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Geometric Sequence Decomposition With
k-Simplexes Transform

Woong-Hee Lee, Jong-Ho Lee , Member, IEEE, and Ki Won Sung , Member, IEEE

Abstract— This paper presents a computationally efficient tech-
nique for decomposing non-orthogonally superposed k geometric
sequences. The method, which is named as geometric sequence
decomposition with k-simplexes transform (GSD-ST), is based
on the concept of transforming an observed sequence to multiple
k-simplexes in a virtual k-dimensional space and correlating the
volumes of the transformed simplexes. Hence, GSD-ST turns
the problem of decomposing k geometric sequences into one of
solving a k-th order polynomial equation. Our technique has
significance for wireless communications because sampled points
of a radio wave comprise a geometric sequence. This implies
that GSD-ST is capable of demodulating randomly combined
radio waves, thereby eliminating the effect of interference.
To exemplify the potential of GSD-ST, we propose a new radio
access scheme, namely non-orthogonal interference-free radio
access (No-INFRA). Herein, GSD-ST enables the collision-free
reception of uncoordinated access requests. Numerical results
show that No-INFRA effectively resolves the colliding access
requests when the interference is dominant.

Index Terms— Geometric sequence decomposition, k-simplexes
transform, non-orthogonal interference-free radio access.

I. INTRODUCTION

AGEOMETRIC sequence is a series of numbers in which
the ratio between any two consecutive terms is fixed.

Recall that a geometric sequence is expressed by

{a, ar, ar2, ar3, · · · }
where a is the initial term and r is the common ratio of
the sequence. Depending on r, the geometric sequence can
increase, decrease, or remain constant as it progresses. The
sequence may also oscillate in the complex plane if the
common ratio is a complex number.

Consider k geometric sequences with nonidentical common
ratios, s1, s2, · · · , sk. Assume that we have no information on
the individual sequences and can observe only a superposition
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of k geometric sequences s:

s = s1 + s2 + · · · + sk
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Let us pose the question as follows:
• How can we decompose a superposition of geometric

sequences into the individual sequences in a computa-
tionally efficient manner?

To answer the question, k should first be determined. Second,
the parameters of each sequence, i.e., ai and ri, should be
determined.

The foremost contribution of this paper is to propose a new
technique addressing the aforementioned problem. The main
idea is to transform the observed sequence to a k-dimensional
space using a well-known concept in geometry: k-simplex [1].
We develop a method using this transform and call it geo-
metric sequence decomposition with k-simplexes transform
(GSD-ST). Our method turns the complicated problem of
decomposing k geometric sequences into a simple root-finding
for a k-th order polynomial equation. GSD-ST requires only
2k + 1 samples of the superposed sequence to obtain k and
retrieve the parameters of each sequence. The number of
required samples reduces further to 2k if k is known a priori.

The proposed GSD-ST is a noteworthy mathematical tool
and has significance for wireless communications. This is
because a sampling of a radio wave is a geometric sequence.
A radio wave is generally represented by a complex-valued
function of the form Aei2πft. Here, A is a constant that
accounts for the amplitude and phase, and f and t are the
frequency and time, respectively. It is observed that a sampled
progression of a radio wave with time interval Δt forms a
geometric sequence with the initial term A and common ratio
ei2πfΔt. This implies that if we can decompose a superpo-
sition of geometric sequences, we can also separate multiple
incoming radio waves that are non-orthogonally accumulated.
Therefore, our work lays the foundation for new methods of
handling wireless signals in interference-limited environments.

A. Related Works

Interference is a phenomenon wherein multiple waves
superpose to form a resultant wave. Because it is common
in various fields dealing with waves, extensive studies have
been conducted to extract a desired wave or to separate all
the accumulated waves. These include studies on blind sound
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source separation in acoustics [2], [3], target detection in radar
systems [4], [5], and wireless communications [6]–[17].

In wireless communication systems, interference has tradi-
tionally been managed by orthogonalizing the signals. One
of the most intuitive approaches to orthogonality is to coor-
dinate the multiple waves in the time domain. Therefore,
time-division multiplexing (TDM) remains as the fundamental
principle for user scheduling in cellular networks [6], [7] and
collision avoidance in Wi-Fi systems [8], [9]. In the frequency
domain, orthogonal frequency-division multiplexing (OFDM)
has become a key element of modern broadband systems
such as the IEEE 802.11 family [10], [11] and Long Term
Evolution (LTE) [12].

The scarcity of radio spectrum compelled the researchers
to advance beyond the orthogonal division of radio resources.
Furthermore, the stringent requirements of high data rate
and low latency in 5G magnify the need. Thus, numerous
attempts have been undertaken to address the non-orthogonal
accumulation of radio waves. If we confine the discussion to
radio access where the challenge is to accommodate multiple
uncoordinated requests with ultra-low latency, non-orthogonal
multiple access (NOMA) has been considered to be a practical
solution [13]–[17]. This technique separates the multiple
signals in the power domain through iterative decoding,
i.e., it relies on the power difference between received signals.
Therefore, its effectiveness reduces as the number of accu-
mulated signals increases and the power difference decreases.
A new method that can separate several randomly superposed
radio waves regardless of the distribution of the received
powers would be highly effective for designing radio access
schemes for ultra-low latency. We demonstrate that the pro-
posed GSD-ST is a strong candidate.

B. Main Contributions

Our objective is to decompose a non-orthogonal super-
position of geometric sequences into the original sequences
without information loss when we can observe only the
superposed sequence. We propose GSD-ST, which is a com-
putationally efficient method, for achieving this. We provide
the fundamental concept, simple numerical examples, and the
formal methodology of GSD-ST in the subsequent sections.
We also propose a practical de-noising technique for GSD-ST
because the method may be prone to the effect of noisy
observations.

As discussed earlier, the decomposition of geometric
sequences is equivalent to the separation of non-orthogonally
overlapping radio waves. We introduce a new radio access
scheme to illustrate GSD-ST’s potential for wireless com-
munications. Named as non-orthogonal interference-free radio
access (No-INFRA), it enables multiple transmitters to ran-
domly select frequencies in a continuous domain within a
specified signal bandwidth and to transmit simultaneously.
Then, the receiver samples the mixed signal and decodes
the information using GSD-ST. Unlike orthogonal resource
division which inevitably suffers from collisions of access
requests, No-INFRA achieves collision-free access by elim-
inating the notion of interference.

To summarize, our main contributions in this study
are threefold: first, we propose a new method (GSD-ST)
for decomposing non-orthogonally superposed geometric
sequences; second, we provide the formal methodology con-
sisting of theorems and proofs to sustain the GSD-ST method;
third, we introduce a new radio access scheme (No-INFRA)
to demonstrate how GSD-ST can be applied to wireless
communications.

C. Organization of the Paper

The remainder of this paper is organized as follows: In
Section II, we explain the fundamental concept of GSD-ST
and provide numerical examples to enable the readers to under-
stand the new method. Section III presents the formal method-
ology of GSD-ST, the necessary theorems, and a practical
de-noising process. In Section IV, we propose the No-INFRA
scheme. In Section V, the performance of No-INFRA is
compared with a conventional scheme of orthogonal resource
division. Finally, Section VI presents the concluding remarks.

D. Notations

The following symbols are used throughout the paper:
• N0: {0} ∪ N.
• b := {b[l]}P−1

l=0 ∈ C
P : an arbitrary sequence of length

P whose l-th element is b[l].
• k: the number of superposed geometric sequences.
• k̂: an estimate of k.
• sn: the n-th geometric sequence.
• an ∈ C: the initial term of sn, (a := {a1, · · · , ak}).
• rn ∈ C: the common ratio of sn, (r := {r1, · · · , rk}).
• s(:=

�k
n=1 sn): the superposed sequence of the geomet-

ric sequences.
• card(·): the cardinality of a collection.
• (·)T: the transpose of a matrix.
• det(·): the determinant of a square matrix.
• e(v0, · · · , vk−1): a function that returns the k-simplex by

connecting the k + 1 k-vertices which consists of the
origin and the specified k k-vertices, v0, . . . , vk−1, in a
k-dimensional space.

