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Blind Parameter Estimation of M -FSK Signals in
the Presence of Alpha-Stable Noise 

 

Abstract—Blind estimation of parameters for M -ary
frequency-shift-keying (M -FSK) signals is great of importance
in intelligent receivers. Many existing algorithms have assumed
white Gaussian noise. However, their performance severely
degrades when grossly corrupted data, i.e., outliers, exist. This
paper solves this issue by developing a novel approach for
parameter estimation of M -FSK signals in the presence of
alpha-stable noise. Specifically, the proposed method exploits
the generalized first- and second-order cyclostationarity of
M -FSK signals with alpha-stable noise, which results in
closed-form solutions for unknown parameters in both time and
frequency domains. As a merit, it is computationally efficient
and thus can be used for signal preprocessing, symbol timing
estimation, signal and noise power estimation. Furthermore,
substantial theoretical analysis on the performance of the
proposed approach is provided. Simulations demonstrate that
the proposed method is robust to alpha-stable noise and that it
outperforms the state-of-the-art algorithms in many challenging
scenarios.

Index Terms—alpha-stable noise, generalized cyclostationarity,
M-ary frequency-shift-keying (M-FSK), modulation parameter
estimation.

I. INTRODUCTION

BLIND parameter estimation of digital modulation signals
is a classical signal processing problem with a wide

range of civil and military applications, such as electronic
surveillance, signal confirmation, rate allocation, interference
identification, monitoring, spectrum management and software
defined radio [1]–[3]. In these applications, frequency shift
keying (FSK) is widely adopted due to its easy implementation

and high immunity to amplitude distortion, especially in short-
wave communications and underwater acoustic communica-
tions. Accordingly, blind parameter estimation of M-FSK sig-
nals has received considerable interest including identification
of modulation order, frequency deviation and symbol period.

Over the past two decades, numerous methods have been
proposed to tackle blind parameter estimation problem. For
example, Ho et al. [4] explored the magnitude of wavelet
transform to estimate symbol duration for digital signals in
Gaussian noise, which was extended later by [5] and [6].
However, the main drawback of these approach is that they re-
quire expensive preprocessing such as symbol timing recovery
and carrier recovery. Moreover, Liang et al. [7] employed the
distinct pattern in wavelet transform domain for MFSK signals
identification. Then, Chen et al. [8] presented a WT-based
modulation identifier for MFSK modulation order. Yu et al [9]
presented a practical algorithm based on the inherent proper-
ties of the spectra of MFSK signals for modulation order. El-
Mahdy et al [10] developed multiple MFSK classifier is based
on maximizing the approximated likelihood function. Unlike
them, there is a class of methods that employed cyclostation-
arity in the M -FSK signals for parameter estimation, e.g.,
[11]–[13] which were based on the first-order cyclostationarity
and [14] was based on the second-order cyclostationarity for
modulation order and frequency estimation. In addition, the
time-frequency analysis is exploited to estimate parameters of
FSK signal. In [15], Chee et al. presented an estimator based
on time-frequency analysis for the instantaneous frequency
estimation of FSK signals in AWGN channel. This method
exploited the adaptive smooth windowed cross Wigner-Ville
distribution to achieve the instantaneous frequency estimation.
However, these approaches were developed under Gaussian
noise assumption, and thus are not robust to impulsive noise.
In other words, when a portion of data is corrupted by heavy-
tailed noise such as alpha-stable noise [16]–[19], the above
algorithms may suffer severe performance loss. Therefore, it
is of great interest to develop robust algorithms for parameter
estimation of M -FSK signals.

In the literature, there have been some work achieved sat-
isfactory results in the presence of impulsive noise [20]–[29].
For example, Friedmann et al. [20] proposed M-type estima-
tors for the parameters of a deterministic signal, which has the
structure of the maximum likelihood estimator. Pelekanakis et
al. [21] investigated two robust algorithms for sparse channel
estimation in the presence of SαS noise. Hu et al. [22]
proposed a reweighed iterative hard thresholding algorithm
for sparse signal recovery in the presence of the SαS Noise.
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He et al. [23] devised an algorithm for joint estimation of
carrier frequency and symbol rate of BPSK signal in the
presence of alpha-stable noise. In [24], Yang et al. employed
explicit myriad cost function and a global optimization method
for synchronization parameters estimation of MSK signal in
the presence of alpha-stable noise. Nevertheless, the method
therein needs the signal and noise power information which
unfortunately are difficult to be obtained under alpha-stable
noise. Qian et al. [25] proposed a block successive upper-
bound minimization algorithm for robust frequency estimation
by minimizing an lp-norm cost and proved convergence.
However, many of them require hard optimization process
and their computational complexities are relatively high. In
[26], a new myriad filtering method is proposed to develop
communication receiver in the present of SαS noise, which
employed an optimal finite impulse response filter to suppress
the signal component in the observation data. Hou et al. [27]
proposed a novel non-data-aided joint estimation algorithm for
the time-varying block-memoryless impulsive noise channel.
Lu et al. [28] proposed a novel system identification algorithm
based on the logarithmic least mean p-th power criterion for
distributed in-network in alpha-stable noise. Talebi et al. [29]
considered the characteristic function of SαS signals over
sensor networks and derived an optimal filtering solution.

In this paper, we propose a robust estimation algorithm
based on the generalized cyclostationarity to estimate the
modulation parameters of M -FSK signals in the presence of
alpha-stable noise. The main contributions of this paper are
summarized as follows.

• We propose new estimators for the modulation order,
frequency deviation and symbol period of M -FSK sig-
nals by deriving the generalized first- and second-order
cyclostationarity of M -FSK signals in symmetric alpha-
stable noise.

• We derive the closed-form solutions for parameter esti-
mates in both time and frequency domains, which results
in a low-complexity algorithm.

• Our method does not need timing synchronization and
signal/noise power estimation.

