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Abstract

In this paper, we propose a downlink multiple-input single-output (MISO) transmission scheme,

which is assisted by an intelligent reflecting surface (IRS) consisting of a large number of passive

reflecting elements. In the literature, it has been proved that nonorthogonal multiple access (NOMA)

can achieve the capacity region when the quasi-degradation condition is satisfied, which is characterized

by users’ channels. However, in a conventional communication scenario, it is difficult to guarantee the

quasi-degradation, because the channels are determined by the propagation environments and cannot be

reconfigured. To overcome this difficulty, we focus on an IRS-assisted MISO NOMA system, where the

wireless channels can be effectively tuned. We optimize the beamforming vectors and the IRS phase

shift matrix for minimizing transmission power. Furthermore, we propose an improved quasi-degradation

condition by using IRS, which can ensure that NOMA achieves the capacity region with high possibility.

For a comparison, we study zero-forcing beamforming (ZFBF) as well, where the beamforming vectors

and the IRS phase shift matrix are also jointly optimized. Comparing NOMA with ZFBF, it is shown

that, with the same IRS phase shift matrix and the improved quasi-degradation condition, NOMA always

outperforms ZFBF. At the same time, we identify the condition under which ZFBF outperforms NOMA,

which motivates the proposed hybrid NOMA transmission. Simulation results show that the proposed

IRS-assisted MISO system outperforms the MISO case without IRS, and the hybrid NOMA transmission

scheme always achieves better performance than orthogonal multiple access.
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I. INTRODUCTION

In the beyond fifth generation (B5G) communication systems, there are high requirements in

spectrum efficiency, energy consumption, and massive connectivity [1]. In order to meet these

high demands, various technologies, such as massive multiple-input multiple-output (MIMO),

millimeter wave, and small cell, are being investigated for the B5G communication systems.

In addition, nonorthogonal multiple access (NOMA) has also been introduced as a promising

multiple access candidate for future mobile networks [2], [3]. Different from the conventional

multiple access scheme, i.e., orthogonal multiple access (OMA), NOMA allows multiple users

sharing the same resources, such as time, frequency, space, and code, and hence significantly

improves the spectrum efficiency [4]–[6].

In addition, being able to provide the flexibility and spatial degrees of freedom needed for

efficient resource allocation, multi-antenna techniques have been widely considered in the B5G

communication systems [7]. In the literature, there are many works focusing on the coexistence

of NOMA and multi-antenna techniques. For example, in [8], the authors applied NOMA in

MIMO systems and showed that MIMO-NOMA outperforms conventional MIMO-OMA. In

[9], the authors proposed the quasi-degradation condition, under which NOMA can achieve the

same performance as dirty paper coding (DPC). This work also demonstrated that NOMA is

not always preferable. If users’ channels are orthogonal, zero-forcing beamforming (ZFBF) is

a more preferred option than NOMA. On the other hand, the users’ channels having the same

directions is the ideal case for the implementation of NOMA.

Conventionally, in NOMA systems, the directions of users’ channels cannot be tuned. This is

because the users’ channels are determined by propagation environments and hence are highly

stochastic. Motivated by this, in this paper, we apply the intelligent reflecting surface (IRS) to

NOMA systems to reconfigure the channels.

The IRS, consisting of a large number of passive elements, is introduced as a promising

technology for the B5G communication systems [10], [11]. The reflecting elements of the IRS

can affect the electromagnetic behavior of the wireless propagation channel. Usually, the IRS

operates as a multi-antenna relay but it is fundamentally different from a conventional relay.

Specifically, the IRS functions as a reconfigurable scatterer, which requires no dedicated energy

resource for decoding, channel estimation, and transmission.

In the literature, there were a large number of works studying the IRS-assisted communication
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system. For example, [12] provided an overview of the IRS technology, including its main

applications in wireless communication, competitive advantages over existing technologies, and

hardware architecture. In [13], the authors studied the issue of security in the IRS-assisted

communication system, where the beamforming vectors, artificial noise covariance matrix, and

the phase shifters at the IRSs are jointly optimized. One of the key challenges in adopting

IRS-assisted communication systems is to design the IRS phase shift matrix [14]–[16]. In this

paper, we focus on the design of beamforming vectors and the IRS phase shift matrix for an

IRS-assisted multiple-input single-output (MISO) NOMA communication system.

Among the existing works, there is a few similar works, e.g., [17]–[21], investigating the

application of IRS in NOMA systems. In [17], the authors optimized the beamforming vectors and

the IRS phase shift matrix for minimizing downlink transmission power in the IRS-empowered

NOMA system. [18] proposed a simple design of IRS-assisted NOMA transmission, where the

authors characterized the performance of practical IRS NOMA transmission. [19] maximized

the sum rate of all users by jointly optimizing the active beamforming at the BS and the passive

beamforming at the IRS, where the ideal and non-ideal IRS assumptions are both studied. In

a multi-cluster IRS-aided MISO NOMA communication network, [21] jointly optimized the

beamforming vectors and the IRS element matrix for minimizing the transmission power. In

[20], the authors discussed the comparison between IRS OMA and IRS NOMA. However, all

the above works have not found that the IRS-assisted MISO NOMA can achieve the same

performance as DPC.

Different from all the above mentioned previous works, in this paper, the advantage of the

employment of IRS in NOMA systems is demonstrated and the best achievable performance

achieved by using IRS-assisted NOMA is obtained. We optimize the beamforming vectors and

the IRS phase shift matrix to minimize the transmission power. Particularly, note that the quasi-

degradation condition is used to characterize the gap between the optimal performance of DPC

and that achieved by NOMA for the special case of two users [9], [22]. Therefore, for the

formulated optimization problem, we consider a quasi-degradation constraint to guarantee that

NOMA achieves the same performance as DPC, which can realize the capacity region [23].

Conventionally, whether the quasi-degradation condition can be satisfied depends on the

predetermined channels, which means NOMA might not always achieve the capacity region.

In addition, DPC is difficult to be implemented in practical communication systems, due to

its prohibitively high complexity [23]. By employing the IRS-assisted NOMA, we design a
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more practical transmission scheme, which achieves the same performance as DPC. We further

investigate optimizing beamforming vectors and the IRS phase shift matrix for IRS-assisted

zero-forcing beamforming (ZFBF) scheme and show that it is preferred to IRS-assisted NOMA

in certain condition.

In this paper, we study the joint optimization of beamforming vectors and the IRS element

matrix respectively for IRS-assisted NOMA and IRS-assisted ZFBF and focus on the fundamental

two users’ case. The contributions are summarized as follows.

