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Abstract—Age of Information (AoI) has proven to be
a useful metric in networked systems where timely infor-
mation updates are of importance. In the literature, mini-
mizing “average age” has received considerable attention.
However, various applications pose stricter age require-
ments on the updates which demand knowledge of the AoI
distribution. Furthermore, the analysis of AoI distribution
in a multi-hop setting, which is important for the study
of Wireless Networked Control Systems (WNCS), has not
been addressed before. Toward this end, we study the
distribution of AoI in a WNCS with two hops and devise a
problem of minimizing the tail of the AoI distribution with
respect to the frequency of generating information updates,
i.e., the sampling rate of monitoring a process, under first-
come-first-serve (FCFS) queuing discipline. We argue that
computing an exact expression for the AoI distribution may
not always be feasible; therefore, we opt for computing
upper bounds on the tail of the AoI distribution. Using these
upper bounds, we formulate Upper Bound Minimization
Problems (UBMP), namely, Chernoff-UBMP and α-relaxed
Upper Bound Minimization Problem (α-UBMP), where
α > 1 is an approximation factor, and solve them to obtain
“good” heuristic rate solutions for minimizing the tail. We
demonstrate the efficacy of our approach by solving the
proposed UBMPs for three service distributions: geometric,
exponential, and Erlang. Simulation results show that the
rate solutions obtained are near optimal for minimizing the
tail of the AoI distribution for the considered distributions.

Index Terms—Age of Information; tail distribution; de-
terministic arrivals; rate optimization; stochastic network
calculus; multi-hop networking

I. INTRODUCTION

In the recent past, there has been an ever increasing

interest in studying Wireless Networked Control Systems

(WNCS) that support time-critical-control applications

which include, among many others, autonomous vehicle

systems, automation of manufacturing processes, smart
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Fig. 1: A networked control system with a remote

controller.

grids, Internet-of-Things (IoT), sensor networks and

augmented reality. A basic building block in WNCS is

depicted in Figure 1. A sensor samples a plant/process

of interest and transmits the status updates or packets

over a wireless channel (link 1) to a controller. The

controller computes a control input using the received

status update and transmits it to an actuator, using

another communication channel (link 2). A status update

that is received at the controller after a certain duration

of its generation time may become stale, and the control

decision taken based on this stale sample may result

in untimely actuation affecting the performance of a

time-critical-control application in a WNCS. Similarly,

the same effect could result from a control decision

(based on a fresh status update) reaching the actuator

after a delay deadline. In this respect, the traditional

goal of maximizing throughput becomes less relevant

as freshness of the status updates not only depends on

queuing and transmission delays in the network, but also

on the frequency of generating updates at the source.

Age of Information (AoI), proposed in [1], has

emerged as a relevant performance metric in quantifying

the freshness of the status updates at a destination. It

is defined as the time elapsed since the generation of

the latest status update received at the destination. AoI

accounts for the frequency of generation of updates by

the source, since it linearly increases with time until a

status update with latest generation time is received at the
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destination. Whenever such an update is received, AoI

resets to the system delay of the update indicating its age.

Motivated by the fact that having access to fresher status

updates improves the control performance in WNCS, we

model the control network by a two-hop FCFS queuing

system and formulate a problem of computing optimal

sampling rate that minimizes AoI in this system1. Several

research works in the recent past addressed the problem

of optimizing sampling rate in different queuing systems

under various settings. However, as we explain in Sec-

tion II, these works either consider a single-hop system

or memoryless arrivals or some form of “average age”

function. In contrast, we consider two novel aspects that

are relevant to time-critical-control applications. First,

we consider periodic arrival process by assuming that

the process of interest is sampled at a constant rate R.

This is motivated by the fact that sensors in practice

are typically configured to generate samples periodically.

Second, since optimizing average statistics of AoI may

not meet stringent QoS requirements, for instance, in a

safety-critical system [3], we consider optimizing AoI

violation probability, i.e., the probability that AoI at the

actuator violates a given age limit d. This metric repre-

sents, for example, a reliability measure constraint that

is required at the actuator to insure that the state of the

plant remains within a predetermined safety boundary.

Furthermore, in a WNCS, an absolute guarantee (i.e.,

reliability of 1) may not be possible due to variability

of the wireless channel and only probabilistic guarantees

can be provided. This motivated us to use the distribution

of AoI as a metric rather than other frequently used

metrics in the literature, e.g., peak AoI and average AoI.

We consider a heterogeneous network, i.e., server at

the first queue and server at the second queue may

have different service-time distributions. The queues

operate using First-Come-First-Serve (FCFS) scheduling

discipline. We note that, in the AoI literature, different

scheduling disciplines are considered: for example [4]–

[6] considered FCFS, [7]–[9] considered LCFS, and [10],

[11] considered packet management schemes such as

using a unit capacity queue with packet replacement. Our

motivation for considering FCFS discipline in this work

is the following. First, analysis and optimization of AoI

violation probability under FCFS is an open problem.

Second, it is not only an interesting problem from

academic (queuing-theoretic) point of view, due to FCFS

being more intuitive and hence such analysis being more

comprehensible, but also important from practical point

of view as most queues in practice operate under FCFS.

Third, key insights, e.g., as the sampling rate R in-

creases, in contrast to delay, AoI first decreases and then

1A preliminary version of this work only considering single-hop
scenario appeared in [2].

increases [4], that are established under FCFS discipline

may be extended to other disciplines as well. Lastly, the

analysis of many important queuing disciplines can be

based on, and sometimes directly derived from, that of

FCFS, i.e., by introducing a queue reordering stage based

on arrival instance, priority, or some fairness parameter

before serving the head of the queue. We believe that

our analysis can potentially be extended to such queuing

disciplines in future works.

Assuming that the processing time at the controller

is negligible, we aim to compute R that minimizes the

AoI violation probability at the egress of the second

queue. As we will see in a while, an exact expression for

the AoI violation probability in a two-hop network with

periodic arrivals and general service-time distributions

is intractable. Therefore, we resort to working with

tractable upper bounds which facilitate the computation

of “good” heuristic solutions. In particular, we first com-

pute the upper bounds for the single-hop case, i.e., the

D/G/1 queue, due to its relevance in applications where

both controller and actuator are collocated. We formulate

the Upper Bound Minimization Problems (UBMP) and

use them to compute heuristic rate solutions for AoI

violation probability minimization. We then extend the

results for two-hop and N-hop tandem queuing systems

using max-plus convolution for the service processes.

The main contributions of this work are summarized

below:

• We characterize the probability that AoI violates a

given age limit d for a single source single destina-

tion multi-hop network under FCFS, and assuming

periodic source where packets are generated at a

constant rate R.

• We formulate the AoI violation probability mini-

mization problem P , and show that it is equivalent

to minimizing the violation probability of the depar-

ture instant of a tagged packet (defined in Section

V) over the rate region [ 1d , µ), where µ is the service

capacity of the network.

• Using the above characterization, we first propose a

UBMP for the single-hop scenario, i.e., the D/G/1

queue. Noting that the objective function in the

UBMP can be intractable, we propose a Chernoff-

UBMP, that has a closed-form objective, and an α-

relaxed UBMP the solution of which has α > 1
approximation ratio (worst-case ratio) with respect

to the objective function of the UBMP.

• We extend the derived results and formulations for

the two-hop queuing system and N -hop tandem

queuing system, and present example computation

of the expressions for the case of two-hop for

geometric, exponential, and Erlang service-time dis-

tributions.

• We demonstrate the efficacy of the heuristic solu-
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tions provided by Chernoff-UBMP and α-relaxed

UBMP using simulation for different service-time

distributions. Finally, we present simulation results

comparing the performance of FCFS with queue

management policies that use unit buffer and packet

replacement.

The rest of the paper is organized as follows. In

Section II, we present the related work. In Section III,

we present the problem formulation. Analysis of the

AoI violation probability is presented in Section IV. The

UBMP formulations for single-hop, two-hop and N-hop

scenarios are presented in Sections V and VI, respec-

tively. We present the computation of the upper bounds

for different service-time distributions in Section VII.

Numerical results are presented in Section VIII and we

finally conclude in Section IX.

II. RELATED WORK

Several works in the AoI literature have focused on

analyzing and providing expressions for average AoI

statistics in different queuing systems, e.g., see [7],

[12]–[15]. The authors in [10] studied the M/M/1/1

and M/M/1/2*2 systems, and computed the average

AoI and the distribution of the peak AoI. In contrast,

the authors in [11], [16] provided expressions for the

distribution of AoI. However, for the case of periodic

arrivals, closed-form expressions are provided only for

single-hop scenario and for exponential service times

in [16], and for the case of no queue in [11]. Next,

we summarize works that consider optimizing AoI under

different system settings. An interested reader may also

refer to [17] and [18] for a comprehensive survey of

recent work in this area.

