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Abstract

This paper investigates the downlink communications of intelligent reflecting surface (IRS) assisted

non-orthogonal multiple access (NOMA) systems. To maximize the system throughput, we formulate

a joint optimization problem over the channel assignment, decoding order of NOMA users, power

allocation, and reflection coefficients. The formulated problem is proved to be NP-hard. To tackle this

problem, a three-step novel resource allocation algorithm is proposed. Firstly, the channel assignment

problem is solved by a many-to-one matching algorithm. Secondly, by considering the IRS reflection

coefficients design, a low-complexity decoding order optimization algorithm is proposed. Thirdly, given

a channel assignment and decoding order, a joint optimization algorithm is proposed for solving the

joint power allocation and reflection coefficient design problem. Numerical results illustrate that: i) with

the aid of IRS, the proposed IRS-NOMA system outperforms the conventional NOMA system without

the IRS in terms of system throughput; ii) the proposed IRS-NOMA system achieves higher system

throughput than the IRS assisted orthogonal multiple access (IRS-OMA) systems; iii) simulation results

show that the performance gains of the IRS-NOMA and the IRS-OMA systems can be enhanced via

carefully choosing the location of the IRS.
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I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has received considerable attention for its

great potential to support massive connectivity and enhance spectrum efficiency. It has been

included in the next generation digital television standard and the 3rd Generation Partnership

Project (3GPP) Long Term Evolution-Advanced (LTE-A) standard [2, 3]. Different from the

conventional orthogonal multiple access (OMA), NOMA allows multiple users to access the

same orthogonal resource block, such as frequency band, time slot, and spatial direction. The

successive interference cancellation (SIC) technique is employed at the receiver side. Particularly,

the users with better channel conditions are capable of removing the intra-channel interference

from the users with poor channel conditions. The performance gains brought by NOMA have

been investigated under various scenarios [4–7].

The intelligent reflecting surface (IRS) is one of the promising solutions to improve the network

coverage in future wireless networks [8, 9]. IRS comprises a large number of passive elements and

each element can independently reflect the incident signal by adjusting the reflection coefficients,

including phase shift and amplitude, so that the received signal power can be boosted at the

receiver. Different from the traditional amplify-and-forward relay, the IRS does not have the

signal processing capability. Instead, it only reflects the signals in a passive way, which makes

it more energy-efficient. Moreover, the IRS is also different from the active intelligent surface

based massive multiple-input multiple-output (MIMO), which suffers from the high hardware

cost and power consumption. IRS can yield superior performance by increasing the number of

elements with affordable hardware cost and tolerable power consumption [10, 11].

With the ability to control the channel conditions by adjusting the phase shift and amplitude

of the IRS elements, it is of great interest to investigate the potential benefits of IRS assisted

NOMA (IRS-NOMA) systems by utilizing the IRS to provide additional paths to construct a

stronger combined channel gain.

A. Related Works

1) Resource Allocation for NOMA Systems: In this paper, we focus on the channel assignment

and power allocation problem for NOMA systems. Typically, the joint channel assignment and

power allocation optimization problem is of mixed integer type, which is non-convex and difficult

to solve directly. There are mainly two approaches to solve such type of problems in the literature,

including the suboptimal approach [12–15] and the optimal approach [16–18].
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Specifically, for the NOMA systems in [12], the channel assignment problem was first solved

by a many-to-many matching algorithm and then the power allocation problem was solved by

geometric programming. In [13], a swap-operation enabled matching algorithm was proposed for

solving the channel assignment problem in NOMA enhanced heterogeneous networks (HetNets)

and sequential convex programming was adopted to update the power allocation. The channel

assignment problem in energy-efficient NOMA systems [14] was modeled as a super-modular

game and a greedy bidirectional channel matching algorithm was proposed. For a given channel

matching, the non-convex power allocation problem was transformed to a convex problem

by the successive convex approximation (SCA) method. In [15], by decoupling the channel

and power variables, the channel assignment problem was solved by the exhaustive search

method and the power allocation problem was solved via the SCA method. In [16], the channel

assignment and the power allocation problems were solved jointly. By relaxing the binary

channel indicator variables into continuous variables, the relaxed channel assignment and power

allocation problem was solved by the Lagrangian approach, where optimal closed-form power

allocation expressions were derived. Moreover, in [17, 18], resource allocation was formulated as

a monotonic optimization problem, and an optimal joint channel assignment and power allocation

algorithm was proposed.

2) Reflection Coefficient Design for IRS Assisted Wireless Systems: There have been extensive

works on IRS assisted wireless communication systems, such as the IRS assisted MIMO [19–21],

IRS assisted orthogonal frequency division multiplexing (OFDM) [22], IRS assisted unmanned

aerial vehicle (UAV) systems [23], IRS assisted simultaneous wireless information and power

transfer (SWIPT) systems [24], and IRS-NOMA systems [25–30]. Particularly, a joint power

allocation and phase shifts optimization problem was first studied for the IRS-NOMA systems

in [25]. The formulated problem was solved based on the alternating optimization algorithm and

semidefinite relaxation (SDR). A new decoding order searching algorithm was proposed by max-

imizing the combined channel gain of each user. In [26], a multiple-input single-output (MISO)

IRS-NOMA transmission model with fixed decoding order was considered. Assuming ideal

beamforming, the phase shift was optimized by maximizing the signal-interference-plus-noise

(SINR) with zero-forcing beamforming. Under the finite resolution beamforming assumption, by

applying on-off control, a low-cost implementation structure was proposed to control phase shifts.

In [27], by assuming the perfect SIC decoding order, an effective second-order cone programming

(SOCP)-alternating direction method of multipliers (ADMM) based algorithm was proposed
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for MISO IRS-NOMA system. To reduce the complexity, a zero-forcing based suboptimal

algorithm was also introduced. In [28], two cases of reflection coefficients design for MISO IRS-

NOMA systems were considered. For the ideal IRS scenario, both phase shifts and amplitudes

were optimized. For the non-ideal IRS scenario, the amplitudes were fixed and only the phase

shifts were optimized. For both cases, the optimal decoding order was obtained by exhaustive

search. In [29], the power efficient MISO IRS-NOMA system under quasi-degraded channels

was studied. To ensure that the system achieves the capacity region with high probability, an

improved quasi-degradation condition was proposed by using IRS. Moreover, the beamforming

vectors and IRS phase shift matrix were optimized jointly based on the alternating optimization

algorithm and the SDR method. In [30], an alternating difference-of-convex (DC) algorithm was

proposed to solve the joint beamforming and phase shifts optimization problem. Furthermore, a

low-complexity user ordering scheme was proposed by considering the phase shifts and target

data rates.

B. Motivation and Challenges

The network coverage can be improved by introducing the IRS. However, the formulated

optimization problems become non-trivial to solve, since the reflection coefficients of IRS are

usually coupled with the other variables, such as transmit power and beamforming vector. There-

fore, efficient algorithms should be carefully designed for IRS assisted wireless communication

systems.