• In IRS-assisted NOMA systems, we study the optimization of beamforming vectors and the

IRS phase shift matrix for minimizing the BS transmission power. Particularly, the quasi-

degradation is considered as a constraint in the optimization problem, which guarantees that

NOMA can achieve the same performance as DPC.

• For IRS-assisted NOMA, we provide an improved quasi-degradation condition under which

the feasibility of the optimization problem is guaranteed and the same performance as DPC

is obtained.

• We show that the improved quasi-degradation condition for IRS-assisted NOMA can be

satisfied with a higher possibility than conventional NOMA without IRS.

• The optimal beamforming solutions with given IRS phase shift matrix are provided accord-

ing to our previous papers [22] and [9]. Then, with the optimal beamforming, we further

optimize the IRS phase shift matrix using semidefinite relaxation (SDR) and quadratic

transform.

• For IRS-assisted ZFBF, we also characterize the optimal beamforming in a closed form

with a given IRS phase shift matrix. The IRS phase shift matrix is further optimized using

fractional programing and successive convex approximation (SCA).

• Comparing IRS-assisted NOMA with IRS-assisted ZFBF, we show that, given the same

IRS phase shift matrix and the improved quasi-degradation condition, NOMA achieves

better performance than that of ZFBF. However, ZFBF outperforms NOMA under certain

condition and hence we provide the hybrid NOMA transmission scheme.

The rest of the paper is organized as follows. In Section II, we describe the system model and

formulate the minimizing transmission power problem. In Section III, we analyze the feasibility

of the formulated problem in IRS-assisted NOMA systems, and then the beamforming vectors

and the IRS phase shift matrix are optimized. In Section IV, we design the beamforming vectors
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and the IRS phase shift matrix for IRS-assisted ZFBF. In Section V, we compare the schemes

of IRS-assisted NOMA and IRS-assisted ZFBF and propose the hybrid NOMA transmission

scheme. Finally, in Section VI, we present simulation results followed by conclusion in Section

VII.

Notations: The matrices and vectors are respectively denoted as boldface capital and lower

case letters. Tr(A) and Rank(A) represent the trace and rank of matrix A, respectively; aH is

the Hermitian transpose vector a; A ⌫ 0 indicates that A is a positive semidefinite matrix; IN

is the N ⇥N identity matrix; CT denotes the set of complex numbers; k.k denotes the absolute

value of the Euclidean vector norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider the downlink MISO system wherein a base station (BS)

equipped with M antennas serves two single-antenna users. In this MISO system, the commu-

nication is assisted by an IRS with N phase shift elements. Let si be the message intended to

be received by user i with E
⇥
|si|

2⇤ = 1 and wi 2 CM be the complex beamforming vector for

user i. In this IRS-assisted MISO system, we consider that the BS exploits superposition coding

and hence the received signal at each user is

yk = h
H
k (w1s1 +w2s2) + nk, k = 1, 2, (1)

where nk ⇠ CN (0, �2) is the additive zero average white Gaussian noise (AWGN) with variance

of �2 , and

h
H
k = hH

rk⇥G+ hH
dk 2 C1⇥M , (2)

is the channel of user k. In (2), hH
rk 2 C1⇥N is the channel between the IRS and user k,

G 2 CN⇥M denotes the channel between the BS and the IRS, and hdk 2 C1⇥M represents the

direct channel between the BS and user k; ⇥ = diag
�
ej✓1 , · · · , ej✓N

�
is the IRS phase shift

matrix, where j denotes the imaginary unit and ✓n 2 [0, 2⇡] is the phase shift.

B. Problem Formulation

1) NOMA Transmission Scheme: It has been shown that with quasi-degraded channels, the

same performance as DPC, i.e., the capacity region of MISO broadcast channels [23], can be
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Figure 1. A downlink IRS-assisted MISO system.

achieved by using NOMA [9], [22]. Considering the prohibitively high complexity, DPC is

difficult to be implemented in practical communication systems. Thus, we focus on designing

a more practical downlink transmission scheme, i.e., NOMA, which can outperform OMA and

simultaneously yield a performance close to the capacity region. In addition, it’s worthy pointing

out, considering the complexity of successive interference cancelation (SIC), always two users

are paired to perform NOMA [4], [6]. In this work, we consider the basic two users case, which

can also be extended to multiple users’ scenario by incorporating the matching theory [4].

It has been shown in [9], [22] that whether the quasi-degradation condition can be satisfied

dependents on the channels between the BS and users, which cannot be controlled. However,

in this paper, by using the IRS, the channels of users can be efficiently tuned and we might

find the IRS phase shift matrix, i.e., ⇥, to guarantee the quasi-degradation. Thus, considering

the quasi-degradation constraint with variable ⇥ , the same performance as DPC is achieved by

using NOMA.

In NOMA systems, the successive interference cancellation (SIC) is employed for the users

to decode their signals. In single antenna NOMA systems, the optimal signal decoding order is

same as the ascending order of the channel gains. However, in the IRS-assisted MISO NOMA

system, it is difficult to know the optimal decoding order. It’s worthy pointing out that, in this

paper, our focus is not the optimal decoding order. To reduce the complexity of beamforming
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design, the decoding order is assumed to be the ascending order of the channel gains, which

was also adopted in other similar works [9], [24], [25].

In this paper , user 1 is suppose to be the cell center user and user 2 is the cell edge user. Thus,

we assume a fixed decoding order, (2, 1). Specifically, user 1 first decodes the signal of user 2

and subtracts this from its received signal, which means user 1 can decode its signal without

interference. For user 2, it does not perform SIC and simply decodes its signal by treating user

1’s signal as interference. Therefore, the achievable rate of these two users are respectively given

by 8
><

>:

R1 = ln
⇣
1 + hH

1 w1wH

1 h1

�2

⌘
,

R2 = min {ln (1 + SINR2,1) , ln (1 + SINR2,2)} ,
(3)

where

SINR2,1 =
h

H
1 w2w

H
2 h1

h
H
1 w1w

H
1 h1 + �2

, (4)

SINR2,2 =
h

H
2 w2w

H
2 h2

h
H
2 w1w

H
1 h2 + �2

, (5)

respectively denote the signal interference noise ratio (SINR) of user 1 to decode user 2 and

user 2 to decode itself.

The performance of the IRS-assisted MISO NOMA system relies on the design of beamform-

ing vectors and the IRS phase shift matrix. In this paper, we focus on the joint optimization of

beamforming vectors and the IRS phase matrix in IRS-assisted MISO NOMA systems.

