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Abstract

Motivated by the demand of reliable and low latency communications, we employ tools from

information theory, stochastic processes and queueing theory, in order to provide a comprehensive

framework regarding the analysis of a Time Division Multiple Access (TDMA) network with bursty

traffic, in the finite blocklength regime. Specifically, we re-examine the stability conditions of a non-

cooperative TDMA multiple access channel, evaluate the optimal throughput, and identify the optimal

trade-off between data packet size and latency. The evaluation is performed both numerically and via

the proposed approximations that result in closed form expressions. Then, we examine the stability

conditions and the performance of the Multiple Access Relay Channel with TDMA scheduling, subject

to finite blocklength constraints, by applying a cognitive cooperation protocol that assumes relaying is

enabled when sources are idle. Finally, we propose the novel Batch-And-Forward (BAF) strategy, that

can significantly enhance the performance of cooperative networks in the finite blocklength regime, as

well as reduce the requirement in metadata. The BAF strategy is quite versatile, thus, it can be embedded

in existing cooperative protocols, without imposing additional complexity on the overall scheme.
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I. INTRODUCTION

Information theory paved the way for the development of communication theory, and evolved

over the years to include a wide range of communication applications, such as, compression,

coding, and statistics. However, it has fallen short of leaving its distinct mark in the field of

communication networks [3], [4], and this confinement is mainly attributed to the asymptotic

nature of Information theory. Shannon’s definition of channel’s capacity requires infinitely large

blocklength in order to guarantee arbitrary small probability of error, for all rates below the

channel’s capacity. Thus, classical information measures cannot handle realistic scenarios where

the blocklength is finite. Finite blocklength is also inextricably linked with the requirement

of Ultra-Reliable Low-Latency Communications (URLLC) [5], which emerged to support a

vast family of applications that require the simultaneous consideration of latency and reliability

criteria, and is a key factor for many vertical markets, including, autonomous vehicles, remote

healthcare and mission critical communications. The majority of these applications will be

supported by current and future wireless communication networks.

Fortunately, recent results [6]–[8] provide valuable tools regarding the analysis of communication

networks in the finite blocklength regime. These works, among other results provide attractive

approximation for the finite blocklength rate R∗(n,ε), at fixed blocklength n, and fixed probability

of error ε . These results were applied to address the requirement of low latency from various

perspectives, such as, the characterization of finite blocklength rates for various channels [9],

[10], the performance evaluation of short length codes [11], and the performance analysis of

communication protocols [12]. On topics related to cooperation in multiple access channels,

though there is an extensive literature that spans from the performance analysis [13] to protocol

design [14], [15], and from relay selection [16] to full-duplex cooperative relaying [17], the

vast majority of the existing literature regards asymptotic, in terms of blocklength, analysis.

Thus, though these techniques can be employed in the context of finite blocklength, they do not

necessarily perform in an optimal manner.

The purpose of this work is twofold. First, to provide a comprehensive framework regarding

the performance analysis of Time Division Multiple Access (TDMA) channels, in the finite

blocklength regime. Towards this direction, we apply tools from information theory, stochastic

processes and queueing theory, to study the performance of the network, in terms of stability
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and optimal throughput, in the finite blocklength regime. Second, to propose schemes that utilize

the potentials of finite blocklength analysis in order to overcome possible limitations of existing

schemes, and enhance the performance of the network.

We begin our analysis by revisiting the stability of the non cooperative Time Division Multiple

Access (TDMA) network, subject to finite blocklength constraints, and provide expressions for

the optimal throughput of the overall network. The analytical evaluation of the throughput in-

volves the Additive White Gaussian Noise (AWGN) Q-function, and since it cannot be integrated

in closed form, we provide approximations of the AWGN Q-function in order (i) to evaluate

closed form expressions for the throughput and (ii) to identify the trade-off between the size of

the data, k, and the channel’s blocklength, n. Subsequently, we extend the results regarding the

stability conditions and the optimal throughput to the case of Multiple Access Relay Channel

(MARC) with TDMA scheduling. The selected cognitive cooperation protocol [13], which is

based on the underlay cognitive radio concept, assumes relaying is enabled when sources are

silent (idle). Although the cognitive cooperation protocol may improve the performance of the

network, this improvement is disproportionate to the additional complexity and resources that it

entails. The reason for the insufficient performance is that existing cooperative protocols are not

designed to perform optimally in the finite blocklength regime. Towards this direction, we propose

the novel Batch-And-Forward (BAF) strategy that can significantly enhance the performance of

networks that employ short codes. In the BAF strategy, each terminal is allowed to batch L data

packets of length k, into a single codeword of fixed length n. By employing tools and results

from batch queue theory, we provide the stability conditions and identify expressions for the

optimal throughput of the overall system. Then, by optimizing over the batching size, L, we can

significantly enhance the performance of the overall network.

The paper makes the following contributions:

i) We characterize the stability region of the TDMA network subject to finite blocklength

constraints. We investigate the concavity properties of the throughput, and evaluate the

optimal throughput and the optimal trade-off between data packet size and latency. The

evaluation is performed both numerically and via the proposed approximations that result

in closed form expressions.

ii) We characterize the stability region and the optimal throughput of the MARC-TDMA
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network subject to finite blocklength constraints, for a particular cognitive cooperation

protocol.

iii) We propose the BAF strategy which can improve the performance of the network, in the

finite blocklength regime. We embed this strategy in the discussed cognitive cooperation

protocol, where we identify the stability conditions and the expression of the optimal

throughput. Then, we show via numerical evaluation that the overall performance is sig-

nificantly enhanced. Although the performance is evaluated for a particular cooperative

protocol, the proposed strategy is quite versatile, thus, it can be embedded in the majority

of existing cooperative techniques, without imposing additional complexity.

