contention period and start a new

one, or alternatively to let the contention period continue. This decision is made according to

a predefined criterion, e.g., whether the target throughput has been reached and/or a predefined

fraction of users have been resolved [15]. The start or termination of a contention period can be

signaled to users by means of a beacon signal transmitted by the access point [15]. An example

of contention period in frameless ALOHA is depicted in Fig. 1.

B. System Model

We denote by n the number of users contending for access to a single access point. The

duration of the contention period in slots is denoted by m; note that m is not a-priori fixed.

Furthermore, we shall assume that k different slot types exists. In particular, we assume that, out

of the total m slots, exactly m1,m2, ...mk are of type 1, 2, ..., k. Slots of type h, are characterized

by a slot access probability ph, given by ph = βh
n

, which is equal for all users. Hence, in a slot of

type h, every contending user will be active (send a packet) with probability ph, independently

from its transmission in others slots, and from the actions of the other users. It is easy to verify

that βh is the mean number of users that transmitted in a slot of type h, and, thus, equal to the

expected number of transmissions contained in the slot.



A collision channel model will be assumed. Hence, singleton slots, i.e., slots containing a single

transmission, are decodable with probability 1, and collision slots, i.e., slots containing two or

more transmissions, are not decodable with probability 1. Perfect interference cancellation will

be assumed, i.e., the removal of replicas from the slots leaves no residual transmission power.3

In order to model the successive interference cancellation process at the receiver, we introduce

the following definitions:

Definition 1 (Initial slot degree). The initial slot degree is the number of transmissions originally

occurring in the slot.

Definition 2 (Reduced slot degree). The reduced slot degree is the current number of unresolved

transmissions in the slot, over the iterations of the reception algorithm.

Definition 3 (Ripple). The ripple is the set of slots of reduced degree 1, and it is denoted by R.

The cardinality of the ripple, |R| is denoted by r and its associated random variable as R.

Definition 4 (h-th cloud). The h-th cloud, Ch, is the set of slots of type h with reduced degree

d > 1.

The cardinality of the h-th cloud, |Ch|, is denoted by ch and the corresponding random variable

as Ch.

Upon reception, the reduced degree of a slot is equal to its initial degree, since all users that

are active in the slot are unresolved. During the decoding process, the reduced degree of a slot is

decreased by 1 whenever one of the unresolved users which are active in the slot is decoded and

its interference is cancelled. Whenever the reduced degree of a slot in the h-th cloud becomes 1,

the slot leaves the h-th cloud and enters the ripple. Note, however, that when the reduced degree

of a slot decreases from, say, 3 to 2, then the slot remains in the h-th cloud. Similarly, when

the only unresolved user in a slot belonging to the ripple is resolved, the reduced degree of the

slot becomes 0 and the slot leaves the ripple. The slots of reduced degree 0 are not of further

use in the analysis, and are thus not considered explicitly. The transition of slots between the

clouds and ripple is depicted in Fig. 2.

In order to keep track of the temporal variation of the ripple and cloud sizes as the SIC process

progresses, we introduce a subscript u, which corresponds to the number of unresolved users.

Thus, initially we have u = n, and every time a user is resolved, u is decreased by 1 until we

have decoded all users, when u = 0. Thus, the ripple when u users are unresolved is denoted

3This assumption is reasonable for practical interference cancellation methods and moderate to high signal-to-noise ratios [8].



by Ru, its cardinality by ru and the random variable associated to it by Ru. Similarly, when u

users are unresolved, Ch,u, ch,u and Ch,u denote the h-th cloud, its cardinality and the associated

random variable, respectively.

Let us consider the example in Fig. 1, and assume that there are two slot types. Further, let

us assume that slot 1 and 3 are of type 1, whereas slot 2 and 4 are of type 2. Initially slots 1

and 2 have degree 2, hence they belong to the 1-st cloud C1 and 2-nd cloud C2, respectively.

Similarly, slot 4 is initially in the ripple, R, since it has a degree of one. In the first decoding

step, the only active user in slot 4, user 2, gets resolved and the replica transmitted by user 2 in

slot 1 is cancelled. As a consequence, slot 4 leaves the ripple, while slot 1 leaves the 1-st cloud

and enters the ripple. Hence, the 1-st cloud becomes empty. In the next step, user 1 is resolved,

slot 1 leaves the ripple, and slot 2 leaves the 2-nd cloud and enters the ripple. Thus, the 2-nd

cloud becomes empty. Finally, user 3 is resolved, and slot 2 leaves the ripple. In this case, all

3 users could be resolved.

Finally, we denote the slot degree distribution of slot type h by Ωh = {Ωh,1,Ωh,2, ...,Ωh,n},
h = 1, 2, ..., k, where Ωh,j is the probability that a slot of type h has initial degree j. It is

straightforward to verify that Ωh,j , j = 1, 2, ..., n, is given by

Ωh,j =

(
n

j

)
(ph)

j (1− ph)n−j =

(
n

j

)(
βh
n

)j (
1− βh

n

)n−j
. (1)

Hence, the probability that a slot of type h initially contains no transmission at all is Ωh,0, the

probability that it initially belongs to the ripple is Ωh,1, and the probability that it initially belongs

to the h-th cloud is (1− Ωh,0 − Ωh,1).

III. FINITE-LENGTH ANALYSIS

For the sake of convenience and without loss of accuracy, we shall assume that the receiver

works iteratively. If the ripple is empty, the receiver simply stops. Otherwise, it carries out the

following steps:

• Selects at random one of the slots in the ripple;

• Resolves the user that was active in that slot (i.e., decodes its packet);

• Cancels the interference contributed by the resolved user from all other slots in which its

packet replicas were transmitted. This may cause some slots to leave the cloud and enter

the ripple. Furthermore, some slots from the ripple may become degree zero and leave the



ripple. These last slots correspond to the slots in the ripple in which the resolved user was

active.

Thus, in each iteration, the reception algorithm either fails, or exactly one user gets resolved.

These assumptions are made to ease the analysis and have no impact on the performance.

