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Abstract— Herein, we focus on an end-to-end design of a
proactive cooperative caching strategy for a multi-cell network.
The design is challenging as it involves two interrelated problems:
the ability to predict future content popularity and to meet
network operation characteristics. To this end, we first formulate
a cooperative content caching in order to optimize the aggre-
gated network cost for delivering contents to users. An efficient
proactive caching policy requires an accurate prediction of time-
varying content popularity. Content popularity has temporal and
spatial dependencies and therefore, we develop a probabilistic
dynamical model for content popularity prediction by exploiting
its spatiotemporal correlations. To achieve an accurate tracking
and prediction of content popularity evolution, the proposed
dynamical model is non-linear and incorporates non-Gaussian
distributions. We use Variational Bayes (VB) approach for
estimating the model parameters. The VB provides mathematical
tractability. We then develop an online VB method that works
with streaming data where content request arrives sequentially.
Using extensive simulations study on a real-world dataset,
we show that our online VB based dynamical model provides
improved performance compared to conventional content caching
policies.

Index Terms— Content caching, multi-cell network, popularity
prediction, routing, cache placement, online variational Bayes.

I. INTRODUCTION

DUE to the emergence of communities with a massive
number of users, the demands for content (e.g., video)

are explosively growing [1]. This growth is challenging the
capability of current network architectures to satisfy users’
demands with an acceptable quality of experience. A promis-
ing approach to mitigate this challenge is to offload network
traffic by caching popular contents at the network edge [2].
The motivation behind caching is that typically the majority of
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data traffic is caused by only a small number of popular con-
tents, as indicated by the Zipf-law behavior [3]. Caching these
highly popular contents at the edge which can be done during
off peak hours bypasses the need for fetching these contents
from the content provider through the backhaul links for every
request. Therefore, this can significantly reduce the network
congestion and improve the user quality of experience.

A central problem in caching systems is content placement
i.e., selecting which and where to cache the contents. Several
reactive placement algorithms have been proposed in [4]. For
example, the least recently used (LRU) policy keeps a record
of the recent requests for each content, and when there is
not enough space it replaces contents with the longest idle
time with newly requested ones. Likewise, the least frequently
used (LFU) approach ejects the least frequently used contents.
These traditional reactive policies and their variants are widely
used in practice due to their simplicity. Nevertheless, they are
not very efficient in capturing patterns in content requests and
therefore may not perform satisfactorily. On the other hand,
proactive caching empowered with predictive capabilities is
particularly efficient in extracting and exploiting the hidden
patterns in the requests and therefore can provide significant
improvement on back-haul savings and user satisfaction [5].
The limitations of the network resources highlight the need for
efficient proactive caching policies with the ability to predict
the popularity of contents accurately.

In parallel, cooperative caching can provide great potentials
to make efficient use of network resources for multicell-
coordinated networks [6]. In this approach, geographically
separated base stations (BSs) are allowed to share their caches
with their neighbouring BSs in the network. As a consequence
of this cooperation, the traffic load on the back-haul links for
retrieving contents from the content server can be reduced
dramatically.

Our work proposes an end-to-end design of a proactive
cooperative caching scheme for a multi-cell network by inves-
tigating popularity prediction, joint request routing and content
placement algorithms. Our contributions in this article include:

• We develop a Bayesian dynamical model for content
requests that can exploit spatiotemporal correlations to
predict the popularity accurately. Bayesian methods have
the capability to mitigate the overfitting problem effi-
ciently when the data is scarce which is the case for
content requests in edge-caching networks [7].
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• We develop a fast and scalable VB technique to learn
the Bayesian model parameters. The VB can perform
both filtering and smoothing procedures for the dynamical
model. We then suggest a window-based algorithm for
online setting in which the request observations arrive
sequentially over time. Depending on the desired accu-
racy and computational complexity, the length of the
window can be tuned by the network operator which
provides more flexibility.

• Moreover, a cooperative caching policy is formulated to
minimize the network cost. The network cost includes the
cost for transferring data among the BSs in the network,
between the content server and the BSs, and updating
the caches with new contents. The caching policy takes
the predicted popularities as input and provides a cost-
efficient delivery scheme for serving users.

• Finally, in the simulation results, we evaluate the entire
caching system (the popularity prediction and the caching
policy design) on a real-world dataset and show the
performance improvement of our scheme over some
traditional benchmarks as well as the performance gap
to the ideal case where the popluartieis can be perfectly
predicted.

In the following, we first review the relevant works in Section
II. Then, we define the system model in Section III-A.
We describe the joint cache placement and request routing
policy in Section III-B. In Section IV, we explain the proba-
bilistic dynamical model and the VB approximation algorithm.
In Section VI, we describe the window-based approach for
online learning. In Section VIII, we present the simulation
results and conclude the paper in Section IX.

II. RELATED WORKS

During recent years, there has been great interests in proac-
tive cooperative content caching [8]–[14]. In [8]–[10], the
authors designed polices to minimize the aggregate network
cost due to content transfers across the network. In [11],
a caching policy was defined to minimize the content down-
loading delay by taking into account cache deployment costs
in the network. The aforementioned works, however, ignored
the capacity of communication links among the nodes. In
wireless networks, the link capacity is constrained and it needs
to considered in the design problem. In [12], a policy was
designed to minimize the sum of downloading latency of
all users subject to bandwidth capacity of BSs constraint.
In this article, we adapt the policy presented in [12] and
formulate a content delivery scheme to minimize the aggregate
network cost for delivering the contents to the users while
guaranteeing the communication overhand among the BSs.
We also incorporate the cache replacement cost into the
optimization problem enabling dynamic migration of contents
from the content server to the caches for our time-varying
scenario.

While a number of results have been published on the
caching policy design, there exist only a few methods for
popularity prediction. In [15], assuming that the requests
follow a Poisson distribution, the required training time was

derived to obtain a desirable prediction accuracy. Subse-
quently, a transfer learning algorithm was proposed to improve
the accuracy of prediction. In [5], popularity prediction was
modeled as a matrix completion problem where the missing
entries are estimated by a matrix factorization technique.
A binary logistic classification method was introduced in [16]
to classify user interests based on content features. In [17],
content features were used to improve the prediction accuracy
within the Bayesian framework. The authors of [18] introduced
a Bayesian factor analysis model to model the correlations
among contents. A main assumption of the aforementioned
studies is that the popularity does not change over time or it
changes very slowly. Nevertheless, in practice, content popu-
larity is highly dynamic and might change even within a few
hours e.g. for viral contents [19].

To tackle the time-varying nature of content popularity,
several time-series analysis methods have been used in the
literature to model the view count dynamics of videos. As one
of the most popular models for time series, the auto-regressive
moving-average (ARMA) model is utilized in [20]–[22] for
video popularity prediction. However, ARMA modeling suf-
fers from three important weaknesses. Firstly, this model
is designed for continuous-valued data, which is not the
case for content requests which are count-valued. Secondly,
the assumed model is linear which is quite restrictive. Also,
it ignores the correlation among contents. In reality, requests
for some contents may be highly correlated and exhibit
similar patterns, for example, some contents may have the
same features or be interesting to the same user community.
By appropriately modeling the count-valued nature of the
requests and their correlation, a more prediction accuracy can
be obtained and as a result a better caching performance. In
our recent work in [23], we extended the factor analysis model
in [18], which is designed for count-valued requests and also
captures their correlation, to track the content popularity in a
time-varying scenario. We showed that the model can perform
better than the ARMA model by examining a real-world
dataset. Moreover, in order to use spatiotemporal information,
the authors in [6] suggested a probabilistic approach based on
Markov chains. The presented model requires about N×M×
M parameters for M contents and N cells, which may not be
practical to use when the number of contents or cells is large.