The remainder of this paper is organized as follows. Section
II presents the signal model. Section III introduces a novel
algorithm for blind modulation parameter estimation of M -
FSK signals. Section IV illustrates the asymptotic properties of
the proposed method. Simulation results are given in Section
V. Finally, Section VI draws the conclusion.

II. SIGNAL MODEL

Consider a single input single output system with non-
cooperative communication terminals, where after down-
conversion, the baseband signal received at time t is given
by

r(t) = h (t)⊗ s (t) + w(t), (1)

where h (t) represents the fading channel, w(t) is the additive
noise that is uncorrelated to s(t), and s(t) is the modulated
signal which takes the form of

s(t) = Aejθej2π∆fct
∑
i

ej2πf∆sitg (t− iTb) , (2)

where A, θ and ∆fc are the amplitude, phase and frequency
offsets, respectively, f∆ and Tb denote the frequency deviation
and symbol period of M -FSK signals, respectively, g(t) is
the signal pulse shape, si denotes the symbol transmitted
within the i-th period, and its value is drawn from a finite
alphabet corresponding to the M -FSK modulation, i.e., si ∈{
s̃m
∣∣s̃m = 2m− 1−M,m = 1, · · · ,M

}
.

We assume that w(t) is alpha-stable distributed with char-
acteristic function defined as follows [30]

φ (u) = exp (jeu− γ|u|α [1+jηsgn (u)ω (u, α)]) , (3)

where
ω (u, α) =

{
− tan (πα/2), α ̸= 1
(2/π) log |u|, α = 1

, (4)

sgn (u) =


1, u > 0
0, u = 0

−1, u < 0
. (5)

The parameters in (3) are as follows.
• Characteristic exponent α, that controls the heaviness of

the tail of the stable density, hence, the smaller the α is,
the heavier the tail is.

• Location parameter e, that determines the symmetry
center of the probability density function.

• Dispersion parameter γ, that determines the spread of the
distribution around the center.

• Index of skewness η, that controls the symmetry of the
distribution.

When the stable distribution is symmetric, (3) reduced to

φ (u) = exp {jeu− γ|u|α} . (6)

As shown in (6), such symmetric alpha-stable process is
denoted as SαS (e, γ). Two well-known alpha distributions
are the Cauchy distribution when α = 1 and the Gaussian
distribution when α = 2. It is assumed that w(t) is white
noise, a common assumption made for analytical purposes.
Additionally, we assume that the samples of the noise process
w(t), denoted by w(t) = wR(t) + jwI(t), have a bivariate
isotropic SαS distribution whose characteristic function is
φ (u1, u2) = exp

{
−γ(u21 + u21)

α/2}. In this paper, the signal
and noise power ratio is defined as the mixed signal to noise
ratio (MSNR)

MSNR = 10log10
(
σ2
s

/
γ
)
, (7)

where σ2
s represents the signal variance, and γ represents

dispersion coefficient of the alpha-stable noise.

III. JOINT PARAMETER ESTIMATION OF M -FSK SIGNALS

The alpha-stable noise has infinite variance when 0<α<2,
and traditional parameter estimators designed for Gaussian
noise generally is seriously degraded in this case. The key
idea of the algorithm based on generalized cyclostationarity
is to construct nonlinear compress function and analyze the
generalized cyclostationarity properties of the signal trans-
formed with nonlinear transformation. To begin, let us first
derive a useful lemma to illustrate the existence of generalized
cyclostationarity.
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A. Existence of Generalized Cyclostationarity

Lemma 1: For a symmetric alpha-stable random variable
X , the nonlinear compress function is expressed as

f [X] =
X

|X|+∆2
, (8)

where ∆2 represents compression factor and its value tends to
zero, but it is not equal to zero.

The n-th moment of f [X] obeys

|E {fn [X]}| =
∣∣∣∣E{( X

|X|+∆2

)n}∣∣∣∣ ≤ 1, (9)

where E {·} is the expectation operator.
Proof: See Appendix A.

Remark 1: For a alpha-stable random variable X , the non-
linear compress function makes the generalized high order
moment of X exist, that is f [X] has high order moment in
Lemma 1.

B. Properties of Generalized Cyclostationarity

Now let us focus on the derivations of some useful prop-
erties of generalized cyclostationarity, which will be used to
derive our method. Our results are drawn as follows:

Proposition 1: The received FSK signal exhibits general-
ized first-order cyclostationarity and the number and position
of the first-order cycle frequencies are dependent on the
modulation order M and frequency deviation f∆.

Proof: See Appendix B.
Proposition 2: The received FSK signal exhibits general-

ized second-order cyclostationarity and the peak pattern of
generalized second-order cyclic moment magnitude is depen-
dent on the symbol period Tb.

Proof: See Appendix C.

C. Proposed Estimation Algorithm

The generalized first-order time-varying moment of r(t) is
defined as

Cr(t) = E {f [r(t)]} , (10)

where f [r(t)] = r(t)
|r(t)|+∆2 . If Cr(t) is approximately a

periodic function of time, the signal r(t) is generalized first-
order cyclostationary process and Cr(t) has a Fourier series
expansion as

Cr(t) =
∑
ε̃∈κ

ϑ̃r (ε̃) e
j2πε̃t, (11)

where κ represents the set of first-order cycle frequencies
(CFs). ϑ̃r (ε̃) is the generalized first-order cyclic moment (CM)
at cycle frequencies ε̃, which is defined as

ϑ̃r (ε̃) = lim
T→∞

T−1

∫ T/2

−T/2
Cr(t)e

−j2πε̃tdt. (12)

For the discrete-time signal r (k) = r(t)|t=kf−1
s

, by sam-
pling the continuous-time signal r(t) at a sampling rate fs,
the generalized first-order cyclic moment and corresponding
set of cycle frequencies become

ϑr (ε) = ϑ̃r (εfs) , (13)