Following the approach in [1], [24], [25], the iterative reception of frameless ALOHA with k

different slot types is represented as a finite state machine with state

Su := (C1,u, C2,u, · · · , Ck,u, Ru)

i.e., the state comprises the cardinalities from the first to k-th cloud and the ripple at the reception

step in which u users are unresolved. Each iteration of the reception algorithm corresponds to a

state transition. The following proposition establishes a recursion that can be used to determine

the state distribution.

Theorem 1. Given that the decoder is in state Su = (c1,u, c2,u, · · · , ck,u, ru), where u users are

unresolved, and ru > 0 (i.e., the ripple is not empty), the probability of the receiver transitioning

to state Pr{Su−1 = sssu−1}, where u− 1 users are unresolved, is given by

Pr{Su−1 = (sssu + www)|Su = sssu} =

(
ru − 1

au − 1

)(
1

u

)au−1

×

(
1− 1

u

)ru−au h=k∏
h=1

(
ch,u

bh,u

)
qh,u

bh,u(1− qh,u)ch,u−bh,u (2)

with

sssu = (c1,u, c2,u, · · · , ck,u, ru)

www = (−b1,u,−b2,u, · · · ,−bk,u,
k∑

h=1

bh,u − au)

and

qh,u =

n∑
d=k+1

Ωh,d
d
n

(
d−1
k

)(u−1
k )

(n−1
k )

( n−u
d−k−1)

(n−k−1
d−k−1)

1−
k∑

h=0

n∑
d=h

Ωh,d
(u
h)(

n−u
d−h)

(n
d)

(3)

for 0 ≤ bh,u ≤ ch,u, 1 ≤ au ≤ ru.

Proof: See Appendix A.

Recall that out of the m slots in the contention period, exactly m1,m2, ...mk belong to slot

type 1, 2, ..., k. We focus on slots of type h, of which there are mh. The initial state distribution



corresponds to a multinomial with mh experiments (slots) and three possible outcomes for each

experiment: the slot being in the cloud, the ripple or having degree 0, with respective probabilities

(1−Ωh,1−Ωh,0), Ωh,1 and Ωh,0. Denoting by Rh,n the random variable associated to the number

of slots of type h of reduced degree 1 when all n users are still undecoded, we have

Pr{(Ch,n = ch,n, Rh,n = rh,n} =
mh!

ch,n! rh,n! (mh − ch,n − rh,n)!
(4)

× (1− Ωh,1 − Ωh,0)
ch,n Ωh,1

rn Ωh,0
mh−ch,n−rh,n

for all non-negative ch,n, rh,n such that ch,n + rh,n ≤ mh.

If we observe that, when all n users are still undecoded, the total number of degree one slots

Rn is given by

Rn =
k∑

h=1

Rh,n

we can obtain from (4) the initial state distribution of the receiver.

By applying recursively Theorem 1 and initializing as described the finite state machine, one

obtains the state probabilities.

Let us denote by Pu the probability that exactly u users remain unresolved after a contention

period of m slots. Obviously, the event that exactly u users remain unresolved corresponds to

the event that the user resolution ends at stage u. The probability of this event is simply the

probability that the ripple is empty when u users are still unresolved. Formally we have

Pu = Pr{Ru = 0} =
∑
c1,u

∑
c2,u

. . .
∑
ck,u

Pr{Su = (c1,u, c2,u, · · · , ck,u, 0)} (5)

where the summations is taken over all possible values of ch,u, h = 1, ..., k.

Thus, by applying Theorem 1 and then using (5), one obtains the probability mass function

(PMF) of the number of unresolved users, given number of users n and the duration of the

contention period4 m.

The expected packet error rate P , i.e., the probability that a user is not resolved, can also be

derived from Theorem 1. In particular, we have

P =
n∑
u=1

u

n
Pu =

n∑
u=1

∑
c1,u

∑
c2,u

. . .
∑
ck,u

u

n
Pr{Su = (c1,u, c2,u, · · · , cc,u, 0)}. (6)

4Note that Pu implicitly depends on the initial state distribution that is obtained through (4), while (4) depends on the number

of slots of a given type m(h), h = 1, 2, ..., k, and thereby on the total number of slots m.
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Fig. 3: Examples of probability mass function of the number of undecoded users u for n = 50,

m = 60.

Hence, the expected throughput is simply the ratio of the expected number of resolved users

over the number of slots in the contention period. i.e.,

T =
n(1− P)

m
.

As an example, in Fig. 3 we show the PMF of the number of undecoded users u, i.e., Pu

for u = 1, ..., n, when n = 50 and m = 60, for frameless ALOHA with (i) a single slot type

with mean initial slot degree β = 2.68, and (ii) two slot types, with m1 = 50 slots of the

first type, m2 = 10 slots of the second type, with mean initial degrees β1 = 3 and β2 = 5,

respectively.5 The figure shows analytical results according to Theorem 1 and the outcome of

Monte Carlo simulations. It can be observed that the match is tight down to simulation error

(100,000 contention periods were simulated). In this particular example, we can observe how

Pu has a bimodal distribution. Thus, there are two points in the decoding process in which

the ripple has a higher probability of becoming empty. For the example in Fig. 3, the expected

packet error rates for the contention with one and two slot classes correspond to 0.264 and 0.555,

respectively.

5Recall that slot access probability of a type h is ph = βh/n.



IV. APPROXIMATION USING DIFFERENTIAL EQUATIONS

The analysis presented in Section III can provide the exact probability mass function of the

number of unresolved users, however, its evaluation is feasible only for a moderate number of

users and a small number of slot classes. In some situations, such as when running a computer

search to optimize a parameter, it is preferable to have an approximate analysis which can be

efficiently evaluated.

Having this in mind, in this section we derive continuous approximations of the first and second

moment of the ripple and clouds. These approximations are easy to evaluate and can be used

to obtain an insight in the decoding process. Furthermore, we show how these approximations

can be used to estimate the packet error rate.

A. State generating Functions

Our starting point to derive approximations of the distribution of the ripple and clouds is

writing down the state generating function of the frameless ALOHA decoder, which is simply

the probability generating function6 of the random variable associated to the state of the frameless

ALOHA decoder.