In this article, we present a probabilistic dynamical model
which can exploit the spatiotemporal correlation among the
count-valued requests. The model is an extension of the
factor analysis model in [23] by using a tensor factorization
approach [24] to reduce the number of parameters for model
parsimony while to capture rich spatiotemporal correlation
structures to improve the accuracy of popularity prediction. We
should mention that our Bayesian framework is different from
neural network modeling approach, which has been attracted
attention during recent years, e.g. [25] and [26], and has
important advantages. Unlike most neural networks, Bayesian
modeling can readily treat uncertainty in a systematic way for
robust prediction. Moreover, neural networks usually require a
lot of data to function. Applying them naively to edge-caching
systems, which suffer from lack of sufficient data, may not
provide a satisfactory performance.



7070 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 11, NOVEMBER 2020

Fig. 1. The network model considered in this article.

Notation: In this article, scalars are denoted by lower-case
letters, e.g., a, vectors are denoted by bold-face lowercase let-
ters, e.g., a, and matrices are denoted by bold-face uppercase
letters, e.g., A. The trace operation is represented by tr(.). The
superscript (.)T denotes matrix transpose. The expectation is
denoted by E[.]. N (μ,Σ) denotes Gaussian distribution with
mean μ and covariance matrix Σ, and the symbol ∼ is used
to mean “distributed as”. G(α, β) denotes gamma distribution
with shape α and rate β.

III. PROBLEM FORMULATION

A. System Model

We consider a cache-enabled multi-cell network as illus-
trated in Fig. 1. A summary of the symbols used herein is
given in Table I. The network consists of N BSs and each
serves a group of users. Moreover, BS n ∈ B Δ= {1, . . . , N}
is equipped with a limited cache capacity of Sn units. All BSs
are connected to the content server through back-haul links via
mobile network operator (MNO) core and we assume all the
processing tasks are performed in this core. Therefore, in our
framework, no computational burden is caused on the end-user
devices. Time is divided into different slots t = 1, 2, . . ., where
each can be a day or a week, and we assume it is fixed and
given. The users make random requests at each time slot from
a library of M contents denoted by C � {1, . . . ,M}, where
content m has size sm in data unit. If the requested content
by a user is available in the local cache of its associated BS,
it will be directly sent to the user. Otherwise, this BS first
communicates with the neighboring BSs to check if they have
the content. If the content is found in the local cache of a
neighboring BS, it will be sent to the BS. If the content is not
stored in any of the BSs’s caches, it needs to be retrieved
from the content server. However, fetching contents from
the content server is expensive, e.g. due the incurred unit
bandwidth cost for transporting data. Therefore, in order to
have a cost-efficient delivery network, the requests need to be

TABLE I

SUMMARY OF NOTATIONS

served by the BSs inside the network. This requires to properly
distribute the contents over all the available BS’s caches.

The problem which we consider herein is to minimize the
total network cost incurred by delivering the contents to the
users. The total network cost is affected by two problems: the
content placement (i.e. which content and where to cache) and
request routing (i.e. which BS should communicate for trans-
ferring the contents) policies. However, these two problems
are interrelated and therefore they should be designed jointly.
For example, the farther the content is cached from a user,
the higher the cost needed for transferring the contents to the
user is. This means that each content should be cached as close
as possible to the requesting users so as to reduce the cost.

Here, we are concerned with a static scenario in which
the request routing policy is designed based on the con-
tent popularity, the request rate, but not the instantaneous
requests. Therefore, having a perfect popularity estimation
is crucial side information for our algorithm in this section.
This assumption is made only to reduce the computational
complexity of the caching design though it may not be optimal.
In other words, designing a routing for each instantaneous
request causes a huge computational complexity overhead
especially for a large network. This approach is also widely
used in the literature, [27].

B. Content Caching Policy
The network cost consists of two costs. First, the routing

cost, CRt, which can be expressed as

CRt =
N∑
n=1

M∑
m=1

(
N∑

n′ �=n
r̄mntsmynn′mtcnn′)

+ r̄mntsm(1 −
N∑

n′=1

ynn′mt)cn, (1)

where r̄mnt is the predicted popularity (request rate)1 of
content m at cell n during time slot t, cnn′ is the cost for
transferring data between BS n and BS n�, and cn is the
cost for transferring data between BS n and and the content
server. Moreover, ynn′mt is binary decision variable defined as

ynn′mt =

{
1 if BS n� sends content m to BS n

0 otherwise.
(2)

Note that from the definition of ynn′mt, it follows that ynnmt is
the cache placement decision variable and is one if content m
is cached at BS n, otherwise is zero. The first term in (1) is the

1Throughout the paper, we use the terms content popularity and content
request rate interchangeably.
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cost for serving the users by the in-network BSs. The second
term is the cost for bringing contents from the content server
through the back-haul link. Furthermore, we assume cnn′ �
cn, i.e. the cost for retrieving contents from the content server
is much higher than from the BSs.

The second cost is associated with refreshing the caches
with new contents during the cache placement which is given
by

CUt =
N∑
n=1

M∑
m=1

cnsmynnmt
(
1 − ynnm(t−1)

)
. (3)

We assume that the new contents are downloaded only from
the content server, and not from the BSs in the network. This
assumption is for simplicity of the network operation. Oth-
erwise, a complex synchronization algorithm is required for
transferring the contents among the BSs. Now combining the
two costs (1) and (3), the joint content placement and request
routing problem aiming to minimize the overall network cost
over T time slots can be formulated as:

min
ynn′mt

T∑
t=1

CRt + CUt (4a)

s.t :
M∑
m=1

ynnmtsm ≤ Sn ∀n ∈ B (4b)

N∑
n�=n′

M∑
m=1

r̄mntynn′mtsm ≤ Ln′ ∀n� ∈ B (4c)

ynn′mt ≤ yn′n′mt ∀n, n� ∈ B, m ∈ C (4d)
N∑

n′=1

ynn′mt ≤ 1 ∀n ∈ B, m ∈ C (4e)

ynn′mt ∈ {0, 1} ∀n, n� ∈ B, m ∈ C. (4f)

In problem (4), constraint (4b) represents the cache capacity
limitation in content size unit. Constraint (4c) ensures that the
traffic load on BS n� due to serving other BSs is bounded
by Ln′ . In other words, this constraint guarantees that the
communication overhead among the BSs does not exceed
above Ln′ . Constraint (4d) ensures that BS n� can send content
m to BS n if it is stored in its local cache. Constraint
(4e) ensures that BS n can only store content m in its
cache or fetch it from only one BS. Constraint (4f) denotes
the space restriction for ynn′mt.