To our best knowledge, there is no existing work on joint optimization of the channel assign-

ment, decoding order, power allocation, and reflection coefficients for IRS-NOMA systems. For

the resource allocation in the IRS-NOMA systems, we identify the major challenges as follows:

• The joint optimization problem is NP-hard, which makes the formulated resource allocation

problem non-trivial to solve.

• In the IRS-NOMA systems, the SIC decoding order depends on the combined channel

from both the direct link and the reflection link, which are determined by the IRS reflection

coefficients as well. Therefore, determining the optimal decoding order for NOMA users is

challenging.

• The transmit power and reflection coefficients are highly coupled.
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C. Contributions

The main contributions of this paper are summarized as follows:

1) We propose a multi-channel downlink communications IRS-NOMA framework, where

multiple users are allowed to be flexibly assigned to the same channel. We formulate the

system throughput maximization problem subject to SIC decoding conditions and IRS

reflection coefficients constraints by jointly optimizing the channel assignment, decoding

order, power allocation, and reflection coefficients.

2) To solve the formulated problem, we decompose the original problem into three sub-

problems. Firstly, a low complexity many-to-one matching algorithm is proposed for the

channel assignment. Secondly, a low-complexity SIC decoding order optimization algo-

rithm is proposed by maximizing the overall combined channel gains. Thirdly, we propose

an efficient algorithm by invoking the alternating optimization approach to optimize the

power allocation and reflection coefficients alternately.

3) We demonstrate that the proposed channel assignment and low-complexity decoding order

optimization algorithm can achieve near-optimal performance. The proposed three-step re-

source allocation algorithm for the IRS-NOMA system can improve the system throughput.

Moreover, we will demonstrate that the system performance can be enhanced by deploying

the IRS near the receivers.

D. Organization

The rest of this paper is organized as follows. In Section II, the system model is introduced

and the formulated resource allocation problem is presented. In Section III, we propose efficient

algorithms to solve the resource allocation problem for the IRS-NOMA systems. Numerical

results are presented in Section IV, which is followed by the conclusions in Section V.

Notations: CM×1 denotes a complex vector of size M, diag(x) denotes a diagonal matrix

whose diagonal elements are the corresponding elements in vector x. xH denotes the conjugate

transpose of vector x. The notations Tr(X) and rank(X) denote the trace and rank of matrix

X, respectively, while ∠x denotes the phase of a complex number x. The functions real(x) and

imag(x) denote the real and imaginary part of a complex number x.
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Fig. 1: Illustration of the downlink IRS-NOMA system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider the downlink transmissions in a IRS-NOMA system where

there is one base station (BS), one IRS and K users. Let K = {1, 2, · · · , K} denote the set

of users. The total bandwidth B is equally divided into a set of channels, denoted by N =

{1, 2, · · · , N}, each with the bandwidth of W = B/N . Let Kn denote the set of the users

assigned to the n-th channel and Kn = |Kn| denote the maximum number of users assigned

to the n-th channel, n ∈ N . Assume that each user is assigned only one channel and each

channel can be assigned to Kn users at most, then we have Kn ∩ Kn = ∅ and ∪n∈NKn =

K, where n 6= n. The IRS-NOMA system becomes an IRS-OMA system when Kn=1. The

IRS consists of M passive reflecting elements, denoted by M = {1, 2, · · · ,M}. Let Θ =

diag
{
λ1e

jθ1, λ2e
jθ2, · · · , λMejθM

}
denote the reflection coefficients matrix of the IRS, where

θm ∈ [0, 2π] and λm ∈ [0, 1] denote the phase shift and amplitude of the m-th reflecting element,

respectively [22].

The superposition symbol xn to be transmitted on the n-th channel is

xn =
K∑

k=1

δn,k
√
pn,ksn,k, (1)

where pn,k is the power allocated to the n-th channel used by user k, sn,k is the symbol transmitted
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by user k over the n-th channel, and δn,k ∈ {0, 1} indicates whether the n-th channel is assigned

to user k.

The signal received at user k over the n-th channel is

yn,k =
(
gH
n,kΘfn + hn,k

)
xn + zn,k, (2)

where gn,k ∈ CM×1 is the channel gain for the n-th channel between the IRS and user k ,

fn ∈ CM×1 is the channel gain for the n-th channel between the BS and the IRS, and hn,k is

the channel gain for the n-th channel between the BS and user k .

Without loss of generality, we assume that all the BS-User link channels {hn,k} and IRS-User

link channels {gn,k} are mutually independent and follow Rayleigh fading, n ∈ N , k ∈ K.

Rician fading channel model is adopted for the BS-IRS link channels {fn} (n ∈ N ), which is

modeled as

fn =

√
κ

1+κ
fLoSn +

√
1

1+κ
fNLoS
n (3)

where κ is the Rician factor, fLosn and fNLoS
n are the line-of-sight (LoS) component and non-

LoS (NLoS) component, respectively. The elements of fNLoS
n are assumed to be independent and

follow the Rayleigh fading model.

The SIC decoding order is an essential issue for NOMA systems, where the optimal decoding

order is determined by the channel gains. However, in IRS-NOMA systems, the combined

channel gains can be modified by tuning the IRS reflection coefficients. Denote πn (k) as the

decoding order for user k transmitting over the n-th channel. Then, πn (k) = j means that user

k is the j-th signal to be decoded at the receiver. The achievable capacity for user k on the n-th

channel can be expressed as

Rn,k = log2

(
1 +

δn,kpn,k
∣∣gH

n,kΘfn + hn,k

∣∣2
∣∣gH

n,kΘfn + hn,k

∣∣2Pn,k + σ2

)
, (4)

where Pn,k =
∑

πn(i)>πn(k)

δn,ipn,i.

Assume that πn (k) ≤ πn

(
k
)
, then the capacity when user k decodes user k’s signal is

Rn,k̄→k = log2


1 +

δn,kpn,k

∣∣∣gH
n,k̄

Θfn + hn,k̄

∣∣∣
2

∣∣∣gH
n,k̄

Θfn + hn,k̄

∣∣∣
2

Pn,k + σ2


 , (5)
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To guarantee that user k can decode the information of user k successfully under the decoding

order πn

(
k
)
≥ πn (k), the SIC decoding condition Rn,k→k ≥ Rn,k should be guaranteed [31, 32].

For example, assume that there are three users accessing the n-th channel and the SIC decoding

order is πn (k) =k, k = 1, 2, 3. Then, the SIC decoding conditions at user 2 and user 3 should

satisfy the following condition: Rn,2→1 ≥ Rn,1, Rn,3→1 ≥ Rn,1, Rn,3→2 ≥ Rn,2, n ∈ N .