Following the works in [24], [26], [27], which analyze the iterative LT decoding process, let

us define the state generating function of the frameless ALOHA decoder as

Pu(x1, x2, . . . , xk, y) :=
∑
S

pc1,c2,...,ckr,u x1
c1 x2

c2 . . . xk
ck yr−1.

where S represents the set of all valid decoder states,

S =
{

(c1, c2, . . . , ck, r)|c1 ≥ 0, c2 ≥ 0, . . . ck ≥ 0, r ≥ 0,
k∑
i=1

ci + r ≤ m
}
. (7)

The following theorem establishes a recursion for the state generating function.

6The probability generating function is a representation of the probability mass function using power series.



Theorem 2. Consider a contention period with m slots of k different types and n contending

users, which in a slot of type h are active with probability ph. For u = n, n− 1, . . . , 1, we have

Pu(x1, x2, . . . , xk, y) = (8)

1

y

[
Pu

(
x1(1− q1,u) + yq1,u, x2(1− q2,u) + yq2,u, . . . , xk(1− qk,u) + yqk,u,

1

u
+ y

(
1− 1

u

))

− Pu
(
x1(1− q1,u), x2(1− q2,u), . . . , xk(1− qk,u),

1

u

)]
where qh,u is given by

qh,u =

n−u+2∑
d=2

Ωh,d d(d− 1) 1
n
u−1
n−1

(n−u
d−2)

(n−2
d−2)

1−
n−u+1∑
d=1

Ωh,d u
(n−u
d−1)
(n
d)
−

n−u∑
d=0

Ωh,d
(n−u

d )
(n
d)

and initial condition given by

Pn(x1, x2, . . . , xk, y) =
1

y

k∏
h=1

(
(1−Ωh,1−Ωh,0)x+Ωh,1y+Ωh,0

)m−((1−Ωh,1−Ωh,0)x+Ωh,0

)m
.

(9)

Proof: See Appendix B.

Theorem 2 can be used to derive the probability of decoding failure in a similar way as done

for the LT decoder in [26]. In particular, we have that the probability that the decoder fails when

exactly u users are undecoded is 1 − Pu(1), where 1 is the all one vector. This corresponds

to the probability that the ripple is empty. Hence, the probability that exactly u users remain

unresolved after a contention period of m slots, Pu, corresponds to:

Pu = 1− Pu(1).

B. First Moment

Denote by Ch(u) and R(u) the expected number of slots in the h-th cloud and the ripple,

respectively. We have

Ch(u) :=
∑
S

ch pc1,c2,...,ckr,u

and

R(u) :=
∑
S

(r− 1) pc1,c2,...,ckr,u



where we recall that S is the set of valid decoder states given in (7).

It is possible to express Ch(u) and R(u) as the first-order derivatives of the state generating

function (8) in Theorem 2, evaluated at 1, where 1 is the all one vector. In particular, we have

Ch(u) :=
∂

∂xh
Pu(x1, x2, . . . , xk, y)|1 (10)

and

R(u) :=
∂

∂y
Pu(x1, x2, . . . , xk, y)|1.

Let us first focus on Ch(u). From (10) we have

Ch(u− 1) = (1− qh,u)Ch(u)− (1− qh,u)
∂

∂xh
Pu

(
1− q1,u, . . . , 1− qk,u,

1

u

)
(11)

In [28] it was shown that, for r ≥ 6, the drift term (11) is O(1/n2), leading to

Ch(u− 1) = (1− qh,u)Ch(u) +O(1/n2). (12)

In a similar way, the expression for R(u) can be obtained differentiating both sides of the

recursion in (8) with respect to y and evaluating the expression at 1,

R(u− 1) =

(
1− 1

u

)
R(u) +

k∑
h=1

qh,uCh(u)− Pu(1) (13)

+ Pu(1− q1,u, 1− q2,u, . . . , 1− qk,u, 1/u).

We again make use of a result in [28], where it was shown that for r ≥ 5 the residual term

−Pu(1) + Pu(1− q1,u, 1− q2,u, . . . , 1− qk,u, 1/u)

can be approximated as −1 +O(1/n2).

Recall that in frameless ALOHA, due to the contention mechanism, in a slot of type h, users

are active with a probability ph. This induces a binomial slot degree distribution given by eq. (1).

If for a fixed contention period length, we look at the contention graph of frameless ALOHA

from the perspective of slots, this is equivalent to saying that slots choose their neighbours

uniformly at random and without replacement (a user can not be active multiple times in a slot).

Following [24], [27] the frameless ALOHA decoder can be approximated by introducing

the assumption that slots nodes choose their neighbors with replacement in the bipartite graph

representation of the contention process, i.e., the same user node can be chosen several times

in the same slot. If a slot node has an odd number of edges connected to a user node, the user



node will be active in that slot. If the number of edges is even {0, 2, . . .}, the user is not active

in that slot. This approximation results in a slight decrease of the slot access probability ph.

Nevertheless, intuitively the approximation becomes tighter as the number of users n increases,

since it becomes less and less likely that a slot chooses several times the same user.

Under the replacement assumption, the expression of qh,u becomes:

qh,u =
1

n
fh

(u
n

)
− 1

n2
gh

(u
n

)
=

1

n
fh

(u
n

)
+O(1/n2) (14)

where

fh(x) =
xΩ′′h(1− x)

1− xΩ′h(1− x)− Ωh(1− x)
,

gh(x) =
fh(x)

x
,

and Ωh(x) is the generator polynomial of the slot degree distribution of slots of type h,

Ωh(x) =
∑
d

Ωh,d x
d.

From (12) and (14) we obtain the following difference equation for the h-th cloud

Ch(u)− Ch(u− 1) = fh

(u
n

)
Ch(u) +O(1/n2) (15)

Similarly, from (13) and (14) we obtain

R(u)−R(u− 1) =
1

u
R(u)−

k∑
h=1

fh

(u
n

)
Ch(u) + 1 +O(1/n2) (16)

Let us now define the expected normalized size of the clouds and ripple respectively as

Ch(ξ) := Ch(u)/m

and

R(ξ) := R(u)/m.