• Λ: a function that returns the volume of the
k-simplex [18], i.e., Λ(e(v0, . . . , vk−1)) :=
det([v0,...,vk−1])

k! . In addition, if the input is a series
of k-simplexes, this function returns the series of the
volume of each k-simplex as the output.

• φk (∈ Nk
0): an arbitrary collection of lexicographically

ordered k indices, e.g., φ3 = {0, 2, 7}.
• φk,b := (b[φk [0]], · · · ,b[φk[k−1]])T ∈ Ck: the k-vertex

in a k-dimensional space which is sketched by φk and
made by k samples of the sequence b.

• 1k: the one-vector whose length is k.

II. OVERVIEW OF GSD-ST

A. Fundamental Concept of GSD-ST

Recalling (1), our problem is to decompose a superposition
of k geometric sequences, s, when we have no information on
the individual sequences and can observe only s. The problem
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has 2k + 1 unknowns, i.e., the unknowns with regard to sn

(an and rn) and k. Thus, in principle, 2k + 1 observations of
s would be sufficient to solve the problem, i.e., to obtain k, a,
and r. To our knowledge, there is no computationally efficient
method of solving the problem.

The superposition is a one-dimensional progression, but
it contains the information on the k sequences. Therefore,
we depart from the intuition that an appropriate transformation
of the observed sequence to a k-dimensional space may
facilitate the analysis of the overlap of k geometric sequences.
To achieve this, we employ the concept of k-simplex in
geometry because it represents the simplest possible poly-
tope in k-dimensional space [1]. k-simplex is defined as a
k-dimensional polytope which is the convex hull of its k + 1
k-vertices. For example, a 3-simplex means a tetrahedron in a
three-dimensional space.

We elaborate on our intuition to obtain k: if we create
a series of k-simplexes from s, it may hold a particular
relationship. We observed that the volumes of the k-simplexes
constitute a new geometric sequence only when k is assumed
correctly. Next, we consider r, which are the nonlinear para-
meters of s. For a single geometric sequence, e.g., s1, we can
conveniently obtain r1 from any two consecutive samples
of s1. That is, 1-simplex is sufficient for analyzing a geometric
sequence. From this, we hypothesize that r could be obtained
by effectively manipulating two consecutive k-simplexes made
from s. We succeeded in extracting a polynomial of degree k
whose roots are r. Thus, we turned the problem of finding r
into the root-finding of a k-th order polynomial equation. After
obtaining k and r, a can be conveniently obtained through a
simple linear operation.

B. Numerical Example of GSD-ST

In this subsection, we provide a numerical example to
enable the readers to understand the concept of GDS-ST.
Consider the following three geometric sequences:

s1 = {a1 rl
1}P−1

l=0 = {2 · 2l}P−1
l=0 = {2, 4, 8, 16, 32, · · ·},

s2 = {a2 rl
2}P−1

l=0 = {1 · 3l}P−1
l=0 = {1, 3, 9, 27, 81, · · ·},

s3 = {a3r
l
3}P−1

l=0 = {4 · (−1)l}P−1
l=0 = {4,−4, 4,−4, 4, · · ·}.

(2)

Then, suppose that we have no information on the three
sequences and that we can observe only their superposition,
s, i.e.,

s = s1 + s2 + s3 = {2 · 2l + 1 · 3l + 4 · (−1)l}P−1
l=0

= {7, 3, 21, 39, 117, 303, 861, 2439, 7077 · · ·}. (3)

Our objectives are to obtain the number of superposed
sequences and the parameters of each sequence.

1) Obtaining k: Consider an arbitrary k̂ as an estimate
of k. Theorem 1 in Section III-A states that the volumes
of successively generated k̂-simplexes constitute a non-zero
geometric sequence if and only if k̂ = k.

For the case where k̂ = 2, we consider a two-dimensional
space in which we generate 2-simplexes, i.e., triangles, from

the origin and consecutive values of s. Let us create three
triangles, A1, A2, and A3, with the following coordinates:

A1 : [(0, 0)T, (7, 3)T, (3, 21)T],
A2 : [(0, 0)T, (3, 21)T, (21, 39)T],
A3 : [(0, 0)T, (21, 39)T, (39, 117)T]. (4)

Then, we examine whether the volumes of the trian-
gles, Λ(An), constitute a geometric sequence. Because
Λ(A1) = 69, Λ(A2) = −162, and Λ(A3) = 468, these do
not constitute a geometric sequence. Therefore, we conclude
that k �= 2.

For the case where k̂ = 3, we increase the dimension by
one and consider 3-simplexes, i.e., tetrahedrons. We create
three tetrahedrons (again denoted by A1, A2, and A3) with
the following coordinates:

A1 : [(0, 0, 0)T, (7, 3, 21)T, (3, 21, 39)T, (21, 39, 117)T],
A2 : [(0, 0, 0)T, (3, 21, 39)T, (21, 39, 117)T, (39, 117, 303)T],
A3 : [(0, 0, 0)T, (21, 39, 117)T, (39, 117, 303)T,

(117, 303, 861)T]. (5)

Here, Λ(A1) = 192, Λ(A2) = −1152, and Λ(A3) = 6912.
These constitute a geometric sequence with a common ratio
of −6. Therefore, we verify that s is a superposition of three
geometric sequences (k = 3).

For k̂ > 3, one can verify that the volumes of the
k̂-simplexes always constitute a sequence of zeros.

2) Obtaining a and r: Given that k is obtained correctly,
we can fully extract the original sequences with 2k sampling
of s. The procedure is divided into five steps.

First, we pick 2k consecutive elements from s. Second,
considering a k-dimensional space, place k+1 vertices whose
coordinates are k basic elements of s (see Definition 2 in
Section III-B). In this example, four vertices are created with
the coordinates

[(7, 3, 21)T, (3, 21, 39)T, (21, 39, 117)T, (39, 117, 303)T]. (6)

Third, select k vertices out of the k + 1 described above.
By including the origin, we can create k + 1 k-simplexes in
a lexicographically ordered manner. This corresponds to four
tetrahedrons in this example, with the following coordinates:

B1 : [(0, 0, 0)T, (7, 3, 21)T, (3, 21, 39)T, (21, 39, 117)T],
B2 : [(0, 0, 0)T, (7, 3, 21)T, (3, 21, 39)T, (39, 117, 303)T],
B3 : [(0, 0, 0)T, (7, 3, 21)T, (21, 39, 117)T, (39, 117, 303)T],
B4 : [(0, 0, 0)T, (3, 21, 39)T, (21, 39, 117)T, (39, 117, 303)T].

(7)

Fourth, let Λ(Bn) denote the volume of the n-th tetrahedron.
Surprisingly, the following relationship holds by Theorem 2
in Section III-C:�

Λ(B1)
Λ(B1)

,
Λ(B2)
Λ(B1)

,
Λ(B3)
Λ(B1)

,
Λ(B4)
Λ(B1)

�

=

⎧⎨
⎩1,

3�
n=1

rn,
�

1≤n<m≤3

rnrm,

3�
n=1

rn

⎫⎬
⎭. (8)
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Observe that these are the coefficients of a polynomial whose
roots are r1, r2, and r3. Therefore, the common ratios of
the geometric sequences can be obtained by solving the
polynomial equation shown below:

x3 − Λ(B2)
Λ(B1)

x2 +
Λ(B3)
Λ(B1)

x − Λ(B4)
Λ(B1)

= 0. (9)

Finally, once the common ratios of the sequences are obtained,
we can extract the initial terms by solving a simple linear
system of equations.

3) A Case of Non-Consecutive Samples: We have illustrated
a simple example of GSD-ST with consecutive samples of s.
However, it is important to emphasize that the formal method-
ology of GSD-ST is more general in that the required samples
need not be consecutive.