B. Problem Formulation for the IRS-NOMA System

To maximize the system throughput, we should jointly optimize the channel allocation, decod-

ing order, power allocation and reflection coefficients. The optimized problem can be formulated

as

(P1) max
δ,π,p,Θ

N∑

n=1

K∑

k=1

Rn,k, (6a)

s.t. Rn,k→k ≥ Rn,k, if πn (k) ≤ πn

(
k
)
, n ∈ N , k, k ∈ K, (6b)

Rn,k ≥ Rmin, n ∈ N , k ∈ K, (6c)

N∑

n=1

K∑

k=1

δn,kpn,k ≤ Pmax, (6d)

|Θm,m| ≤ 1, m ∈ M, (6e)

K∑

k=1

δn,k = Kn, n ∈ N , (6f)

N∑

n=1

δk,n = 1, k ∈ K, (6g)

πn ∈ Ω, n ∈ N , (6h)

where δ = {δ1,1, · · · , δN,K} is the channel assignment indication vector, p = {p1,1, · · · , pN,K} is

the power allocation vector, π = {π1 (1) , · · · , πN (K)} is the decoding order vector. Constraint

(6b) guarantees the success of the SIC decoding. Constraint (6c) describes the minimum capacity

requirement Rmin of each user. Constraint (6d) indicates that the total transmit power budget is

Pmax. Constraint (6e) is for the IRS reflection coefficients. Constraint (6f) demonstrates that each

channel can be assigned to Kn users. Constraint (6g) indicates that each user can be allocated to

no more than one channel. In constraint (6h), Ω is the combination set of all possible decoding

orders.
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Theorem 1. (P1) is a NP hard problem even when only the channel assignment problem is

considered.

Proof: See Appendix A.

There are three main challenges to solve (P1). Firstly, due to the binary constraint of the

indication vector, (P1) is a NP-hard problem. Secondly, since the decoding order can be controlled

by the IRS reflection coefficients, it is difficult to obtain the optimal decoding order for the

NOMA users. Thirdly, the transmit power and reflection coefficients are highly coupled, which

makes the problem even more challenging. To find a feasible solution, we propose a three-step

algorithm.

III. THE PROPOSED ALGORITHMS FOR IRS-NOMA SYSTEMS

To make (P1) tractable, we decouple the problem into three steps. Firstly, we fix the channel

assignment and decoding order, then solve the joint power allocation and reflection coefficients

design problem. For the channel assignment problem, a novel channel assignment algorithm

based on many-to-one matching is proposed. In addition, to reduce the complexity of searching

for the optimal decoding order, a low-complexity decoding order optimization algorithm is

proposed.

A. Joint Power Allocation and Reflection Coefficient Design

Let kn denote the k-th decoded user index on the n-th channel. For a given channel assignment

and decoding order, the capacity Rn,kn can be rewritten as

Rn,kn = log

(
1 +

pn,kn
∣∣gH

n,kn
Θfn + hn,kn

∣∣2
∣∣gH

n,kn
Θfn + hn,kn

∣∣2Pn,kn + σ2

)
, (7)

where Pn,kn =
Kn∑

in=kn+1

pn,in .

Furthermore, constraint (6b) in (P1) can be simplified as

∣∣∣gH

n,kn
Θfn + hn,kn

∣∣∣
2

−
∣∣gH

n,kn
Θfn + hn,kn

∣∣2 ≥ 0, kn > kn, (8)

where kn, kn ∈ Kn, n ∈ N . To tackle the non-concavity of the objective function in (P1),

we introduce the new variable set χ= {χ1,k1, · · · , χN,KN
}, whose elements satisfy the following



10

inequality

pn,kn
∣∣gH

n,kn
Θfn + hn,kn

∣∣2

∣∣gH
n,kn

Θfn + hn,kn

∣∣2 Kn∑
in=kn+1

pn,in + σ2

≥ χn,kn. (9)

Then, (P1) can be equivalently transformed into the following problem

(P2) max
p,Θ,χ

N∑

n=1

Kn∑

kn=1

log2 (1 + χn,kn), (10a)

s.t. log2 (1 + χn,kn) ≥ Rmin, kn ∈ Kn, n ∈ N , (10b)

N∑

n=1

Kn∑

kn=1

pn,kn ≤ Pmax, (10c)

(6e), (8), (9). (10d)

Since the variables p and Θ are coupled, (P2) is non-convex and difficult to be solved directly.

To make (P2) tractable, we first divide it into the following two subproblems

(P2.1) max
p,χ

N∑

n=1

K∑

k=1

log2 (1 + χn,kn), (11a)

s.t. (9), (10b), (10c), (11b)

and

(P2.2) Find Θ, (12a)

s.t. (6e), (8), (9), (12b)

where subproblem (P2.1) focuses on finding the optimal power allocation vector p and subprob-

lem (P2.2) focuses on finding the optimal reflection coefficient matrix Θ.

In the following, we discuss how to solve the above two subproblems.

1) Proposed Algorithm to Solve Subproblem (P2.1):

Before solving subproblem (P2.1), we rewrite the constraint (9) as

pn,kn ≥ χn,kn

Kn∑

in=kn+1

pn,in + χn,knνn,kn, (13)

where νn,kn=σ2
/∣∣gH

n,kn
Θfn + hn,kn

∣∣2.
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Since the first right hand term in inequality (13) is quasi-concave, the constraint (13) is still

non-convex. Here, we use the convex upper bound approximation [33] to deal with the non-

convexity. Define g (x, y) = xy and f (x, y) = α
2
x2 + 1

2α
y2 (α > 0), then f (x, y) is always an

upper bound on g (x, y), i.e., f (x, y) ≥ g (x, y). Obviously, f (x, y) is convex. When α = y

x
,

we have:f (x, y) = g (x, y) and ∇f (x, y) = ∇g (x, y), where ∇f (x, y) is the gradient of the

function f (x, y). Based on the above analysis, we have

χn,kn

Kn∑
in=kn+1

pn,in ≤ 1
2

1
αn,kn

(
Kn∑

in=kn+1

pn,in

)2

+ 1
2
αn,knχ

2
n,kn

, (14)

where αn,kn is a fixed point, kn ∈ Kn, n ∈ N .

Equality (14) will always hold if αn,kn=
∑Kn

in=kn+1 pn,in

χn,kn
, kn ∈ Kn, n ∈ N . The fixed point αn,kn

can be updated in the t1-th iteration as follows

αn,kn (t1) =

∑Kn

in=kn+1 pn,in (t1 − 1)

χn,kn (t1 − 1)
. (15)

Then, constraint (9) is approximated as

pn,kn ≥ 1

2

1

αn,kn (t1−1)

(
Kn∑

in=kn+1

pn,in

)2

+
1

2
αn,kn (t1−1)χ2

n,kn
+ χn,knνn,kn. (16)

Finally, solving subproblem (P2.1) is transformed to solving the following problem iteratively

(P3) max
p,χ

N∑

n=1

K∑

k=1

log2 (1 + χn,kn), (17a)

s.t. (10b), (10c), (16). (17b)

It is noted that (P3) is convex and can be solved efficiently by standard algorithms or software,

such as CVX [34]. The proposed iterative power allocation algorithm to solve subproblem (P2.1)

is summarized in Algorithm 1.