Making use of these definitions, and assuming m = (1 + ε)n, we can divide both sides of (15)

by m to obtain

Ch(ξ)− Ch(ξ − 1/n) = fh(ξ)Ch(ξ) +O(1/n3)

and the same can be done for (16) leading to

R(ξ)−R(ξ − 1/n) =
1

ξn
R(ξ)−

k∑
h=1

fh(ξ)Ch(ξ) +
1

n(1 + ε)
+O(1/n3).



As shown in [28], it is possible to approximate Ch(ξ) R(ξ) respectively by Ĉh(ξ) R̂(ξ), which

are the solutions to the following differential equations

Ĉ ′h(x) = fh(x)Ĉh(x) (17)

and

R̂′(x) =
R̂(x)

x
−

k∑
h=1

fh(x)Ĉh(x) +
1

1 + ε
. (18)

These approximations are tight during almost all the decoding process except for the last few

users that are decoded. In particular, it was shown in [28] that as long as u is a constant fraction

of n, we have

Ch(u)/m = Ĉh(u/k) +O(1/m) (19)

and

R(u)/m = R̂(u/k) +O(1/m). (20)

Thus, the approximations become tighter for increasing m.

Finally, the expression for Ĉh(x) and R̂(x) are obtained by solving the differential equations

(17) and (18), giving rise to the following solutions [27]

Ĉh(x) = c̊h
(
1− xΩ′h(1− x)− Ωh(1− x)

)
R̂(x) = x

(
k∑

h=1

c̊hΩ
′
h(1− x) +

n

m
log(x) + r̊

)
where the values of the parameters c̊h and r̊ are determined by the initial conditions to the

differential equations. In particular, for the clouds we have

Ch(n) =
∑
S

ch pc1,c2,...,ckr,n = mh (1− Ωh,0 − Ωh,1)

(
1−

k∏
l=1

(
1− Ωl,1

)mh

)
.

Hence, by imposing Ĉh(x = 1) = Ch(n)/m, we obtain

c̊h =
mh

m

(
1−

k∏
l=1

(
1− Ωl,1

)ml

)
.

For the ripple we have

R(n) =
∑
S

(r− 1) pc1,c2,...,ckr,n =
k∑

h=1

mhΩh,1 − 1 +
k∏

h=1

(
1− Ωh,1

)mh .

Thus, imposing R̂(x = 1) = R(n)/m yields

r̊ =
k∑

h=1

mh

m
Ωh,1

k∏
h=1

(
1− Ωh,1

)mh − 1

m

(
1−

k∏
h=1

(
1− Ωh,1

)mh

)
.



C. Second Moment

In the following, we shall focus on the variance of the ripple, σR(u). By definition, we have

σR(u) =
∑
S

(r − 1)2pc1,c2,...,ckr,u −R(u)2.

Experimentally, we made the observation that the distribution of the ripple Ru is approximately

binomial (see Fig. 6). Under the assumption that Ru is binomially distributed with parameters m

and ρ = R(u)/m, a continuous approximation of the variance of the normalized ripple σ2
R(u)/m2

is given by

σ̂2
R(x) =

ρ(1− ρ)m

m2
=
ρ(1− ρ)

m
.

D. Numerical Results

Fig. 4 shows the expected normalized ripple and clouds sizes, as well as the normalized

standard deviation of the ripple and their continuous approximation. The setting considered is

n = 400 users, k = 2 slot types, m1 = m2 = 380 slots, β1 = 2.5 and β2 = 3. We can observe

how the continuous approximation R̂(x) is very close to the actual expected normalized ripple

size R(u)/m. There exists also a tight match between the normalized clouds C1(u)/m and

C2(u)/m and their continuous approximations Ĉ1(c) and Ĉ2(x). We can also observe how the

match between σR(u)/m and σ̂R(x) is tight.

Fig. 5 shows the absolute approximation error for R, σ2
R, C1 and C2 as a function of n for

a setting with k = 2 slot types, β1 = 2.5 and β2 = 3, m1/n = m2/n = 19/n. In particular,

every subfigure shows the error at 4 different decoding instants (u = n/4, n/2, 3n/4, n). All

curves in the figure were obtained applying Theorem 1. We can observe how in all cases the

approximation error decreases as the number of users n increases. The approximation error for

the expected ripple and cloud sizes decreases approximately as 1/n, which is in line with the

error terms in (19) and (20). It is also remarkable how the approximation error for the ripple

variance σ2
R also decreases as the number of users n increases, although this approximation was

heuristically derived.

E. Approximation to the PER

We shall now see how the continuous approximations derived in this section can be used in

order to estimate the expected packet error rate, P, i.e., the probability that a user is not resolved.
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Fig. 4: Normalized expected ripple and clouds, as well as the normalized standard deviation of the

ripple and their continuous approximations for n = 400 users, k = 2 slot types, m1 = m2 = 380

slots, β1 = 2.5 and β2 = 3.

In particular, we shall make use of the continuous approximations of the expected ripple R̂(x)

and of its standard deviation σ̂R(x).

Fig. 6 shows the distribution of the ripple for n = 400 users, m1 = m2 = 380, β1 = 2.5 and

β2 = 3 at 4 different instants during the decoding process. In particular, the figure shows the

probability mass function of the ripple cardinality when u users are undecoded conditioned to

the decoding process not failing for u′ > u. That is,

Pr{Ru = ru}
1−∑m

u′=u+1 Pu′
=

Pr{Ru = ru}∑m
ru=0 Pr{Ru = ru}

.