In [4], the authors have addressed the problem of

computing the optimal arrival rate to minimize the time-

average age for M/M/1, M/D/1 and D/M/1 queuing

systems. This problem was addressed for M/M/1 with

multiple sources in [19]. Several research works that

followed considered different design choices including

the arrival rate [5], inter-arrival time distribution for a

given arrival rate and/or service-time distribution for

a given service rate [15], [20]–[22], under different

scheduling disciplines and optimized average AoI or

average peak AoI in a single-source-single-server sys-

tem. In [23], preemptive Last Generated First Served

(LGFS) policy was shown to minimize the age process

in a multi-server single-hop system with exponential

service times. An alternative approach to the above

works, the generate-at-will source model was studied

in [24]–[26], where generation of a status update can be

completely controlled. While the authors in [24] solved

for optimal-waiting times between generation times to

2A unit capacity queue that holds the latest update.

minimize the average AoI, the authors in [25] solved

the problem for any non-decreasing function of AoI,

and the authors in [26] solved the problem of minimum

achievable peak AoI in any single-source-single-server

system. The authors in [6] studied average AoI and

average peak AoI minimization for multiple source-

destination links in a wireless network with interference

constraints. They used the method of minimizing upper

bounds as a means to show that optimal rate design and

optimal link scheduling can be separated and provided

performance guarantees for the proposed solutions.

In addition to the above, the following literature

considered multi-hop settings. For a line network with

a single source and no queues, under Poisson arrivals

and exponential service times, expressions were de-

rived in [9] for moments, Moment Generating Function

(MGF), and stationary distribution of AoI for preemptive

last-come-first-served policy. In [8], optimal queuing

policies were investigated for a multi-hop network for

any arrival sequence and service-time distributions. It

was shown that, among non-preemptive policies, LGFS

minimizes age processes, in stochastic ordering sense, at

all the nodes. The authors in [27], [28] studied average

AoI and average peak AoI minimization in a multi-hop

wireless network with interference constraints and with

packet flows between multiple source-destination pairs

assuming that transmission time of a packet equals a unit

time slot. The authors in [29] studied average AoI for

L-hop multicast network with a single source, n nodes

in the first hop, n2 nodes in the second hop, and so on

nL nodes in the the last hop, with each node having a

shifted exponential service time.

Optimizing AoI was also extensively studied for the

systems with energy-harvesting source, e.g., see [24],

[30], [31]. In the context of a cloud gaming system

the authors in [32] used the D/G/1 system model to

study the effect of freshness on video frame rendering to

the client. Specifically, they have analyzed the average

age by considering the aspect of missing frames. In

contrast to all the above works, with motivations from

the sensor-controller-actuator system in WNCS we study

the problem of AoI violation probability minimization in

a two-hop queuing system with periodic arrivals.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Motivated by the sensor-controller-actuator commu-

nicating over wireless channels, we study a two-hop

queuing system, shown in Figure 2, under FCFS schedul-

ing. The source generates packets (status updates) at a

constant rate R. Thus, R models the sampling rate of

a process under observation. Let T = 1
R denote the

inter-arrival time between any two packets. We index the

nodes by k ∈ {1, 2}, and the packets by n ∈ {0, 1, 2 . . .}.

Let Ak(n,R) denote the arrival instant of packet n and
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1 2

Fig. 2: Model of the two-hop network.

Dk(n,R) the corresponding departure instant at node k.

For notational simplicity, we use A(n,R) = A1(n,R)
and D(n,R) = D2(n,R) to denote the arrivals and

departures of the system, respectively. Also, we have

A2(n,R) = D1(n,R). The arrival time of packet n to

the system is given by A(n,R) = n
R . The service time

for packet n at node k is given by a random variable Xn
k .

For k ∈ {1, 2}, we assume Xn
k are i.i.d., for all n, with

mean service rate µk = 1
E[X1

k]
> 0. Also, we assume

that Xn
1 and Xn

2 are independent, for all n, but may

have non-identical distributions, i.e., the servers could

be heterogeneous. We define µ , min(µ1, µ2). Later, in

Section VI-C, we show how the results can be extended

to N -hop tandem queuing network.

At the destination, we are interested in maintaining

timely state information of the process. We are thus

interested in the AoI metric, denoted by ∆(t, R), which

is defined as:

∆(t, R) , t−max
n

{A(n,R) : D(n,R) ≤ t}. (1)

For a given age limit requirement d > 0, in the fol-

lowing we study the distribution of AoI by characterizing

its violation probability, i.e., P(∆(t, R) > d), both in the

transient and the steady states of the system. Given the

age limit d, we are interested in solving the following

problem P :

min
R

lim
t→∞

P(∆(t, R) > d).

Let R∗(d) denote an optimal rate solution for P . In

the sequel, we refer to limt→∞ P(∆(t, R) > d) as AoI

violation probability.

Henceforth, we drop R from the notation when it

is obvious from the context, for the sake of notation

simplicity. For k ∈ {1, 2}, the MGF of Xn
k is given by

Mk(s) = E[esX
n
k ].

We now state the Chernoff bound, which will be used

extensively to formulate the upper bound minimization

problems in the sequel. Assuming that the moment

generating function of a random variable Y exists, the

Chernoff bound for its distribution is given by

P{Y > y} ≤ min
s>0

e−sy
E[esY ].

Note that the upper bounds derived using the Chernoff

bound involves minimization over the parameter s. We

shall see that, for the two-hop network, these bounds

attain finite values only when there exists s > 0 such that

max(M1(s),M2(s)) < es/R. To this end, we formulate

the minimization problems over the set S ⊆ R
+ which

characterizes s values for which max(M1(s),M2(s)) <
es/R, i.e.,

S , {s > 0 : max(M1(s),M2(s)) < es/R}. (2)

We assume that S is non-empty. In the following lemma

we show that this assumption is in fact a sufficient

condition for the stability of the system.

Lemma 1. If there exists s > 0 such that

max(M1(s),M2(s)) < es/R,

then the queues are stable.

Proof. Recall that the queues are stable if min(µ1, µ2) >
R. Consider the case M1(s) < es/R, which implies

E[esX
n
1 ] < es/R ⇒ esE[X

1
1 ] < es/R ⇒ µ1 > R,

for any s > 0. In the second step above we have used

Jensen’s inequality. Similarly, if M2(s) < es/R, then

µ2 > R. Therefore, if there exists s > 0 such that

max(M1(s),M2(s)) < es/R, then min(µ1, µ2) > R,

and the lemma follows.

We define

βk(s) ,
Mk(s)

es/R
, k ∈ {1, 2}. (3)

By definition, for all s ∈ S, βk(s) < 1. The list of

symbols used in the paper are summarized in Table I.

TABLE I: List of Symbols

k Node/link index

N Number of nodes

n Packet index

R Sampling rate

T Inter-arrival time ( 1

R
)

Ak(n,R) Arrival time of packet n at node k

Dk(n,R) Departure time of packet n at node k

A(n,R) Arrival time of packet n in the system ( n

R
)

D(n,R) Departure time of packet n from the system

Xn

k
Service time of packet n at node k

µk Service rate at node k

∆(t, R) Age of information at time t

d Age limit

Mk(·) MGF of service at node k

n̂R Index of the first arrival after time t− d

IV. AOI VIOLATION PROBABILITY ANALYSIS

In this section, we study the properties of the distri-

bution of AoI – the results derived are valid for any

number of nodes in tandem between the source and

the destination given that the packets are input to the
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network by the source at a constant rate R and the

network uses FCFS.

We start by investigating structural characteristics of

the stochastic behaviour of AoI. Toward this end, we use

the max-plus representation of Reich’s equation to model

the evolution of the queues. For any realization of the

service times at node k, the relation between Dk(n,R),
Ak(n,R) and {Xn

k }, is given by [33]:

Dk(n,R) = max
0≤v≤n

{Ak(n− v,R) +

v∑

i=0

Xn−i
k }. (4)

We note that equation (4) is a direct consequence of

using recursion on a fundamental relation in queuing

system: Dk(n,R) = max{Dk(n− 1, R), Ak(n)}+Xn
k ,

which states that the departure time of packet n is given

by either its service time plus departure time of previous

packet n− 1 or arrival time of packet n plus its service

time, whichever is greater.

