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ABSTRACT

In this paper, we propose a communication-efficient decen-
tralized machine learning (ML) algorithm, coined quantized
group ADMM (Q-GADMM ). Every worker in Q-GADMM com-
municates only with two neighbors, and updates its model via
the group alternating direct method of multiplier (GADMM),
thereby ensuring fast convergence while reducing the number
of communication rounds. Furthermore, each worker quantizes
its model updates before transmissions, thereby decreasing the
communication payload sizes. We prove that Q-GADMM con-
verges to the optimal solution for convex loss functions, and nu-
merically show that Q-GADMM yields 7x less communication
cost while achieving almost the same accuracy and convergence
speed compared to GADMM without quantization.

Index Terms— Communication-efficient decentralized ma-
chine learning, GADMM, ADMM, quantization.

1. INTRODUCTION

Recently, distributed machine learning (ML) at the network edge
has received significant attention [1-3]. In contrast to classical
cloud-based ML, distributed ML hinges on wireless communica-
tion and network dynamics, whereby communication may hinder
its performance. To mitigate this bottleneck, one can decrease
the communication cost of distributed ML by reducing the num-
ber of communication rounds until convergence, communication
links per round, and/or the payload size per link.

Specifically, to reduce the communication payload sizes,
arithmetic precision of the model parameters can be decreased
by for instance 1-bit gradient quantization [4], multi-bit gra-
dient quantization [5], or weight quantization with random ro-
tation [6]. Alternatively, instead of model parameters, model
outputs can be exchanged for large models via knowledge dis-
tillation [7, 8]. To reduce communication links, model updates
can be sparsified by collecting the updates until a time dead-
line [9], upon the values sufficiently changed from the preceding
updates [5, 10], or based on channel conditions [11-13]. To re-
duce the number of communication rounds, convergence speed
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Fig. 1: Operational structure of quantized GADMM (Q-GADMM), in
which every worker communicates with two neighbors, after quantizing
its local model 8% with the radius R (for 4 quantization levels).

can be accelerated via collaboratively adjusting the training mo-
mentum [14, 15]. However, these methods commonly postulate
a central server that collects model update information, which
may not be scalable.

In decentralized ML architectures without any central en-
tity, communication payload sizes can be reduced by a quantized
weight gossiping algorithm [16]. On the other hand, both com-
munication links and rounds can be decreased using the group
ADMM (GADMM) algorithm proposed in our prior work [17].
Spurred by these preceeding works, in this article we further inte-
grate quantization into GADMM, and propose a communication-
efficient decentralized ML algorithm, coined quantized group
ADMM (Q-GADMM), thereby reducing communication rounds,
links, and payload sizes altogether.

Quantized Group GADMM (Q-GADMM). As shown in
Fig. 1, Q-GADMM divides workers into head and tail groups
as done in GADMM. For less communication rounds via faster
convergence, the workers in the same group update their mod-
els in parallel, whereas the workers in different groups update
the models in an alternating way. Every alternation entails a
single communication round, in which each worker communi-
cates only with two neighboring workers in the opposite group,
reducing communication links. Lastly, before every transmis-
sion, the workers quantize their model parameters, decreasing
communication payload sizes.



Contributions. It is non-trivial to prove the convergence of Q-
GADMM, in which quantization errors may lead to high unin-
tended variance in model parameter updates. Its neighbor-based
communications aggravate this problem, since the errors may
easily propagate across iterations. To mitigate these problems,
we propose a stochastic quantization scheme that ensures un-
biased error and non-increasing quantization step sizes, by ad-
justing the quantization levels and probabilities over iterations.
We thereby prove that with exchanging the maximum range of
quantization and the number of quantization levels, Q-GADMM
achieves the convergence and the optimality of GADMM for
convex functions. Numerical results show that Q-GADMM con-
verges as fast as GADMM with 7x less communication cost.