The remainder of this paper is organized as follows. In Section II, we briefly review the recent

results in finite blocklength analysis. In Section III, we describe the system model and the

underlying assumptions, prove the stability conditions for the overall queueing system in the

finite blocklength regime, and evaluate the overall throughput and the optimal trade-off between

data length and channel’s blocklength. In Section IV, we examine the cooperation in the finite

blocklength regime, and in Section V, we discuss the proposed BAF strategy and provide

numerical evaluation of its performance.

II. PRELIMINARIES ON FINITE BLOCKLENGTH ANALYSIS

Let X denote the channel input symbol, Y the channel output symbol and PY |X(y|x) the conditional

distribution of the output given the input. Given a memoryless channel characterized by a

conditional distribution PY |X(y|x), its capacity is given by Shannon’s celebrated single letter

expression

C = max
pX (x)

I(X ;Y ) = max
pX (x)

E [i(x;y)] , (1)

where E is the expectation with respect to the joint distribution pX ,Y (x,y), I(X ;Y ) is the mutual in-

formation between the random variable X and the random variable Y , and i(x;y)
4
=
{

log
PY |X (y|x)

PY (y)

}
is the information density.

Shannon’s capacity, has a natural operational definition that associates the rate of information

and the reliability, that is, the highest coding rate, in which there exist an encoder-decoder pair

that achieve arbitrary small probability of error. The error probability itself is shown to vanish
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asymptotically with the length of the code, as long as the transmission rate is below capacity.

By denoting the optimal rate for fixed blocklength n as R∗(n,ε), and block error probability as

ε , Shannon’s capacity may be redefined as follow.

C = lim
n→∞

lim
ε→0

R∗(n,ε). (2)

Shannon’s capacity has a tremendous theoretical value, however, the prerequisite of infinite

length codes severely limits its practical usability. This limitation becomes even more critical

for communication applications where low latency is imperative. The above challenge can be

addressed via the optimal fixed blocklength rate, R∗(n,ε), which eliminates the necessity of

infinitely large codes imposed directly by the definition of capacity. While, in general, R∗(n,ε)

is an NP-hard problem [4], [18], the recent work of Polyanskiy, Poor and Vedru [6], among others,

refines Strassen’s normal approximation of R∗(n,ε) [19], and provides an attractive expression

for it. In particular, they proved that for a class of channel models with positive capacity, C,

R∗(n,ε) is given by

R∗(n,ε) =C−
√

V
n

Q−1(ε)+O
(

logn
n

)
, (3)

where C is the ergodic capacity, V is the channel’s dispersion, which is by definition the minimum

variance of information density over all capacity achieving input distributions [6], Q−1(·) is the

inverse of the Gaussian Q-function and O(logn/n) comprises of the higher order terms. For the

AWGN channel, the channel’s capacity and dispersion are given by

C =
1
2

log2(1+SNR), (4)

and

V =
SNR

2
SNR+2

(SNR+1)2 (log2 e)2, (5)

respectively, where SNR denotes the signal to noise ratio, while the finite blocklength rate subject

to equal-power constraint is approximated by

R∗(n,ε)≈C−
√

V
n

Q−1(ε). (6)

Substituting R∗(n,ε) = k
n , where k denotes the size of the data packet, and solving with respect
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to the block error probability ε , we obtain

ε(k,n)≈ Q
(

nC− k√
nV

)
. (7)

The probability of successful transmission for a code of blocklength n, Pc(k,n), is the cumulative

distribution function (cdf) of the normal distribution, and it is expressed as

Pc(k,n) = 1− ε(k,n)≈ 1√
2π

∫ nC−k√
nV

−∞

e−
z2
2 dz. (8)

The recent work in [7], refined the approximation given in (6), by providing the third order term

in the normal approximation for the AWGN channel, that resulted in the following expression

R∗(n,ε) ≈ C−
√

V
n

Q−1(ε)+
log2(n)

2n
, (9)

for the finite blocklength rate, and in the following expression

Pc(k,n) ≈ 1−Q
(

nC− k+0.5log2 n√
nV

)
, (10)

for the successful transmission probability.

III. STABILITY FOR THE NON COPERATIVE SCHEME ON THE FINITE BLOCKLENGTH REGIME

In this section, we characterize the stability region and evaluate the performance of the TDMA

scheme, in the finite blocklength regime. Moreover, we evaluate the optimal throughput and the

trade-off between data size and blocklength, both numerically and via the proposed approxima-

tions.

A. System Model

We consider a model with two source terminals, A and B, with infinite buffer memories, and

a single destination node D, as depicted in Fig. 1. At each time slot, data packets of length

ki, i ∈ {A,B}, arrive at the source terminal i ∈ {A,B}, according to a Bernoulli distribution

with probability pi. The expected value of arrivals at each time slot is λi = pi, ∀i ∈ {A,B}. The

terminals then encode the data packet into a codeword of length n, and access the channel through

a TDMA scheduling with probability ωi, where 0≤ ωi ≤ 1, and ωA +ωB = 1 [20]. We assume
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Fig. 1: Model of a TDMA network with ACK/NACK feedback.

that at each time slot, n channel uses are employed and solely allocated to source terminal

i, with probability ωi. The channel is an AWGN channel with zero mean and variance σ2.

The destination, after receiving and decoding the codeword, sends Acknowledgement/Negative-

Acknowledgement (ACK/NACK) back to the respective source terminal, to inform it about the

status of the transmission. In the case of a correct transmission, the respective source terminal

discards the data packet from its buffer memory. In the opposite case, the data packet remains

in the buffer memory and waits for the next available time slot for retransmission.

The probability of an erroneous transmission for a packet, generated by terminal i at a given

time slot, is denoted by Pe(ki,n). The service (departure) process is Bernoulli distributed with

probability qi = ωi(1−Pe(ki,n)). Since both the arrivals and departures are Bernoulli distributed,

the time of an arrival and the time for a departure to occur, measured in slots, is characterized by

a geometric distribution. The system at each terminal i ∈ {A,B} can be described by a discrete

time Markov process with states {S j, j≥ 0}, which denote the number of packets in the system.