Algorithm 1 Power Allocation Algorithm

1: Initialize feasible points pn,kn (0) and χn,kn (0), kn ∈ Kn, n ∈ N . Let iteration index t1 = 1.

2: repeat

3: calculate αn,kn (t1) according to (15), kn ∈ Kn, n ∈ N ;

4: solve (P3) to obtain pn,kn (t1) and χn,kn (t1), kn ∈ Kn, n ∈ N ;

5: t1 = t1 + 1;

6: until the objective value of (P2.1) converge.

7: Output: optimal p and χ.
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Remark 1. Since the system throughput is upper bounded by a finite value and the objective

value sequence of subproblem (P2.1) produced by Algorithm 1 is non decreasing, the proposed

iterative power allocation algorithm is guaranteed to converge.

In Algorithm 1, the initial feasible points pn,kn (0) and χn,kn (0) are needed. Usually, it is

difficult to find the feasible points. In the following, we formulate a feasibility problem and

propose a novel feasible initial points searching algorithm. By introduce an infeasibility indicator

z ≥ 0, the feasibility problem in the t2-th iteration is given as

(P4) min
p,χ,z

z, (18a)

s.t. log2 (1 + χn,kn) +z ≥ Rmin, kn ∈ Kn, n ∈ N , (18b)

pn,kn+z ≥ 1
2

1
αn,kn (t2−1)

(
Kn∑

in=kn+1

pn,in

)2

+1
2
αn,kn (t2−1)χ2

n,kn
+ χn,knνn,kn, kn ∈ Kn, n ∈ N ,

(18c)

N∑

n=1

Kn∑

kn=1

pn,kn ≤ Pmax+z, kn ∈ Kn, n ∈ N , (18d)

where z denotes how far the corresponding constrains in (P3) are from being satisfied.

(P4) is also a convex optimization problem, which can be solved similarly as Algorithm 1.

The proposed feasible points searching algorithm is summarized in Algorithm 2.

Algorithm 2 Feasible Initial Points Searching Algorithm

1: Randomly initialize points pn,kn (0) and χn,kn (0), kn ∈ Kn, n ∈ N . Let iteration index

t2 = 1.

2: repeat

3: calculate αn,kn (t2) according to (15), kn ∈ Kn, n ∈ N ;

4: solve (P4) to obtain pn,kn (t2) and χn,kn (t2), kn ∈ Kn, n ∈ N ;

5: t2 = t2 + 1;

6: until z below a threshold ξ > 0.

7: Output: optimal p and χ.

Remark 2. Different from Algorithm 1, pn,kn (0) and χn,kn (0) in Algorithm 2 can be initialized

randomly. When z = 0, the optimal solutions of (P4) are feasible for (P3). Therefore, the output

of Algorithm 2 can be used to replace the initial feasible points pn,kn (0) and χn,kn (0) in

Algorithm 1.
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2) Proposed Algorithm to Solve Subproblem (P2.2):

The combined channel gain
∣∣gH

n,kn
Θfn + hn,kn

∣∣2 can be reformulated as

∣∣gH
n,kn

Θfn + hn,kn

∣∣2 = |zn,kneθ + hn,kn|2, (19)

where zn,kn = gH
n,kn

diag {fn} and eθ =
[
λ1e

jθ1λ2e
jθ2 · · ·λMejθM

]T
.

We introduce variables κn,kn and ξn,kn, which are defined as

κn,kn=real (zn,kneθ + hn,kn) , (20)

ξn,kn=imag (zn,kneθ + hn,kn) , (21)

where κ2
n,kn

+ ξ2n,kn = |zn,kneθ + hn,kn|2, kn ∈ Kn, n ∈ N .

Then, subproblem (P2.2) can be rewritten as

(P5) Find eθ, (22a)

s.t. κ
2

n,kn
+ζ

2

n,kn
> κ

2

n,kn
+ζ

2

n,kn
, kn > kn, (22b)

κ
2

n,kn
+ζ

2

n,kn
≥
(
κ

2

n,kn
+ζ

2

n,kn

)
βn,kn+χn,knσ

2, (22c)

|eθ (m)| ≤ 1, m ∈ M, (22d)

(20), (21), (22e)

where βn,kn=
χn,kn

∑Kn
in=kn+1 pn,in

pn,kn
, kn, kn ∈ Kn, n ∈ N .

(P5) is still a non-convex problem, due to the non-convex constraints (22b) and (22c). To deal

with the non-convexity, the SCA method can be used. At point
(
κ̃n,kn, ξ̃n,kn

)
, the first-order

approximation of κ
2

n,kn
+ζ

2

n,kn
is

κ
2

n,kn
+ζ

2

n,kn
≥ κ̃2

n,kn
+ζ̃2n,kn+2κ̃n,kn (κn,kn − κ̃n,kn) + 2ζ̃n,kn

(
ζn,kn − ζ̃n,kn

)
=ϕn,kn (κn,kn, ζn,kn) ,

(23)

where the point
(
κ̃n,kn, ξ̃n,kn

)
can be updated in the t3-th iteration as

κ̃n,kn (t3) =real (zn,kneθ (t3 − 1) + hn,kn) , (24)

ξ̃n,kn (t3) =imag (zn,kneθ (t3 − 1) + hn,kn) . (25)
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Thus, constraints (22b) and (22c) can be approximated, respectively, as

ϕn,kn

(
κn,kn

, ζn,kn
)
> κ

2

n,kn
+ζ

2

n,kn
, (26)

ϕn,kn (κn,kn, ζn,kn) ≥
(
κ

2

n,kn
+ζ

2

n,kn

)
βn,kn+χn,knσ

2, (27)

where kn > kn and kn, kn ∈ Kn, n ∈ N .

Consequently, solving subproblem (P2.2) is transformed to iteratively solving the following

problem

(P6) Find eθ, (28a)

s.t. (20), (21), (22d), (26), (27). (28b)

(P6) is a convex optimization problem, which can be solved efficiently using CVX [34].

The proposed iterative reflection coefficients design algorithm to solve subproblem (P2.2) is

summarized in Algorithm 3.

Algorithm 3 Reflection Coefficients Design Algorithm

1: Initialize eθ (0) and let iteration index t3 = 1.

2: repeat

3: update κ̃n,kn (t3) and ξ̃n,kn (t3) according to (24) and (25), respectively, kn ∈ Kn, n ∈ N ;

4: solve (P6) to obtain eθ (t3), κn,kn (t3) and ξn,kn (t3), kn ∈ Kn, n ∈ N ;

5: t3 = t3 + 1;

6: until eθ (t3), κn,kn (t3) and ξn,kn (t3) converge.

7: Output: optimal eθ.