Consider the definition in (1), for ∆(t, R) not to

exceed the age limit d, the latest departure at t must

have arrived no earlier than t − d. Therefore, to study

the distribution of ∆(t, R), we tag the packet arriving

on or immediately after t− d and use it to characterize

this process. Given rate R, let n̂R denote the index of

the first arrival since time t− d, given by

n̂R , ⌈R(t− d)⌉. (5)

The tagged packet3 n̂R plays a key role in characterizing

the violation probability as we will show next.

In the following lemma we present a key insight re-

garding the transient characterization of the AoI violation

probability.

Lemma 2. Given the input arrival rate R, age limit d,

and t < ∞, if there exists n such that t − d ≤ n
R <

t, then P{∆(t, R) > d} = P{D(n̂R) > t}, otherwise,

P{∆(t, R) > d} = 1.

Proof. Let n∗
R be the latest packet departure at t, i.e.,

n∗
R = argmaxn{D(n,R) ≤ t}. Thus, ∆(t, R) = t −

A(n∗
R).

Case 1: If an n such that t−d ≤ n
R < t does not exist,

i.e., there is no arrival during the time interval [t− d, t),
then the arrival time of n∗

R must be strictly less than t−d,

i.e., A(n∗
R) < t− d. Therefore,

P(∆(t, R) > d) = P(t−A(n∗
R) > d) = 1.

Case 2: If there exists n such that t − d ≤ n
R < t,

then t − d ≤ n̂R

R < t, since n̂R is the first arrival on

or after time t− d, see Figure 3. In this case, we show

that the event {∆(t, R) ≤ d} is equivalent to the event

{D(n̂R) ≤ t}. Suppose that the event {∆(t, R) ≤ d}

3n̂R is a function of t− d as well. We omit t− d from the notation
here for ease of exposition.

t - d

n*R

t

n*R

nR

Arrivals

Departures

nR

Fig. 3: Time-line of events for Case 2 in Lemma 2 proof.

occurred, then A(n∗
R) ≥ t − d. By definition of n̂R, we

should have A(n̂R) ≤ A(n∗
R) which implies D(n̂R) ≤

D(n∗
R) ≤ t, due to FCFS assumption. Therefore,

{∆(t, R) ≤ d} ⊆ {D(n̂R) ≤ t}. (6)

To prove equivalence of the two events, we show

that the relation above also holds the other way around.

Suppose that the event {D(n̂R) ≤ t} occurred. Again,

it should be true that A(n∗
R) ≥ A(n̂R). Otherwise,

D(n∗
R) < D(n̂R) ≤ t which contradicts the definition

of n∗
R that it is the latest departure before t. Therefore,

∆(t, R) = t−A(n∗
R) ≤ t−A(n̂R) ≤ t− (t− d) = d.

This implies that {D(n̂R) ≤ t} ⊆ {∆(t, R) ≤ d}. There-

fore, the equivalence holds and the result is proven.

The intuition behind the result in Lemma 2 is that

AoI exceeds d at time t if none of the packets gener-

ated/arrived in the time interval [t − d, t] have reached

the destination at time t or no packets are generated

in this interval. Note that Case 1 in the above proof

essentially represents an under-sampling of the process

under observation, i.e., at the current time t the sampling

rate R is simply too low such that there is no packet

generated in the time interval [t− d, t].

We next present the steady-state results for the two-

hop system based on the result obtained in Lemma 2.

Theorem 1. Given age limit d, the steady state distri-

bution of AoI is characterized as follows:

1) If R ≥ 1
d , then

lim
t→∞

P{∆(t, R) > d} = lim
t→∞

P{D(n̂R) > t}. (7)

2) Else if R < 1
d , then

lim sup
t→∞

P{∆(t, R) > d} = 1,

lim inf
t→∞

P{∆(t, R) > d} = lim
t→∞

P{D(n̂R) > t}.

Proof. For the two cases above consider the following:

Case 1 (R ≥ 1

d
): Since the samples are generated at

a constant rate, for R ≥ 1
d we claim that there exist an
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n such that t− d ≤ n
R < t, for all t. We first prove this

claim for R > 1
d . We have

A(n̂R) =
⌈R(t− d)⌉

R
≤

R(t− d) + 1

R
< t .

Furthermore, since t−d ≤ A(n̂R) for any t by definition,

the claim holds at least for n̂R, for R > 1
d . To prove the

claim for R = 1
d , we consider

t− d ≤
n

R
<t ⇔

n

R
<t ≤ d+

n

R
⇔ n< Rt ≤n+ 1.

Note that for any R and t there always exists an n such

that the last inequality above holds. Therefore, the claim

is true and Case 1 follows from Lemma 2 by letting t
go to infinity.

Case 2 (R < 1

d
): In this case, the existence of n such

that t−d ≤ n
R < t depends on t. To see this, for a given

n consider the two time intervals ( n
R , n

R + d] and ( n
R +

d, n+1
R ). Note that the latter time interval is non-empty

because d < 1
R . Now, for time instants t ∈ ( n

R , n
R + d]

we have t − d ≤ n
R < t, and therefore for such t using

Lemma 2 we have P{∆(t, R) > d} = P{D(n̂R) > t}.

On the other hand, for time instants t ∈ ( n
R + d, n+1

R ),
there is no n value such that t− d ≤ n

R < t is true, and

therefore from Lemma 2 we have P{∆(t, R) > d} =
1. This implies that as t goes to infinity the violation

probability either equals P{D(n̂R) > t} or 1 depending

on the value of t. Thus, we obtain the limit supremum

and the limit infimum.

Intuitively, given R, the support of the steady state

AoI distribution should be [ 1R ,∞), because AoI cannot

be less than 1
R when the samples are generated at rate R.

Not only Theorem 1 asserts this intuitive reasoning, but

also characterizes the limit infimum and limit supremum

for the region d < 1
R , where the AoI violation probability

does not exist. Therefore, to ensure the existence of the

AoI violation probability we consider the feasible rate

region [ 1d , µ), where µ = min(µ1, µ2), and R < µ
ensures queue stability. In light of this, and using (7)

from Theorem 1, we formulate an equivalent problem P̃
as follows:

min
1
d≤R<µ

lim
t→∞

P(D(n̂R) > t). (8)

Remark 1: The results in Lemma 2 and Theorem 1

are valid for arbitrary single-source single-destination

network with constant arrival rate R and using FCFS

queuing discipline, i.e., packets should be received at

the destination in the same order as they are transmitted

by the source. For arbitrary network topology, one can

formulate problem P̃ given in (8) with the following

constraints on R: 1) R ≥ 1
d , and 2) R belongs to the

rate region in which the network is stable.

Next, we present our solution approach for solving P̃
for a single-hop case and then show how the approach

can be extended for the two-hop system in Section VI.

V. SINGLE-HOP SCENARIO

In this section we solve P̃ by assuming that Xn
2 = 0

for all n. This implies that D(n) = D1(n), µ2 = ∞,

and the system is equivalent to the D/GI/1 system.

Our motivation for presenting the single-hop case is

because of its importance in solving the two-hop case,

and also due to its relevance to practical scenarios,

where only estimation of the processes is required, or

both controller and actuator are collocated. In order

to find a solution for P̃ , we must first evaluate the

probability P{D(n̂R) > t}, where D(n) is given by

(4). Note that D(n) is random, since the service process

{Xn
1 , n ≥ 0} is random, and is given in terms of the

maximum of n+1 random variables. Hence, obtaining an

exact expression is tedious. Therefore, we opt for a more

tractable approach by using probabilistic inequalities

to obtain bounds on the distribution of D(n̂R). Con-

sequently, we propose the Upper Bound Minimization

Problem (UBMP) and its more computationally tractable

counterparts α-UBMP and Chernoff-UBMP to obtain

near optimal heuristic solutions for P̃ .

A. A Bound for the Distribution of D

As mentioned earlier, the evaluation of the distribu-

tion function of D(n) requires the computation of the

distribution of the maximum of random variables. Fortu-

nately, there are several approaches that have been used

in the literature to estimate this probability. One such

approach approximates the probability of the maximum

by the maximum probability, i.e., P{maxi Yi > y} ≈
max P{Yi > y}. However, this approximation is not

always accurate and in some cases may result in very

large deviation from the actual distribution. Hence, it

cannot be used when reliability of the solution must

be well defined as it is the case here. An alternative

approach is to use extreme value theorem. However,

the obtained extreme value distributions are not always

tractable. A more promising approach is to use Boole’s

inequality, commonly known as the “union bound,”

where the probability of a union of events is bounded

by the sum of their probabilities. The bound obtained

in our case is not only tractable, but also provides good

heuristic solutions for P̃ . In the following lemma, we

present this upper bound for the distribution function

limt→∞ P{D(n̂R) > t}.