B. Stability Conditions and Optimal Throughput

Our first objective is to study the maximum rate that can be supported by the network. Towards

this direction, we prove that network stability is possible, if and only if, the overall rate of the
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system is less than the throughput.

Theorem 1. The TDMA network is stable, if and only if, the following conditions hold

λi < ωiPc(ki,n), ∀i ∈ {A,B}, (11)

λA +λB < ωAPc(kA,n)+ωBPc(kB,n). (12)

Proof. See Appendix A.

The following corollary is a straightforward consequence of Theorem 1.

Corollary 1. Let X(k,n)
4
= k

n(λA +λB) denote the rate of the scheme, u(k,n)
4
= k

nPc(k,n) denote

the overall throughput of the scheme [6], and kA = kB = k. Then,

X(k,n)
4
= (λA +λB)

k
n
<

k
n

Pc(k,n)
4
= u(k,n). (13)

Proof. For the special case where kA = kB = k, then Pc,A(kA,n) = Pc,B(kB,n) = Pc(k,n), thus from

(11), we have

λi < ωiPc(k,n), ∀i ∈ {A,B}. (14)

Since ωA +ωB = 1, the stability for the overall scheme consisted of the two terminals A and B,

is calculated, as follow

λA +λB < (ωA +ωB)Pc(k,n) = Pc(k,n). (15)

Multiplying both sides of (15) with k
n , we obtain (13).

The assumption kA = kB = k is imposed to keep the notation clean. However, the general case

of different data packet size can emerge directly by employing the proposed analysis.

Next, we employ Corollary 1, to recast the classical problem of maximizing the overall rate

of the network by imposing a blocklength (latency) constraint. That is, given a channel and a

fixed blocklength n, we ask what is the optimal size of the data packets that maximizes the

rate. For the rest of this work, we will consider the case where the size of the data arriving at

the two terminals is identical, that is, kA = kB = k, investigate the impact of the blocklength,
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n, on the throughput, and provide numerical evaluation and closed-form approximations for the

throughput.

As proved in Corollary 1, the overall rate that guarantees stability can be arbitrary close to the

throughput of the system. Thus, to maximize rate, we need to identify the optimal value of k

that maximizes u(k,n). The resulted optimization problem is given by

u∗(k,n) = max
k

k
n

Pc(k,n). (16)

Before we proceed to the solution of the above optimization problem, we investigate the con-

vexity properties of the objective function u(k,n). Towards this direction, we state the necessary

definition of log-concavity and a lemma which highlights an important property of log-concave

functions.

Definition 1. A function f : Rn 7→ R is log-concave if f (x)> 0 ∀ x, and log f is concave.

Lemma 1. Log-concavity is closed under multiplication, that is, if f and g are log-concave, the

pointwise product is also log-concave [21, Section 3.5].

We now state the theorem regarding the log-concavity of the objective function u(k,n).

Theorem 2. For any fixed n > 1, u(k,n) is log-concave function of k.

Proof. Let f (k) = k
n and h(k) = Pc(k,n). The objective function can be rewritten as u(k) =

f (k)h(k). By Definition 1, f (k) is log-concave since f (k) > 0 and log f (k) is concave. The

function h(k) is by definition the cdf of a normal distribution, which is shown to be log-concave

[21, Section 3.5]. Since both the functions f (k) and h(k) are log-concave, then by Lemma 1,

the function u(k) is also log-concave.

By virtue of Theorem 2, u(k,n) is unimodal, that is, there are no local maxima that are non-

global ones. This property eliminates the risk for the optimization algorithm getting trapped

into a local maxima that is not global. Moreover, log-concavity allows transforming the original

optimization problem into a convex optimization problem, that inherits all useful properties and

tools of convex optimization.

Unfortunately, no closed form solutions can emerge from the optimization problem (16), since no

explicit expression is known for Pc(k,n). To overcome this problem, we capitalize the properties
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of the objective function, u(k,n), and provide numerical evaluation of the optimal value of k

via exhaustive search. Additionally, we propose first order and second order approximations of

Pc(k,n), which are applied in order to evaluate closed form approximations of the optimal data

packet size, k∗, and the optimal throughput, u∗(k,n), with a view to identify the optimal trade-off

between the optimal size of the data packet, k, and the blocklength n.

Remark 1. In our analysis, we do not address the issue of control signals (metadata), which

are necessary, inter alia, for the error detecting schemes required for the ACK/NACK protocol.

Thus, the results of this work should be interpreted in the light of this consideration. This is

translated as a genie aided destination [22], [23], that can identify possible errors, and requests,

or does not request, data retransmission.

The optimal solution of the optimization problem (16) can be found via exhaustive search over

all possible values of k≥ 1. This approach is computationally efficient due to the log-concavity

of u(k,n), which results to a unique global maxima. The exhaustive search algorithm simply

compares the objective function, u(k,n), for successive values of k, and terminates the search

when u(k = i+1,n)< u(k = i,n), i ∈ [1,∞). Then, the optimal solution is given by, k∗ = i. By

substituting the value of k∗ in (16), we obtain the value of the throughput.

The analytical evaluation of the throughput involves the AWGN Q-function, and since it cannot

be integrated in closed form, tight approximations should be employed in order to evaluate closed

form expressions for the throughput and for the trade-off between the size of the data, k, and

the channel’s blocklength, n. Despite the significant work on approximations of the Gaussian

Q-function (see [24] and references within), these cannot be employed to provide closed form

expressions of the throughput, due to their complex structure. Towards this direction, we propose

linear and quadratic approximations on the probability of successful transmission, that result in

closed form expressions.