B. Channel Assignment Algorithm based on Many-to-One Matching

In this subsection, we solve the channel assignment problem. Assume that the power allocation

and reflection coefficients are fixed, then (P1) can be reformulated as

(P7) max
δ

N∑

n=1

K∑

k=1

Rn,k, (29a)

s.t. (6b), (6c), (6f), (6g). (29b)
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The above problem can be solved by many-to-one matching with two sides, i.e., channels

and users. Combining with the channel assignment problem, define the many-to-one matching

function Υ as [13, 32]

1) |Υ (k)| = 1, ∀k ∈ K, Υ (k) ∈ N ;

2) |Υ (n)| = Kn, n ∈ N ;

3) Υ (k)=n if and only if k ∈ Υ (n),

where definition 1) means that each user can only be matched with one channel; definition 2)

provides the maximum number of users that can be allocated to each channel; definition 3)

implies that if user k is matched with channel n, then channel n is also matched with user k.

Define the utility functions of user k and channel n as: Un,k = Rn,k and Un =
∑

k∈Υ(n) Un,k,

respectively. Since the utility of user k depends not only on the channel it is allocated to but also

on the set of users in the same channel. To tackle this interdependence, we utilize swap operations

between any two users to exchange their allocated channels. First, define swap matching [13,

32] as follows

Υk̃
k =

{
Υ\
{
(k, n) ,

(
k̃, ñ
)}

∪
{(

k̃, n
)
, (k, ñ)

}}
, (30)

where Υ (k) = n and Υ
(
k̃
)
= ñ.

The swap matching enables user k and user k̃ to switch their assigned channels. Then, we

introduce the definition of swap-blocking pair. Given a matching function Υ and assume that

Υ (k) = n and Υ
(
k̃
)
= ñ, a pair of users

(
k, k̃
)

is a swap-blocking pair if and only if

1) ∀ω ∈
{
k, k̃, n, ñ

}
, Uω

(
Υk̃

k

)
≥ Uω (Υ);

2) ∃ω ∈
{
k, k̃, n, ñ

}
, Uω

(
Υk̃

k

)
> Uω (Υ),

where Uω (Υ) is the utility of player ω (user ω or channel ω), under the matching state Υ.

According to the above definition, it is noted that if two users want to switch their assigned

channels, both of the conditions should be satisfied. Condition 1) indicates that all the involved

players’ utilities should not be reduced after the swap operation; Condition 2) indicates that after

the swap operation, at least one of the players’ utilities is increased.

Based on the above analysis, the proposed channel assignment algorithm is summarized in

Algorithm 4. There are two processes in Algorithm 4 as follows

1) Initialization Process: The set of users assigned to channel n is denoted as Kn, the set

of users rejected by the n-th channel is denoted as Rn and the set of channels rejected by
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user k is R̃k, the set of users that are not matched with any channel is denoted as KNOT.

Denote the set of users that propose to the n-th channel as KPRO
n and define the user set

Tn = Kn ∪ KPRO
n . Let Q be the total number of users in set Tn and kn

q (q = 1, · · · , Q)

be the q-th user in set Tn, n ∈ N . During the matching period, each un-matched user

proposes to the channel that can provide the highest equivalent channel gain and has never

rejected it before. Then each channel accepts the proposal with the highest channel gain it

can provide and rejects other users. Repeat the above process until the set of un-matched

users is empty.

2) Swapping Process: Swap operations among users are enabled to further improve the

performance of the channel assignment algorithm. With the obtained user set Kn, n ∈ N ,

in the Initialization Process, each user tries to search for another user to construct the

swap-blocking pair and update their corresponding matching state and user set Kn, n ∈ N .

This operation will continue until there is no swap-blocking pair.

Theorem 2. The proposed channel assignment algorithm in Algorithm 4 converges to a two-

sided stable matching within a limited number of iterations.

Proof: See Appendix B.

C. A Low Complexity Scheme for Decoding Order Optimization

In NOMA systems, the decoding order is important for canceling interference from the other

users sharing the same channel [35]. For the considered IRS-NOMA system, the SIC decoding

order depends on the combined channel gain of both the direct link and the reflection links,

which are controlled by the IRS. The optimal decoding order in each channel will be any one of

the Kn! different decoding orders and (P1) must be solved Kn! times. Therefore, an exhaustive

search is needed over all the decoding orders which is highly complex. Here, we propose a low

complexity decoding order optimization method by maximizing the sum of all the combined

channel gains, which only needs to solve one optimization problem. The formulated problem is

as follows

(P8) max
Θ

N∑

n=1

Kn∑

k=1

∣∣gH
n,kΘfn + hn,k

∣∣2, (31a)

s.t. |Θ (m)| ≤ 1, m ∈ M. (31b)
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Algorithm 4 Channel Assignment Algorithm

1: Initialization Process:

2: Initialize Kn = ∅,Rn = ∅, R̃k = ∅ and KPRO
n = ∅ (n ∈ N , k ∈ K) and set KNOT = K.

3: while KNOT 6= ∅ do

4: the un-matched user k ∈ {KNOT \ ∪n∈NNn} proposes to choose its best channel n, where

n = arg max
n∈{N\R̃k}

∣∣gH
n,kΘfn + hn,k

∣∣2;

5: update KPRO
n based on the results obtained from the last step, n ∈ N ;

6: update set Tn =
{
kn
1 , · · · , kn

Q

}
= Kn ∪ KPRO

n , n ∈ N ;

7: if Q ≤ Kn, n ∈ N then

8: the n-th channel accepts all the users in Tn, Kn = Tn;

9: else

10: update Kn =
{
kn
1 , · · · , kn

Kn

}
, where kn

1 , · · · , kn
Kn

are the first Kn largest∣∣gH
n,kΘfn + hn,k

∣∣2 in Tn;

11: update Rn = Rn ∪
{
kn
Kn+1, · · · , kn

Q

}

12: update R̃k = R̃k ∪ {n|k ∈ Rn, n ∈ N};

13: end if

14: end while

15: Swapping Process:

16: For any user k ∈ Kn, it searches for another user k̃ ∈ Kñ, where ñ 6= n, n ∈ N .

17: if user pair
(
k, k̃
)

is a swap-blocking pair then

18: update n = Υ
(
k̃
)

and ñ = Υ (k);

19: update Kn and Kñ, ñ 6= n, n ∈ N ;

20: else

21: keep the current matching state unchanged;

22: end if

23: Repeat step 16 - step 22 until there is no swap-blocking pair.

24: Output: user set Kn, n ∈ N .