Lemma 3. Given d, we have

lim
t→∞

P(D(n̂R) > t) ≤

∞∑

v=0

Φ(v,R),

where

Φ(v,R) , P

{
v∑

i=0

X i
1 > d+

v − 1

R

}

. (9)
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Proof. Using (4), we have

P{D(n̂R)>t}=P

{

max
0≤v≤n̂R

(

A(n̂R − v)+

v∑

i=0

X n̂R−i
1

)

>t

}

(a)

≤

n̂R∑

v=0

P

{
v∑

i=0

X n̂R−i
1 > t−

n̂R − v

R

}

(b)

≤

n̂R∑

v=0

P

{
v∑

i=0

X n̂R−i
1 > t−

R(t− d) + 1− v

R

}

=

n̂R∑

v=0

P

{
v∑

i=0

X i
1 > d+

v − 1

R

}

︸ ︷︷ ︸

,Φ(v,R)

.

In step (a) we have applied the union bound, and used

n̂R = ⌈R(t− d)⌉ ≤ R(t− d) + 1 in step (b). The result

follows by noting that n̂R goes to infinity as t goes to

infinity.

B. UBMP Formulations

Using (8), Lemma 3, and µ2 = ∞, we obtain the

following UBMP problem.

min
1
d≤R<µ1

∞∑

v=0

Φ(v,R). (10)

It is worth noting that the function Φ(0, R) is non-

increasing in R while the functions {Φ(v,R) : v > 1}
are non-decreasing in R.

A shortcoming of UBMP is that its objective function

is intractable, in general, as it involves computation of a

sum of infinite terms and each term requires computation

of the distribution of sum of service times. To this

end, we formulate Chernoff-UBMP obtained by using

Chernoff bound for Φ(v,R) in Lemma 3.

1) Chernoff-UBMP: Since Xn
1 are i.i.d, the Chernoff

bound for Φ(v,R), defined in (9), is given by

Φ(v,R) ≤ min
s∈S

e−s(d+ v−1

R )
E[es

∑v
i=0

Xi
1 ]

= min
s∈S

e−s(d+ v−1

R )Mv+1
1 (s)

= min
s∈S

e−s(d− 1
R )M1(s)β

v
1 (s), (11)

where β1(s) =
M1(s)
es/R

(defined in (3)), and S is defined

in (2). Recall that, β1(s) < 1 for all s ∈ S. Therefore,

using (11) in the result of Lemma 3, we obtain

∞∑

v=0

Φ(v,R) ≤
∞∑

v=0

min
s∈S

e−s(d− 1
R )M1(s)β

v
1 (s)

≤ min
s∈S

e−s(d− 1
R )M1(s)

∞∑

v=0

βv
1 (s)

= min
s∈S

e−s(d− 1
R ) ·

M1(s)

(1− β1(s))
︸ ︷︷ ︸

,Ψ1(s,d,R)

. (12)

Even though the Chernoff bound relaxes the upper

bound in Lemma 3, its objective function has a closed-

form expression and can be computed numerically. The

following theorem immediately follows from (12) and

Lemma 3.

Theorem 2. Given d, an upper bound for the violation

probability for a single hop is given by

lim
t→∞

P{D(n̂R) > t} ≤ min
s∈S

Ψ1(s, d, R),

where Ψ1(s, d, R) is defined in (12).

With a slight abuse in the usage, we refer to the bound

given in Theorem 2 as Chernoff bound. In the following,

we formulate the Chernoff-UBMP for the single-hop

scenario:

min
1
d≤R<µ1

min
s∈S

Ψ1(s, d, R). (13)

Lemma 4. The function Ψ1(s, d, R) is strictly convex

with respect to 1
R .

Proof. Recall that T = 1
R . We prove that

∂2Ψ1(s,d,T )
∂T 2 >

0 for all s ∈ S. Let us define f(T ) as follows:

f(T ) =
e2sT

(esT −M1(s))
.

Then, we rewrite Ψ1(s, d, T ) as follows:

Ψ1(s, d, T ) = e−sd[M1(s)]f(T ).

From the above equation we infer that it is sufficient to

prove
∂2f(T )
∂T 2 > 0. Taking first derivative f ′(T ) = ∂f(T )

∂T ,

we obtain

f ′(T ) =
2se2sT

(esT −M1(s))
−

e2sT 2sesT

(esT −M1(s))2

= sf(T )

[

1−
M1(s)

esT −M1(s)

]

. (14)

Taking the second derivative f ′′(T ) = ∂2f(T )
∂2T , we obtain

f ′′(T )=sf ′(T )

[

1−
M1(s)

esT −M1(s)

]

+
s2f(T )M1(s)e

sT

(esT −M1(s))2

=s2f(T )

[

1−
M1(s)

esT −M1(s)

]2

+
s2f(T )M1(s)e

sT

(esT −M1(s))2
> 0.

In the second step above we have used (14). The last

step follows by noting that esT > M1(s) for all s ∈ S,

M1(s) > 0 for all s, and f(T ) > 0.

Lemma 5. For s > 0, the function Ψ1(s, d, R) is convex

in s.
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Proof. We have

Ψ1(s, d, R) =
e−s(d− 1

R )M1(s)

(1− β1(s))

= e−s(d− 1
R )

∞∑

v=0

M1(s)β
v
1 (s)

=

∞∑

v=0

e−s(d+ v−1

R )Mv+1
1 (s) =

∞∑

v=0

(E[e−sX̂ ])v+1,

where X̂ = (d+ v−1
R )/(v+1)−X1

1 . Recall that the sum

of convex functions is a convex function. Therefore, from

the last step above, we infer that Ψ1(s, d, R) is convex

if (E[e−sX ])v+1 is convex for v ∈ {0, 1, . . .}. For s > 0,

e−sX̂ is convex in s for any v and and any realization

of X1
1 . Therefore, E[e−sX̂ ] is convex, and since xv+1 is

convex and increasing in x, we have that (E[e−sX ])v+1

is convex. Hence the result is proven.

Both Lemmas 4 and 5 can be leveraged to efficiently

solve (13). The heuristic solutions we obtain by solving

the Chernoff-UBMP can be improved further for service

distributions for which the distribution of a finite sum

of service times can be computed exactly. Therefore, we

next propose a relatively tight upper bound called α-

relaxed upper bound and formulate α-UBMP.

2) α-UBMP: In the upper bound provided in

Lemma 3, we propose to compute first K < ∞ terms

of the summation, and use Chernoff bound for the rest

of the terms. In the following, we make this precise. We

first present a bound on the summation starting from K .

Lemma 6. For any K ≥ 0, we have

∞∑

v=K

Φ(v,R) ≤ min
s∈S

Ψ1(s, d, R)βK
1 (s).

Proof. The result follows by using the upper bound for

Φ(v,R) given in (11) and repeating the steps in (12) for

the summation over v from K to infinity.

For the single hop scenario we define α as follows.

α = 1 +
mins∈S Ψ1(s, d, R)βK

1 (s)
∑K−1

v=0 Φ(v,R)
.

Note that α depends on the value of K . Using Lemmas 3

and 6, we next state the α-relaxed upper bound without

proof.

Theorem 3. Given d, the α-relaxed upper bound for the

violation probability for a single hop is given by

lim
t→∞

P{D(n̂R)>t}≤
K−1∑

v=0

Φ(v,R)+min
s∈S

Ψ1(s, d, R)βK
1 (s).

Note that, by definition the α-relaxed upper bound

is at most α times worse than the upper bound

∑∞
v=0 Φ(v,R). More precisely, the α-relaxed upper

bound has α approximation factor with respect to
∑∞

v=0 Φ(v,R). To see this,

K−1∑

v=0

Φ(v,R) + min
s∈S

Ψ1(s, d, R)βK
1 (s)

=
K−1∑

v=0

Φ(v,R)

(

1 +
mins∈S Ψ1(s, d, R)βK

1 (s)
∑K−1

v=0 Φ(v,R)

)

≤α

∞∑

v=0

Φ(v,R).

Note that α > 1, and it is easy to see that as K increases,

the value of α approaches 1 from above. In this work,

we choose K the largest value that is computationally

tractable in numerical evaluations. Now, we formulate

α-UBMP as follows:

min
1
d≤R<µ1

K−1∑

v=0

Φ(v,R) + min
s∈S

Ψ1(s, d, R)βK
1 (s).