κ =
{
ε : ε ∈ [−0.5, 0.5) , ε = ε̃f−1

s , ϑr (ε) ̸= 0
}
. (14)

The generalized second-order time-varying moment of the
received signal r(t) is expressed as

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]} , (15)

where τ̃ denotes the time delay, and * represents the complex
conjugate. If Gr (t, τ̃) is an (almost) periodic function of time,
the signal r(t) exhibits generalized second-order cyclostation-
arity, and Gr (t, τ̃) is decomposed by a Fourier series as

Gr (t, τ̃) =
∑
β̃∈ψ

Ω̃r
(
β̃, τ̃

)
ej2πβ̃t, (16)

where ψ is the set of the second-order cycle frequencies (CFs).
Ω̃r
(
β̃, τ̃

)
is the generalized second-order cyclic moment (CM)

at cycle frequencies β̃, and is expressed as

Ω̃r
(
β̃, τ̃

)
= lim
T→∞

T−1

∫ T/2

−T/2
Gr (t, τ̃)e

−j2πβ̃tdt. (17)

For the discrete-time signal r (k) = r(t)|t=kf−1
s

, the gener-
alized second-order cyclic moment and corresponding set of
cycle frequencies are given by

Ωr (β, τ) = Ω̃r
(
βfs, τf

−1
s

)
, (18)

ψ =
{
β : β ∈ [−0.5, 0.5) , β = β̃f−1

s ,Ωr (β, υ) ̸= 0
}
. (19)

According to Proposition 1, ϑ̃ (ε̃) exhibits peaks for ε̃ ∈{
ε̃ = ∆fc + ρT−1

b , ρ = ±l, · · · , ±(M − 1)l, l ∈ Z} if f∆ =
lT−1
b , and the number of the first-order cycle frequencies

ε̃ equals the modulation order M . In addition, the distance
between adjacent first-order cycle frequencies ε̃ is dependent
on the tone frequency spacing f∆, that is |ε̃i − ε̃i+1| = 2f∆.
Based on Proposition 2, the absolute value of Ω̃ (0, τ) exhibits
periodic peaks at β̃ ∈

{
β̃ = lT−1

b , l ∈ Z
}

. The value of∣∣∣Ω̃ (0, τ̃)
∣∣∣ decreases when the delay increases for τ̃ < Tb,

and it remains constant when τ̃ ≥ Tb. In other words, the
second-order cyclic moment magnitude exhibits the property
that a change in the peak pattern at a delay is equal to the
symbol period. Based on the above analysis, a blind algorithm
for modulation parameter estimation of M -FSK signals can
be developed for alpha-stable noise. The proposed algorithm
consists of the following steps.

Step 1. The received signal r(t) is sampled at a sampling
rate fs, that is r (k) = r(t)

∣∣∣t=kf−1
s

. The sampling rate fs is
set large enough in the case of no priori information about the
signal bandwidth B, that is fs ≥ ςB (ς ≥ 2). The sampled
signal is defined as

r (k) = h (k)⊗ s (k) + w (k) , (20)

where h (k) represents the fading channel, s (k) =

s(t)
∣∣∣t=kf−1

s
and w (k) = w(t)

∣∣∣t=kf−1
s

represent the complex
modulated signal and complex alpha-stable noise, respectively.

Step 2. r (k) is transformed as f [r (k)] = r(k)
|r(k)|+∆2 , and

the estimator of generalized first-order cyclic moment ϑ̂r (ε)
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at cycle frequencies, is given as

ϑ̂r (ε) =
1

K

K−1∑
k=0

f [r (k)] e−j2πεk/K . (21)

Step 3. The cycle frequencies are selected to obtain a
set of candidate frequencies. We first calculate a statistic
Γϑ=

max[Q]

ϑ̄+ϖ
for all frequencies, where ϑ̄ = E

{
ϑ̂r
(
ε
)}

,

ϖ =

√
E
{[
ϑ̂r (ε)− ϑ̄

]2}
, and Q represents a set and its

initial value is Q =
{
ϑ̂r (ε)

}
. Then, we set a cutoff value

δ, and compare δ to Γϑ. If the cutoff value δ is below the
statistic Γϑ, the frequency ε that maximizes the statistics Γϑ
is believed to be a candidate frequency. Besides, the set Q
is updated by removing the candidate frequency selected in
the previous step. Because of the cycle frequency resolution,
the discrete spectral lines are usually not a set of multiple
lines at cycle frequency. In order to suppress the effect of
irregular chaotic lines at the next cycle frequency, the spectral
line value within the set [ε− ν, ε+ ν] (where ν > 0) is set
zero. Finally, by repeating the above process, we obtain a set
of cycle frequencies κ̂.

Step 4. The modulation order M and tone frequency spacing
f∆ are estimated. The number of the first-order cycle fre-
quencies decisions the M-FSK modulation order. For example,
the received signal is estimated as 2-FSK, when the number
of first-order cycle frequencies is two. The received signal
is considered to be M -FSK (M = 2m,M ≥ 4) if at
least 2m−1+1 first-order cycle frequencies are detected. The
decision on the M -FSK tone frequency spacing is based on the
minimum distance between adjacent cycle frequencies, that is
f̂∆ = ∆εfs/2, where ∆ε = argmin

κ
|εi − εj |.