Note that, in this paper, we assume the perfect channel state information (CSI) is available

at all nodes. This assumption was also adopted in a large number of works [13], [17], [25]. In

the literature, several methods have been proposed to solve the problem of channel estimation

in the IRS-assisted wireless system [12], [26], [27]. For example, in [27], the authors proposed

that the IRS elements can be divided into multiple groups and each group consists of adjacent

elements, which share a common reflection coefficient. Then, using pilot training, the combined

channel associated with each group is estimated sequentially.

In the formulated optimization problem, we consider minimizing the transmission power

(MTP) subject to the quality of service (QoS) constraints of the two users. In addition, we incor-

porate an additional important constraint, i.e., the quasi-degradation constraint. This constraint
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ensures that the NOMA scheme can achieve the same performance as DPC. The optimization

problem is thus formulated as:

PNOMA = min
{w1,w2,⇥}

kw1k
2 + kw2k

2 , (6a)

s.t.
h

H
1 w1w

H
1 h1

�2
� rmin

1 , (6b)

min

⇢
h

H
1 w2w

H
2 h1

h
H
1 w1w

H
1 h1 + �2

,
h

H
2 w2w

H
2 h2

h
H
2 w1w

H
1 h2 + �2

�
� rmin

2 , (6c)

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


kh1k

2

kh2k
2 , (6d)

0  ✓i  2⇡, i = 1, · · · , N, (6e)

where rmin
i is the corresponding target signal-to-noise ratio (SNR) level, i.e., ln

�
1 + rmin

i

�
=

Rmin
i , i = 1, 2, and ↵ is the angel between the two users’ channels with

cos2 ↵ =
h

H
1 h2h

H
2 h1

kh1k
2
kh2k

2 . (7)

In problem (6a), (6b) and (6c) are respectively the QoS constraints of user 1 and user 2 and

(6e) is due to the IRS phase shift matrix, i.e., ⇥ = diag
�
ej✓1 , · · · , ej✓N

�
. In addition, (6d) is

the quasi-degradation constraint, which was proposed in [9], [22]. Specifically, from (6d), given

the ratio kh1k2

kh2k2
, the channels becomes quasi-degraded by simply choosing the angle that satisfies

(6d). Actually, aligning one user’s channel with the others’ is the idea case for using NOMA

[18].

To the best of our knowledge, there are very limited works investigating the IRS-assisted

NOMA system, e.g., [17], [18], [20]. The similar works also studied the optimization of beam-

forming vectors and the IRS phase shift matrix for MTP. However, they considered the opti-

mization problem without the quasi-degradation constraint, which means the proposed scheme

might not achieve the best performance using NOMA. In contrast here, we fully exploit the

advantage of IRS, i.e., the directions of users’ channel can be effectively tuned to obtain the

same performance as DPC.

2) ZFBF Transmission Scheme: Here, we benchmark our proposed IRS-assisted NOMA

system against an IRS-assisted ZFBF system. ZFBF is a widely used transmission scheme in the

literature. In the ZFBF strategy, the users transmit data in the null space of other users’ channels,

which mitigates the multi-user interference. If the channels of the two users are orthogonal, the

user interference can be avoided by using ZFBF. Thus, we can achieve the best performance using
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ZFBF if the channels of users are orthogonal. However, the channels are not always orthogonal.

In this paper, we investigate the IRS-assisted ZFBF transmission scheme, where the IRS phase

shift matrix can be obtained to make the channels orthogonal under certain condition.

In the IRS-assisted MISO ZFBF system, the MTP problem with QoS constraints is formulated

as:

PZF = min
{w1,w2,⇥}

kw1k
2 + kw2k

2 , (8a)

s.t.
h

H
1 w1w

H
1 h1

�2
� rmin

1 , (8b)

h
H
2 w2w

H
2 h2

�2
� rmin

2 , (8c)

h
H
1 w2 = 0, h

H
2 w1 = 0, (8d)

0  ✓i  2⇡, i = 1, · · · , N, (8e)

where (8b) and (8c) are respectively the QoS constraints of user 1 and user 2. In addition, the

constraint (8d) is due to the ZFBF principle, i.e., the users transmit data in the null space of

other users’ channels.

In previous works on IRS, e.g., [18], also used the ZFBF beamforming. [18] employed the

IRS to make ZFBF an ideal beamforming for maximizing weak user’s rate. In this paper, we

focus on the beamforming and the IRS phase shift matrix design to minimize the transmission

power. Moreover, in the following, we will show that, under certain condition, the IRS can be

used to make the channels orthogonal, which is the ideal case for ZFBF.

III. BEAMFORMING AND IRS PHASE SHIFT DESIGN: IRS-ASSISTED NOMA

In this section, we first investigate the feasibility of the formulated problem (6a). It is worthy

pointing out that only if problem (6a) is feasible, the NOMA transmission can lead to the

same performance as DPC. Then, given the proposed feasibility condition, we focus on the

joint optimization of beamforming vectors and the IRS phase shift matrix. Specifically, we first

optimize the beamforming vectors with given IRS phase shift matrix, ⇥, and then ⇥ is optimized.

A. The Feasibility of the Quasi-degradation Constraint

Different from the MISO NOMA system without IRS, the IRS-assisted MISO NOMA system

is able to adjust the angle between the channels of user 1 and user 2 to satisfy the quasi-

degradation condition. In the following, we show that, compared to the literature MISO NOMA
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system without IRS, the IRS-assisted MISO NOMA system has a greater possibility to satisfy

the quasi-degradation condition. Here, we derive a sufficient condition to guarantee the feasibility

of the quasi-degradation constraint.

Proposition 1. The quasi-degradation constraint (6d) is feasible if

�max (⌥1 �⌥2) � 0, (9)

where

⌥k =

2

4 �k�
H
k �khdk

hH
dk�

H
k hH

dkhdk

3

5 , (10)

�k = diag (hrk)G for k = 1, 2, and �max (⌥1 �⌥2) denotes the maximum eigenvalue of matrix

⌥1 �⌥2.

Proof. See Appendix A.

According to Proposition 1, given the improved quasi-degradation condition (9), the IRS phase

shift matrix can always be found to satisfy the quasi-degradation constraint (6d). Thus, under

condition (9), the proposed MTP problem in (6a) using NOMA is always feasible and the IRS-

assisted MISO NOMA scheme can obtain the same performance as DPC.