There are several issues which make the optimization prob-
lem in (4) non-trivial to solve even in offline scenario. Firstly,
it is a binary integer nonlinear programming which is NP-
hard to solve. Specially, because of the dimensions of problem
which is specified by the number of contents and the number
cells, it is computationally demanding. Secondly, The objective
function is coupled over time horizon thorough the cache
update cost in (3). This means that in order to obtain the
optimal policy solution, problem (4) needs to be solved over
all time slots jointly. In other words, a decision at present
is influenced by the future content requests. For instance, by
ignoring the future requests, it might be optimal to remove
a content from a cache for the current time slot. However,
this decision may not be optimal if we knew the content

requests during the next time slots. Specifically, the request for
this content may increase in the next time slots and therefore
keeping this content can save the cost for fetching the content
from the server for the next time slot. Solving problem (4),
however, is not feasible for online settings since the content
popularity is required over all time slots which is unknown in
practice.

Our approach is to solve the one-shot optimization for
each time slot. More specifically, given the decision variable
at time slot t = τ , ymnn′(τ), we solve (4) with respect to
ymnn′(τ+1) for the next (τ + 1)th time slot. This gives a one-
shot binary integer linear programming (BILP) problem. To
solve this problem, we use the branch and bound which is
a non-heuristic algorithm and can terminate with a certificate
proving that the suboptimal point found is ε-suboptimal [28].
In the next section, we focus on designing an algorithm for
content popularity prediction.

IV. PROBABILISTIC DEMAND MODEL

In this section, we introduce a dynamical model for content
requests in order to accurately predict the local popularities
(content popularities in different cells). Our task is to predict
future requests given all the requests up to the present time
which are denoted as Dτ = (D1, . . . .,Dτ ) where Dt ∈
Z
M×N . The element dmnt is the number of requests for

content m at cell n at time slot t which is obtained from
request observations collected at the MNO core. For the
prediction, we would like to compute a probability distribution
over the next time slot i.e. p (Dτ+1|Dτ ). Once we compute
this predictive distribution, we can derive our best guess for
the future requests which can be used to optimize the caching
policy.

Before diving into the details of the dynamical model,
we remark some underlying causes that can impact the way
users request the contents. This knowledge can help to con-
struct an accurate model. In practice, there may exist two
types of correlations among the contents: inter-cell and intra-
cell. Users in the same cell may belong to the same social
geography group (e.g university) and they can have similar
interest towards contents. This indicates the demands for
some contents exhibit the same patterns, i.e. the intra-cell
correlation. Moreover, the requests for a content in different
cells can be correlated. For example, users in different cells
may belong to the same social media groups (e.g Instagram
and Facebook) and they may affect their preferences. This
request pattern across cells is referred as inter-cell correlation.
This underlying prior information about the content requests
motivates us to develop a probabilistic dynamical model to
capture the two types of correlation to improve the prediction
accuracy.

In order to model the correlations mentioned above,
we design a probabilistic tensor factorization model. Ten-
sor factorization is a fundamental dimensionality reduction
technique in modern machine learning in order to cap-
ture higher order structural properties in a tensor data by
modeling multilinear interactions among a group of low-
dimensional latent factors [29]. Herein, we notice that the
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Fig. 2. A view of the tensor factorization algorithm for popularity prediction.

request observations can construct a three mode tensor with
dimensionality of content× cell× time. Accordingly, similar
to [24], we develop a probabilistic model based on CAN-
DECOMP/PARAFAC(CP) factorization approach. In [24],
a Gaussian model is used by the assumption that data is
continuous-valued. However, the issue with the using of
Gaussian model is that it may predict negative value for the
request rate which is not meaningful in caching policy (4).
Therefore, due to the count-valued nature of content requests,
we cannot directly use the model in [24]. In a similar way
as in [23], we adapt the CP factorization approach to Poisson
distribution, which is common for modeling count-valued data,
as

dmnt ∼ Pois(
K∑
k=1

akmbknzkt), (5)

where am, bn and zt are positive latent factor vectors with
dimensions K and respectively correspond to content m, cell
n and time t. The model in (5) assumes that the request for
content m in cell n at time slot t, dmnt, is generated by a

Poisson distribution whose rate is rmnt =
K∑
k=1

akmbknzkt.

Note that (5) can also be rewritten as

dmnt ∼ Pois
(
aTmDiag (zt)bn

)
, (6)

where Diag (zt) denotes a K × K diagonal matrix with
diagonal elements given by z1t, . . . zKt. We can interpret zt
as a basis random vector representing the requests in a hidden
low-dimensional space and am,bn are weight parameters that
project zt to the observed space generating the request rates.

Fig. 2 depicts a graphical view of the CP tensor factorization
which models the correlations by introducing three factors; am
factors of contents, bn factors of cells, and zt factors of time.
We also note that in model (6), the correlation among the
request rates for content m in cell n at time t and content m�

at cell n� at time t� is given by

Corr (rmn,t, rm′n′t′) = (am � bn)
T
E

(
ztzTt′

)
(am′ � bn′),

(7)

where � is the Hadamard product. Regarding the time factors
zt, since they capture the time dependency of the requests, we
assume that they follow a first order Markov process as

zt = ext , xt = xt−1 + et, (8)

starting from initial state x0. et is purely random and rep-
resents unpredictable changes in the time dimension between
time t and t− 1 and it is assumed that et ∼ N (0,Q). In (8),
the time evolution in zt is modeled by xt which is a continuous

random walk process (or more specifically a Gaussian process)
and the exponential transformation ensures that zt is positive.

Covariance matrix Q reveals important information about
the time evolution of latent factor xt. When it is large, xt

can move longer distances which makes it more forgetful
of past information. On the other hand, when it is small, it
indicates that xt changes very smoothly and does not forget
past information. This means that Q plays an important role
on the flexibility of the model. Therefore, we assume that
the covariance matrix is unknown and changes over time.
Allowing the covariance matrix to be dynamic can help to have
a better prediction for unexpected patterns in the requests. For
example, due to some social events users may be unexpectedly
interested in particular types of contents for a period of time
and therefore these contents abruptly become highly popular.
Treating the covariance matrix as a constant may not let the
model to be flexible enough to track these sudden changes.
Also according to (7), the time-varying covariance matrix
allows the correlation among the contents to change over time
which is a realistic assumption in practice. We model the
time varying covariance matrix Qt by the generalized Wishart
process [30] as

Q−1
t ∼ GWP (ν, k(t, t�; θ)), (9)

where ν > 0 is the number of degrees of freedom and
k(t, t�; θ) is a Gaussian process kernel function with para-
meters θ. More formally, the marginal distribution of the
generalized Wishart process at time t has a Wishart distribution

Q−1
t = UtUT

t ∼ W (k(t, t; θ), ν) , (10)

where Ut = [u1t, . . . .,uvt] and uvt ∈ R
K×1. Matrix Ut is

a sample from a Gaussian process with zero mean and kernel
function k(t, t�; θ) as:

uit ∼ GP (0, k(t, t�; θ)), ∀i = 1, . . . , ν. (11)

For simplicity, we consider the kernel function k(t, t�; θ) =
min (t, t�)Q. With this kernel, the Gaussian process in (11)
simply becomes the first order Markov process as

uit = ui(t−1) + ζit, ∀i = 1, . . . , ν, (12)

starting from initial state U0 and where ζit ∼ N (0, Q̂). Here,
we complete the basic structure of the dynamical model.