Moreover, the figure also shows the probability density function of Gaussian random variables

with mean mR̂(x) and standard deviation
√
m∗ σ̂R(x). We make several observations in relation

to this figure. The first is that the ripple cardinality has a bell shaped distribution across the

whole decoding process, which resembles a Gaussian distribution. The second is that a Gaussian

curve with mean mR̂(x) and standard deviation
√
m ∗ σ̂R(x) is reasonably close to the actual

distribution of the ripple. In particular, we can observe how the Gaussian approximation is tight

at the beginning and the end of the decoding process, but it is not as tight in the middle of

the decoding process, owing to the aforementioned overestimation of the standard deviation of

the ripple size. We would also like to remark that, while random variable Ru is discrete, we are

approximating it by a continuous (Gaussian) random variable.
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Fig. 5: Absolute approximation error for k = 2 slot types, β1 = 2.5 and β2 = 3,

m1/n = m2/n = 19/n as a function of n. The different curves represent different decoding

instants (u = n/4, n/2, 3n/4, n). Subfigures (a), (b), (c) and (d) represent the approximation

error for R, σ2
R, C1 and C2, respectively.

Based on this observation, we can approximate the probability that exactly u users remain

unresolved after the end of the contention period, Pu, as

P̂u = Q

(
R̂(u/m)

σ̂R(u/m)

)(
1−

n∑
l=u+1

P̂l

)
(21)

for u < n and

P̂n = Q

(
R̂(n/m)

σ̂R(n/m)

)
for u = n, where Q is the tail distribution function of the standard normal distribution. The first

term in (21) corresponds to the probability that a Gaussian distribution with mean R̂(u/m) and
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Fig. 6: Probability mass function of the ripple cardinality for n = 400 users, k = 2 slot types,

m1 = m2 = 380 slots, β1 = 2.5 and β2 = 3 at different decoding instants. The solid line shows

a Gaussian distribution with mean mR̂(x) and standard deviation
√
m ∗ σ̂R(x)).

standard deviation σ̂R(u/m) takes a negative value. Hence, this first term corresponds to the

probability that our estimation of the ripple is negative. The second term in (21) implies we are

conditioning to the decoding process in the previous decoding stages (n down to u + 1) being

successful. An alternative way of interpreting this is that, according to our definition of Pu, we

have
∑n

u=0 Pu = 1 and by introducing the second term we are enforcing
∑n

u=0 P̂u = 1. Thus,

we can approximate the expected packet error rate P as

P̂ =
n∑
u=0

u/n P̂u. (22)
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Fig. 7: Packet error rate P and its approximation P̂ as a function of m/n for n = 400 users,

k = 2 slot types, m1 = m2 = m/2, β1 = 2.5 and β2 = 3.

Fig. 7 show the packet error rate P as well as its approximation P̂ as a function of m/n, for

n = 400 users, k = 2 slot types, m1 = m2 = m/2, β1 = 2.5 and β2 = 3. The packet error rate

P has been obtained using (6) and applying Theorem 1, which is exact, whereas the results for

P̂ have been obtained using (22). We can observe how the approximation of the packet error

rate is tight. The fact that the estimation of the packet error rate is tight despite the fact that

the standard deviation of the ripple is overestimated in the middle of the decoding process can

be attributed to the fact that the dominating error event is that decoding stops at the end of the

decoding process (when almost all users have been recovered). As we saw in Fig. 6, the estimate

of the standard deviation of the ripple in this regime (at the end of the decoding process) is

tight.

V. DYNAMIC FEEDBACK

In this section show how the approximation of the analysis presented in this paper can be used

together with feedback in order to improve the performance of frameless ALOHA.7 We assume

7The idea of using feedback in frameless ALOHA to adapt the slot access probability has also been explored in [18], where

the slot access probability is adapted after every slot in order to keep the expected number of unresolved active users per slot

constant. However, the setting considered in [18] is different to the one considered in this paper, since it assumes that collisions

of size two can be detected and resolved by employing ZigZag decoding.
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Fig. 8: An example of contention in frameless ALOHA with dynamic feedback with four

users, where the contention subperiods have length t = 3 slots. In this example the slot access

probability for the first contention subperiod, p1, happens to be set too high. As a consequence,

all the slots in the first contention subperiod present collisions. After the first t = 3 slots the

AP notifies the users to use p2 in the next contention subperiod, which spans slots 4, 5 and

6. However, after the second contention subperiod still no users can be decoded. The AP then

notifies the users of the slot access probability to be used in the next contention subperiod, p3.

Finally, in the third contention subperiod a singleton slot is received, which allows the AP to

decode all users leveraging on SIC. The AP notifies all users that a new contention period starts.

that a perfect and zero-delay feedback channel exists from the access point to the terminals.

This channel is used to notify users of the value of the slot access probability which has to be

used in upcoming slots. We also assume that the contention period is divided into subperiods

of duration t slots, as depicted in Fig. 8. All slots belonging to the same subperiod are of the

same type, i.e., they are characterized by the same slot access probability. At the end of the

k-th subperiod (after k · t slots have elapsed), the AP runs the decoding algorithm to decode

as many users as possible (until the ripple is empty). At this stage, denote by u the number of

users which are yet unresolved, and by Su the decoder state, with

Su := (c1,u, c2,u, · · · , ck,u, ru = 0)

where ci,u is the number of slots in the i-th cloud. Next, based on the number of unresolved

users u, the decoder state Su, and using as latency target a contention period duration of mT

slots, the decoder computes the slot access probability to be used in the next subperiod, pk+1,

and signals its to the users.

In particular, in order to determine the value of pk+1 to be used, the AP assumes that the



remaining slots up to mT will be of class k + 1. Thus, it sets mk+1 = mT − k t. The AP now

needs to determine the initial state of the frameless ALOHA decoder, given mk+1, u and Su.

The first step is determining the slot degree distribution of the slots of class k+1, Ω′k+1,j , taking

into account that u out of n users have already been decoded. Let us denote by I the random

variable associated to the number of users which are active in a slot and by i its realization. Let

us also denote by J the random variable associated to the number of unresolved users which are

active in a slot and by j its realization. We have

Ω′k+1,j = Pr{J = j} =
u∑

i=j

Pr{I = i}Pr{J = j|I = i} (23)

=
u∑

i=j

(
n

i

)
(pk+1)

i (1− pk+1)
n−i
(
i

j

)(u
n

)j (
1− u

n

)i−j
.