Step 5. The estimate of generalized second-order cyclic
moment at cycle frequencies β, is calculated

Ω̂r (β, τ) =
1

K

K−1∑
k=0

f [r (k)] f∗ [r (k + τ)] e−j2πkβ/K . (22)

Step 6. The symbol period is estimated. According to
the Proposition 2, the magnitude of

∣∣Ω̃(0, l(2f∆)−1)∣∣ re-
mains constant when

∣∣l(2f∆)−1∣∣ ≥ Tb. Substituting the
minimum distance between adjacent cycle frequencies into
Ω̂r
(
β, τ

)
gives

∣∣Ω̂r(0, l(∆ε)−1)∣∣. Let Sι =
∣∣Ω(0, ι(∆ε)−1)∣∣(

ι = 0, 1, · · · , vmax

)
, and let F be a variable with initial

value Svmax . We define the variable sets H and D, and
initialize them by using

{
Vvmax

}
and

{
V1, V2, · · · , Vvmax−1

}
,

respectively. For υ = 1 to vmax, Vυ is calculated sequentially,
that is Vυ = argminVι∈D

∣∣Vι − F
∣∣. If

∣∣Vυ − F
∣∣ < σ, then

D = D ∩
{
Vυ
}

, H =
{
Vvmax

}
∪ H and F = E

{
H
}

,
otherwise break. The set H member of minimum delay
provides the estimate of the symbol period Tb, that is T̂b = τ̂

fs

(τ̂ = argmin

ι·
(
∆ε
)−1

{
H
}

) [14].

The procedure of blind parameter estimation for M -FSK
signals with alpha-stable noise is summarized in Algorithm 1.

D. Asymptotic Properties of the Proposed Algorithm
We note that in our method, the tone frequency spacing is

estimated by detecting the first-order cycle frequencies, while

Algorithm 1 Blind parameter estimation for M -FSK signals
with alpha-stable noise.

1: Initialize parameters ∆, δ, ν and σ.
2: Sample received signal at a rate of fs, that is r (k) =

r(t)
∣∣∣t=kf−1

s
.

3: Map r (k) by the nonlinear function, that is f [r (k)] =
r(k)

|r(k)|+∆2 .
4: Calculate generalized first-order cyclic moment ϑ̂r(ε)

using (21).
5: Select the first-order cyclic frequencies κ.
6: Identify the modulation order M , and tone frequency

spacing f∆ by first-order cyclic frequencies set κ.
7: Calculate generalized second-order cyclic moment

Ω̂r (β, τ) using (22).
8: Estimate the symbol period by employing τ̂ =

argmin
i·(∆υ)−1

{H} and T̂b = τ̂
fs

.

the symbol period is determined by extracting the second-order
cycle frequencies. They are related to the first- and second-
order generalized cyclic moments, respectively. It is important
to check if our method is statistically meaningful. The follow-
ing two propositions show that the parameter estimates of our
algorithm are asymptotically unbiased and consistent.

Proposition 3: The estimator of ϑ̂s(ε) is asymptotic unbi-
ased and consistent.

Proof: See Appendix D.
Proposition 4: The estimator of Ω̂s (β, υ) is asymptotic

unbiased and consistent.
Proof: See Appendix E.

IV. SIMULATION RESULTS

In this section, the performance of the proposed generalized
cyclostationarity-based algorithms is evaluated in the presence
of alpha-stable noise. We consider M -FSK signals, with
modulation order M = 2, 4, 8, a symbol rate of fb = T−1

b and
a single-sided bandwidth of 2 KHz. The sampling rate fs is
25 KHz, and the frequency offset ∆fc equals 1000 Hz. Unless
otherwise stated, the observation period is 0.5 sec, which
corresponds to 500 2FSK symbols, 250 4FSK symbols, or 125
8FSK symbols, respectively. All results are calculated based on
1000 Monte Carlo trials. The probability of correct estimation
Pce is employed to examine the estimation performance of
our method. Specifically, for modulation order estimation, we
follow [11] to calculate Pce via

Pr
[
M = M̂

]
, (23)

where M̂ is the estimate of M . For tone frequency spacing
and symbol period, we follow [31] and [14], and calculate Pce
as

Pr
[
|Y − Ŷ |/Y ≤ 10−2

]
, (24)

where Ŷ is the estimate of Y .
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Fig. 1. Modulation order estimation performance versus different MSNRs

A. Performance of Proposed Estimation Algorithm

We examine how Pce of our method varies by changing
MSNR. We choose the modulation order M ∈ (2, 4, 8).
We compare our generalized cyclostationarity-based algorithm
(GCS) with first-order cyclostationarity-based algorithm (FCS)
in [11] and the time-frequency analysis-based algorithm (TFA)
in [15]. The results are plotted in Figs. 1 and 2, where the
former is for modulation order estimation while the latter is
for frequency deviation estimation. One sees that TFA and
FCS do not perform well in alpha-stable noise since they are
unable to deal with heavy-tailed noise. But GCS performs well
in both cases. For example, in Fig 1, its Pce reaches 1 for
2FSK signals, even in low SNR cases. For 8FSK signals, when
MSNR is greater than 4 dB, GCS offers Pce = 1 while the
other methods failed to work. Note that the complexity of the
GCS algorithm is O (NlogN) while that of the FCS and TFA
algorithms are in the same order as GCS. So our method is
more appealing since it achieves the higher performance but
with almost the same complexity as FCS and TFA.

In Fig. 3, the probability of correct symbol period estima-
tion, for M = 2, 4, 8, is plotted versus MSNR. For reference,
the performance of the second-order cyclostationarity-based
algorithm (SCS) in [14] and the wavelet transform-based
algorithm (WT) in [6] with symmetric alpha-stable noise are
also plotted in these figures. From Fig. 3, it can be shown
that the proposed algorithm is robust against symmetric alpha-
stable noise and significantly outperforms the existing algo-
rithms. Moreover, for given higher MSNR, the performance
of 8FSK signal is worse than that of 4FSK and 2FSK. This
is because that in such cases, the performance of symbol
period is affected by the tone frequency spacing estimation.
In addition, the complexity of the proposed GCS algorithm is
compared with the SCS and WT algorithms. For the number
of samples N , the calculation complexity for GCS algorithm
is O (NlogN) and the SCS and TFA algorithm also have
order O (NlogN). It showed that the proposed GCS yields
significant performance gains under the same computational
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Fig. 2. Tone frequency spacing estimation performance versus different
MSNRs
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Fig. 3. Symbol period estimation performance versus different MSNRs

complexity.
Fig. 4 shows the probability of correct symbol period

estimation. We see that the proposed algorithm performs well
under different settings, especially for 2FSK signal and 4FSK
signal, where its performance with estimated f∆ is close to
that with true f∆. However, compared to 2FSK and 4FSK
signals, estimating f∆ for 8FSK signals is more difficult, so
our method showed relatively poor performance.