VI. EXTENSIONS TO TWO-HOP AND N-HOP

SCENARIOS

In this section, we present Chernoff-UBMP and α-

UBMP for the two-hop scenario and also present

Chernoff-UBMP for N-hop tandem queuing network.

In the following we first focus on the two-hop sce-

nario. Similar to the case of single-hop scenario, we use

Reich’s equation and apply union bound to obtain an

upper bound for the AoI violation probability which is

presented in the following lemma.

Lemma 7. Given d, and n̂R as defined in (5), we have

lim
t→∞

P(D(n̂R) > t)≤ lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

Φ(v0, v1, R),

where

Φ(v0, v1, R) , P

{
v0∑

i=0

X i
2 +

v1∑

i=0

X i
1>d+

v0 + v1 − 1

R

}

.

Proof. The proof is given in Appendix A.

A. Chernoff-UBMP for Two-Hop Scenario

Theorem 4. For the two-hop network with deterministic

arrivals, the violation probability is upper bounded as

follows:

lim
t→∞

P{D(n̂R) > t} ≤ min
s∈S

Ψ2(s, d, R),

where

Ψ2(s, d, R) =
e−s(d− 1

R )M1(s)M2(s)

(1 − β1(s))(1 − β2(s))
. (15)
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Proof. We use the relation between departure times,

arrival times and the service times given by (4) itera-

tively and apply union bound and Chernoff bound to

obtain the result. The details of the proof are given in

Appendix B.

The Chernoff-UBMP problem for the two-hop net-

work is stated below:

min
1
d≤R<µ

min
s∈S

Ψ2(s, d, R). (16)

The lemmas below provide convexity properties of

Ψ2(s, d, R). Since the proofs of the lemmas are similar

to that in the case of single-hop scenario (Lemmas 4

and 5), we omit them here.

Lemma 8. For the two-hop network with deterministic

arrivals, given s ∈ S and d > 0, Ψ2(s, d, R) is convex

with respect to 1
R .

Lemma 9. For the two-hop network with deterministic

arrivals, given s ∈ S and d > 0, Ψ2(s, d, R) is convex

with respect to s.

B. α-UBMP for Two-Hop Scenario

In the following theorem we present the α-relaxed

upper bound.

Theorem 5. For the two-hop network with deterministic

arrivals, for any K ≥ 1, the α-relaxed upper bounded

is given by

K−1∑

v0=0

K−1∑

v1=0

Φ(v0, v1, R) + min
s∈S

Ψ(s, d, R,K),

where

Ψ(s, d, R,K)

=e−s(d− 1
R)M1(s)M2(s)

(βK
1 (s)+βK

2 (s)−βK
1 (s)β

K
2 (s))

(1−β1(s))(1−β2(s))
.

Proof. The proof is given in Appendix C.

We note that the α-relaxed upper bound is computa-

tionally expensive when compared to that in the single-

hop scenario because of the nested sum.

C. N-hop Scenario

For an N-hop tandem network we have k ∈
{1, 2, . . . , N} and D(n) = DN(n). For simplicity of

presentation, in this section, we assume that Xn
k are

identically distributed. Therefore, we have µ = µk for

all k, and Mk(s) = M1(s) for all k. We now define the

set S as follows.

S = {s > 0 : M1(s) < es/R}.

Lemma 10. Given d, and n̂R as defined in (5), we have

lim
t→∞

P(D(n̂R)>t)≤ lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

. . .

n̂R−vN−2∑

vN−1=0

Φ(vN−1
0 ,R),

where

Φ(vN−1
0 , R),P

{
N−1∑

k=0

vk∑

i=0

X i
N−k > d+

∑N−1
k=0 vk−1

R

}

,

(17)

and vN−1
0 = (v0, v1, . . . , vN−1).

Proof. The proof follows similar steps as the proof of

Lemma 7 and is omitted.

Theorem 6. For the N -hop network with deterministic

arrivals, the violation probability is upper bounded as

follows:

lim
t→∞

P{D(n̂R) > t} ≤ min
s∈S

ΨN (s, d, R),

where

ΨN (s, d, R) =
e−s(d− 1

R )[M1(s)]
N

[1− M1(s)

es/R
]N

. (18)

Proof. We use the relation between departure times, ar-

rival times and the service times given by (4) recursively

starting from the last node N , and apply union bound and

Chernoff bound to obtain the result. The proof follows

similar steps as in the proof of Theorem 4 and therefore

it is omitted.

Therefore, an upper bound minimization problem for

the N-hop network can be stated as follows:

min
1
d≤R<µ

min
s∈S

ΨN (s, d, R). (19)

Discussion: We note that similar to the single-hop and

two-hop scenario ΨN (s, d, R) is also convex with re-

spect to 1
R and with respect to s. One may also obtain α-

UBMP for the N -hop scenario. However, the α-relaxed

upper bound involves the nested sum which becomes

computationally expensive as N increases. Furthermore,

we note that as N increases the upper bounds become

more relaxed and therefore the heuristic solutions pro-

vided by Chernoff-UBMP may not be close to optimal

solution. Nevertheless, these heuristic solutions could

potentially be used as starting points. For example, when

the controller has non-negligible processing time, the

sensor-controller-actuator can be modelled as a three-hop

tandem queuing system and one may use the heuristic

solutions provided by the Chernoff-UMBP for three-hop

scenario.

Next, we present an independent result for service-

time distributions with bounded support.
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Service Distributions with Bounded Support: Note

that in practice, the service time distributions typically

have bounded support. For example, the channel capac-

ity for transmissions is always upper bounded due to

bandwidth limitation. Considering that the service time

is upper bounded by b ∈ R>0, in the following theorem

we present a result for computing an optimal rate for

age limits above certain threshold.

Corollary 1. For an N-hop network, if the support of the

service time distribution is upper bounded by b < ∞,

then for all d ≥ (N + 1)b, the AoI violation probability

is zero at R ≤ (N + 1)/d, i.e., these rate solutions are

optimal for (8).

Proof. We rewrite Φ(vN−1
0 , R) (defined in (17)) as fol-

lows:

Φ(vN−1
0 , R)=P

{
N−1∑

k=0

vk∑

i=0

(

X i
N−k −

1

R

)

>d−
N + 1

R

}

.

For R ≤ (N + 1)/d, we have Xn
k ≤ b ≤ 1

R∗
for all

k ≥ 1 and for all n, and we obtain

Φ(vN−1
0 , R∗) = P

{
N−1∑

k=0

vk∑

i=0

(

X i
N−k −

1

R

)

> 0

}

= 0.

Therefore, from Lemma 10 we conclude that the AoI

violation probability limt→∞ P(TD(n̂R) > t) is equal

to zero when R ≤ (N + 1)/d.

VII. APPLICATION EXAMPLES: GEOMETRIC,

EXPONENTIAL AND ERLANG SERVICE

In the following we show the computation of the

upper bounds for typical service distributions, namely,

geometric, exponential and Erlang. These distributions

are most commonly used in the queuing analysis, and

also they serve as good models for several practical

service-time processes. Note that for these distributions,

the distribution of the sum of service times is known

and thus the α-relaxed upper bound can be computed.

Later in Section VIII we will evaluate the performance

of the the computed heuristic solutions for these service

distributions. To shorten the expressions, in the sequel

we denote

Y1 =

v1∑

i=0

X i
1, Y2 =

v0∑

i=0

X i
2, and κ = d+

v0 + v1 − 1

R
.

A. Geometric Service: Wireless Links with Packet Errors

Consider that each packet generated by the sensor is

of fixed length and the packets that carry actuator com-

mands are also of fixed length, possibly different from

sensor packet length. To accommodate for packet trans-

mission errors in the wireless links, we use geometric

distribution to model the number of time slots required

for transmitting a packet successfully. In particular, we

consider the service distributions at link 1 and link 2
to be geometric with success probabilities p1 and p2,

respectively. Given an age limit d at the actuator, we

compute R heuristically.

In the following we compute the first term of the α-

relaxed upper bound given in Theorem 5. Since Y1 and

Y2 are integers, we have

K−1∑

v0=0

K−1∑

v1=0

Φ(v0, v1, R) =

K−1∑

v0=0

K−1∑

v1=0

P {Y1 + Y2> κ}

=

K−1∑

v0=0

K−1∑

v1=0

P {Y1 + Y2> ⌊κ⌋} . (20)

Since for geometrical distribution X i
k ≥ 1, for all i and

k ∈ {1, 2}, we have Y1 ≥ v1 + 1 and Y2 ≥ v0 + 1.