V. BAYESIAN LEARNING

Now, given the data requests, Dτ , the goal is to learn the
parameters of the model. We invoke the Bayesian method. To
this end, we need to specify the form of prior distributions for
the parameters of the model. We assume the following priors:

akm ∼ G (α, β), ∀k = 1, . . . ,K, m = 1, . . . ,M,

bkn ∼ G (α�, β�), ∀k = 1, . . . ,K, n = 1, . . . , N,
x0 ∼ N (μ̂0, Σ̂0), U0 ∼ MN (Υ̂0, Θ̂10, Θ̂20), (13)

where MN
(
Υ̂0, Θ̂10, Θ̂20

)
denotes matrix-variate Gaussian

distribution with mean matrix Υ̂0 and covariance matrices Θ̂10

(determining covariance among rows) and Θ̂20 a(determining
covariance among columns). Using the Bayes rule, model
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Fig. 3. The Bayesian graphical model.

learning is to estimate the posterior density which is propor-
tional to:

p (h|Dτ ) ∝ p (x0) p (U0)
N∏
n=1

M∏
m=1

K∏
k=1

p (akm) p (bkn)

τ∏
t=1

p(Ut|Ut−1) p(xt|xt−1,Ut)
M∏
m=1

M∏
n=1

p(dmnt|am,bn,xt),

(14)

where h =
{
{am}Mm=1 , {bn}Nn=1 , {xt,Ut}τt=0

}
is the set of

all unknown quantities. Note that we assume that quantities{
K, Q̂, v, α.β, α�, β�

}
and also the parameters of initial states

densities are known hyper-parameters which they can be
found by cross validation. The graphical representation of the
Bayesian model is shown in Fig. 3. The unshaded and shaded
circle nodes respectively indicate unknown variables and the
observation requests. The arrows illustrate the causal relations
among the variables. The posterior density in (14) is not
tractable to compute due the normalization constant which is
a high-dimensional integral. One important class of Bayesian
models satisfies the conditional conjugacy property meaning
that the conditional posterior of a variable and the prior should
belong to the same distribution family [31]. A big advantage
of such models is that the posterior can be approximated with
closed-form expressions. We apply the variable augmentation
technique, as used in [32], to introduce a partial conjugacy.
The approach is to reformulate (5) by introducing additional
latent variables d̂mnkt as:

d̂mnkt ∼ Pois (akmbknexkt). (15)

From the property of Poisson [33], we see that dmnt =
K∑
k=1

d̂mnkt. With this reformulation, the Bayesian model fulfills

the conditional conjugacy for variables am, bn, and d̂mnkt
which we can leverage to design a low complexity inference
approximation. A part of the Bayesian model with and without
the augmented latent variables d̂mnkt is shown in Fig.4.

A. Variational Bayes

In order to approximate the posterior, we employ the
VB framework which is briefly explained in this subsec-

Fig. 4. Part of the Bayesian model.

tion. Variational inference performs the inference task as
the problem of minimizing the Kullback-Leibler (KL) diver-
gence between an approximate distribution and the true pos-
terior [31].

More formally, true posterior p(h|Dτ ) is approximated
by a family of distributions q(h; λ) with parameters λ that
minimizes the KL divergence as

min
q(h;λ)

KL(q (h; λ) || p (h|Dτ )), s.t :
∫
q (h; λ) dh = 1,

(16)

where KL(q (h; λ) || p (h|Dτ )) Δ= Eq(h;λ)

{
log q(h;λ)

p(h|Dτ)

}
.

It can be seen that minimizing the KL divergence between
q(h; λ) and p (h|Dτ ) is equivalent to maximizing a lower
bound for the marginal log-likelihood of the observations
which is also called the evidence lower bound (ELBO). The
ELBO can be expressed as:

ELBO (λ) = Eq(h;λ) (log (p̃ (h|Dτ ))) +H(q (h; λ)), (17)

where H (q (h; λ)) is the entropy of q(h; λ) and p̃ (h|Dτ ) is
the un-normalized version of the true posterior density.

One of the most popular forms of VB is the mean field
approximation. In this scheme, the assumption is that the
variational distribution is factorized as:

q (h; λ) =
∏
i

q (hi; λi), (18)

where hi is part of h with
⋃
i

hi = h and
⋂
i

hi = ∅. By apply-

ing the mean-field approximation, the objective function in
(17) can be optimized via a coordinate ascent like method in
which the optimization sub-problem with respect to the λi
variational parameter is given by

ELBO (λi) = Eq(h) (log p̃ (hi|h∼i,Dτ )) +H (q (hi; λi)),
(19)

where p̃ (hi|h∼i,Dτ ) is the un-normalized conditional poste-
rior of hi. It turns out that when some variables hi satisfy
the conjugacy property, choosing q(hi) in the form of prior
leads the maximization problem in (19) to have a closed-form
solution. Otherwise, numerical methods may be needed to find
its optimal value.
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B. Posterior Approximation

To approximate (14), we consider the following factorized
form for the variational density:

q (.) = q (x0) q (U0) {
τ∏
t=1

q (xt) q (Ut)
M∏
m=1

N∏
n=1

q(d̂mnt)}

{
K∏
k=1

M∏
m=1

q (akm)}{
K∏
k=1

N∏
n=1

q (bkn)}, (20)

where

q(xt) = N (xt; μt,Σt),
q(d̂mnt) = Multi(d̂mnt; dmnt,pmnt),
q(akm) = G (akm;αkm, βkm),
q(bkn) = G (bkn;α�

kn, β
�
kn),

q(Ut) = MN (Ut; Υt,Θ1t,Θ2t),

and for simplicity, we assume Θ1t, Θ2t and Σt are diagonal
matrices. These forms of dentists are for simplicity and effi-
cient inference. Specifically, as we will see in the following,
the gamma and multinomial variational densities lead to derive
closed-form expressions during the coordinate decent updates.
Consequently, the ELBO for the probabilistic dynamical model
can be written as:

ELBO =
N∑
n=1

M∑
m=1

τ∑
t=1

K∑
k=1

Eq[logPois(d̂mnkt|akm, bkn, xkt)]

+
M∑
m=1

K∑
k=1

Eq [logG (akm|α, β)]

+
N∑
n=1

K∑
k=1

Eq [logG (bkn|α�, β�)]

×
τ∑
t=1

Eq [logN (xt|xt−1,Ut)]

+
τ∑
t=1

Eq [logN (Ut|Ut−1)] +Hq (q(.)), (21)

where dmnt =
K∑
k=1

d̂mnkt. Using the coordinate ascend like

method, the updates for each dimension of the variational
parameters are given as follows:

• Update w.r.t. pmnkt: It can be derived in closed-form as

pmnkt =
cmnkt
K∑
k=1

cmnkt

, (22)

where cmnkt = eψ(αkm)−ln(βkm)+ψ(α′
kn)−ln(β′

kn)+μkt .
Proof: See Appendix A. �

• Update w.r.t. βkm and αkm: They can be derived in
closed-forms as

αkm = α+
N∑
n=1

τ∑
t=1

dmntpmnkt, (23)

βkm = β +
N∑
n=1

τ∑
t=1

α�
kn

β�
kn

eμkt+
1
2 [Σt]kk . (24)

Proof: See Appendix B. �
• Update w.r.t. β�

kn and α�
kn: They can be derived in closed-

forms as

α�
kn = α� +

M∑
m=1

τ∑
t=1

dmntpmnkt, (25)

β�
kn = β� +

M∑
m=1

τ∑
t=1

αkm
βkm

eμkt+
1
2 [Σt]kk . (26)

Proof: The proof is similar to (23) and (24). �
• Update w.r.t. μt and Σt: The ELBO function has the

following form:

ELBO (μt,Σt)

=
N∑
n=1

M∑
m=1

K∑
k=1

{dmntpmnktμkt−αkmβ
�
kn

βkmβ�
kn

eμkt+
1
2 [Σt]kk}

− 1
2
tr

((
μtμ

T
t + Σt

)
(Ξt + Ξt+1)

)
+ (μTt−1Ξt + μTt+1Ξt+1)μt + log |Σt|, (27)

where Ξt = E
{
UtUT

t

}
= Θ1ttr (Θ2t) + ΥtΥT

t . The
optimization for μt and Σt doesn’t have a closed-form
solution. However, since the objective term in (27) is
concave, we can use projected Newton-type methods to
find its maximum value with fast convergence rate.

• Optimize w.r.t Υt and Θt = (Θ1t,Θ2t): Similar to (27),
there is no closed-form update for these parameters. The
functional dependency of the ELBO function on Υt and
Θt has the following form:

ELBO (Υt,Θt) =
1
2
Eq(Ut) log

∣∣UtUT
t

∣∣ − h (Υt,Θt),

(28)

where

h (Υt,Θt) =
1
2
tr

(
ΥT
t

(
Ct + 2Q̂−1

)
Υt

)
+ tr(Θ2ttr(Θ1t(Ct + 2Q̂−1)T )

− tr
(
ΥT
t Q̂−1 (Υt−1 + Υt+1)

)
− v

2
log |Θ1t| − K

2
log |Θ2t|,

and Ct = E
{
(xt − xt−1) (xt − xt−1)

T
}

. Optimizing
the objective term in (28) is not trivial. More specifi-
cally, function (28) is not convex and also computing
the expectation in the first term leads to a complicated
expression which is difficult to optimize. To optimize the
objective function term, we follow a stochastic approx-
imation approach. However, there is an issue with the
expectation term. To be specific, random variable Ut is
a function of the optimization parameters which is not
in a standard form for using stochastic approximation
techniques. To address this, we note that random vari-
able Ut ∼ MN (Υt,Θ1t,Θ2t) can be equivalently re-
parameterized as

Ut = Θ1/2
1t ΨΘ1/2

2t + Υt, (29)
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Algorithm 1 The Coordinate Ascent VB Algorithm

1 Initialize μt,Σt,Υt,Θt, αkm, βkm, α
�
kn, β

�
kn,

∀m = 1, . . .M, n = 1, . . . , N, k = 1, . . . ,K, t = 0, . . . , τ ;
2 repeat
3 Update αkm, βkm, α�

kn, β
�
kn using (25)-(28)

∀m = 1, . . .M, n = 1, . . . , N, k = 1, . . . ,K;
4 Update pmnt using (22),

∀m = 1, . . .M, n = 1, . . . , N, t = 1, . . . , τ ;
5 Update μt,Σt using (27), ∀t = 0, . . . , τ ;
6 Update Υt,Θt,∀t = 0, . . . T using stochastic

successive approximation method;
7 until ELBO convergence;

where the elements of Ψ are normal random variables
with zero means and unit variances. By this transforma-
tion, we can rewrite (28) as

ELBO (Υt,Θt) =
1
2
Ep(Ψ) log |Θ1/2

1t ΨΘ2tΨTΘ1/2
1t

+Θ1/2
1t ΨΘ1/2

2t ΥT
t +ΥtΘ

1/2
2t ΨTΘ1/2

1t

+ΥtΥT
t |−h (Υt,Θt), (30)

which is in standard form for using stochastic approxi-
mation. To obtain the maximum value of (30), we use a
stochastic successive convex approximation method [34].
Please see Appendix C for the implementation details.

The overall description of the VB is illustrated in Alg. 1.
Starting by initializing the variational parameters, we itera-
tively update them until the ELBO converges. To check the
convergence of the ELBO, we can examine the normalized
incremental change of the variables in each iteration and once
it is less than a threshold e.g. 10−3 the algorithm stops.

Remark: The coordinate ascent VB algorithm guarantees to
monotonically increase the ELBO when each sub-problem is
convex and attains a unique maximum [35]. The condition
is satisfied for all sub-problems except for (30). In other
words, due to the non-convexity of sub-problem (30) and using
stochastic approximation for computing its gradient, the ELBO
is not guaranteed to be increased at each update. Nevertheless,
the convergence of the developed coordinate ascent VB can
be established based on the expectation violation of a first-
order optimality condition. Specifically, because of the convex
approximation procedure (see Appendix C), the update of
(Υt,Θt) in sub-problem (30) is unique. Moreover, by choos-
ing proper values for stepsizes γ(i) and ε(i), in (47) and (48),
such that to diminish (with γ(i) decreasing faster than ε(i))
to zero while not too fast, the convergence analyses in [34]
and [36] can be used to show that the gradient of the ELBO
converges to zero on average.

C. Prediction

Once the posterior is fit, we use the model to predict the
content request rate over the next time slots. We use the mean
of the predictive distribution as our best guess for the request

rate which can be computed by:

r̄mn(τ+1) =
K∑
k=1

αkmα
�
kn

βkmβ�
kn

Eq(xτ )p(xτ+1|xτ) [exk(τ+1) ]. (31)

The expectation doesn’t have a closed-form expression.
We use the Jensen’s inequality and approximate it as:

Eq(xkτ )p(xk(τ+1)|xkτ)[exk(τ+1) ]≈Eq(xkτ )[exkτ ]=eμkτ + 1
2 [Στ ]kk .

The predicted request rate in (31) can be used to solve the
cache optimization problem in (4).

VI. ONLINE LEARNING

For an online caching update, we need an online prediction
algorithm. This cannot be achieved by the VB method in the
previous section, which uses the whole request observation
sequence and hence is computationally intensive.