Corollary 1. Suppose h
H
1 h2 6= 0, the quasi-degradation condition, (6d), is always satisfied if

the IRS is located at the position of user 1.

Proof. See Appendix B.

In practice, the location of the IRS can be easily controlled [28]. Hence, to realize the capacity

region using NOMA, the IRS would better be located close to user 1.

Remark 1. In the following, we further show that, adopting IRS, the quasi-degradation condition

would be satisfied with a greater possibility.

To better illustrate the advantage of the employment of IRS in MISO NOMA systems, we

provide the following example. In Fig. 2 and Fig. 3, the BS is located at point (0, 0), the IRS

central element is located at point (5, 5) and the single-antenna users are randomly placed within

a rectangular around the BS. The channel between the IRS and user k is given by hrk = d�↵
rk grk,

where drk is the distance between user k and the BS, ↵ = 3 is the path loss exponent, grk follows

a Rayleigh distribution. Similarly, the channel between the BS and the IRS is G = d�↵
r Gr, and
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the direct channel between the BS and user k is hdk = d�↵
k gk. Assume that the location of user

1 is fixed, we focus on describing different locations of user 2 to satisfy the quasi-degradation

condition without IRS [9], i.e.,

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


khd1k

2

khd2k
2 , (11)

where

cos2 ↵ =
hH
d1hd2hH

d2hd1

khd1k
2
khd2k

2 , (12)

and the improved quasi-degradation condition provided in Proposition 1 as (9). In addition, in

Fig. 2 and Fig. 3, the black area denotes the locations of user 2 satisfying the quasi-degradation

condition without IRS or the improved quasi-degradation condition.

Fig. 2 and Fig. 3 (a) respectively show the region of user 2 to satisfy quasi-degradation

condition without IRS, and the improved quasi-degradation condition. In these two figures, the

location of user 1 is fixed at (5, 5.5). From Fig. 2 and Fig.3 (a), one can easily find that, with the

help of IRS, the black area becomes larger. Therefore, compared with the conventional MISO

NOMA systems without IRS, the quasi-degradation condition is more likely to be satisfied in

IRS-assisted MISO NOMA systems. Thus, the use of IRS in MISO systems facilitates to achieve

the best performance by using NOMA transmission scheme.

Moreover, Fig. 3 (b) depicts the region of user 2 to satisfy the improved quasi-degradation

condition. Different from Fig. 3 (a), the location of user 1 is fixed at (5, 5.2). Hence, compared

with Fig. 3 (a), the location of user 1 in Fig. 3 (b) is closer to the IRS. From Fig. 3 (a) and Fig.

3 (b), it is easy to see that if user 1 is near the IRS, the quasi-degradation condition is more

likely to be satisfied. Actually, according to Corollary 1, if user 1 and the IRS are at the same

location, the quasi-degradation condition can always be satisfied.

B. Beamforming Vectors and the IRS Phase Shift Matrix Design for MTP

In this subsection, we focus on optimizing the beamforming vectors and the IRS phase

shift matrix for MTP. The infeasibility of problem (6a) lies on the quasi-degradation constraint

[17]. Therefore, given (9), the proposed optimization problem (6a) is always feasible. However,

problem (6a) is a non-convex problem due to the non-convex constraints with respect to w1,

w2, and ⇥. In the following, we first optimize the beamforming vectors, i.e., w1, w2, for any

given ⇥ and the results are given in the following Lemma.



12

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 2. Quasi-degradation region of user 2 without using IRS with fixed location of user 1 at (5, 5.5).
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(a) Fixed locations of user 1 at (5, 5.5) and IRS at (5, 5).
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(b) Fixed locations of user 1 at (5, 5.2) and IRS at (5, 5).

Figure 3. Improved quasi-degradation region of user 2.

Lemma 1. Given the improved quasi-degradation condition (9), for any given ⇥, the optimal

beamforming solutions to problem (6a) is

8
><

>:

w
⇤
1 = �1 (1 + A2) e1 � rmin

2 e
H
2 e1e2,

w
⇤
2 = �2e2,

(13)
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where 8
>>>>><

>>>>>:

e1 =
h1

kh1k , e2 =
h2

kh2k ,

�2
1 =

rmin
1 �2

kh1k2
1

(1+rmin
2 sin2 ↵)

2 ,

�2
2 =

rmin
2 �2

kh2k2
+ rmin

1 �2

kh1k2
rmin
2 cos2 ↵

(1+rmin
2 sin2 ↵)

2 .

. (14)

Proof. See the proof of Proposition 1 in [9].

From Lemma 1, for any given ⇥, the optimal beamforming is characterized in a closed form

expression. Then, using the closed-form beamforming solutions, we optimize the IRS phase shift

matrix, i.e., ⇥ = diag
�
ej✓1 , · · · , ej✓N

�
. The corresponding optimization problem is

min
{⇥}

F, (15a)

s.t.
1 + rmin

1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


kh1k

2

kh2k
2 , (15b)

0  ✓i  2⇡, i = 1, · · · , N, (15c)

where

F = kw
⇤
1k

2 + kw
⇤
2k

2 ,

= �2
1

⇣�
1 + rmin

2

�2
�

�
2 + rmin

2

�
rmin
2 cos2 ↵

⌘
+ �2

2, (16)

and �2
1, �2

2 have been written in (14).

To solve problem (15a), we introduce variable Q = ṽṽ
H , with ev = [v; 1], and v = [ej✓1 , · · · , ej✓N ]H .

Therefore, for k = 1, 2, hH
k = hH

rk⇥G+ hH
dk = v

H�k + hH
dk, with �k = diag (hrk)G and

khkk
2 = Tr (Q⌥k) , (17)

h
H
1 h2 = Tr (QR) , (18)

where ⌥k has been given in (10) and

R =

2

4 �1�
H
2 �1hd2

hH
d1�

H
2 hH

d1hd2

3

5 . (19)
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Therefore, problem (15a) is reduced to the following

min
{Q⌫0}

�2
1

⇣�
1 + rmin

2

�2
�

�
2 + rmin

2

�
rmin
2 cos2 ↵

⌘
+ �2

2, (20a)

s.t.
1 + rmin

1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


Tr (Q⌥1)

Tr (Q⌥2)
, (20b)

Qi,i = 1, i = 1, · · · , N + 1, (20c)

Rank (Q) = 1, (20d)

where

cos2 ↵ =
Tr (QR)Tr

�
R

H
Q

H
�

Tr (Q⌥1) Tr (Q⌥2)
, (21)

�2
1 =

rmin
1 �2

Tr (Q⌥1)

1
�
1 + rmin

2 sin2 ↵
�2 , (22)

and

�2
2 =

rmin
2 �2

Tr (Q⌥2)
+

rmin
1 �2

Tr (Q⌥1)

rmin
2 cos2 ↵

�
1 + rmin

2 sin2 ↵
�2 . (23)

Note that the constraints in (20c) and (20d) come from the introduced variable substitution:

Q = ṽṽ
H . Problem (20a) is very difficult to solve due to the tricky objective function and

the quasi-degradation constraint. In practice, the objective function and the quasi-degradation

constraint are both nonconvex due to the complex expression of cos2 ↵. In the following, we first

deal with the quasi-degradation constraint, which will be transformed into a convex constraint.