Therefore, for ⌊κ⌋ <= v1 + v2 + 1, we have P{Y1 +
Y2 > ⌊κ⌋} = 1. For ⌊κ⌋ >= v1 + v2 + 2 we compute

the probability by conditioning on Y2 = y for positive

integers y ≥ v0 + 1.

P {Y1+Y2>⌊κ⌋}

=

∞∑

y=v0+1

P {Y1+Y2>⌊κ⌋|Y2=y}P{Y2=y}

=

⌊κ⌋−v1−1
∑

y=v0+1

P {Y1>⌊κ⌋−y}P{Y2 = y}+P{Y2≥⌊κ⌋−v1}.

In the last step above we have used P {Y1 > ⌊κ⌋ − y} =
1 for y ≥ ⌊κ⌋−v1. Noting that the sum of i.i.d. geometric

random variables has a negative binomial distribution,

we have

P{Y2 = y} = P

{
v0∑

i=0

X i
2 = y

}

=

(
y − 1

v0

)

pv0+1
2 (1 − p2)

y−v0−1,

and

P {Y1> ⌊κ⌋ − y} =
B(1 − p2; ⌊κ⌋ − y − v1, v1 + 1)

B(⌊κ⌋ − y − v1, v1 + 1)
,

where B(·) is the incomplete beta function given by

B(z; a, b) =

∫ z

0

xa(1− x)bdx,

B(a, b) =

∫ 1

0

xa(1− x)bdx.

Similarly, we compute P{Y2 ≥ ⌊κ⌋−v1}. Finally, using

P {Y1 + Y2> ⌊κ⌋} we compute (20). For computing

the Chernoff bound we require the moment generating

function, which for geometric service is given below.

Mk(s) =
pke

s

1− (1 − pk)es
.
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Since the Chernoff bound is convex in s, using bisection

algorithm we compute its minimum value.

B. Exponential Service

In this subsection, we study the two-hop system with

exponentially distributed service times with rates µ1 and

µ2 at links 1 and 2, respectively. For this case, Y1 is

a sum of v1 + 1 i.i.d. exponential random variables,

which is given by the Gamma distribution with shape

parameter v1 + 1 and rate parameter µ1. Similarly, Y2

has Gamma distribution with shape parameter v2+1 and

rate parameter µ2. Therefore, we compute Φ(v0, v1, R)
as follows.

Φ(v0, v1, R) =

∫ ∞

0

P{Y1 > κ− y}fY2
(y)dy

=

∫ κ

0

P{Y1 > κ− y}fY2
(y)dy +

∫ ∞

κ

fY2
(y)dy,

(21)

where fY2
(·) is the PDF of Y2, given by

fY2
(y) =

µv2+1
2 yv2e−µ2y

v2!
,

P{Y1 > κ− y} =
Γ(v1 + 1, µ1(κ− y))

v1!
,

and Γ(x, a) is the upper incomplete gamma function:

Γ(x, a) =

∫ ∞

a

yx−1e−ydy.

Further, if µ1 = µ2 = µ, then

Φ(v0, v1, R)
∣
∣
µ1=µ2

=
Γ(v0 + v1 + 2, µκ)

(v0 + v1 + 1)!
.

For computing the Chernoff bound we use the MGF

of the exponential distribution which is given below.

Mk(s) =
µk

µk − s
, for s < µk.

C. Erlang Service

Consider the Erlang service distribution at link k has

shape parameter bk and rate λk. This implies µk = bkλk.

We note that, in this case, Yk has Gamma distribution

with shape parameter (vk + 1)bk and rate parameter

λk. Therefore, we compute the bounds using similar

expressions given in the previous subsection.

Remark 2: We note that the Chernoff upper bound and

the α-relaxed upper bound presented above may take

values greater than 1. It is natural to cap the values

of these upper bounds by 1 because for probability

values an upper bound greater than 1 is not of any use,

in general. However, somewhat to our surprise, in our

simulations we found that allowing the values of the

proposed bounds greater than 1 provides good heuristic

solutions for the sampling rate, especially for parameter

setting where the upper bounds are always greater than

1. Since our primary objective is to find upper bounds

that can provide good heuristic solutions, but need not

necessarily be tight upper bounds, we consider values

greater than 1 for the bounds in our numerical evaluation.

However, this should not be confused with the violation

probability which does not exceed 1 at all times.

VIII. NUMERICAL EVALUATION

In this section, we evaluate the performance of α-

UBMP solutions and Chernoff-UBMP solutions for geo-

metric, exponential and Erlang service distributions. We

first study the trends of the proposed upper bounds in

comparison to the AoI violation probability obtained

using simulation for both single-hop and two-hop sce-

narios. We then evaluate the quality of numerically

computed solutions using the UBMPs in comparison

with that of the simulation-based estimate of the opti-

mum violation probability. Finally, we present simulation

results comparing the performance of FCFS with queue

management policies that use unit buffer and packet

replacement.

Since Chernoff-UBMP is a convex optimization prob-

lem we used bisection search, and for α-UBMP we

used brute-force search to compute the respective op-

timal rates. The numerical computations are done using

MATLAB, and the simulation is implemented in C where

we run 1010 iterations for each data point. The default

parameters are as follows. For exponential distribution

µ1 and µ2 equal 1 packet/ms; for Erlang distribution we

use shape parameters b1 = b2 = 3 and rate parameters

λ1 = λ2 = 3, and therefore the mean rates µ1 and µ2

equal one packet/ms; for geometric service we choose

success probabilities p1 = 0.85 and p2 = 0.9, and the

slot duration is 1 ms. The minimum value for R is chosen

to be 0.2 packets/ms and its maximum value is chosen

to be 0.75 ∗min(µ1, µ2) packets/ms. For all the figures

with varying rate R on the x-axis, a constant resolution

of 0.025 is used. The minimum value for d is chosen

to be 5 ms and its maximum value is chosen to be 15
ms. We use K = 30 for computing α-relaxed upper

bound for all the distributions because for Geometric

service MATLAB does not provide precision guarantees

for higher K values for computing Φ(v0, v1, R), and for

other service distributions, choosing K = 30 is sufficient

to obtain α values close to 1.

A. Properties of Upper Bounds

1) Single Hop: In Figures 4 and 5, we present the

upper bounds and the simulated AoI violation probability

for varying arrival rate R and varying age limit d for

different distributions for the single-hop scenario. From
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Fig. 4: Comparison of the upper bounds for varying arrival rate R in a single hop for different service time

distributions.
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Fig. 5: Comparison of the upper bounds for varying age limit d in a single hop for different service time distributions.
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Fig. 6: Comparison of the upper bounds for varying arrival rate R in a two hop network for different service time

distributions.

Figure 4, we observe that the upper bounds and the

violation probability have convex nature and a global

minimum (highlighted in black circles) in the chosen

range of R. Further, observe that the curvature of the

upper bounds approximately follow the curvature of

the simulated violation probability around its minimum

value and only deviates at higher sampling rate. This

is an interesting property as it suggests that a rate that

minimizes the upper bound will be a “good” rate solution

for minimizing the violation probability. We note that

the α-relaxed upper bound curves are not continuous

because the probability terms Φ(v0, v1, R) involves a
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Fig. 7: Comparison of the upper bounds for varying age limit d in a two hop network for different service time

distributions.
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Fig. 8: Evaluation of the rate solutions obtained using upper bound minimization for different service time

distributions.

floor function, namely, ⌊β⌋. From Figure 5, we observe

that the decay rates of the upper bounds match closely

the decay rate of the violation probability. This further

strengthens our statement above that minimizing the

upper bounds results in good heuristic rate solutions for

the considered range of age limits.

2) Two Hop: In Figures 6 and 7, we present the

upper bounds and the simulated AoI violation probability

for varying arrival rate R and varying age limit d for

different distributions for the two-hop scenario. We ob-

serve similar trends as in the case of single-hop scenario.

Nevertheless, the bounds become relatively looser. This

can be attributed to the fact that the union bound is

applied twice for the two-hop scenario.

Note that for both single-hop and two-hop scenarios

α-relaxed bound is much lower than the Chernoff bound.

Nevertheless, Chernoff bound can be useful for the cases

where the exact distribution of the summation of service

times is intractable.

3) Service Times with Higher Variance: In this sec-

tion, we study how the upper bounds perform for service

time with higher variance. In Figure 9, we consider

heterogeneous exponential service times, with µ1 = 0.75
and µ2 = 1. We have chosen µ1 = 0.75 so that

the variance in this case is higher than that of the

homogeneous case where both µ1 and µ2 are equal to 1.