To tackle this issue, we suggest a window-based VB algo-
rithm which also offers a trade-off between computational
complexity and prediction accuracy. More specifically, instead
of processing all observations we use a sliding window with
length W . For an online setting, we take the posterior over
the variables to be the prior for subsequent inferences. Here,
we should remark that there are two types of variables in
the model. The global variables that are shared across all
the observations i.e. am,bn and the local variables that are
specific only for each sample observation i.e. xt,Ut, d̂mnt.
Lets denote the window observation indexed by τ , each of size
W , which are given to the model sequentially. From (25)-(28),
it can be seen that we can easily write the updates role for the
global parameters recursively. For example for am, we have:

αkm = α
(τ−1)
km +

N∑
n=1

W∑
w=1

dmn((τ−1)+w)pmnk((τ−1)+w),

(32)

βkm = β
(τ−1)
km +

N∑
n=1

W∑
w=1

α�
kn

β�
kn

eμk((τ−1)+w)+
1
2Σk((τ−1)+w) ,

(33)

where α(τ−1)
km and β(τ−1)

km are the inferred variational parame-
ters in the previous window indexed by τ − 1. This recursion
provides an incremental update of the parameters. The local
parameters are computed as before. Only for xt,Ut their
initial states are the inferred last states in the previous window.
The VB algorithm is then run until convergence. Once new
observations arrive, we slide the window by a time slot and
the same procedure is repeated.

There is one important point we should note. When W > 1,
the observations in subsequent windows overlap and using the
recursive updates in (32) causes to over-count the local vari-
ables during the global variables update. In order to mitigate
this, we can simply subtract overlapped local variables from
the update rules in the global variables.

Note that the highest prediction accuracy is attained when
the window’s length is set as the total number of historical
observations. This is, however, may not be possible due the
limitations on computational resources at the MNO unit.
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TABLE II

PREDICTION ERROR FOR DIFFERENT VALUES OF W

Therefore, in practical scenarios, the correct window’s length
will be set based on the available computational resources.

VII. COMPUTATIONAL COMPLEXITY

We compute the per-iteration computational complexity of
approximating the posterior distribution in (14) using the
developed online VB algorithm. The individual contributions
of updating variational parameters to the overall per-iteration
time complexity during the τ th observation window are as
follows. i) Updating the parameters of each d̂mn(τ−1+w),
∀m = 1, ..,M, n = 1 . . . , N,w = 1, . . . ,W , takes O(K)
time if dmnt �= 0, otherwise 0 time. This can seen from
(15) that when dmnt = 0, d̂mnkt, ∀k = 1, ..,K , becomes
a deterministic variable with zero value. Therefore, only
non-zero requests need to be considered. The overall time-
complexity is O(WKTnnz) where Tnnz is the number of non-
zero requests during the most densely requested time slot. ii)
The overall time complexity of updating the parameters of
akm and bkn, ∀m = 1, ..,M, n = 1 . . . , N, k = 1, . . . ,K ,
is O(NK + MK). iii) The time complexity of updating
each x(τ−1+w) and U(τ−1+w), ∀w = 1, . . . ,W are O(K3)
and O((νK)3), respectively, which are largely due to matrix
inversion operations. Overall, the computational complexity
of the online VB is O(WKTnnz + NK + MK + WK3 +
W (νK)3).

VIII. SIMULATION RESULTS

In this section, we numerically illustrate the performance
of the proposed dynamical model for popularity prediction
and cooperative caching policy. For ease of presentation,
the proposed dynamical model is abbreviated by DPG which
stands for dynamical Poisson-Gaussian. Throughout all the
simulations, we set M = 100, and N = 10. The values
of hyperparameters are set as below, which we found the
VB works well in our scenarios.

α = β = α� = β� = 0.01, Q̂ = 0.25IK , ν = K + 1,
Σ̂0 = IK , μ̂0 ∼ N (0, IK), Υ̂0 ∼ MN (0, 5IK , 5Iv),

Θ̂10 = IK , Θ̂20 = Iv

Moreover, the platform for the simulations is equipped
with Intel(R) Core(TM) i7-6820HQ CPU running at a speed
of 2.70GHZ.

A. Synthetic Data

We first evaluate the performance of the online VB learning
method on synthetic data. For this scenario, we generate
synthetic data based on the proposed probabilistic model.
We predict the content popularity r̄mnt for T = 100 time
slots which in total contains M ×N × T = 105 predictions.

Fig. 5. Request rate trajectories of a content in different cells a, b, c and d.

In this scenario, we set K = 5. We use the following metric
to measure the prediction error:

Err =
1

MNT

∑
m,n,t

|rmnt − r̄mnt| (34)

Tab. II shows the error of the predictions for different values
of window length W . We can see that as W increases the
prediction accuracy improves. Specifically, increasing W from
2 to 16 reduces the error from 1.88 to 1.10. The reason is
that with larger values of W more observations are used to
estimate the model’s parameters and as a result a more accurate
prediction is obtained. In Fig. 5, we show an example of
the generated requests, popularities and predicted popularities
of a content in four different cells (namely a,b,c and d) for
W = 4. It can be seen that the predicted popularties are
very close to the true values. Additionally, we can observe
that the probabilistic model is flexible enough to capture
different types of popularity trends across different cells. The
top subfigures in Fig. 5 show the content in cells a and b
with the same popularity trend. On the other hand, the bottom
subfigures show a different trend for the content in cells b
and c.

Now, we empirically show the convergence of the Online
VB approximation. Fig. 6 shows the normalized incremental
change of the variational density parameters versus the compu-
tational time. It can be seen that as W increases the amount of
time for the convergence of the VB increases. This is expected
since by increasing W , the number of latent variables, i.e.
the parameters of d̂mnt,xt and Ut, during the inference
increases which increases the computational complexity of
the algorithm. Specifically, we observe that the VB converges
fairly fast. For example, for W = 16 and at convergence
threshold 10−3, it converges around 250 seconds.

B. Real-World Data

Next, we use a real-world dataset in our numerical experi-
ments. More specifically, we use the MovieLens 20M exam-
ple [37]. The dataset contains 20 million ratings applied to
27,000 movies by 138,000 users. We choose ratings on a
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Fig. 6. The convergence behavior of the VB.

bimonthly basis where we select the most popular M = 100
movies and the most active 1000 users. The users are randomly
distributed across the cells, each has 100 users. We remove the
time slots with no ratings which in total T = 106 time slots
remains. Similar to [18] and [38], a movie’s rate is considered
as one request for this movie. Fig. 7 shows the total number
of content requests versus time slots. We can see that at the
beginning, the number of requests is small. Then, it increases
with an abrupt change. For some time slots, it fluctuates with
a large variance at almost a fixed level and then it decreases.
In our simulations, we keep the first 16 time slots for using
as initial training set for the models and the predictions are
performed on the remaining 90 time slots.

We next examine the prediction accuracy of the model on
this dataset. As benchmarks, we compare with:

• Independent dynamical Poisson Gaussian (IDPG) model:
this is a special case of the probabilistic model in (5)
which only captures the intra-cell correlations. We fit (5)
to the request observations in cell n independent of the
other cells by setting its cell factor weight to bn = 1.

• ARMA model: the requests are modeled as dmnt =
I∑
i=1

ϕnidm,n,t−i +
J∑
j=1

αnjnm,n,t−j for t = 1, . . . , T and

m = 1, . . . ,M , where I and J specify the order of
the model, ϕi and αj are the parameters, and nm,t is
white noise error term. We set I = J = 7 which is
also used in [20]. For its implementation, we used the
econometrics MATLAB toolbox. Note that due to the
Gaussian noise assumption, ARMA model may predict
negatives values for the requests. To provide meaningful
predictions, we round the negative values to a small
positive value e.g. 10−5.