Let us select non-consecutive elements of s to construct the
simplexes as follows:

A1 : [(0, 0, 0)T, (7, 3, 2439)T,(3, 21, 7077)T, (21, 39, 20703)T],
A2 : [(0, 0, 0)T, (3, 21, 7077)T,

(21, 39, 20703)T, (39, 117, 61101)T],
A3 : [(0, 0, 0)T, (21, 39, 20703)T,

(39, 117, 61101)T, (117, 303, 181239)T]. (10)

Notice that s[6], i.e., 861, is not sampled, which implies
that non-consecutive samples of s are selected. Nevertheless,
by verifying that {Λ(Ai)}2

i=0 is a geometric sequence with
a common ratio of −6, i.e., {96768,−580608, 3483648},
we can verify that k = 3. Next, four vertices are created as
follows:

[(7, 3, 2439)T, (3, 21, 7077)T,

(21, 39, 20703)T, (39, 117, 61101)T]. (11)

Then, similarly in the above example, four tetrahedrons are
extracted as follows:

B1 : [(0, 0, 0)T, (7, 3, 2439)T, (3, 21, 7077)T,

(21, 39, 20703)T],
B2 : [(0, 0, 0)T, (7, 3, 2439)T, (3, 21, 7077)T,

(39, 117, 61101)T],
B3 : [(0, 0, 0)T, (7, 3, 2439)T,

(21, 39, 20703)T, (39, 117, 61101)T],
B4 : [(0, 0, 0)T, (3, 21, 7077)T,

(21, 39, 20703)T, (39, 117, 61101)T]. (12)

These new tetrahedrons also satisfy (8), although s[5] and s[6]
(i.e., 303 and 861) are not used. There are many ways of
selecting the elements of s in a non-consecutive manner. How-
ever, it is not random and needs to comply with Condition 2
described in Section III-C.

For simplicity, the example in this section used only real
numbers. However, GSD-ST is effective for complex num-
bers as well. Another example of complex-valued geometric
sequences is presented in Appendix A. Furthermore, source
code for the examples is presented in [19].

III. METHODOLOGY OF GSD-ST

This section provides the general methodology of GSD-ST.
The overall concept of GSD-ST is depicted in Fig. 1.

A. Set of k̂-Vertices to Construct a Search Space

At this stage, s is the only observable sequence. Because
k is unknown, let us assume an arbitrary k̂. We construct a
search space as follows to obtain the unknowns, i.e., k, a,
and r:

Definition 1: For arbitrary ic ∈ N and φk̂, let
a k̂-dimensional search space, Ξic(φk̂,s), be the
lexicographically-ordered collection of the vertices that
are formed by the successive spawning of new k̂-vertices
with the index-shifting of ic · 1k̂ starting from φk̂,s.

For example, if k̂ = 3, ic = 2, and φk̂ = {0, 1, 4},

Ξ2(φ3,(s[0],s[1],s[4])T) = {(s[0], s[1], s[4])T,

(s[2], s[3], s[6])T, · · · }. (13)

By the definition of a geometric sequence, s[n] is a polynomial
of degree n + 1 consisting of the initial terms of degree one
and common ratios of degree n. Consider the volume of an
arbitrary k̂-simplex formed by the origin and k̂ consecutive
vertices in Ξic(φk̂,s). That is, Λ(e(Ξic(φk̂,s)[j], Ξic(φk̂,s)[j +
1], · · · , Ξic(φk̂,s)[j + k̂ − 1])) for j ∈ N0, where Ξic(φk̂,s)[j]
is the j-th vertex in Ξic(φk̂,s). According to Definition 1,
it becomes a homogeneous polynomial whose degree is deter-
mined by j, k̂, ic, and φk̂ . This property of algebraic geometry
supports the approaches in the following subsections.

B. Series of Basic k̂-Simplexes to Obtain the Number of
Superposed Geometric Sequences

In this subsection, we obtain k. To achieve this, let us define
a basic k̂-simplex as follows:

Definition 2: For an arbitrary j ∈ N0, a basic k̂-simplex is
defined by

e(Ξic (φk̂,s)[j], · · · , Ξic(φk̂,s)[j + k̂ − 1]) ∈ C
k̂×(k̂+1). (14)

Furthermore, let ξic(φk̂,s) be a series of the basic k̂-simplexes
which is formed by the lexicographically ordered collection
of the basic k̂-simplexes over j = 0, 1, · · · .

In addition, recall that Λ(ξic(φk̂,s)) denotes a series of

volumes of basic k̂-simplexes. With Definition 2, the search
space Ξic (φk̂,s) exhibits a noteworthy property if we estimate

k correctly, i.e., k̂ = k. This is specified in the following
Lemma:

Lemma 1: Given s, for arbitrary ic ∈ N and φk̂,
Λ(ξic(φk̂,s)) is a non-zero geometric sequence whose common

ratio is
��k̂

n=1 rn

�ic

if k̂ = k.
Proof: To establish Lemma 1, we utilize the fact that

the ratio between any two consecutive samples of a geometric
sequence is a constant. Hence, we demonstrate the following
for an arbitrary j ∈ N0:

Λ(ξic(φk,s))[j + 1]
Λ(ξic(φk,s))[j]

= C, (15)

where C ∈ C is a non-zero constant.
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Fig. 1. Illustration of concept of GSD-ST. It is composed mainly of three steps: i) transformation of s to the set of k̂-vertices, ii) derivation of the series of
volumes of the basic k-simplexes, and iii) extraction of the volume quotients of the combinatorial k-simplexes.

To derive Λ(ξic(φk,s))[j], let us define Ωj ∈ Ck×k as the
matrix form of ξic(φk,s)[j] excluding the origin. That is, Ωj is
the square matrix whose l-th column is the coordinate of the
l-th vertex in ξic(φk,s)[j]. Then,

Λ(ξic(φk,s))[j] =
1
k!

det(Ωj). (16)

Recalling the definition of φk and ic, Ωj can be represented
as in (17), shown at the bottom of the page. Here, we can
decompose Ωj with regard to the degree of each element as in

(18) and (19), shown at the bottom of the page. For brevity, let
Φ, Σa, Σr, and Τ denote the four factors that comprise (19),
respectively, as follows:

Φ =

⎡
⎢⎢⎢⎢⎣

rφk [0]
1 · · · rφk [0]

k

rφk [1]
1 · · · rφk [1]

k
...

. . .
...

r
φk[k−1]
1 · · · r

φk[k−1]
k

⎤
⎥⎥⎥⎥⎦, Σa =

⎡
⎢⎣

a1 · · · 0
...

. . .
...

0 · · · ak

⎤
⎥⎦,

(20)

Ωj =

⎡
⎢⎢⎢⎢⎣

s[icj + φk[0]] s[icj + φk[0] + ic] · · · s[icj + φk[0] + (k − 1)ic]
s[icj + φk[1]] s[icj + φk[1] + ic] · · · s[icj + φk[1] + (k − 1)ic]

...
...

. . .
...

s[icj + φk[k − 1]] s[icj + φk[k − 1] + ic] · · · s[icj + φk[k − 1] + (k − 1)ic]

⎤
⎥⎥⎥⎥⎦ (17)

Ωj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�k

i=1
air

icj+φk[0]
i

�k

i=1
air

icj+φk[0]+ic

i · · ·
�k

i=1
air

icj+φk[0]+(k−1)ic

i�k

i=1
air

icj+φk[1]
i

�k

i=1
air

icj+φk[1]+ic

i · · ·
�k

i=1
air

icj+φk[1]+(k−1)ic

i

...
...

. . .
...�k

i=1
air

icj+φk[k−1]
i

�k

i=1
air

icj+φk[k−1]+ic

i · · ·
�k

i=1
air

icj+φk[k−1]+(k−1)ic

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

=

⎡
⎢⎢⎢⎢⎢⎣

rφk [0]
1 · · · rφk [0]

k

rφk [1]
1 · · · rφk [1]

k

...
. . .