Proposition 2. The quasi-degradation constraint can be satisfied if

�1Q�
H
1 �

�
1 + rmin

1

�
�2Q�

H
2 ⌫ 0, (24)

where �k =
⇥
�H

k ,hdk

⇤
, k = 1, 2.

Proof. See Appendix C.

The quasi-degradation constraint (24) in Proposition 2 is convex. We then focus on the complex

nonconvex objective function. An upper bound of the objective function is given in Proposition

3.

Proposition 3. The upper bound of the objective function in problem (15a) is given by

F 
�2

�
rmin
1

�
1 + rmin

2

��

Tr (Q⌥1)
+

�2rmin
2

Tr (Q⌥2)
. (25)
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Proof. See Appendix D.

Using Proposition 2 and Proposition 3, an approximation solution to problem (20a) is obtained

by solving the following problem

min
{Q⌫0}

�2
�
rmin
1

�
1 + rmin

2

��

Tr (Q⌥1)
+

�2rmin
2

Tr (Q⌥2)
, (26a)

s.t. �1Q�
H
1 �

�
1 + rmin

1

�
�2Q�

H
2 ⌫ 0, (26b)

Qi,i = 1, i = 1, · · · , N + 1, (26c)

Rank (Q) = 1. (26d)

Note that (26a) is actually a sum of ratios problem. In order to solve this multiple-ratio fractional

programming, we exploit the quadratic transform, which is described in the following Lemma

[29].

Lemma 2. [29]The sum-of-ratio problem

max
{x}

MX

m=1

Am (x)

Bm (x)
, (27)

s.t. x 2 X ,

is equivalent to

max
{x,y}

MX

m=1

⇣
2ym

p
Am (x)� y2mBm (x)

⌘
, (28)

s.t. x 2 X , ym 2 R,m = 1, · · · ,M,

where y refers to a collection of variables {y1, · · · , yM}.

Using Lemma 2, problem (26a) is then reduced to

max
{Q⌫0,y1,y2}

f, (29a)

s.t. �1Q�
H
1 �

�
1 + rmin

1

�
�2Q�

H
2 ⌫ 0, (29b)

Qi,i = 1, i = 1, · · · , N + 1, (29c)

Rank (Q) = 1, (29d)

where

f = �2y1

q
�2 (rmin

1 (1 + rmin
2 )) + y21 Tr (Q⌥1)� 2y2

q
�2rmin

2 + y22 Tr (Q⌥2) .
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Here, we propose to optimize the primal variable Q and the auxiliary variables y1, y2 iteratively.

Specifically, we first optimize Q by fixing the auxiliary variables y1, y2 and then further optimize

y1, y2. However, by fixing y1, y2, (29a) is also nonconvex due to the rank constraint (29d). Here,

we exploit the semidefinite relaxation (SDR) [30] method to solve the nonconvex problem (29a)

and the relaxed problem is therefore:

max
{Q⌫0}

y21Tr (Q⌥1) + y22Tr (Q⌥2) , (30a)

s.t. �1Q�
H
1 �

�
1 + rmin

1

�
�2Q�

H
2 ⌫ 0, (30b)

Qi,i = 1, i = 1, · · · , N + 1. (30c)

One can easily show that problem (30a) is a standard semidefinite programming (SDP), which

can be efficiently solved through convex optimization tools, e.g., CVX. However, the solution

to problem (30a) cannot always satisfy the rank constraint, i.e., Rank (Q) = 1. In general, if the

solution to the relaxed problem in (30a) is a set of rank-one matrices, then it will be also the

optimal solution to the problem (29a). Otherwise, the randomization technique, see, e.g., [31],

can be used to generate a set of rank-one solutions.

In addition, with fixed Q, the optimal y1, y2 are obtained in closed form as

y⇤1 =

p
�2 (rmin

1 (1 + rmin
2 ))

Tr (Q⌥1)
, (31)

y⇤2 =

p
�2rmin

2

Tr (Q⌥2)
. (32)

Therefore, the optimal Q can thus be efficiently obtained through numerical convex optimiza-

tion. The steps of the proposed approach are summarized in Algorithm 1.

Note that, using Lemma 2, in problem (26a), each Am (x) is a constant and every Bm (x) is

convex. Moreover, after using SDR, the constraints in problem (26a) are all convex. Thus, the

proposed Algorithm 1 is guaranteed to converge to a local optimum of (29a) [29].

In addition, the complexity of Algorithm 1 is given as follows. Since step 3 is a SDR procedure,

the complexity for solving (26a) is O

⇣p
2 (N + 1)

⌘
[32]. Thus, the overall computational

complexity is O

⇣
L1

⇣p
2 (N + 1)

⌘⌘
, where L1 is the number of iterations of Algorithm 1.

Additional steps are needed to obtain the beamforming vectors and IRS elements. Specifically,

we first obtain the eigenvalue decomposition of Q as Q = U⇤U , where U = [e1, · · · , eN+1] is
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a unitary matrix and ⇤ = diag (�1, · · · ,�N) is a diagonal matrix. Therefore, the IRS elements

are given as

ej✓k = e
jarg

✓
ṽ
k

ṽN+1

◆

, k = 1, · · · , N. (33)

In (33), ṽ = U⇤1/2
r and r 2 C(N+1)⇥1 is chosen from a lot of randomly generalized vectors

satisfying r 2 CN (0, IN+1). Then, the beamforming vectors can be easily obtained using

Lemma 1.

Note that the proposed solution to the original problem (20a) is suboptimal. Due to the

tricky objective function and the quasi-degradation constraint, we use the approximation method

and SDR, which results in the suboptimal solution of the IRS element matrix. However, the

proposed beamforming with given IRS element matrix is optimal and can even achieve the best

performance as DPC, which is the main contribution in this work.

Algorithm 1 Iterative Approach for solving (29a)
1: Initialize y1, y2 to a feasible value.