Remark 2. It has been observed, via numerical evaluation of the throughput, that the approx-

imation given in (10), though tighter than (8) for relatively large blocklength, n > 103, may

produce inconsistent results for very small blocklengths, n < 102 (the approximated rates are

greater than channel’s capacity). This observation holds especially for small values of SNR

(SNR < 1). Thus, we employ the pessimistic expression (8) rather than (10). Nevertheless, the

proposed methodology and results can be straightforwardly extended to any possible expression

of Pc(k,n).
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C. Q-function Approximations

1) Linear: Linear approximations, though not the tightest, are attractive since they provide

simple expressions that can be physically interpreted. Recent works on topics related to finite

blocklength analysis employ such approximations, for the finite blocklength analysis of the incre-

mental redundancy Hybrid ARQ (HARQ) [25] and for full-duplex and half-duplex relaying for

short packet communications [26]. Let, the linear approximation of the probability of successful

transmission be denoted by P̂c(k,n), and the resulting approximations of the throughput and of

the data packet size be denoted by û(k,n) and k̂, respectively.

Proposition 1. The proposed linear approximation is given by

P̂c(k,n) =


1 if χ ≥ δ1,

1
2δ1

χ +δ0 if −δ1 ≤ χ < δ1,

0 if χ <−δ1,

(17)

where δ0 = 0.5, δ1 = 1.545, and

χ =
nC− k√

nV
. (18)

The optimal size of the data packet is given by

k̂∗ =


nC−1.545

√
nV if n≥ 9δ1

2V
C2 ,

0.5
(
Cn+1.545

√
nV
)

if 0 < n <
9δ1

2V
C2 ,

(19)

and the optimal value of the throughput is obtained by substituting k̂∗ in

û∗(k,n) =
k̂∗

n
P̂c(k̂∗,n). (20)

Proof. See Appendix B .

The result in Proposition 1, and in particular (19), provides the optimal trade-off between data

size and channel’s blocklength. Note, that since the data size is integer, the optimal solution given

in (19) should be rounded to the nearest integer. Since we are interested in an approximation

of the throughput and not its exact calculation, the effect of the selected rounding function (i.e.,
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round, ceiling or floor) is negligible. The approximation of the throughput is then obtained by

substituting the rounded value of (19) in (50).

Next, we propose a quadratic approximation of Pc(k,n), that, in general, gives tighter results

compared to the linear approximation.

2) Quadratic: The proposed approximation is quadratic in a defined region of χ and linear in the

rest of the region. Let, the quadratic approximation of the probability of successful transmission

be denoted by P̃c(k,n), and the resulting approximations of the throughput and of the data packet

size be denoted by ũ(k,n) and k̃, respectively.

Proposition 2. The proposed quadratic approximation is given by

P̃c(k,n) =



1 if χ ≥ θ1,

θ2χ(2θ1−χ)+θ0 if 0≤ χ < θ1,

θ2χ(2θ1 +χ)+θ0 if −θ1 < χ < 0,

0 if χ ≤−θ1,

(21)

where θ0 = 0.5, θ1 = 2.35, θ2 = 0.5/θ1
2 and χ is given by (18).

The optimal size of the data packet is given by

k̃∗ =


2
3
(
nC−θ1

√
nV
)
+θ3 if n≥

θ 2
1V

4C2 ,

1
3
(
nC−θ1

√
nV
)

if 0 < n <
θ 2

1V
4C2 ,

(22)

where

θ3 =

√
n

3

(
nC2−7θ

2
1V −2θ1C

√
nV
) 1

2
, (23)

and the optimal value of the throughput is obtained by

ũ∗(k,n) =
k̃∗

n
P̃c(k̃∗,n). (24)

Proof. See Appendix C .

The optimal trade-off between the data packet size and the channel’s blocklength, n, as well

as the comparison with the provided approximations k̂∗ and k̃∗, are depicted in Fig. 2. While
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both approximations perform well, the optimal data packet size emerged from the quadratic

approximation, k̃∗, is almost identical to k∗. The optimal throughput and the throughput approx-

imations are illustrated in Fig. 3. Again, the solution emerged from the quadratic approximation

approaches very well the numerical evaluation of the optimal throughput.

Remark 3. The results of this section can be employed in order to identify the optimal throughput

of various schemes, such as, cognitive communication schemes. For example, assume that data

of length kA arrive at the terminal of the primary user (e.g. Terminal A) with rate λA. By (11) we

can determine the minimum ωA, denoted by ω∗A, such that (11) holds (assuming it exists). Then,

ω∗B = 1−ω∗A, while the throughput of the secondary user (e.g. Terminal B) is ωB
kB
n Pc(kB,n). Thus,

optimizing over kB, either numerically or via the approximations, we can identify the optimal

data length kB and the optimal throughput both for the secondary user and the overall network.

IV. COOPERATION IN THE FINITE BLOCKLENGTH REGIME

In this section, we examine a packet-based network cooperation scenario with bursty arrivals at

the source terminals. In particular, we consider a MARC scheduling and evaluate the performance

of a cognitive cooperative protocol in the finite blocklength regime.

The MARC configuration is consisted of two source terminals, A and B, a common cognitive

relay and a destination, as depicted in Fig. 4. The data packets arrive at the source terminals, A

and B, according to independent and stationary Bernoulli processes with probabilities, pA and

pB, and expected values, λA = pA and λB = pB, respectively. Each of the source terminals has

an infinite size buffer memory, denoted by Qi, i ∈ {A,B}, respectively, that stores the incoming

data packets. The relay is equipped with two relaying queues, denoted by QAR and QBR, in

which they store the data packets received from the respective source terminals. Let Pc,SD(k,n),

Pc,SR(k,n) and Pc,RD(k,n) denote the probability of a successful transmission from any source

terminal i ∈ {A,B} to the destination, from any source terminal i ∈ {A,B} to the relay, and from

the relay to the destination, respectively. The probabilities of erroneous transmissions are then

defined by Pe,SD(k,n) = 1−Pc,SD(k,n) and Pe,SR(k,n) = 1−Pc,SR(k,n). Moreover, let uCC(k,n)

and uCC,∗(k,n) denote the throughput and the maximum throughput of the system, respectively,

and XCC(k,n) denote the code rate of the overall scheme.