Finally, the initial state distribution of the frameless ALOHA decoder, Su′, is given by

Pr{Su′ = c1,u, c2,u, · · · , ck+1,u, ru} =
mk+1!

ck+1,u! ru! (mk+1 − ck+1,n − ru)!

× (1− Ωk+1,1 − Ωk+1,0)
ck+1,u Ωk+1,1

ru Ωk+1,0
mk+1−ck+1,u−ru

for C1,u = c1,u, C2,u = c2,u, . . . , Ck,u = ck,u, and for all non-negative ck+1,u, rk+1,u such that

ck+1,u + rk+1,u ≤ mk+1, with mk+1 = mT − k t. Otherwise, we have

Pr{Su′ = c1,u, c2,u, · · · , ck+1,u, ru} = 0.

Hence, we initialize the C1,u, C2,u . . . , Ck,u according to the decoder state at the AP (which is de-

terministically known), and Ck+1,u and Ru are initialized according to a multinomial distribution,

similarly as in (4).

Thus, pk+1 is obtained formally as

pk+1 = arg min
pk+1

P
(
n,mT , u,Ω

′
k+1,j, Su

′)
where we have stressed that P is a function of n , mT , u, Ω′l,j and Su

′. Note that Ω′l,j depends

implicitly on pk+1 through (23), and that P is obtained by using Theorem 1. Hence, it is in

principle possible to run a computer search to find the value of pk+1 which minimizes the packet

error rate. However, running such a search is computationally complex because it would require



evaluating Theorem 1 multiple times8. Instead, we propose minimizing the approximation of the

packet error rate P̂ derived in Section IV-E. This approach is suboptimal given the fact that we

are minimizing an approximation of P, but it makes the search for pk+1 much faster. Thus, we

obtain pk+1 as

pk+1 = arg min
pk+1

P̂
(
n,mT , u,Ω

′
k+1,j, Su

′)
where we remark again that that Ω′l,j depends implicitly on pk+1 through (23).

Fig. 9 shows the packet error rate P as a function of the duration of the contention period

in slots m, for a system with n = 50 users. Five curves are shown. The first one shows the

performance of a static setting with β = 2.94, which is the value that minimizes P for m = 100.

This first curve was obtained from (6) after applying the finite length analysis in Theorem 1

for the particular case with only one slot type. The figure also shows the performance of a

dynamic frameless ALOHA scheme in which β is changed dynamically every t slots in order to

minimize P̂ at mT = 100. In particular, four different values of t are considered, 5, 10, 20 and

50 slots. The corresponding curves were obtained by means of simulations: for every value of

m, the simulation run until 250 unsuccessful contention periods had been collected (a contention

period is successful only if all n users are correctly decoded). Finally, the figure shows also the

performance of an IRSA scheme with degree distribution ∆(x) = 0.25x2 +0.6x3 +0.15x8, taken

from [8]. We can observe how the introduction of dynamic feedback decreases considerably the

packet error rate. Furthermore, as one would expect, the performance of the dynamic scheme

improves as t decreases, that is, as the number of feedback messages increases. The curve for

t = 20 is particularly interesting, since one can observe how P improves after every feedback

and then it degrades as time elapses; the effect is clearly visible around m = 80. In the simulated

setting, it seems that sending feedback every t = 10 slots may represent a good trade-off in terms

of performance vs number of feedback messages sent. Finally, if we compare the performance

of IRSA to that of frameless ALOHA, we can observe that, for the latency target of mT = 100,

IRSA outperforms static frameless ALOHA, as well as dynamic frameless ALOHA with t = 50,

which only uses one feedback message. However, if we allow for more feedback messages,

8If we let m/n be a constant, the number of unresolved users u be a constant fraction of n and the number of slot classes k

be a constant, we have that the number of possible decoder states when u users are unresolved is O(nk+1). Furthermore, from

a given decoder state when u users are unresolved, the number to states that the decoder can transit to is also O(nk+1). This

is a clear indicator that the complexity of the analysis does not scale well with the number of users.
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Fig. 9: Packet error rate P as a function of m for n = 50 users frameless ALOHA in a static

and dynamic setting as well as for IRSA. Static frameless ALOHA uses β = 2.94. The different

curves for dynamic frameless ALOHA represent settings in which β is changed dynamically

every 5, 10, 20 and 50 slots such that the P̂ at the end of contention-period is minimized, and

the target contention period duration is set to mT = 100 slots. For IRSA the degree distribution

used is ∆(x) = 0.25x2 + 0.6x3 + 0.15x8, taken from [8].

dynamic frameless ALOHA outperforms IRSA. For example, dynamic frameless ALOHA with

t = 10 outperforms IRSA by more than two orders of magnitude.

The results in Fig. 9 indicate how the introduction of feedback can greatly improve the per-

formance of frameless ALOHA. Additional improvements of the performance could be achieved

by assuming a more capable receiver, such as one that can distinguish collisions of size 2 [18]

or a receiver which can decode collisions of size ` > 1 [29].

VI. CONCLUSIONS

In this paper we have presented a finite length analysis of multi-slot type frameless ALOHA.

The analysis is exact, but its evaluation is computationally expensive and only feasible for

moderate number of users. The analysis has been extended to derive continuous approximations

of the expected ripple size and its standard deviation. The approximations have been proven to

be tight and have also been compared with simulation results. It has also been shown how these

approximations can be used to accurately estimate the packet error rate in frameless ALOHA,

making it possible to analyze the performance of frameless ALOHA for large contention periods.



Ru Ch,u u unresolved users

Ru−1 Ch,u−1 u− 1 unresolved users

Au
Bh,u

Fig. 10: Evolution of the ripple and the h-th cloud through decoding and removal of replicas.

Resolution of a single user, i.e., decoding a replica of its packet and removal of the other replicas,

causes Au slots to leave the ripple and Bh,u slots to leave the h-th cloud and enter the ripple.

Finally, it has been shown how the performance of frameless ALOHA can be substantially

improved by introducing feedback and adapting the slot access probability dynamically using

the approximate analysis.

APPENDIX A

PROOF OF THEOREM 1

Let us start by remarking that, given the fact that every users decides whether to transmit or

not in a slot independently from other users, all users are independent and statistically identical.