• The most recently observed requests (MROR) approach:
the requests for next time slot are assumed to be the same
as in the recent time slot.

• The most frequently observed requests (MFOR)
approach: the requests for the next time slot are the
average of the whole historical observations.

Since the true underlying content popularity is unknown for
this real-world dataset, we are unable to use (34) as prediction

TABLE III

PREDICTION ERROR OF DIFFERENT MODELS

Fig. 7. The total number of content requests in used data set versus time
slots.

performance metric. Instead, we use

Err =
1

MNT

∑
m,n,t

|dmnt − r̄mnt| (35)

which measures the discrepancy between the predicted popu-
larities and the instantaneous requests.

Tab. III shows the prediction error in (35) for different meth-
ods. We also show the prediction error over time slots in Fig. 8
In this scenario, we set K = 5 and W = 4. It can be seen that
the proposed dynamical models, DPG and IDPG, provide a
better accuracy with respect to the other approaches. Moreover,
DPG model has a better performance in comparison to DPG
model. This indicates that modeling the spatial correlations can
enhance the prediction accuracy. We can also see that ARMA
model has the worst performance in comparison to MFOR
and MROR. Moreover, the performance of MFOR approach
gets worse as time passes. This is because MFOR can not
capture the temporal locality of popularity and as time passes
its estimation becomes outdated. On the other hand, MROR
approach can capture a short term temporal locality. However,
it is not efficient since it only uses the requests within the
recent time slot and completely ignores the historical requests.

Now, we show the accrued network cost using different
prediction approaches. The parameters of the caching policy
are set cns = 50, cnn′ = 5, Ln = L, and Sn = S.
Moreover, since the dataset does not have the size of movies,
for simplicity, we assume all the movies have equal sizes of
one unit. The results for the network cost are obtained by
taking average over time, the number of contents and the
number of cells. Moreover, to solve the combinatorial problem
in (4), we use the IBM ILOG CPLEX optimization studio
version 12.9.0.0 with its default setup [39].

Fig. 9 shows the average network cost versus K . For this
scenario, we set L = 25 and S = 25. In the figure, we
also show an oracle approach which knows in advance the
content requests. It can be seen that the proposed dynamical
models, DPG and IDPG, outperform the other approaches and
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Fig. 8. Prediction error of different models over time.

Fig. 9. Average network cost versus latent factors dimensions, K , for
different models.

TABLE IV

AVERAGE NETWORK COST FOR DIFFERENT VALUES OF W

are close to the oracle. This confirms the results on prediction
accuracy in Tab. III and Fig. 8. Additionally, we can see
that DPG model achieves a better caching performance in
comparison to IDPG model which indicates that modeling
the spatial correlations is beneficial for improving the caching
performance. Furthermore, it can be observed that as K
increases, the network cost decreases for both DPG and IDPG
models. The reason is that as K increases the expressiveness
power of the models increases and they can explain the
observations more accurately. Furthermore, among MROR,
MFOR and ARMA, the former performs the best while the
latter performs the worst. We also show the performance of
the proposed model, DPG, for different values of W forK = 5
in Tab. IV. It can be seen that as W increases the network cost
decreases which is due to a better prediction for larger values
of W .

Finally, we investigate the performance of the proac-
tive cooperative caching policy. To compare with, we con-
sider three traditional reactive policies: LRU, LFU [4] and
LFRU [40]. Fig. 10 shows the network cost versus the cache
capacity. From the figure, it can be seen that the performance
of caching policies improve as the cache size increases. This

Fig. 10. Average network cost versus cache size for different caching policies.

is excepted since more contents can be stored in the caches
avoiding the need of fetching them from the content served
or the neighboring BSs. Moreover, we observe that for the
cooperative policy the network cost decreases as L increases.
This is expected because as L increases, the BSs are allowed
to support more data traffic for the routing and therefore to
cooperate more for sending contents to the their neighbors.
Consequently, most of the requests will be served inside the
network bypassing the need of fetching contents from the
far way sever which is too costly. Furthermore, it can be
seen that our proactive cooperative caching policy performs
very close to the coracle and substantially outperforms reac-
tive LRU, LFU and LFRU polices. Specifically, the perfor-
mance gap between reactive polices (LRU, LFU and LFRU)
and proactive cooperative policy increases significantly as L
increases.

IX. CONCLUSION

In this work, we introduced a cooperative caching policy
for cache-enabled multi-cell networks. We designed a joint
routing and cache placement strategy to minimize the network
cost to fulfill users requests. Then, we proposed a proba-
bilistic dynamical model for the content requests which can
track complex real-world datasets. The model is powerful
enough to capture the correlations among the requests of
contents both within a cell and across cells. The model
learning is performed in the Bayesian way which is very
appreciated to tackle overfitting. Due to intractability of the
posterior, we developed an approximation algorithm based on
the Variational Bayes which can be solved efficiently. Finally,
a window-based online learning was developed which can
even reduce the computational complexity of the Variational
Bayes inference but with less accuracy. The online learning
is also very important when requests arrive sequentially and
online cache replacement is required. Experimental results on
a real-world dataset confirmed that our proposed popularity
prediction method performs well in comparison to benchmark
algorithms.
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APPENDIX

A. Proof of (22)

First, we note that the conditional posterior of latent variable
d̂mnkt has a multinomial distribution as [33]:

d̂mnkt ∼ Multi(dmnt, (akmbknexkt)/
K∑
k=1

akmbkne
xkt). (36)

We replace conditional distribution (36) into (19) and optimize
the ELBO with respect to pmnt. The functional dependency
of the ELBO on pmnt as

ELBO (pmnt) = Eq

[
log Multi(d̂mnt|dmnt, akm, bkn, xkt)

]
+H(q(d̂mnt)) (37)

The objective function in (37) can be simplified as

ELBO (pmnt)

=Eq(d̂mnt){log dmnt!−
K∑
k=1

log d̂mnkt!+
K∑
k=1

d̂mnkt log ĉmnkt}

+H(q(d̂mnt))

where ĉmnkt=e
E∼q(d̂mnt)

[log(akmbkne
xkt )−log(

K�

k=1
akmbkne

xkt )]
.

After some mathematical operations and ignoring constant
terms, the optimization sub-problem can be written as

min
pmnkt

dmnt

K∑
k=1

pmnkt log
(
pmnkt
ĉmnkt

)
, s.t.

K∑
k=1

pmnkt = 1

where the constraint ensures that parameters pmnkt are nor-
malized. Using the method of Lagrangian multipliers, we aim
to solve

∂

∂pmnkt
[dmnt

K∑
k=1

pmnkt log(
pmnkt
ĉmnkt

)+λ(
K∑
k=1

pmnkt−1)]=0

(38)

where λ is the Lagrange multiplier for the normalization
constraint. Setting

pmnkt∝kĉmnkt (39)

achieves the desired outcome. Here, ∝k indicates the propor-
tionality across k. We can compute a closed-form expression
for pmnkt. To this end, we compute the expectation terms in
the exponent of ĉmnkt. We first note that there is no need to
compute the second term which is difficult to obtain. Since
due to the normalization, it is eliminated, automatically. The
expectation in the first term is computed as

E {log (akmbknexkt)} = ψ (αkm) − ln (βkm) + ψ (α�
kn)

− ln (β�
kn) + μkt (40)

where ψ (.) is the diagmma function. By replacing (40) in
(39), we obtain (22).