September 19, 2019 DRAFT



15

Source Terminal A

Source Terminal B

Relay

Destination

λA

λB

λB  R

λA R
QA R

QB  R

Fig. 4: Model of a MARC-TDMA network. The solid arrows represent the AWGN channels and
the dashed arrows the ACK/NACK feedback.

There is an extensive literature regarding multiple access protocols in the presence of a coop-

erating relays [13]–[15]. In this work we employ the cognitive cooperation protocol, defined

below.

Definition 2. The Cognitive Cooperation (CC) protocol performs as follows:

i) Source terminal i ∈ {A,B} encodes the data packet of length k into a codeword of length n,

and access the channel via a randomized TDMA scheduling with probability ωi, i∈ {A,B},

and ωA +ωB = 1.

ii) The codeword is transmitted both to the destination and the relay node. The transmission

process is supported by an ACK/NACK mechanism that informs the source terminal and

the relay about the transmission status (successful or erroneous).

iii) If data are not successfully received by either the destination or the relay, the data packet

remains in the queue of the source terminal.

iv) If data are successfully received by the destination, the source terminal removes the data

packet from its queue, and the relay ignores the received packet.

v) If data are not successfully received by the destination but are successfully received by the

relay, the source terminal discards the data packet from its queue, and the relay adds that

packet to the respective queue (QAR or QBR).

vi) When the source terminal i ∈ {A,B} gains access to the channel but it has no data packets

in its queue (queue is idle), the relay encodes a data packet from the respective queue
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QiR, i ∈ {A,B}, into a codeword of length n, and transmits it to the destination.

This protocol, though not ideal in terms of performance, is attractive due to its elegance and

simple structure, that allows the interpretation of the results in the context of finite blocklength

codes. Nevertheless, the discussed methodology can be applied to more complex protocols.

Theorem 3. For a fixed blocklength n:

i) the stability condition of the CC protocol is given by

κ

n
(λA +λB)< uCC(k,n), (25)

where

uCC(k,n)
4
=

k
n

[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
Pc,RD(k,n)[

Pc,RD(k,n)+Pe,SD(k,n)Pc,SR(k,n)
] .

(26)

ii) the code rate of the overall scheme, XCC(k,n)
4
= k

n(λA +λB), is bounded above by the

maximum throughput uCC,∗(k,n), that is

XCC(k,n)< max
k

uCC(k,n)
4
= uCC,∗(k,n). (27)

Proof. See Appendix D.

Although the optimization problem defined in (27) is not necessarily concave, it can be evaluated

via exhaustive search. This does not introduce any additional computational complexity, due to

the integer nature of the optimization problem.

The Non Cooperative (NC) protocol (absence of the relay terminal), is a special case of the

cooperative protocol, with Pc,SR(k,n) = 0. The overall stability condition is identical to the overall

stability condition of source terminals, given by (62), where Pc,SR(k,n) = 0, which yields the

following corollary.

Corollary 2. For a fixed blocklength n, the overall stability condition of the non cooperative

system is given by

(λA +λB)
k
n
< max

k
uNC(k,n)

4
= uNC,∗(k,n), (28)

September 19, 2019 DRAFT



17

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Cognitive cooperation

No cooperation

*

(a)

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Cognitive cooperation

No cooperation

*

(b)

Fig. 5: Throughput for the non cooperative scheme and the cognitive cooperation scheme, for
fixed blocklength n = 1000. The channels from the source to the destination, from the source to
the relay, and from the relay to the destination, are AWGN with SNR for (a) 0.2, 0.35 and 1,
respectively, and for (b) 0.2, 0.5 and 1, respectively.
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where uNC(k,n)
4
= k

nPc,SD(k,n).

Remark 4. The performance, in terms of maximum throughput, of the CC protocol described

in Definition 2, is not always better than the performance of the NC protocol. For example

assume Pc,SD(k,n) > 0, Pc,SR(k,n) > 0 and Pc,RD(k,n) = 0. Then, from (25) and (28) we have

uCC,∗(k,n) = 0 and uNC,∗(k,n)> 0. However, with some minor modifications of the CC protocol,

we can guarantee that its performance is always better or at least equal to the performance of

the NC protocol.

The optimal throughput of the non cooperative scheme, uNC,∗(k,n), and the optimal throughput

of the cognitive cooperation scheme, uCC,∗(k,n), for two different channel triplets, is given in

Fig. 5. For the selected SNR triplet that is depicted in Fig. 5(a), the increase of the throughput

due to cooperation is negligible, whereas for the SNR triplet depicted in Fig. 5(b), cooperation

increases throughput approximately by 25%. However, taking into consideration the commitment

of additional resources (relay, buffer memories and channels), the gain in the performance that

cognitive cooperation exhibits over the non cooperative scheme, cannot be characterized as

satisfactory. Comments for the insufficient performance of the cognitive cooperation protocol

are given in the following remark.

Remark 5. The expression of the throughput for the overall system, uCC(k,n), involves the

statistical characteristics (SNR) of all available channels. Optimizing throughput with respect to

k, results in an optimal data packet size k∗, that is employed both from the source terminal and

the relay. Thus, k∗ emerges as a compromise between the different statistics of those channels.

This is directly reflected on the performance of the overall network, since, different channels pack

the same amount of data into the codeword of fixed length n. An obvious solution to this problem

is to allow the source terminal and the relay to pack different amount of data into the codeword

(e.g. source packs kS bits into the codeword while the relay packs kR bits into the codeword),

however, this is highly impractical, since, it introduces significant amount of complexity to the

destination.