Furthermore, all slots are mutually independent. Thus, if we look at the decoder when u users

are unresolved, the set of unresolved users is obtained by selecting u users at random among

the total of n users. In particular, the proof analyzes the variation of the clouds and ripple sizes

in the transition from u to u − 1 unresolved users. Since we assume ru > 0, in the transition

from u to u− 1 unresolved users, exactly 1 user is resolved. All the edges coming out from the

resolved user are erased from the decoding graph. As a consequence, some slots might leave

the cloud and enter the ripple if their reduced degree becomes one, and other slots will leave

the ripple if their reduced degree decreases from 1 to 0.

Let us first focus of the number of slots leaving Ch,u and entering Ru−1 in the transition,

denoted by bh,u and with associated random variable given by Bh,u. Due to the nature of frameless

ALOHA, in the decoding graph the neighbor users of a slot are selected uniformly at random

and without replacement9. Thus, random variable Bh,u is binomially distributed with parameters

9In fact, it is users who choose their neighbor slots uniformly at random and without replacement.



ch,u and qh,u, being qh,u the probability of a generic slot y of type h leaving Ch,u to enter Ru−1,

qh,u := Pr{y ∈ Ru−1|y ∈ Ch,u} =
Pr{y ∈ Ru−1 , y ∈ Ch,u}

Pr{y ∈ Ch,u}
. (24)

We shall first focus on the numerator of (24) and we shall condition it to the slot having degree

d, Pr{y ∈ Ru−1 , y ∈ Ch,u|deg(y) = d}. This corresponds to the probability that one of the d

edges of slot y is connected to the user being resolved at the transition, one edge is connected

to one of the u − 1 unresolved users after the transition and the remaining d − 2 edges are

connected to the n − u resolved users before the transition. In other words, slot y must have

reduced degree 2 before the transition and reduced degree 1 after the transition. It is easy to see

how this probability, conditioned to deg(y) = d, corresponds to

Pr{y ∈ Ru−1 , y ∈ Ch,u|deg(y) = d} =
d

n
(d− 1)

u− 1

n− 1

(
n−u
d−2

)(
n−2
d−2

) (25)

for d ≥ 2. In the complementary case, d < 2, it is obvious that the slot cannot enter the ripple.

Thus, for d < 2 we have

Pr{y ∈ Ru−1 , y ∈ Ch,u|deg(y) = d} = 0.

Let us now concentrate on the denominator of (24), that corresponds to the probability that a

slot y is in the h-th cloud when u users are still unresolved. This is equivalent to the probability

of slot y not being in the ripple or having reduced degree zero (all edges connected to resolved

users). Hence, we have

Pr{y ∈ Ch,u} = 1−
n∑
d=1

Ωh,du

(
n−u
d−1

)(
n
d

) − n∑
d=0

Ωh,d

(
n−u
d

)(
n
d

) (26)

where the first summation on the right hand side corresponds to the probability of a slot being

the ripple, and the second summation corresponds to the probability of a slot having reduced

degree zero. Inserting (25) and (26) in (24), the expression of qh,u in (3) is obtained, and the

variation in size of the clouds is determined, i.e., the PMFs of the random variables Bh,u are

obtained.

We focus next on the variation in size of the ripple in the transition from u to u−1 unresolved

users. In this transition, some slots enter the ripple (in total
∑

h bh,u slots), but there are also slots

leaving the ripple. Let us denote by au the number of slots leaving the ripple in the transition

from u to u − 1 unresolved users, and let us refer to the associated random variable as Au.



Assuming that the ripple is not empty10, the decoder will select uniformly at random one slot

from the ripple, that we denote as y. The only neighbour of y, c will get resolved and all slots

in the ripple that are connected to c will leave the ripple in the transition. Hence, slot y will

leave the ripple, and, additionally, the remaining ru − 1 slots in the ripple will leave the ripple

independently with probability 1/u, which is the probability that they have c as neighbour. Thus,

the probability mass function of Au is given by

Pr{Au = au|Ru = ru} =

(
ru − 1

au − 1

)(
1

u

)au−1(
1− 1

u

)ru−au
.

Note that, by definition, we have that ru−1 = ru − au +
∑k

h=1 bh,u and ch,u−1 = ch,u − bh,u.

Hence, the probability of transiting from state sssu = (c1,u, c2,u, · · · , ck,u, ru) to state sssu+www, with

www given by

www = (−b1,u,−b2,u, · · · ,−bk,u,
k∑

h=1

bh,u − au)

corresponds to

Pr{B1,u = b1,u, B2,u = b2,u, · · · , Bk,u = bk,u, Au = au}. (27)

The proof is finalized by observing that the joint distribution in (27), due to independence of

Bh,u, h = 1, 2, · · · , k, and Au, is obtained as the product of the PMFs of the individual random

variables, which yields (2). �

APPENDIX B

PROOF OF THEOREM 2

We provide a proof only for the case of k = 2 slot types. The proof follows closely [26,

Theorem 1]. By definition, the state generating function of the frameless ALOHA decoder when

u− 1 users are undecoded can be written as

Pu−1(x1, x2, y) =
∑
c′1≥0
c′2≥0
r′≥1

pc′1,c′2,r′,u−1x1
c′1 x2

c′2 yr
′−1 (28)

Our objective is expressing Pu−1(x1, x2, y) as a function of Pu(x1, x2, y). For this purpose, we

must consider the contribution of all previous states sssu = (c1,u, c2,u, ru) to the future state

sssu−1 = (c′1,u−1, c
′
2,u−1, r

′
u−1). In the remainder of the proof, we shall drop the subscript u for the

10If the ripple is empty, ru = 0, no slots can leave the ripple. Moreover, decoding stops, so there is no transition.



sake of readability. As done in the proof of Theorem 1, we denote by bh the number of slots

leaving Ch,u in the transition from u to u− 1 undecoded slots. Furthermore, we denote by a the

number of slots leaving the ripple in the transition. Obviously, we have

c1 = c′1 + b1

c2 = c′2 + b2

r = r′ + a− b1 − b2.