In addition, the CRB and mean square error of the proposed
and the existing algorithms are compared in Figs. 5-6. In
Fig. 5, the mean square error of the tone frequency spacing
estimation are plotted versus MSNR for 4FSK. From Fig. 5,
it can be shown that the proposed algorithm is robust against
symmetric alpha-stable noise and significantly outperforms the
existing algorithms when MSNR is greater than -4dB. In Fig.
6, the mean square error of the symbol period estimation for
4FSK is plotted versus MSNR. From Fig. 6, it is observed
that the existing algorithms behave poorly in presence of
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Fig. 4. Symbol period estimation performance with different f∆ versus
different MSNRs

-15 -10 -5 0 5

MSNR/dB

10-20

10-10

100

1010

1020

P
ce

GCS Algorithm
CS Algorithm
WT Algorithm
MCRB

Fig. 5. The mean square error of the tone frequency spacing estimation.

symmetric alpha-stable noise, but the proposed algorithm is
reasonably robust against symmetric alpha-stable noise under
higher MSNR conditions.

B. Effect of Noise Parameters on Algorithm Performance

In this example, we study how the parameter alpha affects
the performance of the proposed algorithm. Specifically, the
effects of the parameter α on the value of Pce for modulation
order, tone frequency spacing and symbol period will be shown
in Figs. 7-9, respectively. It can be seen that a larger α results
in higher probability for the proposed method. Moreover, it
is worth mentioning that our method performs well in many
challenging scenarios such as α = 1 with which the noise
distribution is pretty heavy-tailed and more outliers can be
generated to corrupt the signal. When α = 2, our method also
shows reasonably well performance.
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Fig. 6. The mean square error of the symbol period estimation.
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Fig. 7. The Pce of the modulation order versus MSNR, with different α
values

V. CONCLUSION

We have proposed a new method for blind parameter esti-
mation of M -FSK signals in alpha-stable noise. Our method is
based on the so-called generalized cyclostationary properties
proved in this paper. We have derived closed-form expres-
sions for the parameter estimation including modulation order,
frequency deviation and symbol period. Theoretical analysis
and numerical experiments have shown the effectiveness and
robustness of the proposed method over the state-of-the-art
algorithms.

APPENDIX A
PROOF OF LEMMA 1

According to (8), we can obtain

|f [X]| =
∣∣∣∣ X

|X|+∆2

∣∣∣∣ ≤ ∣∣∣∣ X|X|

∣∣∣∣ = 1. (25)
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Fig. 9. The Pce of symbol period versus MSNR, with different α values

Furthermore

|f [X]|n =

∣∣∣∣ X

|X|+∆2

∣∣∣∣n ≤
∣∣∣∣ X|X|

∣∣∣∣n = 1. (26)

The n-th moment of |f [X]| is given by

E {|f [X]|n}=E
{∣∣∣∣ X

|X|+∆2

∣∣∣∣n}≤E
{∣∣∣∣ X|X|

∣∣∣∣n} = 1.

(27)
For n ≥ 1, we get the following conclusion

E

{(
X

|X|+∆2

)n}
≤E

{∣∣∣∣( X

|X|+∆2

)n∣∣∣∣}
≤E

{∣∣∣∣ X

|X|+∆2

∣∣∣∣n}≤1.

(28)

APPENDIX B
PROOF OF PROPOSITION 1

To simplify the proof of Proposition 1, we first present a
useful Lemma.

Lemma 2: If the product f∆s̃m is an integer of T−1
b , the

generalized first order cyclic moment of the received M -FSK
signals can be expressed as

ϑ̃(ε̃)= ℑ{Cr(t)} ≈ Λi
∑
ρ∈P

δ
(
ε̃−∆fc − ρT−1

b

)
, (29)

where ℑ{·} denotes the Fourier transform, Λi ∈
[Λh,Λl], Λh = ρhAe

jθM−1

|ρhA|+∆2 , Λl = ρhAe
jθM−1

|w(t)|+∆2 and
{ρ=f∆s̃mTb, ρ ∈ Z, s̃m=2m−1−M}.

Proof: See Appendix F.
Based on Lemma 2, we assume that f∆ = lT−1

b , with l as
an integer, the equation (29) can be rewritten as

ϑ̃(ε̃)=ℑ{Cr(t)}≈
∑

ρ∈{±l,··· ,±(M−1)l}

Λiδ
(
ε̃−∆fc−ρT−1b

)
.

(30)
where {ρ = ls̃m = ±l, · · · ,±(M − 1)l, l ∈ Z}.

According to (30), it is noteworthy that ϑ̃ (ε̃) ̸= 0 with
ε̃ ∈

{
ε̃ = ∆fc + ρT−1

b , ρ = ±l, · · · , ± (M − 1) l, l ∈ Z}
and the magnitude of ϑ̃ (ε̃) decreases with an increase in
modulation order M . In addition, the number of first-order
cycle frequencies is equal to the modulation order M , and the
cycle frequencies is dependent on the frequency offset ∆fc
and frequency deviation f∆.

APPENDIX C
PROOF OF PROPOSITION 2

To simplify the proof of Proposition 2, Lemma 3 is present-
ed as follows.