...

r
φk[k−1]
1 · · · r

φk[k−1]
k

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎣

a1 · · · 0
...

. . .
...

0 · · · ak

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
r1 · · · 0
...

. . .
...

0 · · · rk

⎤
⎥⎥⎦

icj

·

⎡
⎢⎢⎢⎢⎣

r0
1 · · · r0

k

ric
1 · · · ric

k

...
. . .

...

r
(k−1)ic

1 · · · r
(k−1)ic

k

⎤
⎥⎥⎥⎥⎦

T

(19)
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Σr =

⎡
⎢⎣

r1 · · · 0
...

. . .
...

0 · · · rk

⎤
⎥⎦ , Τ =

⎡
⎢⎢⎢⎣

r0
1 · · · r0

k

ric
1 · · · ric

k
...

. . .
...

r
(k−1)ic

1 · · · r
(k−1)ic

k

⎤
⎥⎥⎥⎦.

(21)

Therefore, the decomposition in (19) can be represented by
Ωj = ΦΣaΣicj

r ΤT. Observe that only Σicj
r depends on j.

Hence, the following equality is satisfied for any j:

Λ(ξic(φk,s))[j + 1]
Λ(ξic(φk,s))[j]

=
det(Ωj+1)/k!
det(Ωj)/k!

=
det((Σr)ic(j+1))

det((Σr)icj)

=
�

det(Σr)
�ic

=
� k�

n=1

rn

�ic

. (22)

Therefore, we can verify that Λ(ξic (φk,s)) is a geometric
sequence. �

It is a noteworthy and effective property that k non-
orthogonally superposed geometric sequences can be trans-
formed into a geometric sequence. The fact that Λ(ξic(φk,s)) is
a geometric sequence, regardless of ic and φk, can be utilized
for acquiring k.

Theorem 1: Given s, for arbitrary ic ∈ N and φk̂,
Λ(ξic(φk̂,s)) is a non-zero geometric sequence if and only if

k̂ = k.
Proof: Lemma 1 provides that Λ(ξic(φk̂,s)) is a non-zero

geometric sequence if k̂ = k. Additionally, we present its
inverse as follows:

i) k̂ < k: recalling (19) and (20), Ωj can also be decom-
posed as ΦΣaΣicj

r ΤT even if k̂ < k. However, in this
case, Φ ∈ Ck̂×k and Τ ∈ Ck̂×k lead to an underde-
termined system. Thus, det(Σicj

r ) cannot be the factor
of det(Ωj) owing to the rank deficiency. Therefore,
det(Ωj+1)
det(Ωj)

is still a function of j. Hence, Λ(ξic(φk̂,s)) is
not a geometric sequence.

ii) k̂ > k: k̂-simplexes cannot be represented by k lin-
early independent bases. Therefore, the corresponding
volumes become zero, i.e., Λ(ξic (φk̂,s)) is an all-zero
sequence.

�
To be able to examine whether k̂ = k, the following

condition should be fulfilled:
Condition 1: Given s, card(Ξic(φk̂,s)) must be larger than

k + 1 for obtaining k regardless of ic and φk̂.
As a special case of Condition 1, we derive the minimum

number of samples to obtain k, i.e., the minimum required P .
Corollary 1: Given s, the minimum required P to obtain k

is 2k + 1.
Proof: The required P is minimized when we minimize

the number of unsampled elements in s. This implies that
ic = 1 and φk = {0, 1, · · · , k − 1}. By applying Condition
1 to this setting, the minimum Ξic(φk,s) is composed of
{s[0], s[1], · · · , s[2k]}. This concludes the proof. �

C. Combinatorial k-Simplexes to Extract Initial Terms
and Common Ratios

After obtaining k in s, we can specify the search space for
extracting a and r.

Definition 3: For an arbitrary φk , let the j-th series of
combinatorial k-simplexes, κj(φk,s), be the output of the
following process:

i) Fix the search space to Ξ1(φk,s) and construct ξ1(φk,s)
over Ξ1(φk,s).

ii) Pick any two consecutive basic k-simplexes such as
ξ1(φk,s)[j] and ξ1(φk,s)[j + 1] from ξ1(φk,s).

iii) Paste these two k-simplexes to create a new polyhedron
having k + 2 vertices, which we call the j-th union
polyhedron.1

iv) Extract lexicographically ordered k + 1 k-simplexes out
of the j-th union polyhedron.

We further define the volume quotients of the combina-
torial k-simplexes with the j-th union polyhedron, vj(φk,s),
as follows:

vj(φk,s) := {Λ(κj(φk,s)[0])
Λ(κj(φk,s)[0])

, · · · ,
Λ(κj(φk,s)[k])
Λ(κj(φk,s)[0])

}. (23)

Theorem 2: Given s, regardless of j and φk, vj(φk,s) is
unique as follows:

{1, · · · ,
�

1≤i1<i2<···<il≤k

� l�
n=1

rin

�
, · · · ,

k�
n=1

rn}. (24)

Proof: See Appendix B. �
By Theorem 2, vj(φk,s) is unique for a given s, and

therefore, can be simplified as v(k, s). This uniqueness is a
strong property because it implies that all the search spaces
contain identical information regardless of the selection of the
initial k-vertex.

Based on the information of v(k, s), we can construct a
polynomial equation for r as follows:

k�
n=0

�
(−1)k−n · v(k, s)[k − n] · rn

�
= 0. (25)

The roots of (25) are the common ratios r, which we seek.
Furthermore, the minimum number of samples for extracting r
can be described as follows:

Corollary 2: Given k, the most compact sampling for
extracting r is to take 2k consecutive samples of the
sequence s.

Proof: This is equivalent to constructing v(k, s) with
the least number of k-vertices made by φk of {0, 1, · · · ,
k − 1}. Then, the minimum required Ξ1(φk,s) is composed
of {s[0], s[1], · · · , s[2k − 1]}. This concludes the proof. �

After obtaining r, it is trivial to extract a by simple matrix
pseudo-inversion: a = R+s. Here, R ∈ CP×k is the matrix
constructed by r and satisfies R[m, n] := rm

n+1 for m, n ∈
N0, and (·)+ is the pseudo-inverse operation. Each pair of
initial term and common ratio is matched through this matrix
operation. Thus, there is no paring problem between the initial
terms and common ratios.

Note that the following condition should be satisfied to
obtain a and r with the knowledge of k.

Condition 2: Given s, card(Ξ1(φk,s)) must be larger than
k to obtain a and r regardless of φk.

1These two consecutive basic k-simplexes can be attached because they
share the coface made by k k-vertices based on the definition of ξ1(φk,s).
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The above condition provides a noteworthy characteristic
in terms of the non-consecutive and non-uniform sampling.
For example, when k = 3, the initial terms and common
ratios can be extracted by strangely sampled observations such
as {s[0], s[1], s[2], s[3], s[20], s[21], s[22], s[23], s[100],
s[101], s[102], s[103]}, i.e., φ3,s = (s[0], s[20], s[100])T.
Furthermore, the GSD-ST method can be extended to an
arbitrary k-polytope. Because all the k-simplexes in this work
include the origin point, the volume of any k-polytope can be
represented by addition and/or subtraction operations of the
volumes of these k-simplexes.

To summarize, starting from an arbitrary k̂-vertex, φk̂,s,
we identify k by verifying that a series of volumes of basic
k-simplexes, Λ(ξic(φk,s)), is a geometric sequence. Then,
we obtain r through the volume quotients of the combina-
torial k-simplexes, v(k, s). Finally, a is obtained by a simple
matrix operation. Algorithm 1 depicts the GSD-ST procedure,
which consists of two phases: acquisition of k and extraction
of a and r.

Algorithm 1 GSD-ST Process, S(·)
1: Set the observed sequence, s :=

�k
i=1 si.