We note that the trend persists and that the mismatch in

the minima among the three curves in this case becomes

greater when lower age limit is considered, i.e., d = 5
ms. However, the mismatch is much smaller at higher

d. We also note that compared to the homogeneous

server case in Figure 6(b), heterogeneity does not affect

the conclusions regarding system behaviour with respect

to AoI. Nevertheless, the performance becomes more

dependent on the bottleneck link in this case.

In Figure 10, we consider hyper-exponential service

time distribution with probability density function given

by pλ1e
−λ1x + (1 − p)λ2e

−λ2x. We choose p = 0.91,

λ1 = 0.95, and λ2 = 2 such that the mean value is equal

to 1 ms. We note that this distribution has higher variance

compared to exponential-service time distribution with

mean 1. For computing the alpha-relaxed upper bound,

we set K = 6 and numerically evaluated the convolution
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Fig. 9: Comparison of the upper bounds for varying

arrival rate R in a two hop network for heterogeneous

exponential service time distributions, with µ1 = 0.75
packet/ms and µ2 = 1 packets/ms.

of hyper-exponential probability distribution functions to

obtain values for φ(v0, v1, R).
From both Figures 9 and 10, we observe that for the

two-hop scenario, for d = 5, the mismatch between the

heuristic rate solution provided by α-UBMP and the

optimal rate solution is relatively bigger. Nevertheless,

under these settings, it should be noted that the value

of the minimum AoI violation probability is not sig-

nificantly lower than that achieved by the heuristic rate

solution. Again, the main trends noticed with the other

three service distributions, see Figure 6, are prevailing

here as well.

B. Quality of the Heuristic Solution

In Figure 8, we compare the violation probabilities

for rate solutions obtained by solving the UBMPs and

the estimated minimum/optimum violation probability

obtained by exhaustive search using simulation, for

both single-hop and two-hop scenarios. Note that the

difference between the violation probabilities achieved

by the heuristic rate solutions and the optimum violation

probability is negligible. This suggests that the solutions

of the UBMPs are near optimal for P for the considered

service-time distributions. This can be attributed to the

fact that the upper bounds have decay rate that matches

the decay rate of the violation probability as stated

before. Although α-relaxed upper bound is much lower

than Chenoff bound the solutions of α-UBMP provide

only slightly lower violation probability than that of

the Chernoff-UBMP solutions. Thus, Chernoff-UBMP is

relatively tractable and the rate solutions provided can

be used as first step toward computing close-to-optimal

solutions by utilizing additional information about the

service distributions.

Remark 3: We note that unlike the time-average

age objective, which is minimized at 0.515 utiliza-

tion factor (λ1/µ1) for the D/M/1 queue [4], the op-

timal rate solution and in turn the utilization fac-

tor that minimizes AoI violation probability depends

on age limit d. For a comparison, in Figure 8(b)

the single-hop scenario is equivalent to D/M/1 system

and in this case the optimal utilization factors are

{0.425, 0.4, 0.4, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35}.

C. Queue Management Policies with Unit Buffer

Although this work is dedicated to study AoI distribu-

tion for WNCS under FCFS4 scheduling, recent research

results have shown that considering a unit buffer with

queue management policies provide lower AoI statistics

in comparison to FCFS with infinite buffer [8], [10],

[11], [23]. In this section, we investigate this effect by

applying two widely referenced (in the context of AoI

research) queue management policies, namely, FCFS-

Unit Buffer and LGFS-Unit Buffer, to every queue in our

network and then compare the achieved AoI violation

probability to that we obtained earlier under FCFS. Both

of these policies employs a one-packet buffer, however,

they differ in that, whenever the buffer is occupied and

a new packet arrives, the existing packet is kept in the

first while it is replaced with the newly arriving packet in

the second. In [8], it was shown that LGFS-Unit Buffer

minimizes AoI processes, in stochastic ordering sense,

among all non-preemptive service policies for any arrival

process and service-time distributions. This implies, for

the tandem two-queue system we consider, LGFS-Unit

Buffer results in minimum AoI violation probability.

Hence, it provides a good reference to measure the per-

formance of other queue management policies against.

In Figures 11(a) and 11(b), the AoI violation proba-

bility is plotted against the arrival rate R for the FCFS as

well as the two unit buffer queue management policies

mentioned above, assuming exponential-service times

with rate µ = 1 packet/sec and for two age limits

d = {5, 10} ms. We observe that, the minimum AoI

violation probability under FCFS-Unit Buffer and LGFS-

Unit Buffer is comparable to that under FCFS in the

single-hop scenario. However, the performance of FCFS-

Unit Buffer deteriorates drastically in the two-hop case

compared to the other two, see Figure 11(b). This can

be attributed to the fact that, under FCFS-Unit Buffer,

packets that are served at first link may still be dropped

when arriving at the second link if its buffer is already

occupied. This effect may be exacerbated when more

4By FCFS we mean First-Come-First-Serve with infinite buffer.
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Fig. 10: Comparison of the upper bounds for varying arrival rate R for hyper-exponential service-time distribution.
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Fig. 11: Comparison of AoI violation probability achieved under different queue management policies under

exponential-service times with rates equal to one packet/sec.

links (hops) are added to the tandem and even more when

heterogeneous service processes are present at different

links along the cascade where latter links experience

higher utilization. This example shows that in tandem-

queuing systems, it is not always true that FCFS with

finite buffer has lower AoI statistics than that of FCFS

with infinite buffer. We contrast this with the perfor-

mance trends of these policies for a system with parallel

servers between the source and the destination [23],

where it was demonstrated that, under Poisson arrivals

and exponential service-times, the minimum values for

average AoI and average peak AoI achieved under FCFS

with infinite buffer are much higher than that for the case

with finite buffer.

Furthermore, in both scenarios, we observe that the

AoI violation probability under FCFS with infinite queue

is quite close to that of LGFS-Unit Buffer at low utiliza-

tion (i.e., low R), and more importantly the minima for

both cases are reasonably close and are achieved around

the same arrival rate R. The reason for such behaviour

can be attributed to the fact that at such low arrival rate

the buffer would be empty most of the time mimicking

the unit buffer behaviour. In the two-hop scenario, the

FCFS would still have buffer space at the second hop

to hold (and not drop as FCFS-Unit Buffer may do)

a packet that is successfully forwarded by the first

hop, hence, countering the performance deterioration

experienced by FCFS-Unit Buffer due to packet drops

that we highlighted in the two-hop scenario above.

The above observations are quite interesting. They
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suggest, at least for deterministic arrivals and tandem-

queuing system, using FCFS with infinite queue may

achieve a minimum AoI violation probability that is rea-

sonably close to the optimum (achieved by LGFS-Unit

Buffer among the set of non-preeemptive policies [8]).

This also opens an interesting research question for

future work: how far the minimum AoI violation prob-

ability achieved under FCFS can be from the optimum?

IX. CONCLUSION AND FUTURE WORK

We provide a general characterization of AoI violation

probability for a network with periodic input arrivals.

Using this characterization, we formulate an optimiza-

tion problem P to find the optimal input rate which

minimizes the AoI violation probability. Further, we

show that P is equivalent to the problem of minimizing

the violation probability of the departure time of a

tagged arrival n̂R over the rate region [ 1d , µ). Noting

that computing an exact expression for the violation

probability is hard, we propose an Upper Bound Mini-

mization Problem (UBMP) and its more computationally

tractable versions Chernoff-UBMP and α-UBMP, which

result in heuristic rate solutions. We also present the

Chernoff-UBMP for N-hop tandem queuing system. We

solve Chernoff-UBMP and α-UBMP for single-hop and

two-hop scenarios for three service-time distributions,

namely, geometric, exponential and Erlang. Numerical

results suggest that the rate solutions of α-UBMP are

near optimal for P , demonstrating the efficacy of our

method.

Furthermore, our simulation results suggest that, FCFS

performs close to the optimum achieved by LGFS-Unit

Buffer and drastically outperforms FCFS-Unit Buffer in

a two-hop network with respect to AoI violation prob-

ability. This opens up an interesting research question:

how far will be the minimum AoI violation probability

achieved under FCFS from the optimum? Another

interesting research direction for future work would be

to extend our results to stochastic arrivals. We are also

studying the computational complexity for solving α-

UBMP and investigating more efficient solution meth-

ods, i.e., by identifying the range of α for which a good

heuristic solution for P can be obtained. Finally, we

would like to investigate different queuing disciplines

relevant to AoI.
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APPENDIX

A. Proof of Lemma 7

The violation probability is given by

P{D(n̂R) > t} = P{D2(n̂R) > t}

= P

{

max
0≤v0≤n̂R

(

A2(n̂R − v0) +

v0∑

i=0

X n̂R−i
2

)

> t

}

= P

{
n̂R⋃

v0=0

(

A2(n̂R − v0) +

v0∑

i=0

X n̂R−i
2 > t

)}

≤

n̂R∑

v0=0

P

{

A2(n̂R − v0) +

v0∑

i=0

X n̂R−i
2 > t

}

. (22)

Further, we have

A2(n̂R − v0) = D1(n̂R − v0)

= max
0≤v1≤n̂R−v0

(

A1(n̂R − v0 − v1) +

v1∑

i=0

X n̂R−v0−i
1

)

.