2:Repeat

3: Update Q by solving the SDR problem in (30a).

4: Update y1, y2 by using (31) and (32).

5:Until The value of objective function in (30a) converges or the maximum number of iterations

is reached.

IV. BEAMFORMING AND IRS PHASE SHIFT DESIGN: IRS-ASSISTED ZFBF

The transmission scheme of ZFBF is in fact a special case of OMA as the spatial degrees of

freedom are used for interference avoidance. Here, we investigate the IRS-assisted ZFBF trans-

mission scheme, where the beamforming vectors and the IRS phase shift matrix are optimized

to achieve the minimum transmission power.

In order to solve problem (8a), we first optimize the beamforming vectors, w1 and w2, by

fixing ⇥. Lemma 3 gives the optimal beamforming solutions.

Lemma 3. For any given ⇥, the optimal beamforming solutions to problem in (8a) are

8
><

>:

w
⇤
1 =

p
rmin
1 a1

kh1k2kh2k2 sin2 ↵
,

w
⇤
2 =

p
rmin
2 a2

kh1k2kh2k2 sin2 ↵
,

(34)
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where

sin2 ↵ = 1�
h

H
1 h2h

H
2 h1

kh1k
2
kh2k

2 , (35)

and 8
><

>:

a1 = kh2k
2
h1 �

�
h

H
2 h1

�
h2,

a2 = �
�
h

H
1 h2

�
h1 + kh1k

2
h2.

(36)

Proof. See Appendix E.

From Lemma 3, with a given ⇥, the optimal beamforming solutions to problem (8a) is

characterized in closed form expressions. Thereby, using the closed-form beamforming solutions,

we further optimize the IRS phase shift matrix and the corresponding optimization problem is

min
{⇥}

W =
�2

sin2 ↵

✓
rmin
1

kh1k
2 +

rmin
2

kh2k
2

◆
, (37a)

s.t. 0  ✓i  2⇡, i = 1, · · · , N. (37b)

Similarly, to solve problem (37a), we also use the introduced variables, i.e., Q = ṽṽ
H with

ev = [v; 1] and v = [ej✓1 , · · · , ej✓N ]H . Then, problem (37a) is rewritten as

min
{Q⌫0}

W =
�2

sin2 ↵

✓
rmin
1

Tr (Q⌥1)
+

rmin
2

Tr (Q⌥2)

◆
, (38a)

s.t. Qi,i = 1, i = 1, · · · , N + 1, (38b)

Rank (Q) = 1, (38c)

where

sin2 ↵ = 1�
Tr (QR)Tr

�
R

H
Q

H
�

Tr (Q⌥1) Tr (Q⌥2)
. (39)

The objective function in (38a) is a nonconvex and fractional objective, which is rewritten as

W =
�2

sin2 ↵

✓
rmin
1

Tr (Q⌥1)
+

rmin
2

Tr (Q⌥2)

◆
,

=
�2rmin

1 Tr (Q⌥2) + �2rmin
2 Tr (Q⌥1)

Tr (Q⌥1)Tr (Q⌥2)� Tr (QR)Tr
�
R

H
Q

H
� . (40)

In order to solve the problem in (38a), we introduce the following objective function:

G (Q, ⌘) = G1 (Q)� ⌘G2 (Q) , (41)

where ⌘ is a positive parameter,

G1 (Q) = �2rmin
1 Tr (Q⌥2) + �2rmin

2 Tr (Q⌥1) , (42)
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and

G2 (Q) = Tr (Q⌥1)Tr (Q⌥2)� Tr (QR)Tr
�
R

H
Q

H
�
. (43)

We then study the following optimization problem with given ⌘:

min
{Q⌫0}

G (Q, ⌘) = G1 (Q)� ⌘G2 (Q) , (44a)

s.t. Qi,i = 1, i = 1, · · · , N + 1, (44b)

Rank (Q) = 1, (44c)

The relation between problem (38a) and (44a) is given by the following lemma.

Lemma 4. [33]Let G⇤ (⌘) be the optimal objective value of problem (44a) and Q
⇤ (⌘) be the

optimal solution of problem (44a). Then, Q
⇤ (⌘) is the optimal solution to (38a) if and only if

G⇤ (⌘) = 0.

According to Lemma 4, the optimal solution to (38a) can be found by solving problem (44a)

parameterized by ⌘ and then updating ⌘ until G⇤ (⌘) = 0. Therefore, we first focus on solving

(44a) for a given ⌘ .

For a given ⌘, the non-convexity of problem (44a) lies on the rank constraint and part of

the objective function G2 (Q, ⌘). In the following, for a given ⌘, we will solve the nonconvex

problem (44a) by using successive approximation (SCA) [34] and SDR.

Firstly, we construct global under-estimators of G2 (Q, ⌘). Specifically, for any feasible point

Q
i, the function G2 (Q, ⌘) satisfies the following inequality:

G2 (Q, ⌘) � G2

�
Q

i
�
+ Tr

⇣�
rQG2

�
Q

i
��H �

Q�Q
i
�⌘

,

= G̃2

�
Q,Qi

�
, (45)

where

rQG2

�
Q

i
�
= ⌥H

1 Tr
�
Q

i⌥2

�
+⌥H

2 Tr
�
Q

i⌥1

�
� 2RHTr

�
Q

i
R
�
. (46)

Therefore, for any given Q
i, an upper bound of problem (44a) can be obtained by solving the

following optimization problem

min
{Q⌫0}

G (Q, ⌘) = G1 (Q)� ⌘G̃2

�
Q,Qi

�
, (47a)

s.t. Qi,i = 1, i = 1, · · · , N + 1, (47b)

Rank (Q) = 1. (47c)
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Optimization problem (47a) ’s non-convexity only lies on the rank constraint (47c). To tackle

this issue, we remove the rank constraint (47c) by applying SDR. Then, the relaxed version of

(47a) can be efficiently solved via standard optimization tools, such as CVX.

Note that (47a) serves as an upper bound of (44a). The process of SCA is summarized in

Algorithm 2, where we iteratively tighten the upper bound and obtain a sequence of solutions,

i.e., Q.

In Algorithm 2, the solution is a KKT point of problem (47a) without the rank constraint.