2: [Phase 1: Acquisition of k]
3: Set k̂ to 1.
4: while Λ(ξic(φk̂,s)) is not a geometric sequence do
5: Set k̂ to k̂ + 1.
6: Pick arbitrary ic ∈ N and φk̂ .
7: Establish Ξic(φk̂,s) as per Definition 1.
8: Establish ξic(φk̂,s) as per Definition 2.
9: Construct Λ(ξic(φk̂,s)).

10: end while
11: Set k to k̂
12: [Phase 2: Extraction of a and r]
13: Construct v(k, s) from Ξ1(φk,s).
14: Extract r by finding the roots of (25).
15: Extract a by a = R+s where R[m, n] := rm

n+1.

Let the GSD-ST method be denoted by S(·). Then,

S(s) := {(a1, r1), · · · , (ak, rk)}, (26)

where S is a nonlinear function including the entire process
of obtaining k and extracting {(a1, r1), · · · , (ak, rk)}. In addi-
tion, we define the inverse of GSD-ST, S−1(·), as follows:

S−1({(a1, r1), · · · , (ak, rk)}) := s. (27)

If Conditions 1 and 2 hold, S−1(S(s)) is equivalent to s.

D. GSD-ST With Noisy Samples

Until now, we have assumed that the observation of s
is flawless. However, the observed sequence may be prone
to noise, particularly in wireless communications. Therefore,
in this section, we present practical methods for mitigating
errors in s. Let us define sw such that

sw := s + w = {s[l] + w[l]}P−1
l=0 , (28)

where w denotes a sequence of random variables representing
additive white Gaussian noise (AWGN). The fundamental
approach of the de-noising process is to utilize more samples
than the minimum requirement, i.e., to consider P > 2k + 1.

1) Estimation of k With Noise: We can design an approxi-
mated algorithm to estimate k by utilizing Theorem 2, i.e., all
possible v(k̂, sw) ∈ Ck̂+1 are identical when k̂ = k and
sw = s. To extract the informative part of v(k̂, sw), vI,k̂ ∈ Ck̂

is defined as v(k̂, sw) \ v(k̂, sw)[0] because v(k̂, sw)[0] = 1
for any v(k̂, sw). Here, \ is the operator of set minus.

We use a well-known method based on Euclidean distance
to examine the similarity among all possible v(k̂, sw). Let
v(i)

I,k̂
and v(j)

I,k̂
be two vI,k̂ among all the possible cases. Then,

the similarity function D(k̂, sw) is defined as follows:

D(k̂, sw) :=
� �

1≤ic≤iU ,1≤i<j≤iK

||v(i)

I,k̂
− v(j)

I,k̂
||
� 1
�iU

ic=1 (iK
2 ) ,

(29)

where || · || is the Euclidean norm of an input. Furthermore,
iU is the upper bound of ic, which corresponds to �P−k̂

k̂+1
�.

Here, �·� is the operator of the floor calculation. Given ic,

iK denotes the number of all possible vI,k̂,
�P−ick̂

k̂

�
. Thus,

D(k̂, sw) is the geometric mean of the similarity values for
all possible vI,k̂. Let k∗ be k̂ minimizing D(k̂, sw) and we
consider it to be k. If k∗ = k and sw = s, D(k∗, sw) becomes
zero.

Let Nd be the number of Euclidean distances to be com-
puted. It is given by

Nd =
iU�

ic=1

��P−ick̂

k̂

�
2

�
. (30)

The computation of D(k̂, sw) is demanding when the number
of P is large. Thus, we define two simplified similarity
functions, Dd(k̂, sw) and Dr(k̂, sw), as follows:

i) Dd(k̂, sw) :=
��

1≤i<j≤(P−k̂

k̂ ) ||v
(i)

I,k̂
− v(j)

I,k̂
||
� 1

((
P−k̂

k̂ )
2 ) ,

ii) Dr(k̂, sw) := ||v(i)

I,k̂
− v(j)

I,k̂
)||.

Dd(k̂, sw) is simplified by fixing iU as 1 in (30). Furthermore,
Dr(k̂, sw) is the simplest method that executes only one
calculation of Euclidean distance with arbitrary v(i)

I,k̂
and v(j)

I,k̂
.

2) Extraction of a and r With Noise: The de-noising of sw

is essentially a process of separating s and w. Here, s is an
index-wise correlated sequence with 2k parameters of interest,
whereas w is a sequence of random variables. We focus on
the fact that s has k non-identical bases. Furthermore, each
basis is formed by only one parameter, i.e., the common
ratio, from the characteristic of the geometric sequence. From
this perspective, the de-noising of sw can be handled by
suppressing the number of bases for sw to k.

Thus, we utilize iterative k-truncated singular value decom-
position (SVD) [20] for taking the k largest singular values and
their corresponding vectors. Let sw

∗ be the de-noised sequence
which is the output of the following process:
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i) Create a matrix, Q ∈ CPh×(P−Ph+1), where Ph =
�P+1

2 � from sw. Q satisfies the condition:

Q[m, n] := sw[m + n]. (31)

ii) Execute the k-truncated SVD of Q.
iii) Reconstruct Q using the k-tuples of singular values and

vectors.
iv) Transform Q onto a new sw by averaging the values with

the same index, i.e.,

{sw[l]}P−1
l=0 :=

1
q

�
n,m

Q[m, n], s.t. m + n = l, (32)

where q = l + 1 if l < Ph, and q = P − l otherwise.
v) Repeat the above four-step process with the stopping

criterion � until sw converges to s∗w.

The above de-noising process for sw is equivalent to making
the bases of Q for both row space and column space identi-
cal to each other, with the aim of minimizing the number
of parameters in sw. Then, we extract a and r using s∗w.
Algorithm 2 summarizes the process of GSD-ST with noisy
samples.

Algorithm 2 GSD-ST Process With Noisy Samples
1: [Phase 1: Estimation of k]
2: Determine k∗ that minimizes D(k̂, sw) in (29).
3: [Phase 2: Extraction of a and r]
4: Obtain s∗w by iterative k-truncated SVD of Q.
5: Implement Phase 2 of Algorithm 1 for s∗w.

IV. APPLICATION OF GSD-ST TO NON-ORTHOGONAL

INTERFERENCE-FREE RADIO ACCESS

A. Potential of GSD-ST for Wireless Communications

As we discussed in the Introduction, the equidistant samples
of a radio wave comprise a geometric sequence. This may
not be apparent for the case of quadrature amplitude modu-
lation (QAM) because the radio wave is discontinuous over
time. However, if we consider a symbol duration, the mod-
ulated signal can be interpreted as a continuous wave that
contains the modulation information in the initial term. Hence,
an accumulation of radio waves in a symbol duration is equiv-
alent to a superposition of geometric sequences. Therefore,
the capability to decompose geometric sequences offers the
potential for separating (i.e., demodulating) non-orthogonally
superposed radio waves.

The use of orthogonality has been the fundamental method
for handling multiple radio waves. Orthogonality is avail-
able in various domains such as time, frequency, and space.
Recently, orthogonality has been sought in a more sophisti-
cated domain such as codebook [21]. In general, there is no
guarantee that the proposed GSD-ST would yield a higher
performance than the existing multiple access schemes. This
is particularly so when it is compared with a well-designed
scheme, e.g., sparse code multiple access (SCMA) [21].
However, orthogonality is not always feasible in wireless
communications. For example, consider random access in

cellular systems, where the transmissions of multiple users
cannot be coordinated. Typical random access schemes arrange
a finite number of orthogonal resources from which each user
selects randomly. This inevitably incurs interference owing to
collisions regardless of the number of orthogonal resources.