V. COGNITIVE COOPERATION VIA BATCH AND FORWARD

Motivated by the insufficient performance of the cognitive cooperation protocol, we propose a

novel strategy that addresses the concerns encapsulated in Remark 5, and boosts the perfor-
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…

Relay
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Fig. 6: The Batch-And-Forward strategy for a source terminal i-relay pair.

mance of the cognitive cooperation protocols in the finite blocklength regime. We evaluate the

performance of the proposed strategy for the particular cognitive cooperation protocol given in

Definition 2.

The proposed BAF strategy, depicted in Fig. 6, keeps the data packet size the same for all

individual nodes of the network, however, each node is allowed to batch more than one data

packets into the codeword of length n. The number of data packets that are batched into the

fixed length codeword, is denoted by L. Thus, this approach exploits the individual statistical

characteristics of the different channels of the network, without imposing additional complexity

on the overall scheme.

Next, we embed the BAF strategy at the relay of the cognitive cooperation protocol, and evaluate

the performance of the overall network. This is implemented by replacing step vi) of Definition

2 with the following step.

vi) The relay batches L data packets from the queue QiR, i ∈ {A,B}, and encodes them into

a codeword of length n. When the source terminal i ∈ {A,B} gains access to the channel,

and it has no data packets in its queue (queue is idle), the relay transmits the codeword

consisting of the L data packets to the destination. If there are less than L data packets in
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the respective queue at the relay, the relay does not transmit any information.

All the other procedures of Definition 2 do not change.

Theorem 4. Suppose that the relay employs the BAF strategy and let uBAF(Lk,n) denote the

overall throughput of cooperative scheme. Then, for a fixed blocklength n:

i) The stability region of the BAF cooperative scheme satisfies

(λA +λB)
k
n
< uBAF(Lk,n), (29)

where k = 1,2, . . ., L = 1,2, . . ., and

uCC
S (k,n) =

k
n

[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
, (30)

uBAF
R (Lk,n) =

Lk
n

[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
Pc,RD(Lk,n)[

Pc,RD(Lk,n)+Pe,SD(k,n)Pc,SR(k,n)
] , (31)

uBAF(Lk,n) = min
{

uCC
S (k,n),uBAF

R (Lk,n)
}

(32)

=


uCC

S (k,n) if L≥ 1+
Pe,SD(k,n)Pc,SR(k,n)

Pc,RD(Lk,n)
,

uBAF
R (Lk,n) if L < 1+

Pe,SD(k,n)Pc,SR(k,n)
Pc,RD(Lk,n)

.
(33)

ii) The code rate of the overall scheme, XBAF(k,n), is bounded above by the maximum through-

put uBAF,∗(k,n), that is

XBAF(k,n)< uBAF,∗(k,n), (34)

where

uBAF,∗(Lk,n) = max
L,k

uBAF(Lk,n). (35)

Proof. See Appendix E.

The performance of the cognitive cooperation protocol with BAF strategy at the relay, is illus-

trated in Fig. 7. For the selected SNR triplet depicted in Fig. 7(a), the optimal data packet size

is 182 bits, whereas for the selected SNR triplet depicted in Fig. 7(b), the optimal data packet

size is 227 bits. As it is depicted, the optimal batching size, for both cases, is L = 2. It is also

obvious that for both cases, the BAF strategy can significantly enhance the performance of the
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Fig. 7: Throughput of the cognitive cooperation protocol embedded with the BAF strategy, for
fixed blocklength n = 1000, and comparison with the no cooperation scheme and the cognitive
cooperation protocol. The channels from the source to the destination, from the source to the
relay, and from the relay to the destination, are AWGN with SNR for (a) 0.2, 0.35 and 1,
respectively, and for (b) 0.2, 0.5 and 1, respectively.
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overall system (approximately by 75%, in both scenarios), compared to the cognitive cooperation

protocol without BAF. For both of the scenarios above, the SNR of the channel between the

relay and the destination, is higher than the SNR of the channel between the source terminal

and the destination, thus, is beneficiary for the overall performance of the network to apply the

BAF strategy at the relay. For other scenarios in which the SNR of the channel between the

source terminal and the destination, is higher than the SNR of the channel between the relay

and the destination, it would have been beneficial to have applied the BAF strategy at the source

terminals.

Next we provide the overall stability conditions and the optimal throughput, when the BAF

strategy is employed at the source terminals instead of the relay.

Corollary 3. Suppose that the BAF strategy is employed by the source terminal and let uSBAF(Lk,n)

denote the overall throughput of cooperative scheme. Then, for a fixed blocklength n:

i) The stability region of the BAF cooperative scheme satisfies

(λA +λB)
k
n
< uSBAF(Lk,n), (36)

where k = 1,2, . . ., L = 1,2, . . ., and

uBAF
S (Lk,n) =

Lk
n

[
Pc,SD(Lk,n)+Pe,SD(Lk,n)Pc,SR(Lk,n)

]
, (37)

uCC
R (k,n) =

k
n

[
Pc,SD(Lk,n)+Pe,SD(Lk,n)Pc,SR(Lk,n)

]
Pc,RD(k,n)[

Pc,RD(k,n)+Pe,SD(Lk,n)Pc,SR(Lk,n)
] , (38)

uSBAF(Lk,n) = min
{

uBAF
S (Lk,n),uBAF

s (k,n)
}

(39)

=


uBAF

S (Lk,n) if L≥
Pc,RD(Lk,n)[

Pc,RD(k,n)+Pe,SD(Lk,n)Pc,SR(Lk,n)
] ,

uCC
R (Lk,n) if L <

Pc,RD(Lk,n)[
Pc,RD(k,n)+Pe,SD(Lk,n)Pc,SR(Lk,n)