Before solving (P8), we rewrite the combined channel gains
∣∣gH

n,kΘfn + hn,kn

∣∣2 as

∣∣gH
n,kΘfn + hn,k

∣∣2 = |vn,ke|2 = Tr (Vk,nE) , (32)

where vn,k =
[
gH
n,kdiag{fn} hn,k

]
, e =

[
λ1e

jθ1 λ2e
jθ2 · · · λMejθM 1

]T
, Vk,n = vH

k,nvk,n, E =

eeH and the rank of matrix E is one, i.e., rank (E) = 1.
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By exploiting the SDR, (P8) can be transformed into the following problem

(P9) max
E

Tr

(
N∑

n=1

Kn∑

k=1

Vn,kE

)
, (33a)

s.t. E (m,m) ≤ 1, m ∈ M, (33b)

E (M+1,M+1) = 1, (33c)

E � 0. (33d)

It is noted that (P9) is a standard semidefinite programming (SDP) problem, which can be

solved by CVX [34].

(P9) is equivalent to (P8) if and only if the optimal solution E∗ is a rank-one positive

semidefinite matrix. However, the rank of the solution to (P9) may not be one because the

rank-one constraint is relaxed. To solve this problem, a randomization method can be applied to

construct a rank-one solution from the higher-rank E∗. According to the Gaussian randomization

method [25], we first calculate the eigen-decompostion of E∗ = UΛUH , then generate L

candidate vectors as follows

ẽl = UΛ
1
2 rl, l = 1, 2 · · · , L, (34)

where U is the unitary matrix of eigenvectors, Λ denotes a diagonal matrix of eigenvalues, and

rl is a random vector whose elements are independent random variables uniformly distributed

on the unit circle in the complex plane.

Then, the following equality holds for any realization of ẽl

(ẽl)
H
ẽl = rHl

(
Λ

1
2

)H
UHUΛ

1
2 rl = Tr

(
Λrlr

H
l

)
= Tr (Λ) = Tr (E∗) . (35)

With ẽl, we can obtain the candidate reflection coefficient matrix as

Θl = diag

{
e
j∠

ẽl[1]

ẽl[M+1] , e
j∠

ẽl[2]

ẽl[M+1] , · · · , ej∠
ẽl[M]

ẽl[M+1]

}
. (36)

The optimal reflection coefficient matrix selected from {Θl} satisfies all the constraints and

maximizes the objective function value of (P8). The proposed decoding order optimization

algorithm is summarized in Algorithm 5.
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Algorithm 5 Decoding Order Optimization Algorithm

1: Solve (P9) to obtain E∗;

2: if rank (E∗) = 1 then

3: calculate nonzero eigenvalue λeigen of matrix E∗ and its corresponding eigenvector veigen

via eigen-decomposition;

4: calculate Θ∗ = diag
{

veigen ∗
√
λeigen

}
;

5: else

6: for l = 1, 2, · · · , L do

7: calculate Θl according to (36);

8: calculate the objective value of (P8);

9: end for

10: end if

11: Let Θ∗=Θl∗ , where l∗ = arg max
l=1,2,··· ,L

N∑
n=1

Kn∑
k=1

∣∣gH
n,kΘlfn + hn,k

∣∣2;

12: Calculate all combined channel gains
{∣∣gH

n,kΘfn + hn,k

∣∣2, k ∈ Kn, n ∈ N
}

and rank them

in ascending order for each channel;

13: Output: decoding order πn (k) , k ∈ Kn, n ∈ N .

D. Proposed Three-Step Resource Allocation Algorithm for IRS-NOMA Systems

Based on the proposed Algorithm 1 to Algorithm 5 in the previous subsections, the proposed

three-step optimization algorithm for the IRS-NOMA system is summarized in Algorithm 6. In

the first step, channel assignment is performed based on Algorithm 4. In the second step, the

SIC decoding orders for NOMA users in each channel are obtained according to the proposed

low-complexity decoding order optimization algorithm, i.e., Algorithm 5. In the third step,

the joint power allocation and reflection coefficients design algorithm is executed based on the

channel assignment and decoding order optimization results obtained from the last two steps.

Specifically, the feasible initial points searching algorithm, i.e., Algorithm 2, is first performed

to get the initial points. Then, the power allocation algorithm, i.e., Algorithm 1 and the reflection

coefficients design algorithm, i.e., Algorithm 3, are performed alternatively until converge.

E. Complexity and Convergence of the Proposed Three-Step Resource Allocation Algorithm

1) Complexity analysis:

The complexities of Algorithm 1, Algorithm 2 and Algorithm 3 with the interior-point

method are o (8K3 + 2K (2K+1)), o
(
(2K + 1)3 + (2K + 1)2

)
and o

{
M3 +

(
3K +

N∑
n=1

Kn(Kn−1)
2

)
M

}
,

respectively. In Algorithm 4, the complexity of the initial process mainly depends on the number

of users making proposals. In the worst case, the number of users making proposals is KN2.
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Algorithm 6 Proposed Three-Step Resource Allocation Algorithm for IRS-NOMA Systems

1: -Step 1: Channel assignment

2: Obtain user index sets {Kn, n ∈ N} via Algorithm 4.

3: -Step 2: SIC decoding order optimization

4: Obtain decoding orders {πn (k) , k ∈ Kn, n ∈ N} via Algorithm 5.

5: -Step 3: Joint power allocation and reflection coefficient design

6: Randomly initialize e
(0)
θ and let iteration number t0 = 1.

7: Find feasible initial points p(0) and χ(0) via Algorithm 2.

8: repeat

9: update p(t0) and χ(t0) via Algorithm 1 with e
(t0−1)
θ ;

10: update e
(t0)
θ via Algorithm 3 with p(t0) and χ(t0);

11: t0 = t0 + 1
12: until the objective value of (P1) converges.

In the second process, the maximum number of swap operations is K2 [13]. In Algorithm 5,

the complexity of solving SDP problem is on the order of (M+1)6.

2) Convergence analysis:

The convergence of the proposed three-step resource allocation algorithm mainly depends on

Step 3. In the following, we will prove the convergence of the iterative procedure in Step 3.

Let pt0 ,χt0 and et0θ be the t0-th iteration solution obtained by Algorithm 6. According to (19),

we have Θt0 = diag
(
et0θ
)
. Define RP1

(
pt0 ,Θt0

)
and RP2

(
pt0 ,χt0 , et0θ

)
as the objective values

of (P1) and (P2) in the t0-th iteration, respectively. For (P2) with a given reflection coefficients

vector et0−1
θ , we have the following inequality

RP1

(
pt0−1,Θt0−1

) (a)
= RP2

(
pt0−1,χt0−1, et0−1

θ

) (b)

≤RP2

(
pt0 ,χt0 , et0−1

θ

)
, (37)

where (a) comes from the fact that (P1) is equivalent to (P2) with optimal χ; (b) holds since

pt0 and χt0 are obtained by solving (P2) with given et0−1
θ according to Algorithm 1.