We can pursue a different approach to random access,
i.e., non-orthogonal transmissions with GSD-ST. Assume that
each transmitter randomly selects its frequency in a specified
bandwidth. Here, a fundamental difference from the existing
schemes is that the frequency is selected in a continuous
domain rather than from a finite grid. Even if the overlapping
radio waves are not orthogonal, they can be decomposed as
if there were no interference by using only 2k + 1 sam-
pling at a rate faster than the highest frequency component.
Theoretically, GSD-ST enables the infinitely many users to
share a limited bandwidth because the probability of randomly
selecting an identical continuous number is zero. In prac-
tice, the performance of GSD-ST is bounded by the signal-
to-noise ratio (SNR). Therefore, we can infer that the proposed
GSD-ST would be beneficial when the SNR of each signal
is high and the orthogonality between the signals cannot be
ensured.

To harness the advantage of GSD-ST, we propose a novel
technique (No-INFRA) as an application of GSD-ST to radio
access networks. It strives to eliminate the effect of collisions
of multiple access attempts by permitting each user to ran-
domly select its frequency within a limited bandwidth and by
employing GSD-ST for the demodulation process. To clarify
our contribution, we assume that a single-path channel model
is applied hereafter. The following one-to-one correspondences
between GSD-ST and No-INFRA hold, and thus we use these
terms interchangeably.

• Number of geometric sequences (k) � Number of signals
containing independent messages.

• Non-orthogonally superposed k geometric sequences
with noise (sw) � Sampled signal at the receiver.

• Initial term of the n-th geometric sequence (an) �
Multiplication of the n-th symbol and the channel gain
between the n-th transmitter and the receiver.

• Common ratio of the n-th geometric sequence (rn) �
Exponential function of the Doppler-shifted subcarrier
carrying the n-th messages.

B. Design of No-INFRA

Let fn denote the frequency of the transmitted signal of
the n-th transmitter. We consider that fn follows the uniform
distribution, fn ∼ U(1/T, F ), for any n. Here, T and F are
the symbol duration and signal bandwidth, respectively. Each
transmitter uses a single subcarrier to deliver information.
For a continuous time duration t ∈ [0, T ], the baseband
signal of the n-th transmitter can be expressed as xn(ej2πfn)t.
Here, xn is a modulated symbol containing the information
transmitted by the n-th baseband signal, where E[||xn||2] = 1.
Then, for a discrete sampling domain l ∈ {0, 1, · · · , P − 1},
the discrete baseband sequence at the receiver is given by

sw :=
k�

n=1

{βnejθnxn(ej2πf̃n)lΔTs}P−1
l=0 + w, (33)
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Fig. 2. Performance of the de-noising process.

where ΔTs and f̃n are the sampling interval and the
Doppler-shifted subcarrier of the n-th transmitter, respectively.
In addition, βn and γn are the channel coefficients between the
n-th transmitter and the receiver related to the power attenua-
tion (owing to path-loss and shadowing) and the phase rotation
(owing to the delay spread and the Doppler frequency), respec-
tively, which can be estimated at the receiver. The channel gain
and modulated symbol, i.e., βn, γn, and xn, are integrated
into the initial term of the n-th sequence, an. Furthermore,
ΔTs and f̃n are integrated to the common ratio of the
n-th sequence, rn. The procedure for No-INFRA is described
in Algorithm 3.

Algorithm 3 Procedure for No-INFRA
1: <transmitter side>
2: Modulate the information to the modulated symbol, xi.
3: Determine the frequency of signal fn ∼ U(1/T, F ) to carry

information.
4: Transmit the modulated continuous signal, xn(ej2πfn )t for

the time interval [0, T ].
5: <receiver side>
6: Set sw by a discrete sampling.
7: Operate Algorithm 2 with sw to estimate k, a, and r.
8: Demodulate xn with the prior knowledge of βn and γn,

i.e., xn = an/(βnej2πθn), for all n.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed
No-INFRA mainly in terms of symbol error rate (SER). The
result is based on 2×105 Monte Carlo simulation experiments.
We assume the center frequency, signal bandwidth, and symbol
duration to be 6 GHz, 1 MHz, and 30 μs, respectively.
Furthermore, we set the sampling rate at the receiver to be
equivalent to the signal bandwidth, i.e., P = 30. The SNR
of each signal is assumed to follow a normal distribution,
N (γdB, σ2

dB), in dB scale.

Additionally, we assume that the delay spread and the
Doppler frequency of each signal follow uniform distributions
in the ranges [0, 1 μs] and [−1 kHz, 1 kHz], respectively. Note
that No-INFRA is robust to the frequency distortion caused
by the Doppler effect because the users select frequencies
randomly in the beginning. The robustness to the Doppler
effect may be increased further if No-INFRA is combined with
orthogonal time frequency space (OTFS) modulation which
utilizes the delay-Doppler domain [22], [23]. However, it is
beyond the scope of this paper and would be considered in a
future study.

A. Effect of De-Noising Process

First, we examine the impact of the de-noising process on
the performance of GSD-ST. Fig. 2 shows the performance of
de-noising in terms of normalized mean square error (NMSE)
between the original sequence and observed/reconstructed
sequences when k is known. We set σdB to zero, which
implies that all the sequences undergo identical γdB . The
convergence speed of de-noising is also presented to indi-
cate its complexity. Each transmitter selects the frequency of
subcarrier through a continuous uniform distribution in the
range [33.33 kHz, 1 MHz]. We set the stopping criterion (�)
and maximum number of iterations (Imax) as 10−10 and 30,
respectively.

Fig. 2a indicates that the de-noising is an appropri-
ate pre-processing of GSD-ST. Observe that the NMSE of
the observed sequence is inverse-proportional to the SNR.
As anticipated, the reconstruction of the sequence through
GSD-ST incurs more errors without the de-noising. Con-
versely, the de-noising makes the reconstructed sequence even
closer to the original one. The gap between GSD-ST with the
de-noising and the observed sequence remains almost constant
regardless of γdB . This indicates that the de-noising is effective
in the whole range of SNR. Hence, we continue to employ the
de-noising in the subsequent experiments.

The computational complexity required for de-noising is
derived as O(IkPh(P −Ph + 1)) based on the complexity of
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Fig. 3. SER according to γdB (M = 16 and σdB = 10).

k-truncated SVD [24]. Here, Ph = �P+1
2 � and I is the number

of iterations. The distributions of I for different γdB values
are shown in Fig. 2b to represent the complexity of de-noising
and its convergence tendency. It is observed that the de-noising
converges faster in the high SNR regime. When γdB = 5,
the de-nosing process fails to converge for 9.35% of the cases.
In contrast, the de-noising is completed in a relatively short
time for the high SNR, e.g., 11.33 iterations when γdB = 100.

B. Comparison With Conventional Scheme in Random Access

In this subsection, the SER performance of No-INFRA is
shown as functions of the SNR distribution (N (γdB, σ2

dB)),
number of transmitters (k), and modulation order (M ) under
the assumption that k is known. QAM is adopted for mod-
ulation in our simulation. For a performance comparison,
we select orthogonal random access with successive interfer-
ence cancellation (ORA+SIC) [15], [16]. It consists of two
steps for demodulation: the fast Fourier transform (FFT) in
the time domain and SIC in the power domain. The same
symbol duration and the signal bandwidth as No-INFRA yield
30 orthogonal subcarriers. However, even a few transmit-
ters may experience interference owing to collisions that are
incurred by the uncoordinated nature of the random access.
For the case of collision, SIC is employed to reduce the SER.

Fig. 3 illustrates the SER of the No-INFRA and ORA+SIC
schemes concerning γdB under the setting of M = 16
and σdB = 10. This figure shows that the performance of
ORA+SIC is saturated even in the high SNR regime. In the
case of k = 2, the average signal-to-interference-plus-noise
ratio (SINR) is approximately 0 dB if a collision occurs. Thus,
irrespective of how large γdB is, the interference between
signals remains dominant, which results in the saturation of
SER performance. This tendency is more severe for the case of
k = 4, where the average SINR is almost −5 dB. In contrast,
No-INFRA displays a remarkable SER performance over a
region where interference is dominant compared to noise. That
is, No-INFRA responds more strongly to a weaker noise power
than ORA+SIC. Therefore, notwithstanding the poor average
SINR, the SER of No-INFRA decreases linearly as γdB

Fig. 4. SER according to σdB (M = 16 and γdB = 30).