2. PROBLEM FORMULATION AND PROPOSED
ALGORITHM

‘We consider a set of IV workers storing their local batch of input
samples. The n-th worker has its model vector 8,, € R¢, and
aims to solve the following decentralized learning problem:

N
Minimize n(On
{911921---,91\/};]“ ( )
subjectto 6, = 041,V =1,--- /N — 1. (@)

GADMM was proposed to solve (1) where workers are split into
two groups, heads and tails, such that each worker in the head
(or tail) group is communicating with two tail (or head) workers.
As Fig. 1 illustrates, the primal variables, of head workers are
updated in parallel, and then downloaded by their neighboring
tail workers. Likewise, the primal variables of tail workers are
updated in parallel, and downloaded by their neighboring head
workers. Lastly, the dual variables are updated locally at each
worker. To improve the communication efficiency further, we
solve (1) using Q-GADMM.

We now describe the overall operational procedure of Q-
GADMM . Following [5], worker n in Q-GADMM at iteration
k quantizes its model vector 8% as éF = Qn (6%, éffl), based on
its previously quantized model vector BAZ*I. The function @, (+)
is a stochastic quantization operator that depends on the quan-
tization probability pf” for each model vector’s dimension ¢ €
{1,2,---,d}, and on b¥ bits used for representing each model
vector dimension. To ensure the convergence of Q-GADMM,
p’f” and b should be properly chosen as detailed next.
Stochastic Quantization. As Fig. 1 shows, the i-th dimen-
sional element [éffl]i of the previously quantized model vector
is centered at the quantization range 2RY that are equally divided
into 2%n — 1 quantization levels, yielding the quantization step
size AF = 2R/ (2°» — 1). In this coordinate, the difference be-
tween the i-th dimensional element [6%]; of the current model
vector and [éifl]i is drawn at

en 64— 5 (165~ 05"+ RS ). @

Here, adding Rl ensures the non-negativity of the quantized
value. Then, [c,(8F)]; is mapped to:

[en (07)]4]

[len(0%)]:]  otherwise,

with probability p’fm
(3)

k
[qn(an)]i = {
where [-] and |-| are ceiling and floor functions, respectively.
Next, to maintain the quantization error unbiased after quan-
tization, pﬁJ is chosen such that the expected quantization error
E [ek ;] becomes zero, i.e.,

P ([en (O8] = Llea (O8)1:) +(1=ph.) ([len (82}~ [ea(05)]:) =0,
Consequently, p’f“ is obtained as: @
phi = (Tea(@X)1—lea(0}):) /A%, ®)

where the denominator follows from AE = [[c,, (6%)]i]— | [cn (0%)]4].
With pf ;in (5), quantization error variance is bounded, i.e.,
E (k)] < (ak)?/a.

In addition to the above, the convergence of Q-GADMM re-
quires non-increasing quantization step sizes over iterations, i.e.,
Ak < Ak~1 vk, To satisfy this condition, b is chosen as:

bk > [log2 (1 T 1)R’,§/R’,§*1ﬂ . 6)

Given pf” in (5) and bﬁ in (6), the convergence of Q-GADMM
is to be proven in Sec. 4. Note that in our numerical simulations
in Sec. 5, we observe that R,’fL decreases over iterations, and thus
A* < Ak=1 holds even for b* fixed as a constant.

With the aforementioned stochastic quantization procedure,
by, Ry, and Qn(‘gﬁ = ([qu(efz I1, [Qn(eﬁ)]% B [QW(HZ)]J)T suf-
fice to represent @,,, which are transmitted to neighbors. After
receiving these values, éf; can be reconstructed as follows:

0, =6, "+ Akgu(0h) - RiL. ™
Consequently, when the full arithmetic precision uses 32bit, ev-
ery transmission payload size of Q-GADMM is b%d + (br + by)
bits, where bp < 32 and b, < 32 are the required bits to rep-
resent R and b, respectively. Compared to GADMM whose
payload size is 32d bits, Q-GADMM can achieve a huge reduc-
tion in communication overhead by setting bF < 32, particularly
for large models, i.e., large d.
Q-GADMM Operations. For the sake of explanation, we con-
sider an even N number of workers. We start by writing the
augmented Lagrangian as:

N-1

N N-—-1
L, :an(GnH’Z()\m Gn*én+1>+g Z HenféanHg. (11)
n=1 n=1 n=1

Let -/\[h = {91,93, s ,BNfl}, and M = {02,94, s 701\(} de-
notes the sets of head and tail workers, respectively. At iteration
k + 1, the workers’ primal and dual variables are updated as fol-
lows. First, head worker’s primal variables are updated as:

i+t = argmin{fn(ﬂn) + (}\ﬁ,l,é:,l —0n) + (Aﬁ, 971—95#1)
On

~k ~k
+E16-1—0u[3+5116, 81113} m € N\ {1 (12)



Algorithm 1 Quantized Group ADMM (Q-GADMM)
1: Input: N, f,(0,)Vn, p, K, Output: 8,,,Vn
2: Initialization: 0! = 0, A" = 0,vn
32 Ny ={601,03,--- ,0,_1}, N; ={02,04,---
4: while £ < K do
5: Head workers (n € Nh)i in Parallel
6 Reconstruct 8,1 and 8,41 via (7), and update 6,, via (12)

7: Choose Plfl,l via (5) and b% via (6)

8

9

70N}

Quantize 0, via (3)
Transmit b%, RY ¢,,(0,,) to its two tail neighbors
10:  Tail workers (n € N;): in Parallel

11: Reconstruct 9,,,_1 and 9,,,+1 via (7), and update 6, via (14)
12: Choose p¥ ; via (5) and b} via (6)

13: Quantize 6,, via (3)

14: Transmit b%, RE  ¢,,(0,,) to its two head neighbors

15:  All workers (n € {1,---, N}): in Parallel

16: Update Ak and AE locally via (16)

17: k+k+1

18: end while

Since 0,,_1 is not defined for n = 1 (the first head worked does
not have a left neighbor), the update is done as follows

~k ~k
0" = argmin{/,(0:) + (A%, 050,420, — 01,4113}
(13)

Next, each head worker transmits its quantized model to its two
tail neighbors. Then, the tail workers’ primal variables are up-
dated as:

k+1 k+1

o8t —argmm{fn(en + ()\n 1,01 —0y) +<)\ —0,.11)

016,53 0,35 10, -6, 41 3} n € N\ (V). (14)

The update of the last tail worker (n = N) is given by

9"t = argmm{fn Y+ (N6 f,“l —6n) + ||0],€,+1170 3
15)
Finally, every worker locally updates the dual variables A,,—; and
An as follows:
A oA @t ) n=1,... . N~ 1. (16

3. CONVERGENCE ANALYSIS

In this section, we prove the optimality and convergence of Q-
GADMM for convex functions. The necessary and sufficient op-
timality conditions are the primal and dual feasibility which are
defined by

0, =0,_1,yn>1, 0€9fn(0;)—Xn_1+X,,Vn, (17
where Aj = Ay = 0.

First, at iteration k 4 1, every 8 such that n € N; \ {N}
minimizes (14), which implies that

k+1

0€0f (057 ) = AL 14X 4p(65+ —8) p(05H -0, 71).  (18)

Let €+1 be the quantization error at iteration k& + 1. Hence,

. . ok k
it — ght1_ght! A g p(0F 1
P

6,.11), (18) can be re-written as

1 .
Moreover, given that AFT! =

0 € fn(OFT) = AFTL £ AETT L opel ™ e N\ (N}, (19)
Similarly, we can write for the last tail worker (n = V)

0 € Afn(08) = NETL L 9peh™ = N (20)

Second, every 0¥ such that n € A, \ {1} minimizes (12) at
iteration k + 1. Therefore
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Using eft1 = 6, —0,
(21) can be re-written as
AR {9 ek
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0€dfn (08T — A’“*

k+1 A k+1
+P(0n 1_ n— 1)+p(0n+1

Using similar steps, we can write for the first head worker (n =

D

N ~k
0€ 0L (08T) + AT 4 2peh ™ 4 p(0h T — 05, )n=1. 23)

Let rﬁflln =0 — 9" and rkt}H =oFt — 0:‘,111 be the
primal residual of each agent n, and we define the dual residual

of worker n € N, at iteration k + 1 as
Jyas)

Ak+1 ~k
Sk‘+1 — {p(0 OZ 1) +p(9n+1 -

Akl A
14 0n+1 - 0n+1)7

0h.1).ifn e N;\ {1},
ifn =1
(24)

To prove the convergence of the proposed algorithm, we first
provide the upper and lower bounds on the optimality gap in
Lemma 1.