Similarly, with given pt0 and χt0 , the following inequality holds

RP2

(
pt0 ,χt0 , et0−1

θ

)
≤ RP2

(
pt0 ,χt0 , et0θ

)
= RP1

(
pt0 ,Θt0

)
. (38)

From (37) and (38), we have

RP1

(
pt0−1,Θt0−1

)
≤ RP1

(
pt0 ,Θt0

)
. (39)

The inequality in (39) indicates that the objective value of (P1) is monotonically non-decreasing
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Fig. 2: Simulation setup for the IRS-NOMA system.

after each iteration. On the other hand, the system throughput is upper bounded. Therefore, the

proposed algorithm is guaranteed to converge.

IV. NUMERICAL RESULTS

In this section, the performances of the proposed algorithms for IRS-NOMA system are

evaluated through numerical simulations. The considered downlink IRS-NOMA system scenario

is illustrated in Fig. 2. The BS and IRS are located at coordinates (0m, 0m, 15m) and (50m, 50m,

15m), respectively. The mobile users are randomly and uniformly placed in a circle centered at

(50m, 45m, 0m) with radius 5m. The path loss model is Ploss (d) = 10−3(d)−α
, where d is the

link distance, α is the path loss exponent. The path loss exponents for BS-User link, BS-IRS

link and IRS-User link are 3, 2.2 and 2.5, respectively [28, 30]. The Rician factor κ is set to

3dB. The minimum capacity requirement is given by Rmin = 0.01bit/s/Hz, the bandwidth of

each channel is 15kHz and the noise power is σ2 = −80dBm. Without loss of generality, let

the maximum number of users allocated to each channel be equal to Ke, i.e., Kn = Ke.

As a benchmark, we also propose a two-step resource allocation algorithm for IRS-OMA

systems. The resource allocation problem for IRS-OMA systems is decomposed into two sub-

problems, including the channel assignment problem, and the joint power allocation and reflection

coefficients design problem. The proposed algorithms to solve the above two subproblems

are summarized in Table I. We refer to the proposed algorithm for IRS-NOMA systems as

ThreeStep-IRS-NOMA and refer to the proposed algorithm for IRS-OMA systems as TwoStep-
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IRS-OMA, respectively. All the referred benchmark algorithms are summarized in Table I. For

example, we refer to the Exhaust-IRS-NOMA algorithm, which solves the channel assignment

and decoding order optimization problem by exhaustive search method.

TABLE I: Referred Algorithms

Algorithm Channel

assignment

Decoding

order

Power

allocation

Reflection

coefficients

Communication

systems

Exhaust-IRS-NOMA Exhaustive

search

Exhaustive

search

Algorithm 1 Algorithm 3 IRS-NOMA

ThreeStep-IRS-NOMA Algorithm 4 Algorithm 5 Algorithm 1 Algorithm 3 IRS-NOMA

Random-IRS-NOMA Algorithm 4 Random

selection

Algorithm 1 Algorithm 3 IRS-NOMA

Exhaust-IRS-OMA Exhaustive

search

——– Water-

filling

Algorithm 3 IRS-OMA

TwoStep-IRS-OMA Algorithm 4 ——– Water-

filling

Algorithm 3 IRS-OMA

NOMA-noIRS Algorithm 4 Ordering of

channel

gains

Algorithm 1 ——– NOMA

without IRS

OMA-noIRS Algorithm 4 ——– Water-

filling

——– OMA without

IRS

A. Performance of the Proposed Channel Assignment Algorithm

We start by presenting the performance of the proposed channel assignment algorithm based

on many-to-one matching. Fig. 3 plots the total utility of all channels versus the number of

channels N. To show the effectiveness of the proposed channel assignment algorithm, we compare

it with the exhaustive search based algorithms, i.e., Exhaust-IRS-NOMA and Exhaust-IRS-OMA

algorithms. As it can been seen in Fig. 3, as the number of available channels increases, the total

utility of all algorithms increases. The reason is that the users can benefit from channel diversity

in the wireless communication environment. In addition, the exhaustive search based algorithms

always outperform the non-exhaustive based algorithms. However, with its low complexity, our

proposed algorithm can achieve very close performance to that achieved by the exhaustive search

based algorithm. Specially, when N = 4 and Pmax = 15dBm, the ThreeStep-IRS-NOMA and
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Fig. 3: Total utility versus the number of channels, Ke = 3, M = 80.
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Fig. 4: Convergence of the proposed algorithms, N = 2, Ke = 3, Pmax = 15dBm.

TwoStep-IRS-OMA achieve around 96% and 97.3% of the utility achieved by the Exhaust-IRS-

NOMA and Exhaust-IRS-OMA, respectively.

B. Convergence Performance of the Proposed Algorithm

The convergence of the ThreeStep-IRS-NOMA and TwoStep-IRS-OMA versus iteration num-

ber are depicted in Fig. 4, which illustrates that both algorithms can converge within a small

number of iterations. Specifically, ThreeStep-IRS-NOMA and TwoStep-IRS-OMA converge in

less than 20 and 10 iterations, respectively. Furthermore, the TwoStep-IRS-OMA algorithm

converges faster than the ThreeStep-IRS-NOMA algorithm. This is because TwoStep-IRS-OMA
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Fig. 5: System throughput verses the number of reflecting elements, N = 2, Ke = 3, Pmax =
15dBm.

has a lower computational complexity than the ThreeStep-IRS-NOMA algorithm. In addition,

the number of iterations for the convergence of the two algorithms increases with the number of

reflection coefficients, because more variables have to be optimized. For example, when M = 80

and M = 50, the ThreeStep-IRS-NOMA needs 16 and 13 iterations to converge, respectively.

C. Performance Comparison

Here, we compare the proposed algorithm with benchmark algorithms in Table I.

1) System throughput versus the number of passive reflecting elements: In Fig. 5, we com-

pare the system throughput performance of various algorithms versus the number of reflecting

elements M. As it can be observed, the system throughput achieved by the IRS aided algorithms

increases with M, and significantly outperforms the other algorithms without IRS. This indicates

that with more reflecting elements, the resource allocation for IRS assisted systems becomes

more flexible and thus achieves higher gains. It can also be observed that the IRS-NOMA

system outperforms the IRS-OMA system. Furthermore, IRS aided algorithms achieve significant

throughput gains with large M. The reason is that more IRS passive reflecting elements can reflect

more power of the signals received from the BS which leads to more power gain. In particular,

when M = 20, the ThreeStep-IRS-NOMA and TwoStep-IRS-OMA algorithms achieve about

0.38bit/s/Hz and 0.49bit/s/Hz performance gain over NOMA-noIRS and OMA-noIRS algorithms,

respectively. However, for large M, i.e., M = 140, the performance gains of the two algorithms
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Fig. 6: System throughput verses the transmit power budget, N = 2, Ke = 3, M = 80.

increase up to 1.49bit/s/Hz and 1.86bit/s/Hz, respectively. In addition, the ThreeStep-IRS-NOMA

and TwoStep-IRS-OMA algorithms perform very close to the corresponding exhaustive search

based algorithms. For example, when M = 80, the proposed ThreeStep-IRS-NOMA algorithm

achieves around 97.6% of the system throughput achieved by Exhaust-IRS-NOMA algorithm.