] . (40)

ii) The code rate of the overall scheme, XSBAF(k,n), is bounded above by the maximum

throughput uSBAF,∗(k,n), that is XSBAF(k,n)< uSBAF,∗(k,n), where

uSBAF,∗(Lk,n) = max
L,k

uSBAF(Lk,n). (41)

Proof. The proof is similar to the proof of Theorem 4, thus is omitted.
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Note that that the optimal performance of the network is then obtained by maximizing the

outcomes of Theorem 4 and Corollary 3. That is, the optimal throughput of the network, u∗, is

given by

u∗ = max
{

uSBAF,∗,uBAF,∗
}
. (42)

Though the majority of the classical cooperative techniques can be employed for short packet

communication, they cannot fully correspond to the special characteristics of short codes, since,

they were not particularly designed to perform optimally in the finite blocklength regime. The

proposed approach, however, can significantly enhance the performance of the network, while

at the same time it meets the finite blocklength requirements. Moreover, it can reduce the

requirements in metadata, a challenging task in the actual implementation of short codes [4],

since, it avoids the unnecessary repetition of metadata (e.g. address of the source terminal and

the destination). Perhaps the most attractive feature, however, of the BAF strategy, is that it can

be embedded into existing cooperative protocols, without imposing any additional complexity

to the system.

VI. CONCLUSION

In this work, we employed tools and results from information theory, stochastic processes and

queueing theory, in order to provide a comprehensive framework regarding the analysis of a

TDMA network with bursty traffic, in the finite blocklength regime. In particular, we examined

the stability of a TDMA network, evaluated the optimal throughput for fixed blocklength con-

straints, and identified the optimal trade-off between data length and latency, both numerically

and via the proposed closed form approximations. Moreover, we examined the MARC-TDMA

network, evaluated the stability conditions for a particular cognitive cooperation protocol, and

proposed the BAF strategy that can enhance the finite blocklength performance of cognitive

protocols. The BAF strategy can be easily embedded in existing cooperative techniques without

imposing additional complexity. In the current work we did not address issues regarding metadata,

such as, impact of metadata on the performance and design of metadata for short codes. This

is a challenging task for the performance analysis of finite blocklength analysis, that will be

investigated as a part of future work.
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APPENDIX

A. Proof of Theorem 1.

The stability conditions of the underlying Markov chains at the two terminals depend on the

existence, or non-existence, of a stationary distribution, defined by

πi, j = lim
m→∞

P(Sm = j), j ≥ 0, i ∈ {A,B}. (43)

The characterization of the stationary distribution for the emerged Geo/Geo/1 queue is obtained

by employing the global balance equations [27], which yield

πi,0 =
1−qi

−q1 +
∞

∑
m=0

(
pi(1−qi)

qi(1− pi)

)m =
qi− pi

qi
, i ∈ {A,B}, (44)

πi, j =

(
pi(1−qi)

qi(1− pi)

) j 1
1−qi

πi,0, j ≥ 1, i ∈ {A,B}. (45)

Therefore, the stationary distribution is non-zero, only if

pi(1−qi)

qi(1− pi)
< 1, ∀i ∈ {A,B}, (46)

or equivalently

qi > pi, ∀i ∈ {A,B}. (47)

Otherwise, ∑
∞
i=0(pi(1−qi)/qi(1− pi)) would be infinite and all {πi, j, j ≥ 0} would be zero.

By substituting the average arrival rate, λi = pi, and average departure rate µi = qi = ωi(1−

Pe,i(ki,n)), in (47), we obtain the following stability condition

λi < ωi(1−Pe,i(ki,n))
4
= ωiPc,i(k,n), ∀i ∈ {A,B}. (48)

Summing over all i ∈ {A,B}, we obtain (12), which completes the proof.
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B. Proof of Proposition 1.

The parameters {δ0,δ1} ∈R, are evaluated by minimizing the integral of the absolute error, that

is

{
δ
∗
0 ,δ

∗
1
}
= argmin

δ0,δ1

∫
∞

−∞

∣∣∣P̂c(k,n)−Pc(k,n)
∣∣∣dχ, (49)

which results to δ0 = 0.5 and δ1 = 1.545. Then, by employing the above approximation, the

optimization problem is given by

û(k,n) = max
k

k
n

P̂c(k,n) = max
k


k
n

if χ ≥ δ1,

k
n

(
1

2δ1
χ +δ0

)
if −δ1 ≤ χ < δ1.

(50)

We first perform the optimization in the region −δ1 ≤ χ < δ1. By substituting χ and the value

of δ1, we rewrite the predefined region as a function of k, that is

nC−1.545
√

nV < k ≤ nC+1.545
√

nV . (51)

The optimization problem is solved by differentiating the objective function, û(k,n), with respect

to k, and verifying that the second derivative is negative. The optimal value of k is then given

by

k̂∗ = 0.5
(

Cn+1.545
√

nV
)
. (52)

The analytical calculations are omitted due to space limitations. Since the value of k must lay

in the region defined by (51), the optimal value of k is valid only if

nC−1.545
√

nV < k̂∗ ≤ nC+1.545
√

nV . (53)

By substituting (52) in (53) and solving with respect to the blocklength n, we obtain the region

of n for which the optimal solution given by (52) holds, which yields 0 ≤ n < 13.905V/C2.

For the region χ ≥ δ1, or equivalently for k ≤ nC− 1.545
√

nV , the maximization of k/n with

respect to k, occurs on the boundary, that is, k = nC− 1.545
√

nV , and this solution holds for

n ≥ 13.905V/C2. The optimal throughput is then obtained by substituting the optimal size of

the data packet, k̂∗, in (16).
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C. Proof of Proposition 2.

Since, (i) the approximation given by (21) is odd-symmetric with respect to χ = 0, and (ii)

Pc(k,n)
∣∣∣
χ=0

= 0.5, then the optimal value of θ0 that minimizes the absolute value of the error

between P̃c(k,n) and Pc(k,n) is, θ0 = 0.5.