Substituting A2(n̂R − v0) and A1(n̂R − v0 − v1) =
n̂R−v0−v1

R in (22) we obtain

P{D(n̂R) > t}

≤

n̂R∑

v0=0

P

[

max
0≤v1≤n̂R−v0

( n̂R − v0 − v1
R

+

v1∑

i=0

X n̂R−v0−i
1

)

+

v0∑

i=0

XN
n̂R−i>t

]

≤

n̂R∑

v0=0

n̂R−v0∑

v1=0

P

[ n̂R − v0 − v1
R

+

v1∑

i=0

X n̂R−v0−i
1

+

v0∑

i=0

X n̂R−i
2 > t

]

=

n̂R∑

v0=0

n̂R−v0∑

v1=0

P

{
v1∑

i=0

X i
1 +

v0∑

i=0

X i
2 > d+

v0+v1−1

R

}

.

In the second step above, we have used the union bound.

In the last step we have used n̂R ≤ R(t− d) + 1. Also,

since X1 and X2 are i.i.d., we re-indexed the superscripts

of X1 and X2 in the summations. The result follows

from the fact that as t goes to infinity n̂R goes to infinity.

B. Proof of Theorem 4

We first obtain Chernoff bound for Φ(v0, v1, R). We

have

Φ(v0, v1, R) = P

{
v1∑

i=0

X i
1 +

v0∑

i=0

X i
2 > d+

v0+v1−1

R

}

≤ min
s>0

e−s(d+
v0+v1−1

R )
E[es(

∑v1
i=0

Xi
1+

∑v0
i=0

Xi
2)]

= min
s>0

e−s(d+
v0+v1−1

R )[M1(s)]
v1+1[M2(s)]

v0+1

= min
s>0

e−s(d−1
R )M1(s)M2(s)β

v1
1 (s)βv0

2 (s). (23)

Assuming the moment generating function of X exists,

in the second step above we have used the Chernoff

bound. In the third step above we have used the fact

that Xk
n are i.i.d. for all k and n, and in the last step we

have used (3). Using (23) in Lemma 7, we obtain

lim
t→∞

P{D(n̂R) > t} ≤ lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

Φ(v0, v1, R)

≤ min
s>0

e−s(d−1
R )M1(s)M2(s)φ(s, β1(s), β2(s)), (24)

where

φ(s, β1(s), β2(s)) = lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

βv1
1 (s)βv0

2 (s).

(25)

Note that in the second step of (24) we have used the

fact that for positive quantities sum over minimum is

less than or equal to minimum over the sum. In the

following lemma we provide a closed form expression

for φ(s, β1(s), β2(s)).

Lemma 11. For s ∈ S,

φ(s, β1(s), β2(s)) =
1

(1− β1(s))(1 − β2(s))
.

Proof. Recall that β1(s) < 1 and β1(s) < 1, for all

s ∈ S. Using this, we obtain

φ(s, βv1
1 , βv0

2 ) = lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

βv1
1 (s)βv0

2 (s)

= lim
n̂R→∞

n̂R∑

v0=0

βv0
2 (s)

n̂R−v0∑

v1=0

βv1
1 (s)

= lim
n̂R→∞

n̂R∑

v0=0

βv0
2 ·

(1 − βn̂R−v0+1
1 (s))

1− β1(s)
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= lim
n̂R→∞

n̂R∑

v0=0

[

βv0
2

1− β1(s)
−

βv0
2 (s)βn̂R−v0+1

1 (s)

1− β1(s)

]

=
1

(1−β1(s))(1−β2(s))
− lim

n̂R→∞

n̂R∑

v0=0

βv0
2 (s)βn̂R−v0+1

1 (s)

1− β1(s)

It is now sufficient to show that the summation term

above is equal to zero. We first note that the summation

is non-negative since 0 ≤ β1(s) < 1 and 0 ≤ β1(s) < 1.

Let β(s) = min(β1(s), β1(s)), then we have

lim
n̂R→∞

n̂R∑

v0=0

βv0
2 (s)βn̂R−v0+1

1 (s)

1− β1(s)
≤ lim

n̂R→∞

n̂R∑

v0=0

βn̂R+1(s)

1− β1(s)

= lim
n̂R→∞

(n̂R + 1)

β−(n̂R+1)(s)(1− β1(s))

= lim
n̂R→∞

1

β−(n̂R+1)(s)(− log β(s))(1 − β1(s))
= 0.

In the third step above we have used L’Hospital’s Rule.

Since the summation is non-negative and is less than or

equal to zero, it should be equal to zero.

It is easy to see that if s /∈ S, then φ(s, β1(s), β2(s))
will be equal to infinity. Therefore, using (24) and

Lemma 11, we obtain

lim
t→∞

P{D(n̂R) > t}

≤ min
s>0

e−s(d−1
R )M1(s)M2(s)φ(s, β1(s), β2(s))

= min
s∈S

e−s(d−1
R ) ·

M1(s)M2(s)

(1 − β1(s))(1 − β2(s))
.

Hence the result is proven.

C. Proof of Theorem 5

From Lemma 7 we have

lim
t→∞

P{D(n̂R) > t} ≤ lim
n̂R→∞

n̂R∑

v0=0

n̂R−v0∑

v1=0

Φ(v0, v1, R)

= lim
n̂R→∞

K−1∑

v0=0

K−1∑

v1=0

Φ(v0, v1, R) + Φ1(K) + Φ2(K),

(26)

where

Φ1(K) = lim
n̂R→∞

K−1∑

v0=0

n̂R−v0∑

v1=K

Φ(v0, v1, R)

Φ2(K) = lim
n̂R→∞

n̂R∑

v0=K

n̂R−v0∑

v1=0

Φ(v0, v1, R).

In the following we use the Chernoff bound for

Φ(v0, v1, R), given in (23), to derive bounds for Φ1(K)
and Φ2(K). We have

Φ1(K) ≤ min
s>0

e−s(d−1
R )M1(s)M2(s)φ1(s, β1(s), β2(s)),

(27)

where

φ1(s, β1(s), β2(s)) = lim
n̂R→∞

K−1∑

v0=0

n̂R−v0∑

v1=0

βv1
1 (s)βv0

2 (s)

= lim
n̂R→∞

K−1∑

v0=0

βv0
2 (s)

βK
1 (s)(1 − βn̂R−v0+1

1 (s))

1− β1(s)

=

∑K−1
v0=0β

v0
2 (s)βK

1 (s)

1− β1(s)
− lim
n̂R→∞

K−1∑

v0=0

βv0
2 (s)βn̂R−v0+1+K

1 (s)

1− β1(s)

=
(1− βK

2 (s))βK
1 (s)

(1 − β1(s))(1 − β2(s))
, for s ∈ S. (28)

The second term in the third step above vanishes as

β1(s) < 1 for s ∈ S. Using (28) in (27), we obtain

Φ1(K)≤min
s∈S

e−s(d−1
R )M1(s)M2(s)

(1−βK
2 (s))β

K
1 (s)

(1−β1(s))(1−β2(s))
.

(29)

Again, substituting (23) in Φ2(K), we obtain

Φ2(K) ≤ min
s>0

e−s(d−1
R )M1(s)M2(s)φ2(s, β1(s), β2(s)),

(30)

where

φ2(s, β1(s), β2(s)) = lim
n̂R→∞

n̂R∑

v0=K

n̂R−v0∑

v1=0

βv1
1 (s)βv0

2 (s).

Using similar analysis as in Lemma 11, we obtain

φ2(s, β1(s), β2(s)) =
βK
2 (s)

(1−β1(s))(1−β2(s))
, for s ∈ S.

(31)

Using (31) in (30), we obtain

Φ2(K)≤min
s∈S

e−s(d−1
R )M1(s)M2(s)

βK
2 (s)

(1−β1(s))(1−β2(s))
.

(32)

Finally, substituting (29) and (32) in (26) we obtain the

result.
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