2) System throughput versus the transmit power budget: Fig. 6 illustrates the impact of the

total transmit power budget Pmax on the system throughput when N = 2, K = 3 and M = 80. It is

observed that the system throughput of all considered algorithms increases with the increase of

Pmax. The IRS-assisted algorithms significantly outperform the algorithms without the IRS, which

confirms the advantages of introducing the IRS. In comparison with OMA based algorithms, the

NOMA based algorithms, including NOMA-noIRS, ThreeStep-IRS-NOMA and Exhaust-IRS-

NOMA yield a significant performance gain, because NOMA allows the users to access the

same channel and hence the performance can be improved. Furthermore, the ThreeStep-IRS-

NOMA and TwoStep-IRS-OMA algorithms achieve near-optimal performance as the Exhaust-

IRS-NOMA and Exhaust-IRS-OMA, respectively. This result can also been observed in Fig. 3

and Fig. 5.

3) Impact of decoding order: Now, we evaluate the impact of the decoding order on the

system throughput performance. Two algorithms are compared with our proposed low-complexity

decoding order optimization algorithm. The first one is the Exhaust-IRS-NOMA algorithm, which

finds the optimal decoding order via exhaustive search. The second one is the Random-IRS-

NOMA algorithm, which randomly selects the decoding order. As expected, we can see from
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Fig. 7: System throughput verses the number of passive reflecting elements, N = 2, Ke = 3.
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Fig. 7 that, the Exhaust-IRS-NOMA algorithm outperforms the other two algorithms over the

entire range of the number of passive reflecting elements M, which demonstrates the importance

of finding the optimal decoding order. However, the Exhaust-IRS-NOMA algorithm needs to

search Kn! possible decoding orders for each channel assignment, which is very complex. The

proposed ThreeStep-IRS-NOMA algorithm can achieve a similar performance as the Exhaust-

IRS-NOMA algorithm with low complexity and outperforms the Random-IRS-NOMA algorithm,

which illustrates the effectiveness of the proposed algorithm in determining the decoding order.
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4) Impact of the IRS location: In this part, we study the impact of the IRS location. Without

loss of generality, we set the coordinates of the BS location and the IRS location as (0m, 0m,

0m) and (xIRS, 0m, 0m), respectively. The distance between the BS and the user central point is

dBS
User = 50m. The path loss exponents of BS-IRS link and IRS-User link are both equal to 2.5.

The location of IRS is moved from xIRS = 10m to xIRS = 45m. As shown in Fig. 8, the system

throughput of ThreeStep-IRS-NOMA and TwoStep-IRS-OMA first decrease and then increase

after achieving their minimum system throughput at xIRS = 25m. To simplify the analysis, we

ignore the small-scale fading effects. Then, the large-scale channel gain of BS-IRS-User link

can be simply approximated as

P = 10−6
(
dBS
IRSd

IRS
User

)−2.5
+10−3

(
dBS
User

)−3
, (40)

where dBS
IRS + dIRS

User = dBS
User. When dBS

IRS=dIRS
User=dBS

User

/
2, the combined channel gain achieves its

minimum value at the middle point, which explains the simulation results in Fig. 8. The system

throughput gain of ThreeStep-IRS-NOMA over NOMA-noIRS is 4.1bit/s/Hz at xIRS = 10m,

while the performance gain increases to 6.1bit/s/Hz at xIRS = 45m. Because there is a strong

IRS-user link when the IRS is near the user side. Therefore, the system performance can be

significantly enhanced by carefully choosing the location of the IRS.

V. CONCLUSIONS

The resource allocation problem of the downlink transmissions in the IRS-NOMA system has

been investigated in this paper. The system throughput maximization problem was formulated

by jointly optimizing the channel assignment, decoding order, power allocation and reflection

coefficients. In particular, the original problem was divided into three subproblems and solved

sequentially where: 1) a low-complexity channel assignment algorithm based on matching the-

ory has been proposed, which can achieve a near-optimal performance as the exhaust search

algorithm; 2) we proposed a low-complexity decoding order optimization algorithm, which

can achieve a comparable performance to the exhaustive decoding order search method; 3) by

invoking alternating optimization and successive convex approximation, we proposed an efficient

power allocation and reflection coefficients design algorithm. Simulation results showed that the

proposed algorithms can improve the system throughput of the novel IRS-NOMA system. Our

results confirm that introducing IRS, IRS-NOMA systems outperform traditional NOMA systems.
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APPENDIX A: PROOF OF THEOREM 1

It is well known, three-dimensional matching is NP-hard problem [32]. If we prove that a

special three-dimensional matching case of problem (P1) is NP-hard, then the original problem

(P1) is also NP-hard problem.

For the given power allocation and reflection coefficients, let the maximum number of users

assigned to each channel be Kn = 2 and divide the user set K into two disjoint sets Ksub
1 and

Ksub
2 , where the size

∣∣Ksub
1

∣∣ =
∣∣Ksub

2

∣∣ = K/2,
∣∣Ksub

1

∣∣ ∪
∣∣Ksub

2

∣∣ = K and
∣∣Ksub

1

∣∣ ∩
∣∣Ksub

2

∣∣ = ∅.

Channel n chooses two users kn,1 ∈ Ksub
1 and kn,2 ∈ Ksub

2 . Define D = {D1,D2, · · · ,DN} as a

subset of N ×Ksub
1 ×Ksub

2 , where the triplet Dn = (n, kn,1, kn,2). According to [32], there exist a

subset D̃ ⊆ D satisfying the following conditions: 1)

∣∣∣D̃
∣∣∣ = min

{
N, K

2

}
; 2) for any two distinct

triplets (n, kn,1, kn,2) ∈ D and (ñ, kñ,1, kñ,2) ∈ D̃, we have n 6= ñ, kn,1 6= kñ,1 and kn,2 6= kñ,2.

Then, D̃ is a three-dimensional matching and the constructed special case of problem (P1) is

NP-hard. Therefore, (P1) is also NP-hard.

APPENDIX B: PROOF OF THEOREM 2

A matching is named two-sided stable if there does not exist a swap-blocking pair. In Algo-

rithm 4, the convergence mainly depends on the second swapping process. According to the

swap block pair definition, after each swap operation between user k in channel n and user k̃

in channel ñ, we have ∀ω ∈ {n, ñ} , Uω

(
Υk̃

k

)
≥ Uω (Υ) and ∃ω ∈ {n, ñ} , Uω

(
Υk̃

k

)
> Uω (Υ),

which means that at least one channel utility will increase. Furthermore, the total utility of all

channels satisfies the following inequality:
N∑

n=1

Un

(
Υk̃

k

)
>

N∑
n=1

Un (Υ). Since the numbers of

users and channels are limited, and the total utility is upper bounded due to the transmit power

budget, the number of swap block pairs is limited. Therefore, when there is no swap operation,

Algorithm 4 will converge.
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