Lemma 3: The analytical expressions of the generalized
second-order cyclic moment of the M -FSK signals can be
given as

Ω̃r

(
β̃, τ̃

)
=



ℜi(TbM)−1ej2π∆fcτ̃
M∑
p=1
ej2πf∆s̃pτ0

(
U1

(
β̃
)

+M−1
M∑
q=1

U2

(
β̃ − (s̃q − s̃p) f∆

))
,

when |τ̃ | < Tb
ℜiT−1

b M−2ej2π∆fcτ̃

M∑
q=1

M∑
p=1

ej2πf∆s̃pτ0
(
U1

(
β̃−(s̃q−s̃p) f∆

)
+U2

(
β̃ − (s̃q − s̃p) f∆

))
,

when |τ̃ | ≥ Tb

, (31)

where ℜi ∈ [ℜh,ℜl], ℜh = (ρhA)2

|ρhA|2+∆2 , ℜl =
(ρhA)2

|w(t)|2+∆2 , U1

(
β̃
)

and U2

(
β̃
)

are the Fourier transforms
of g(t)g (t− τ0) and g(t)g (t+ µTb − τ0).

Proof: Appendix G.
Based on Lemma 3, we notice that Ω̃r

(
β̃, τ̃

)
exhibits peaks

for
{
β̃
∣∣∣β̃ = lT−1

b , l ∈ Z
}

. If β̃=0, then
∣∣∣Ω̃r (β̃, τ̃)∣∣∣can be

further expressed as
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∣∣∣Ω̃ (0, τ̃)
∣∣∣=



∣∣∣∣∣ℜi(TbM)
−1
ej2π∆fcτ̃

M∑
p=1

ej2πf∆s̃pτ0

×

(
U1 (0)+M

−1
M∑
q=1
U2((s̃q−s̃p) f∆)

)∣∣∣∣∣ ,
when |τ̃ | < Tb∣∣∣∣∣ℜiT−1
b M−2ej2π∆fcτ̃

M∑
q=1

M∑
p=1

ej2πf∆s̃pτ0

×(U1((s̃q−s̃p)f∆)+U2 ((s̃q−s̃p) f∆))| ,
when |τ̃ | ≥ Tb

. (32)

According to (32), it is clear that such peaks exist at τ̃ =
l(2f∆)

−1
(l ∈ Z), and their values are

∣∣∣Ω̃(0, l(2f∆)−1
)∣∣∣=


ℜi
(
1− M−1

TbM

∣∣∣l · (2f∆)−1
∣∣∣) ,

when
∣∣∣l · (2f∆)−1

∣∣∣ < Tb

ℜiM−1,

when
∣∣∣l · (2f∆)−1

∣∣∣ ≥ Tb

. (33)

From (33), it is noted that the magnitude of∣∣∣Ω̃(0, l(2f∆)−1
)∣∣∣ is dependent upon the modulation

order M , the frequency deviation f∆ and the symbol period
Tb. Furthermore, for any given M , the maximum peak value
of the magnitudes of the

∣∣∣Ω̃(0, l(2f∆)−1
)∣∣∣ can be reached

for l · (2f∆)−1
= 0. It can be further noticed from (33)

that the magnitude of
∣∣∣Ω̃(0, l(2f∆)−1

)∣∣∣ decreases with an

increase in time delay τ̃ for
∣∣∣l · (2f∆)−1

∣∣∣ < Tb and the

magnitude of
∣∣∣Ω̃(0, l(2f∆)−1

)∣∣∣ remains constant if and only

if
∣∣∣l · (2f∆)−1

∣∣∣ ≥ Tb. This distinctive feature of the magnitude

of
∣∣∣Ω̃(0, l(2f∆)−1

)∣∣∣ is exploited to develop an algorithm
for estimating Tb. From the above, it can be shown that the
magnitude of the generalized second-order cyclic moment for
M -FSK signals is dependent on the symbol period Tb, and
the problem of blind symbol period estimation can be solved
by generalized cyclostationarity-based algorithm.

APPENDIX D
PROOF OF PROPOSITION 3

The expected value of ϑ̂s(ε) is given by

E
{
ϑ̂s (ε)

}
=

1

KCϑ

K−1∑
k=0

E {s (k)} e−j2πkε/K , (34)

where Cϑ=
(
|ρhA|+∆2

)
. From (34), it can be seen that the

magnitude of E
{
ϑ̂s (ε)

}
is dependent on Cϑ. If K → ∞, we

obtain
lim
K→∞

E
{
ϑ̂s (ε)

}
= ξs (ε) , (35)

where ξs(ε)= 1
K

∑K−1
k=0s(k)e

−j2πkε/K . Based on (35), ϑ̂s(ε) is
an asymptotic unbiased estimate of ξs (ε).

The expected value of ϑ̂2r (ε) is given as

E
{
ϑ̂2s(ε)

}
= E


(

1

KCϑ

K−1∑
k=0

s (k) e−j2πkε/K

)2


=
1

C2
ϑ

E


(

1

K

K−1∑
k=0

s (k) e−j2πkε/K

)2


=
1

C2
ϑ

E
{
ξ2s (ε)

}
.

(36)

Employing (34) and (36), one obtain

lim
K→∞

var
[
ϑ̂2s (ε)

]
= lim
K→∞

(
E
{
ϑ̂2s (ε)

}
−E2

{
ϑ̂s (ε)

})
=0. (37)

According to Chebyshev inequality, it can be seen that the
estimator of generalized first-order cyclic moment is consis-
tent.

APPENDIX E
PROOF OF PROPOSITION 4

The expected value of Ω̂s (β, υ) can be expressed as

E
{
Ω̂s(β, τ)

}
=

ΥΩ

K

K−1∑
k=0

E{s(k)s(k+τ)}e−j2πkβ/K , (38)

where ΥΩ=
(
|ρhA|+∆2

)−2
. The result from (38) illustrates

that the magnitude of E
{
Ω̂s (β, τ)

}
is dependent on ΥΩ. If

K → ∞, we obtain

lim
K→∞

E
{
Ω̂s (β, τ)

}
= ζs (β, τ) . (39)

where ζs (β, τ) = 1
K

∑K−1
k=0 s (k) s (k + τ) e−j2πkβ/K . Based

on (39), Ω̂s (β, τ) is an asymptotic unbiased estimate of
ζs (β, τ).