Fig. 5. SER according to k (M = 16, γdB = 30, and σdB = 10).

increases in the log-log scale. No-INFRA starts to outperform
ORA+SIC at γdB = 25, and the gap widens as γdB increases.

Next, the SER of No-INFRA and ORA+SIC is depicted
in Fig. 4 with respect to σdB ∈ {0, 2, · · · , 30} and with a
fixed γdB. No-INFRA outperforms ORA+SIC regardless of k
and σdB . The SER of ORA+SIC improves as σdB increases
from zero to six because the received powers fluctuate more,
which creates more suitable conditions for SIC to be effective.
However, when σdB > 6, the SER of ORA+SIC deteriorates
because the SINR of the weaker transmitter tends to be
insufficient, whereby it demodulates only the stronger one.
This phenomenon occurs in No-INFRA as well. Because the
largest k singular values are selected during the de-noising
process, the increment in σdB forces the small singular values
to be buried in the noise.

Fig. 5 shows the SER of No-INFRA and ORA+SIC
according to the increase in k. Note that the transmitters
select random frequencies in No-INFRA, which implies that
the Doppler shift does not influence the performance of
No-INFRA. This indicates that GSD-ST can be a robust
tool to combat the signal distortion by the Doppler shift.
Meanwhile, ORA+SIC suffers from the orthogonality crack
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TABLE I

DETECTION RATE OF k BASED ON THE THREE SIMILARITY FUNCTIONS (LEFT: σdB = 0, RIGHT: σdB = 10)

between the subcarriers in the presence of the Doppler shift.
Therefore, No-INFRA displays a superior SER performance
than ORA+SIC, particularly when the Doppler shift exists.

In Fig. 6, we compare the SER of No-INFRA and
ORA+SIC under a variation in the modulation order, M .
In the case of ORA+SIC, the effect of Doppler shift becomes
strong at 8 QAM. For BPSK and QPSK, the demodula-
tion is possible through the phase difference. However, from
8 QAM, the information on power difference is also required.
Therefore, the performance to resolve the interference in the
power domain starts to be influenced by the effect of the
Doppler shift from 8 QAM. No-INFRA is devoid of this
phenomenon, and therefore, outperforms ORA+SIC in the
presence of the Doppler shift. However, in the static environ-
ment, ORA+SIC is more robust at high modulation orders,
e.g., above 128 QAM.

To summarize, No-INFRA outperforms ORA+SIC in the
scenarios where the Doppler shift and similar received
powers exist. It is noteworthy that No-INFRA and ORA+SIC
can be complementing techniques. Because No-INFRA is an
algorithm for addressing k random frequencies, it is naturally
immune to the Doppler shift. Meanwhile, ORA+SIC is sen-
sitive to the orthogonality crack owing to the Doppler shift.
In addition, No-INFRA performs best when the received pow-
ers of the individual signals are similar, which is not favorable
to ORA+SIC. GSD-ST utilizes the high SNR completely,
whereas ORA+SIC is more robust to the noise. Therefore,
No-INFRA and ORA+SIC can be alternative design options
for different environments.

C. Detection Rate of Number of Transmitters

In this subsection, we analyze the performance of the
estimation of the number of transmitters, k. Here, we assume
k ∈ {1, 2, 3, 4}. It is equivalent to the process of estimating
the number of parameters using only 30 noisy samples without
additional information such as noise level. Table I shows the
detection rates of the three similarity functions Dr, Dd, and
D in the environments of γdB ∈ {30, 60} and σdB ∈ {0, 10}.
In all the scenarios, the detection rate is higher at σdB = 0
than at σdB = 10. This indicates that a higher detection rate
is obtained when the difference in the received power of each
transmitter’s signal is less. It is noteworthy that in the cases of
k = 2 and γdB = 60, the detection rate is higher than 85% for
all the similarity functions. In our algorithm, the most probable
k is determined based on the values of the similarity function
calculated over the given samples. Therefore, it is superior to
techniques that require a relatively large number of samples
and prior knowledge of noise levels, such as the constant
false alarm rate (CFAR) algorithm [25], [26]. Moreover, this

Fig. 6. SER according to M (k = 4, γdB = 30, and σdB = 10).

method has the potential to be used as a pre-process for
parametric estimation techniques such as the multiple signal
classification (MUSIC) algorithm that assumes the number of
parameters is known [27], [28].

VI. CONCLUSION AND FUTURE WORKS

We introduced a mathematical method for decomposing
non-orthogonally superposed k geometric sequences, which
we call GSD-ST. Our method converts the problem of decom-
posing k geometric sequences into root-finding of a k-th order
polynomial equation. We employed the concept of k-simplex
for a formal derivation of the method and established that only
2k + 1 samples of the superposed sequence are required for
the entire process of GSD-ST.

The proposed GSD-ST can be applied widely to the field of
wireless communications because an equidistant sampling of
a radio wave comprises a geometric sequence. We presented
a new radio access scheme, namely No-INFRA, to illustrate
GSD-ST’s potential for addressing non-orthogonally accumu-
lated radio signals. It enables a receiver to demodulate multi-
ple uncoordinated access requests simultaneously. Numerical
results show that No-INFRA is effective in interference-limited
environments.

Considering the intrinsic similarity between radio waves and
geometric sequences, we believe that the GSD-ST method
can open new horizons in various research fields. Depend-
ing on the physical domain in which the superposed radio
waves are sampled, the potential of GSD-ST is broadened
for sparse channel estimation that captures the features of
multi-path channels such as excess delay, Doppler shift, or
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direction-of-arrival. Furthermore, the GSD-ST method can
be effective for mitigating the orthogonality cracks such as
inter-symbol or inter-carrier interference in OFDM systems.
The abundant applicability of GSD-ST would play a cru-
cial role in providing disruptive technologies for wireless
communications.

APPENDIX A
COMPLEX-VALUED EXAMPLE OF GSD-ST

Consider the following two geometric sequences:

s1 = {a1 rl
1}P−1

l=0 = {(64 + 32j) · (0.5 − 0.5j)l}P−1
l=0

= {64 + 32j, 48 − 16j, 16− 32j,−8− 24j,−16 − 8j,

− 12 + 4j,−4 + 8j, 2 + 6j, · · · },
s2 = {a2r

l
2}P−1

l=0 = {(0.125 + 0.0625j) · (2 + j)l}P−1
l=0

= {0.125 + 0.0625j, 0.1875 + 0.25j, 0.125 + 0.6875j,

− 0.4375 + 1.5j,−2.375 + 2.5625j,−7.3125+ 2.75j,

− 17.375− 1.8125j,−32.9375− 21j, · · · }, (34)

where j =
√−1. Here, we can observe only their

superposition, s, i.e.,

s = s1 + s2 = {(64 + 32j) · (0.5 − 0.5j)l

+ (0.125 + 0.0625j) · (2 + j)l}P−1
l=0

= {64.125 + 32.0625j, 48.1875− 15.75j, 16.125
− 31.3125j,−8.4375− 22.5j,−18.375− 5.4375j,

− 19.3125 + 6.75j,−21.375 + 6.1875j,

− 30.9375− 15j, · · · }. (35)

Let us obtain k, a, and r.
1) Obtaining k: Consider an arbitrary k̂ as an estimate of k.