This is because the following conditions are satisfied:

(1) G1 (Q)� ⌘G2 (Q)  G1 (Q)� ⌘G̃2

�
Q,Qi

�
;

(2) G1

�
Q

i
�
� ⌘G2

�
Q

i
�
= G1

�
Q

i
�
� ⌘G̃2

�
Q

i,Qi
�
;

(3)
@(G1(Qi)�⌘G2(Qi))

@Qj =
@(G1(Qi)�⌘G̃2(Qi,Qi))

@Qj ;

Thus, according to [35], SCA converges to a KKT point of the original problem (44a) without

the rank constraint. And the complexity of Algorithm 2 is to solve (47a) , whose complexity is

O

⇣p
3 (N + 1)

⌘
[32].

Algorithm 2 Successive Convex Approximation Algorithm
1: Initialize iteration index i = 1 and a feasible Q

1 .

2: Repeat

3: Solve problem (47a) for a given Q
i and store the solution Q;

4: Set i = i+ 1 and Q
i = Q;

5: Until The value of objective function in (47a) converges or the maximum number of iterations

is reached.

6: Q⇤ = Q
i.

After the solution to problem (44a) is obtained, we shall find an ⌘ such that G⇤ (⌘) = 0, which

can be achieved by Algorithm 3. In Algorithm 3, � denotes a small positive threshold.

Algorithm 3 is guaranteed to converge to the desirable ⌘ [33]. In addition, note that Algorithm 3

iteratively uses Algorithm 2, hence the complexity of Algorithm 3 is O
⇣
L2

p
3 (N + 1)

⌘
, where

L2 is the number of iterations of Algorithm 3.

Finally, we can achieve the solution of IRS elements by using the SVD of Q
⇤ and then

the beamforming vectors are obtained using Lemma 3. Similar to the IRS-assisted NOMA, the

proposed solution of the IRS element matrix may not be optimal, which is due to the use of SDR
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and SCA. However, with given IRS phase shift matrix, the proposed solution of beamforming

vector is optimal.

Algorithm 3 The solution to problem (44a)
1: Initialize ⌘ini = 0, G⇤ (⌘) = 1, and precision � > 0.

2: While |G⇤ (⌘)| > � do

3: Find the solution Q
⇤ using Algorithm 2;

4: Calculate G⇤ (⌘);

5: Update ⌘ = G1(Q⇤)
G2(Q⇤) ;

6: Return ⌘ and Q
⇤.

V. COMPARISON OF IRS-ASSISTED NOMA AND IRS-ASSISTED ZFBF

From the previous sections, we have respectively investigated the joint optimization of beam-

forming vectors and the IRS phase shift matrix for IRS-assisted NOMA and IRS-assisted ZFBF.

The application of IRS in multi-antenna systems facilitates the implementation of NOMA and

ZFBF, which is because the directions of users’ channel vectors can be effectively aligned. In

this section, we further study the comparison between schemes of IRS-assisted NOMA and

IRS-assisted ZFBF.

According to Lemma 1, with improved quasi-degraded condition, the minimum transmission

power achieved by NOMA is

PNOMA = �2
1

⇣�
1 + rmin

2

�2
�

�
2 + rmin

2

�
rmin
2 cos2 ↵

⌘
+ �2

2,

=
rmin
1

�
1 + rmin

2

�
�2

kh1k
2 �1 + rmin

2 sin2 ↵
� +

rmin
2 �2

kh2k
2 . (48)

In addition, from Lemma 3, the minimum transmission power achieved by ZFBF is given by

PZFBF =
�2

sin2 ↵

✓
rmin
1

kh1k
2 +

rmin
2

kh2k
2

◆
. (49)

In the following, we compare PNOMA and PZFBF .

Theorem 1. Given the same IRS phase shift matrix ⇥ and improved quasi-degraded condition,

we always have

PNOMA
 PZFBF . (50)

Proof. See Appendix F.
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According to Proposition 1, given the same IRS phase shift matrix and the improved quasi-

degraded condition, the scheme of NOMA always achieves better performance than ZFBF. In

addition, in the following, we consider a specific situation where the channels of user 1 and user

2 are orthogonal, i.e., hH
1 h2 = 0.

Proposition 4. The improved quasi-degradation condition is invalid when h
H
1 h2 = 0 , which

can be satisfied if and only if

R =

2

4 �1�
H
2 hH

d1�
H
2

�1hd2 hH
d1hd2

3

5 = 0, (51)

and ZFBF achieves the optimal value.

Proof. See Appendix G.

From Proposition 4, the IRS phase shift matrix can be found to make the channels of user 1

and user 2 orthogonal only with condition (51). In practice, the condition (51) is very difficult to

satisfy due to the random hrk, hdk, for k = 1, 2, and G. However, as shown in Subsection III-A,

the improved quasi-degradation condition for MISO NOMA is more easily satisfied, especially

for cases where the IRS is located close to user 1.

Remark 2. Based on the provided results, the hybrid NOMA precoding scheme can be given as

follows:

• Given the improved quasi-degradation condition, which can be satisfied with high possibility,

NOMA achieves the optimal performance and hence we prefer to use NOMA transmission

scheme.

• If R = 0, under which the IRS phase shift matrix can be found to satisfy h
H
1 h2 = 0, the

ZFBF is preferred.

• Assume a case where the improved quasi-degradation condition is violated and R 6= 0, the

performance loss is inevitable. Considering the computational complexity, one may prefer

to use ZFBF as the closed form beamforming cannot be obtained by using NOMA.

VI. SIMULATION RESULTS

In this section, the performance of the proposed solution to the MTP problem is evaluated. In

our simulation, the BS is located at the point (0m, 0m), and single-antenna users are randomly

placed in the half right-hand side square (200m ⇥ 200m) [36] around the BS. The channel
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Figure 4. Transmission power versus the number of antennas.

between the IRS and user k is given by hrk = d�↵
rk grk, where drk is the distance between user k

and the BS, ↵ = 3 is the path loss exponent, grk follows a Rayleigh distribution. Similarly, the

channel between the BS and the IRS is G = d�↵
r Gr and the direct channel between the BS and

user k is hdk = d�↵
k gk [4]. The noise power is given by �2 = BN0 with bandwidth B = 10MHz

and the noise power spectral density N0 = �174dBm. The target rates for both users are the

same (Rmin
k = 1bps/Hz for k = 1, 2).

Fig. 4 depicts the BS transmission power versus the number of antennas respectively using the

schemes of hybrid NOMA (H-NOMA), ZFBF, and OFDMA. In Fig. 4, the IRS is located at the

point (20m, 20m) and the number of IRS elements is N = 100. Here, note that all the schemes

are assisted by IRS. The minimum transmission powers achieved by NOMA and ZFBF use our

provided solution. In the IRS-assisted OFDMA scheme, we first optimize the beamforming with

given ⇥ and then further optimize ⇥ using SDP. As expected, for the three schemes, the total

transmission power decreases with the increase of the number of antennas. In comparison with

ZFBF and OFDMA schemes, H-NOMA yields a significant performance gain, which is because
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Figure 5. Transmission power versus the horizontal distance of user 2 from the BS.