The expected value of Ω̂2
s (β, τ) can be written as

E
{
Ω̂2
s (β, τ)

}
=E


(
ΥΩ

K

K−1∑
k=0

x(k)x∗(k+τ)e−j2πkβ/K

)2
= ΥΩE

{
ζ2s (β, τ)

}
.

(40)

Based on (38) and (40), one obtain

lim
K→∞

var
[
Ω̂2
s (β, τ)

]
= lim
K→∞

E
{
Ω̂2
s (β, τ)

}
− lim
K→∞

E2
{
Ω̂2
s (β, τ)

}
= 0.

(41)

According to Chebyshev inequality, it can be seen that
the estimator of generalized second-order cyclic moment is
consistent.

APPENDIX F
PROOF OF LEMMA 2

According to the basic idea of the generalized cyclostation-
arity, we first construct the nonlinear transformation,

f [r(t)] =
r(t)

|r(t)|+∆2
, (42)
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where r(t) is received signal, and ∆ represents compression
factor. Then, the first-order time-varying moment of f [r(t)]
is defined as

Cr(t) = E {f [r(t)]}

= E

{
r(t)

|r(t)|+∆2

}
= E

{
s̃(t) + w(t)

|s̃(t) + w(t)|+∆2

}
= E

[
s̃(t)

|s̃(t) + w(t)|+∆2
+

w(t)

|s̃(t) + w(t)|+∆2

]
,

(43)

where s̃(t) = h (t)⊗ s(t), E {·}, E {·} is the mean operator.
When MSNR is high, equation (43) can be approximately

expressed as

Cr(t) = E {f [r(t)]}

≈ E

{
s̃(t)

|s̃(t)|+∆2
+

w(t)

|s̃(t)|+∆2

}
= Chs (t) + Chw(t).

(44)

where Chs (t) = E
{

s̃(t)
|s̃(t)|+∆2

}
and Chw(t) = E

{
w(t)

|s̃(t)|+∆2

}
.

According to Lemma 1, Chw(t) = E
{

w(t)
|s̃(t)|+∆2

}
is finite

value, and it is approximately considered as a Gaussian process
when |s̃(t)| ≫ |w(t)|. Hence, Cs(t) is important role in (44),
and Cr(t) can be written as

Cr(t) ≈ Chs (t) = E

{
s̃(t)

|s̃(t)|+∆2

}
. (45)

We consider flat fading channel, that is s̃(t) = ρhs(t), where
ρh is the channel gain. In this case, Cr(t) can be expressed
as

Cr(t)≈E
{

s̃(t)

|s̃(t)|+∆2

}
=Λh

M∑
m=1

(
ej2πf∆s̃mtg(t)⊗

∑
i

δ (t− iTb)

)
ej2π∆fct,

(46)

where Λh = ρhAe
jθM−1

|A|+∆2 , ⊗ represents the convolution opera-
tor, and δ (·) is the Dirac delta function. The Fourier transform
of Cr(t) can be expressed as in (47).

Based on the result of analysis in [11], ℑ{Cr(t)} ̸= 0 when
ε̃ = ∆fc + iT−1

b , and it can be easily expressed as

ℑ{Cr(t)} ≈ ΛhT
−1
b

M∑
m=1

∑
i

δ
(
ε̃−∆f − iT−1

b

)
×
∫ ∞

−∞
g (ι) ej2πf∆s̃mιe−j2πiιT

−1
b dι.

(48)

If the product f∆s̃m is an integer of T−1
b , that is, f∆s̃m =

ρT−1
b , with ρ as an integer. ℑ{Cr(t)} can be rewritten as

follows

ℑ{Cr(t)} ≈ Λh
∑
ρ∈P

δ
(
ε̃−∆fc − ρT−1

b

)
, (49)

where {ρ = f∆s̃mTb, ρ ∈ Z, s̃m = 2m− 1−M}. If the M-
SNR is low, equation (43) can be approximately written as

Cr(t) = E {f [r(t)]}

≈ E

{
s̃(t)

|w(t)|+∆2
+

w(t)

|w(t)|+∆2

}
= Cls(t) + Clw(t).

(50)

where Cls(t) = E
{

s̃(t)
|w(t)|+∆2

}
and Clw(t) = E

{
w(t)

|w(t)|+∆2

}
.

In (50), Cls(t) contains the information of mixture signal-
to-noise, in other words, the amplitude of Cls(t) decreases
with decreasing the MSNR. Clw(t) represents the mean of
f [w(t)], and it is finite value. When |w(t)| ≫ |s̃(t)|, w(t)

|w(t)|+∆2

is the approximate amplitude normalization, and it can be
approximated as a Gaussian process, that is Clw(t) ≈ 0. We
can rewrite Cr(t) as

Cr(t) ≈ Cls(t) = E

{
s̃(t)

|w(t)|+∆2

}
. (51)

For low MSNR, the derivation and analysis process is similar
to that under high MSNR. When f∆s̃m = ρT−1

b , with ρ as an
integer, the generalized first order cyclic moment ℑ{Cr(t)}
can be expressed as follows

ℑ{Cr(t)} ≈ Λl
∑
ρ∈P

δ
(
ε̃−∆fc − ρT−1

b

)
, (52)

where Λl = ρhAe
jθM−1

|w(t)|+∆2 and
{ρ = f∆s̃mTb, ρ ∈ Z, s̃m = 2m− 1−M}.

APPENDIX G
PROOF OF LEMMA 3

According to the generalized cyclostationarity, the general-
ized the second-order time-varying moment of f [r(t)] can be
expressed as in (53).