For k̂ = 2, we consider a two-dimensional space in which
we generate 2-simplexes, i.e., triangles, from the origin and
consecutive values of s. Let us create three triangles (A1, A2,
and A3) with the following coordinates:

A1 : [(0, 0)T, (64.125 + 32.0625j, 48.1875− 15.75j)T,

(48.1875− 15.75j, 16.125− 31.3125j)T],
A2 : [(0, 0)T, (48.1875− 15.75j, 16.125− 31.3125j)T,

(16.125− 31.3125j,−8.4375− 22.5j)T],
A3 : [(0, 0)T, (16.125− 31.3125j,−8.4375− 22.5j)T,

(−8.4375− 22.5j,−18.375− 5.4375j)T]. (36)

Then, we examine whether the volumes of the triangles,
Λ(An), constitute a geometric sequence. Here, Λ(A1) =
−18 + 13.5j, Λ(A2) = −20.25 + 29.25j, and Λ(A3) =
−15.75+54j, which is a geometric sequence with a common
ratio of 1.5 − 0.5j. Therefore, we verify that s is a super-
position of two geometric sequences (k = 2). For k̂ > 2,
the volumes of k̂-simplexes always constitute a sequence of
zeros.

2) Obtaining a and r: Let us extract 2k samples of s and
create three vertices with the coordinates

[(64.125 + 32.0625j, 48.1875− 15.75j)T,

(48.1875− 15.75j, 16.1250− 31.3125j)T,

(16.1250− 31.3125j,−8.4375− 22.5j)T]. (37)

Next, select k vertices out of k+1 shown above. By including
the origin, we can create k + 1 k-simplexes in a lexicograph-
ically ordered manner. This corresponds to three triangles in
this example, with the following coordinates:

B1 : [(0, 0)T, (64.125 + 32.0625j, 48.1875− 15.75j)T,

(48.1875− 15.75j, 16.1250− 31.3125j)T],
B2 : [(0, 0)T, (64.125 + 32.0625j, 48.1875− 15.75j)T,

(16.1250− 31.3125j,−8.4375− 22.5j)T],
B3 : [(0, 0)T, (48.1875− 15.75j, 16.1250− 31.3125j)T,

(16.1250− 31.3125j,−8.4375− 22.5j)T]. (38)

Let Λ(Bn) denote the volume of the n-th tetrahedron.
Again, the following relationship holds by Theorem 2 in
Section III-C:�

Λ(B1)
Λ(B1)

,
Λ(B2)
Λ(B1)

,
Λ(B3)
Λ(B1)

�
= {1, (r1 + r2), r1r2}. (39)

Observe that these are the coefficients of a polynomial whose
roots are r1 and r2. Therefore, the common ratios of the
geometric sequences can be obtained by solving the quadratic
equation shown below:

x2 − Λ(B2)
Λ(B1)

x +
Λ(B3)
Λ(B1)

= 0. (40)

Finally, once the common ratios of the sequences are obtained,
we can extract the initial terms by solving a simple linear
system of equations.

APPENDIX B
PROOF OF THEOREM 2

Let Ω̄j ∈ C(k+1)×k be the matrix form of the j-th union
polyhedron. Similar to the matrix decomposition in (19), Ω̄j

can also be decomposed as follows:

Ω̄j = ΦΣaΣj
r ·

⎡
⎢⎢⎢⎢⎢⎣

r0
1 · · · r0

k

r1
1 · · · r1

k
...

. . .
...

rk−1
1 · · · rk−1

k

rk
1 · · · rk

k

⎤
⎥⎥⎥⎥⎥⎦

T

. (41)

Furthermore, we define Τ̄ as follows to express Ω̄j as
ΦΣaΣj

rΤ̄
T
:

Τ̄ =

⎡
⎢⎢⎢⎢⎢⎣

r0
1 · · · r0

k

r1
1 · · · r1

k
...

. . .
...

rk−1
1 · · · rk−1

k

rk
1 · · · rk

k

⎤
⎥⎥⎥⎥⎥⎦. (42)

To represent κj(φk,s), let Yl ∈ {0, 1}(k+1)×k be the sketch
matrix capturing all the rows excluding the l-th row. For

example, Y2 =

⎡
⎣1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎦

T

when k = 3. The volume of

κj(φk,s)[l] is given by

Λ(κj(φk,s)[l]) =
1
k!

· det(Ω̄jYl). (43)
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Then, (23) can be rewritten as follows:

vj(φk,s) = {det( BarΩjY0)
det(Ω̄jY0)

, · · · ,
det(Ω̄jYk)
det(Ω̄jY0)

}

= {det(Τ̄TY0)

det(Τ̄TY0)
, · · · ,

det(Τ̄TYk)

det(Τ̄TY0)
}. (44)

For simplicity, let Τl denote Τ̄TYl. This implies that Τl is
the transpose of the matrix excluding the (k− l)-th row of Τ̄.
Then, we can simplify vj(φk,s) as follows:

vj(φk,s) = {det(Τ0)
det(Τ0)

, · · · ,
det(Τk)
det(Τ0)

}. (45)

Let us have a closer look at det(Τ0).

det(Τ0) = det

⎡
⎢⎢⎢⎢⎢⎣

r0
1 r1

1 · · · rk−1
1

r0
2 r1

2 · · · rk−1
2

...
...

. . .
...

r0
k−1 r1

k−1 · · · rk−1
k−1

r0
k r1

k · · · rk−1
k

⎤
⎥⎥⎥⎥⎥⎦ . (46)

We employ the technique of variable substitution to manipulate
det(Τ0). Replace rk in Τ0 with the variable x, and generate
the following polynomial p0(x):

p0(x) = det

⎡
⎢⎢⎢⎢⎢⎣

r0
1 r1

1 · · · rk−1
1

r0
2 r1

2 · · · rk−1
2

...
...

. . .
...

r0
k−1 r1

k−1 · · · rk−1
k−1

x0 x1 · · · xk−1

⎤
⎥⎥⎥⎥⎥⎦ . (47)

The roots of p0(x) are given by x ∈ {r1, · · · rk−1}. This is
because the n-th row of Τ0 is represented only by rn in (47).
Thus, if x is replaced by rn (n �= k), p0(x) becomes zero.
It implies that (x−r1), · · · , (x−rk−1) are the factors of p0(x).
Consequently, we can rewrite (47) as follows:

p0(x) = q(x0) · (x − r1) · · · (x − rk−1), (48)

where q(x0) is a coefficient of xk−1. Considering the rule for
calculating the determinant, q(x0) is equal to the determinant
of Τ�

0, which is presented below:

Τ�
0 =

⎡
⎢⎢⎢⎣

r0
1 r1

1 · · · rk−2
1

r0
2 r1

2 · · · rk−2
2

...
...

. . .
...

r0
k−1 r1

k−1 · · · rk−2
k−1

⎤
⎥⎥⎥⎦ . (49)

Insert det(Τ�
0) instead of q(x0) in (48), and replace x with

rk. Then, (46) can be rewritten as follows:

det(Τ0) = det(Τ�
0) · (rk − r1) · · · (rk − rk−1). (50)

We can repeat the above process until Τ�
0 is equal to r0

1 ,
i.e., one. As a result,

det(Τ0) = 1 · (r2 − r1) · · ·
�
(rk−1 − r1) · · · (rk−1 − rk−2)

�
· �(rk − r1) · · · (rk − rk−1)

�
=

�
1≤n<m≤k

(rm − rn). (51)

Similarly, we can construct p1(x) based on Τ1 as follows:

p1(x) = q(x1) · (x − r1) · · · (x − rk−1), (52)

where q(x1) =
�

1≤n<m≤k−1(rm − rn) · (x +
�k−1

n=1 rn).
By replacing x in (52) with rk, we obtain

det(Τ1) = (
k�

n=1

rn) ·
�

1≤n<m≤k

(rm − rn)

= (
k�

n=1

rn) · det(Τ0). (53)

Repeat the above process over all possible l. Then, we can
determine the following form of det(Τl):

det(Τl) =
�

1≤n<m≤k

(rm − rn)
�

1≤i1<i2<···<il≤k

� l�
n=1

rin

�
.

(54)

Recalling (45), vj(φk,s) can be obtained as follows:

vj(φk,s) = {1, · · · ,
�

1≤i1<i2<···<il≤k

� l�
n=1

rin

�
, · · · ,

k�
n=1

rn}.

(55)

Therefore, all possible vj(φk,s) are identical to each other.
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