Next, we evaluate the parameters {θ1,θ2}, by imposing an additional constraint regarding the

continuity of the first derivative with respect to k, which significantly simplifies the optimization

problem. The proposed quadratic form guarantees continuity in the region χ ∈ (−θ1,θ1). The

conditions that ensure continuity of the first derivative in the regions χ ∈ (−∞,−θ1] and χ ∈

[θ1,∞), and thus for the whole region χ ∈ (−∞,∞), are

d
dk

[
P̃c(k,n)

]∣∣∣
χ=θ1

= 0, (54)

d
dk

[
P̃c(k,n)

]∣∣∣
χ=−θ1

= 0, (55)

P̃c(k,n)
∣∣∣
χ=θ1

= 1, (56)

P̃c(k,n)
∣∣∣
χ=−θ1

= 0. (57)

Equations (54) and (55) are satisfied directly by the proposed quadratic form, whereas equations

(56) and (57) are satisfied, if and only if, θ2 = 0.5/θ1
2. The remaining parameter, θ1, is evaluated

by minimizing the integral of the absolute error

{
θ
∗
1
}
= argmin

θ1

∫
∞

−∞

∣∣∣P̃c(k,n)−Pc(k,n)
∣∣∣dχ, (58)

which yields θ1 = 2.35. The optimization problem for the case of the quadratic approximation

is

ũ(k,n) = max
k

k
n

P̃c(k,n), (59)

where P̃c(k,n) is given by (21). By employing the methodology discussed in Appendix B, we

obtain the optimal data packet size given by (22). Then, the optimal throughput, ũ∗(k,n), emerges

by substituting the values of (21) and (22), in
k̃∗

n
P̃∗c (k,n).
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D. Proof of Theorem 3.

i) The proof for the first statement consists of two parts: characterizing the stability regions for the

source terminals and the relay, and evaluating the union of the predefined regions. Regarding the

source terminals, the arrival rate at each source terminal is λi, i ∈ {A,B}, whereas the departure

(service) rate is given by

µi = ωi
[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
, i ∈ {A,B}. (60)

The system at each source terminal i forms a discrete-time Markov chain with stability condition
λi
µi
< 1, ∀i ∈ {A,B} [28], or equivalently

λi < ωi
[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
, ∀i ∈ {A,B}. (61)

By recalling that ωA +ωB = 1, the summation (61) over all source terminals i ∈ {A,B} yields

the following overall stability condition for the source terminals.

Λ
CC
S =

{
(λA,λB) : (λA +λB)<

[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]}
. (62)

Regarding the relay, a packet from the source terminal i, i ∈ {A,B}, enters queue QiR at the

relay if i) channel access for the source terminal i is granted by the randomized switch (with

probability ωi), ii) the transmission from the source terminal i to the relay is successful, iii) the

transmission from the source terminal i to the destination is unsuccessful, and iv) the queue of

the source terminal i is not idle, that is, it has at least one packet that requires transmission. The

source is not idle with stationary probability 1−πi,0, where πi,0 = 1− λi
µi

[28]. Thus, the rate of

arrivals at relay’s queue QiR, i ∈ {A,B}, is given by

λiR = ωi(1−πi,0)Pe,SD(k,n)Pc,SR(k,n), i ∈ {A,B}. (63)

Similarly, the average rate of departures from the relay’s queue QiR, i ∈ {A,B}, is given by

µiR = ωiπi,0Pc,RD(k,n), i ∈ {A,B}. (64)
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The stability condition for the individual queue QiR, i ∈ {A,B} at relay, is λiR
µiR

< 1, ∀i ∈ {A,B}.

By employing (60), (63) and (64), the stability condition, ∀i ∈ {A,B}, translates to

λiR <
ωi
[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
Pc,RD(k,n)[

Pc,RD(k,n)+Pe,SD(k,n)Pc,SR(k,n)
] , (65)

whereas the overall stability region, obtained by summing (65) over all i ∈ {A,B}, is given by

Λ
CC
R =

{
(λA,λB) : (λA +λB)<

[
Pc,SD(k,n)+Pe,SD(k,n)Pc,SR(k,n)

]
Pc,RD(k,n)[

Pc,RD(k,n)+Pe,SD(k,n)Pc,SR(k,n)
] }

. (66)

The overall stability region is given by the union of (62) and (66). However, by comparing (62)

and (66) we observe that ΛCC
R ⊆ ΛCC

S , thus, the overall stability region ΛCC = ΛCC
R .

ii) The second statement is obtained by maximizing (25) with respect to k.

E. Proof of Theorem 4.

i) The stability region for the source terminals is identical to the cognitive cooperation case, thus

is given by (30). Similarly, the arrival rate at the relay terminal, is also identical with the arrival

rate of the cognitive cooperation scheme, and is given by (63).

Since L packets are batched together, the total size of the data packets that are encoded into

a codeword of length n, is Lk. The departures from the queue QiR, i∈ {A,B} at the relay, are also

Bernoulli distributed, with departure probability, at a given time slot, qiR =ωi(πi,0)Pc,RD(Lk,n), i∈

{A,B}. The average departure rate is therefore given by

µiR = LqiR = Lωi(πi,0)Pc,RD(Lk,n), i ∈ {A,B}. (67)

The appropriate model at each queue of the relay is the Geo/GeoL/1 model [28]. In this model

both the arrivals and the departures to and from the relay are Bernoulli distributed, and packets

depart in batches of size L.

The stability condition for Geo/GeoL/1 queue [28], is given by

λiR

µiR
< L, ∀i ∈ {A,B}. (68)
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By substituting (63) and (67) in (68), and by summing over i ∈ {A,B}, we obtain (31). Then,

the stability of the overall network is given by the union of (30) and (31), which yields (32).

ii) The maximum throughput of the system is obtained by maximizing (32) with respect to k

and L.
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