Thus, we can rewrite (28) as follows

Pu−1(x1, x2, y) =
1

y

∑
c1≥0
c2≥0
r≥1

pc1,c2,r,u
∑

1≤a≤r
0≤b1≤c1
0≤b2≤c2

r−a+b1+b2>0

x1
c1−b1 x2

c2−b2 yr−a+b1+b2

×
(
c1

b1

)
qb11,u(1− q1,u)c1−b1

(
c2

b2

)
qb22,u(1− q2,u)c2−b2

(
r− 1

a− 1

)(
1

u

)a−1(
1− 1

u

)r−a

.

By grouping different terms together, we obtain

Pu−1(x1, x2, y) =
1

y

∑
c1≥0
c2≥0
r≥1

pc1,c2,r,u
∑

1≤a≤r
0≤b1≤c1
0≤b2≤c2

r−a+b1+b2>0

(
c1

b1

)
(y q1,u)

b1 (x1(1− q1,u))c1−b1

×
(
c2

b2

)
(y q2,u)

b2 (x2(1− q2,u))c2−b2
(
r− 1

a− 1

)(
1

u

)a−1(
y

(
1− 1

u

))r−a

.

We now take out the term a = r from the summation. In case that a = r, b1 and b2 cannot be

both zero at the same time. Thus, we have

Pu−1(x1, x2, y) =
1

y

∑
c1≥0
c2≥0
r≥1

pc1,c2,r,u

( ∑
1≤a<r

0≤b1≤c1
0≤b2≤c2

(
c1

b1

)
(y q1,u)

b1 (x1(1− q1,u))c1−b1 (29)

×
(
c2

b2

)
(y q2,u)

b2 (x2(1− q2,u))c2−b2
(
r− 1

a− 1

)(
1

u

)a−1(
y

(
1− 1

u

))r−a
)

+

(
1

u

)r−1
( ∑

0≤b1≤c1
1≤b2≤c2

(
c1

b1

)
(y q1,u)

b1 (x1(1− q1,u))c1−b1

×
(
c2

b2

)
(y q2,u)

b2 (x2(1− q2,u))c2−b2

+ (x2(1− q2,u))c2
∑

1≤b1≤c1

(
c1

b1

)
(y q1,u)

b1 (x1(1− q1,u))c1−b1
)



By using in (29) the results of the following two finite sums
c1∑

b1=0

(
c1

b1

)
(y q1,u)

b1 (x1(1− q1,u))c1−b1 = (y q1,u + x1(1− q1,u))c1

r−1∑
a=1

(
r− 1

a− 1

)(
1

u

)a−1(
y

(
1− 1

u

))r−a

=

(
1

u
+ y(1− 1

u
)

)r−1

−
(

1

u

)r−1

after some manipulation, we obtain

Pu−1(x1, x2, y) = (y q1,u + x1(1− q1,u))c1(y q2,u + x2(1− q2,u))c2

×
(

1

u
+ y(1− 1

u
)

)r−1

−
(

1

u

)r−1

(x1(1− q1,u))c1 (x2(1− q2,u))c2

which yields (8).

In order to complete the proof, we need to provide a proof for (9), which specifies the initial

condition of the recursive expression given in (8). By definition, pc1,c2,r,n is simply the probability

that before decoding starts (u = n) we have exactly c1 slots in the first cloud, c2 slots in the

second cloud and r slots in the ripple. Let us decompose r as r = r1 + r2, , with r1 ≥ 0

and r2 ≥ 0, where r1 and r2 represent the number of slots of type 1 and type 2 in the ripple,

respectively. We have

Pn(x1, x2, y) =
∑
S

pc1,c2,r,nx1
c1x2

c2yr−1 =
∑
S′
pc1,c2,r1+r2,nx1

c1x2
c2yr1+r2−1 (30)

with

S ′ =
{

(c1, c2, r1, r2)|c1 ≥ 0, c2 ≥ 0, r1 ≥ 0, r2 ≥ 0, r1 + r2 ≥ 1,

c1 + r1 ≤ m1, c2 + r2 ≤ m2

}
where we remark that though r1 and r2 can take value 0, they cannot do so at the same time,

since otherwise decoding would not be able to start.

From (4), we have that

pc1,c2,r1+r2,n =
2∏

h=1

mh!

ch! rh! (mh − ch − rh)!
(1− Ωh,1 − Ωh,0)

ch Ωh,1
rn Ωh,0

mh−ch−rh . (31)

If we replace this expression into the right hand side of (30), compute the summation over the

set of all valid states S ′ given in (31), and make use of the multinomial Theorem, one obtains

(9). This completes the proof for k = 2. The proof for generic k uses the same reasoning and

follows exactly the same steps. �



APPENDIX C

INITIAL CONDITIONS FOR DYNAMIC FEEDBACK

Let us first consider the clouds, Ch(u). For h ≤ k

Ch(u) =
∑
S

ch pc1,c2,...,ckr,n = ch,u
(
1−

(
1− Ωk+1,1

)mk+1
)

thus, we have

c̊h =
ch,u

m′

(
1−

(
1− Ωk+1,1

)mk+1
)

1− Ωh,1 − Ωh,0

.

For h = k + 1 we have

Ch(u) = mh (1− Ωh,0 − Ωh,1)
(
1−

(
1− Ωh,1

)mh
)

which yields

c̊h =
mh

m

(
1−

(
1− Ωh,1

)mh
)
.

For the ripple we have

R(u) =
∑
S

(r− 1) pc1,c2,...,ckr,n =
k∑

h=1

ch,u +mk+1Ωk+1,1 − 1 +
(
1− Ωk+1,1

)mk+1

hence, imposing R̂(x = 1) = R(u)/m′ yields

r̊ =
k∑

h=1

ch,u

m′

(
1−

(
1−

(
1− Ωk+1,1

)mk+1
)

1− Ωh,1 − Ωh,0

)
+
mk+1

m′
Ωk+1,1 −

1

m′
(
1−

(
1− Ωk+1,1

)mk+1
)
.
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