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]}

= E

{(
r(t)

|r(t)|+∆2

)(
r (t− τ̃)

|r (t− τ̃)|+∆2

)∗}
= E

{(
s̃ (t) + w (t)

|s̃(t) + w (t)|+∆2

)
×
(

s̃ (t− τ̃) + w (t− τ̃)

|s̃ (t− τ̃) + w (t− τ̃)|+∆2

)∗}
=E

{
s̃(t)s̃∗ (t−τ̃)

(|s̃(t)+w(t)|+∆2) (|s̃(t−τ̃)+w (t−τ̃)|+∆2)

+
w(t)w∗(t−τ̃)

(|s̃(t) + w(t)|+∆2) (|s̃ (t− τ̃) + w(t−τ̃)|+∆2)

}

(53)

In (53), τ̃ denotes the time delay delay, and ∗ represents the
complex conjugate.

Let us assume that MSNR is high, we can approximate
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ℑ{Cr(t)}≈
∫ ∞

−∞
Λh

M∑
m=1

(
ej2πf∆s̃mtg(t)⊗

∑
i

δ(t−iTb)

)
× ej2π∆fcte−j2πε̃tdt

= Λh

∫ ∞

−∞

M∑
m=1

ej2πf∆s̃mιg (ι)×
∫ ∞

−∞

∑
i

δ (t− ι− iTb)e
−j2π(ε̃−∆fc)tdtdι,

(47)

Gr (t, τ̃) as

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]}

≈ E

{
s̃(t)s̃∗ (t−τ̃)

|s̃(t)| |s̃ (t−τ̃)|+∆2
+

w(t)w∗ (t−τ̃)
|s̃(t)| |s̃ (t−τ̃)|+∆2

}
= E

{
s̃(t)s̃∗ (t− τ̃)

|s̃(t)|2 +∆2

}

+ E

{
w(t)w∗ (t− τ̃)

|s̃(t)|2 +∆2

}
.

(54)

Equation (54) can be further expressed as

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]}
≈ Ghs (t, τ̃) +Ghw (t, τ̃) ,

(55)

where Ghs (t, τ̃) = E
{
s̃(t)s̃∗(t−τ̃)
|s̃(t)|2+∆2

}
retains the frequency

characteristics of the transmitter signal, and Ghw (t, τ̃) =

E
{
w(t)w∗(t−τ̃)
|s̃(t)|2+∆2

}
contains the information of mixture signal-

to-noise ratio. For |s̃(t)| ≫ |w(t)|, the second order moments
of w(t)w∗(t−τ̃)

|s̃(t)|2+∆2 are finite, and it can be approximated as a
Gaussian process. Hence, Chw(t) can be ignored in (55), that
is, Gr (t, τ̃) can be simplified to

Gr (t, τ̃) ≈ E

{
s̃(t)s̃∗ (t− τ̃)

|s̃(t)|2 +∆2

}
, (56)

We consider flat fading channel, that is s̃(t) = ρhs(t), where
ρh is the channel gain. The generalized second-order cyclic
moment for M -FSK signal can be written as in (57).

According to the derivation process in [14], Gr (t, τ̃)
can be expressed as in (58). In equation (58), ℜh =

(ρhA)2

|ρhA|2+∆2 and s̃p ∈ {2p−1−M,p = 1, · · · ,M}, s̃q ∈
{2q−1−M, q = 1, · · · ,M}, s̃p and s̃q are independently and
identically distributed random variables.

The generalized second-order cyclic moment can be ob-
tained as the Fourier transform of the Gr (t, τ̃), as in (59).
In equation (59), U1

(
β̃
)

, U2

(
β̃
)

are the Fourier transforms
of g(t)g (t− τ0) and g(t)g (t+ µTb − τ0), given respectively
by in (60).

U1

(
β̃
)
=(Tb−|τ0|)

[
sinc

(
(Tb−|τ0|) β̃

)]
e−jπβ̃(Tb+µ|τ0|),

U2

(
β̃
)
= |τ0|

[
sinc

(
|τ0|β̃

)]
e−jπβ̃(Tb+µ(|τ0|−Tb)).

(60)

When the MSNR is low, we can express equation (55)

approximately as

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]}

≈E
{

s̃(t)s̃∗ (t−τ̃)
|w(t)| |w (t−τ̃)|+∆2

+
w(t)w∗ (t−τ̃)

|w(t)| |w (t−τ̃)|+∆2

}
= E

{
s̃(t)s̃∗ (t−τ̃)
|w(t)|2+∆2

}
+ E

{
w(t)w∗ (t− τ̃)

|w(t)|2 +∆2

}
.

(61)

Gr (t, τ̃) is further given as

Gr (t, τ̃) = E {f [r(t)] f∗ [r (t− τ̃)]}
≈ Gls (t, τ̃) +Glw (t, τ̃) ,

(62)

where Gls (t, τ̃) = E
{
s̃(t)s̃∗(t−τ̃)
|w(t)|2+∆2

}
and Glw (t, τ̃) =

E
{
w(t)w∗(t−τ̃)
|w(t)|2+∆2

}
. When |w(t)| ≫ |s̃(t)|, the amplitude of

Gls (t, τ̃) is dependent on the amplitude of |s̃(t)| and |w(t)|,
and it decreases with decreasing the MSNR. In addition, we
note that the amplitude of w(t) is approximately normalized by
the nonlinear transformation in Gls (t, τ̃), and w(t)w∗(t−τ̃)

|w(t)|2+∆2 can
be approximated as a Gaussian process. Hence, Clw(t) ≈ 0,
and Gr (t, τ̃) can be rewritten as

Gr (t, τ̃) ≈ Gls (t, τ̃) , (63)

When the MSNR is low, the generalized second-order cyclic
moment Ω̃r

(
β̃, τ̃

)
is given as in(64)). In equation (64), ℜl =

(ρhA)2

|w(t)|2+∆2 .
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