Lemma 1 Atk + 1 iteration of Q-GADMM, the optimality gap
satisfies LB, < E [{zfﬁzl Fu(@E =N fn(e;)}] < UB,,
where LB; and UB; are given in (20), at the bottom of this page.
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Fig. 2: Performance comparison of Q-GADMM-2bits, with GADMM, GD, and Q-GD-2bits For linear regression task using real dataset, (a)
Convergence in the objective value, (b) Loss (F' — F™*) vs number of communication rounds, (c) Loss (F' — F™*) vs number of transmitted bits.

Before we introduce the next lemma, we define a Lyapunov
function V* = % P PUES NI IR Doneni\{1} 1651 —6"+
P e, 18541 — 07| Next lemma shows that E [VF — VF+1]
is bounded above. This property is then used in Theorem 1 to
prove that V* is monotonically decreasing at each iteration k and
the primal residual goes to zero as k — oo when the quantization
step size is reduced as k increases.

Lemma 2 When f,(6,,) is closed, proper, and convex, and the
Lagrangian L has a saddle point, then the following inequality
holds true at the (k + 1)-th iteration of Q-GADMM:

k k+1 k41 k+1 2 pd k4112
E [ = v 2p) E [ e +eith 18] -5 (an i,
n neN
(23)

where H, is given in (21) at the bottom of the previous page.
Using Lemmas 1 and 2, we derive our main theorem stating the
convergence and the optimality of Q-GADMM in solving (1).

Theorem 1 For non-increasing quantization step sizes, i.e.,
AF < Ak=! vk, and under the assumption of Lemma 2, as
k — oo, the primal and dual residual converges to 0 with
probability 1, i.e., limy_oo 7 11 =" 0 and limy_,oo 55 = 0.
Furthermore, the optimality gap converges to 0 with probability
1, i€, imioyos SN £ (05) = S0 £a(67).

Intuitively, when A¥ is non-increasing, the RHS of (23) is always
positive. For such positive E [V* — V*™'], jteration k + 1 is one
more step towards the optimal solution. Therefore, following
the same proof of theorem 1 for GADMM [17], as k — oo,
Q-GADMM converges to the optimal solution.

4. NUMERICAL RESULTS

We evaluated the performance of Q-GADMM for decentralized
linear regression using California Housing dataset [19]. We used

4000 samples for training, and we uniformly distributed them
across 10 workers. To benchmark Q-GADMM, we compare it
with GADMM [17](p = 1), GD, and quantized GD (QGD) [5].
In GD, each worker computes its gradient and then sends it to
a parameter server. The server updates the global model using
aggregated gradient descent and broadcasts it to all workers. In
QGD, each worker sends a quantized version of its local model.
Finally, for quantized versions of GADMM and GD, we assume
that bfl = 2 for all n and k, so the number of quantization levels
is 4, and it remains constant over iterations and across workers.

Figure 2(a) verifies Theorem 1, and shows the convergence
of Q-GADMM for convex loss function with the same speed
as GADMM. Moreover, Figure 2(b), shows that both GADMM
and Q-GADMM-2bits achieves the loss of 10~° with almost the
same number of communication rounds (32600 for Q-GADMM-
2bits vs 32560 for GADMM) which is around 50% less com-
pared to GD and QGD-2bits. However, as shown in Figure 2(c),
Q-GADMM-2bits requires significantly less number of bits as
compared to GADMM (7x less number of bits). Moreover, com-
pared to GD and QGD-2bits, Q-GADMM-2bits requires around
15x and 3x less number of transmitted bits to achieve the loss of
10~5. Thanks to the fast convergence inherited from GADMM,
and stochastic quantization, the number of transmitted bits at ev-
ery iteration are significantly reduced while ensuring unbiased
and zero mean quantization error.

5. CONCLUSIONS

This article proposed a communication-efficient decentral-
ized ML algorithm, Q-GADMM. Compared to the original
GADMM, Q-GADMM enjoys the same convergence rate, but
at significantly lower communication overhead. Numerical tests
in a convex linear regression task corroborate the advantages of
Q-GADMM over GADMM, GD, and QGD.
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