B. Proof of (23) and (24)

The functional dependency of the ELBO in αkm and βkm
is given by:

ELBO (αkm, βkm)

=
N∑
n=1

M∑
m=1

τ∑
t=1

K∑
k=1

Eq

[
logPois

(
d̂mnkt|akm, bkn, xkt

)]
+

M∑
m=1

K∑
k=1

Eq [logG (akm|α, β)] +H (q (akm)) (41)

The ELBO can be simplified as

ELBO (αkm, βkm)

= (
τ∑
t=1

N∑
n=1

E[d̂mnkt] + α− 1) (ψ (αkm) − log βkm)

− αkm
βkm

(
τ∑
t=1

N∑
n=1

E[bknexkt ] + β) + αkm − log βkm

+ log Γ (αkm) + (1 − αkm)ψ (αkm) (42)

By equating the gradient of ELBO with respect to βkm to
zero, we obtain

∂ELBO(αkm, βkm)
∂βkm

=0→βkm=
αkm(

τ∑
t=1

N∑
n=1

E[bknexkt ]+β)

τ∑
t=1

N∑
n=1

E[d̂mnkt]+α

(43)

Similarly, we compute the gradient of the ELBO with respect
to αkm as

∂ELBO (αkm, βkm)
∂αkm

= (
τ∑
t=1

N∑
n=1

E[d̂mnkt] + α)ψ� (αkm)

− 1
βkm

(
τ∑
t=1

N∑
n=1

E[bknexkt ] + β)

+ 1 − αkmψ
� (αkm) (44)

By replacing (43) into (44) and setting the gradient equal to
zero we obtain:

αkm =
N∑
n=1

τ∑
t=1

E[d̂mnkt] + α (45)

By replacing (45) into (43), we get

βkm =
N∑
n=1

τ∑
t=1

E[bknexkt ]+β (46)

C. Stochastic Successive Convex Approximation Method

To solve the optimization problem in (30), we use the sto-
chastic successive convex approximation proposed in [34]. The
algorithm provides a framework for optimizing the excepted
value of a (possibly non-convex) cost function parametrized by
a random variable when the expectation cannot be computed
exactly. More specifically, the original problem is decomposed
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into different subproblems, using a stochastic convex approx-
imation, which can be solved in parallel. For the convergence
of the algorithm, each subproblem should have a unique and
well-defined solution.

To find the maxmimum value of (30), we equivalently
find the minimum value of f (Υt,Θt) = −ELBO (Υt,Θt).
We decompose f (Υt,Θt) into two stochastic convex approx-
imation subproblems, one for Υt and one for Θt. Hereafter,
we drop time index t for notational simplicity.

First, we derive an approximation for Υ. At iteration
i + 1, for subproblem Υ, we solve the following convex
approximation function of f (Υ,Θ).

f̂(Υ;Θ(i),Υ(i),Ψ(i))
= ε(i)(g(Υ;Θ(i),Υ(i),Ψ(i)) + h(Υ;Θ(i)))

+ (1 − ε(i))tr((Υ − Υ(i))TG(i)) (47)

where g
(
Υ;Θ(i),Υ(i)

)
is a linear approximation of the non-

convex part of the objective function with respect to Υ at
(Θ(i),Υ(i),Ψ(i)) and is given by

g(Υ;Θ(i),Υ(i),Ψ(i)) = −tr
(
ΥT F̃(i)

)
where

F̃(i) = F(i)−1
(Θ(i)1/2

1 Ψ(i)Θ(i)1/2

2 + Υ(i))

and

F(i)=Θ(i)1/2

1 Ψ(i)Θ(i)
2 Ψ(i)T

Θ(i)1/2

1 +Θ(i)1/2

1 Ψ(i)Θ(i)1/2

2 Υ(i)T

+Υ(i)Θ(i)1/2

1 Ψ(i)T

Θ(i)1/2

2 + Υ(i)Υ(i)T

Function h
(
Υ;Θ(i)

)
preserves the convex structure of the

objective function. Moreover, matrix G(i) is an incremental
estimate of the gradient of objective function and has the form
of

G(i) = (1 − ε(i))G(i−1) + ε(i)(−F̃(i) + ∇Υh(Υ(i),Θ(i)))

where parameter ε(i) ∈ (0, 1] is a sequence of properly chosen
step-sizes. The update at iteration i+ 1 takes the form of

Υ(i+1) = Υ(i) + γ(i+1)
(
Ῡ − Υ(i)

)
(48)

where γ(i) ∈ (0, 1] and Ῡ is the optimal solution of sub-
problem

Ῡ = arg min
Υ

f̂
(
Υ;Θ(i),Υ(i),Ψ(i)

)
(49)

Problem (49) is an unconstrained quadratic problem whose
solution can be obtained by equating its gradient equal to zero
and it is given by

Υ
T

= (ε(i)F̃(i)T

+ ε(i)(ΥT
t−1 + ΥT

t+1)Q̂
−1− (1−ε(i))G(i)T

)

× (ε(i)(C + 2Q̂−1))−1 (50)

With a similar approach, we obtain the solutions of the
optimization sub-problems for Θ1 and Θ2

Θ(i+1)
j = Θ(i)

j + γ(i+1)
(
[Θ̄j ]+ − Θ(i)

j

)
, j = 1, 2 (51)

where

Θ̄1 =
ν

2
[
(1 − ε(i))
ε(i)

G
(i)

Θ1
− F̃

(i)

Θ1

+ tr
(
Θ(i)

2

) (
C + 2Q−1

) � I]−1

Θ̄2 =
K

2
[
(1 − ε(i))
ε(i)

G
(i)

Θ2
− F̃

(i)

Θ2

+ tr
(
Θ(i)

1

(
C + 2Q−1

)) � I]−1

F̃(i)
Θ1

=
1
2
(Ψ(i)Θ(i)

2 Ψ(i)T

Θ1/2(i)

1 F(i)−1
Θ−1/2(i)

1

+F(i)−1
ΥΘ1/2(i)

2 Ψ(i)T

Θ−1/2(i)

1 ) � I

F̃(i)
Θ2

=
1
2
(Ψ(i)T

Θ1/2(i)

1 F(i)−1
Θ1/2(i)

1 Ψ(i)

+ ΥT (i)
F(i)−1

Θ1/2(i)

1 Ψ(i)Θ−1/2(i)

2 ) � I

G(i)
Θj

=
(
1 − ε(i)

)
G(i−1)

Θj

+ ε(i)(−F̃(i)
Θj

+ ∇hΘj (Υ
(i),Θ(i))), ∀j = 1, .., 2

Analogous with stochastic gradient methods, proper dimin-
ishing step-sizes for ε(i) and γ(i) are required to ensure
convergence. An example of such step-sizes are:

γ(i) =
1

i0.65
, ε(i) =

1
i0.55

(52)

which we found are appropriate.
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