NOMA allows the users sharing the same spectrum and spatial resources and hence improves

the performance. Furthermore, with limited number of antennas, the advantage of H-NOMA

scheme is more obvious. In addition, one can easily find that the performance achieved by the

proposed H-NOMA scheme is nearly same as DPC, which is owing to the employment of IRS.

In Fig. 5, we display the BS transmission power versus the horizontal distance of user 2

from the BS. Here, the location of user 2 is (Dm, 150m) and D is the horizontal distance of

user 2 from the BS, which ranges from 150m to 250m in the simulation. In addition, in Fig. 5,

the locations of user 1 and IRS is respectively (100m, 100m) and (20m, 20m), the number of

antennas is M = 4, and the number of IRS elements is N = 100. As can be seen in this figure,

when user 2 is farther from the BS, the BS needs to consume more power, which is in line with

our expectation. Meanwhile, some similar phenomenon as Fig. 4 that H-NOMA performs better

than ZFBF and OFDMA and the performance achieved by H-NOMA is nearly same as DPC.

Moreover, one can easily find out that, as the distance between the two users becomes larger,

the H-NOMA scheme yields a significant performance gain.
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Figure 6. Transmission power versus the number of IRS elements.

Fig. 6 shows the transmission power versus different number of IRS elements with different

IRS locations using the provided H-NOMA transmission scheme. Here, the number of antennas

is M = 4. Obviously, one can achieve better performance by increasing N , which is because a

larger N enables more reflecting elements to receive the signal energy from the BS. Furthermore,

if the IRS is close to the BS, a significant performance gain can be achieved by increasing N .

Conversely, there has no obvious performance gain by increasing N when the user is far from the

BS. Therefore, the number of IRS elements can be properly selected according to the location

of IRS.

In Fig. 7, the performance both in the IRS-assisted MISO NOMA scheme and the literature

MISO NOMA scheme without IRS is evaluated. The number of IRS elements is N = 100. In

comparison with the literature MISO NOMA, the use of IRS in MISO NOMA yields a significant

performance gain, which is because the quasi-degradation condition might be guaranteed and

hence the IRS-assisted MISO NOMA achieves the same performance as DPC. Moreover, the

performance gain is especially high when the number of antennas is small, which in line with
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Figure 7. Transmission power versus the number of antennas.

the advantage of NOMA, i.e., supporting overloaded transmission with limited resources. In

addition, in Fig. 7, we also present the performance with different locations of IRS. It is easy to

see that if the location of IRS is set very close to user 1, the performance is improved. This also

reproves the Corollary 1 via simulation. Actually, when the location of IRS is set very close to

user 1, the quasi-degradation condition can always be satisfied and the performance region can

be obtained in the IRS-assisted MISO NOMA system.

VII. CONCLUSION

In this paper, we optimized the beamforming vectors and the IRS phase shift matrix respec-

tively for IRS-assisted NOMA and IRS-assisted ZFBF. For IRS-assisted NOMA, we provided

the improved quasi-degradation condition under which NOMA can always achieve the same

performance as DPC. Furthermore, we show that the improved quasi-degradation condition can

be satisfied with greater possibility than the original quasi-degradation condition without IRS.

Both for IRS-assisted NOMA and IRS-assisted ZFBF, we characterized the optimal beamforming
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with given IRS phase shift matrix and proposed algorithms to optimize the phase shift matrix.

The IRS-assisted NOMA and the IRS-assisted ZFBF were further compared. It is shown that,

with the same IRS phase shift matrix and improved quasi-degradation condition, NOMA always

outperforms ZFBF. At the same time, we provided certain condition under which the IRS

phase shift matrix can be found to generate orthogonal channels and hence the hybrid NOMA

transmission scheme was proposed. Simulation results show that the IRS-assisted NOMA system

not only outperforms the NOMA system without IRS but also the conventional OMA . In

addition, in the future work, we would like to extend the two users case to multiple users case

using matching theory [4].

APPENDIX

A. Proof of Proposition 1

We consider the feasibility of the quasi-degradation constraint in a converse way. Assume that

for each possible hrk, hdk, rmin
k , k = 1, 2, and ⇥, we always have

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2

>
kh1k

2

kh2k
2 . (52)

Since 0  cos2 ↵  1, we should have

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2

�
1 + rmin

1

cos2 ↵
� rmin

1 cos2 ↵ >
kh1k

2

kh2k
2 , (53)

which is equivalently rewritten as
�
1 + rmin

1

�
kh2k

4

h
H
2 h1h

H
1 h2

�
rmin
1 h

H
2 h1h

H
1 h2

kh1k
4 > 1. (54)

Using (54) and notify h
H
2 h1h

H
1 h2  h

H
1 h1h

H
2 h2, we then obtain

�
1 + rmin

1

�
kh2k

4

h
H
2 h1h

H
1 h2

�
rmin
1 h

H
2 h1h

H
1 h2

kh1k
4 ,

�

�
1 + rmin

1

�
h

H
2 h2

h
H
1 h1

�
rmin
1 h

H
2 h2

h
H
1 h1

=
h

H
2 h2

h
H
1 h1

> 1, (55)

implying

h
H
2 h2 � h

H
1 h1 > 0. (56)
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Let ev = [v; 1] and v = [ej✓1 , · · · , ej✓N ]H , we can write

h
H
k hk =

�
hH
rk⇥G+ hH

dk

� �
hH
rk⇥G+ hH

dk

�H
, (57)

=
�
v
H�k + hH

dk

� �
v
H�k + hH

dk

�H

= v
H�k�

H
k v + v

H�khdk + hH
dk�

H
k v + hH

dkhdk,

= ṽ
H⌥kṽ.

Then, for each ṽ, we have

h
H
2 h2 � h

H
1 h1 = ṽ

H (⌥2 �⌥1) ṽ > 0. (58)

Therefore, ⌥2�⌥1 � 0. Hence, one can easily obtain �min (⌥2 �⌥1) > 0, where �min (⌥2 �⌥1)

denotes the minimum eigenvalue of matrix ⌥2 �⌥1.

Therefore, if �min (⌥2 �⌥1) > 0, the IRS phase shift matrix cannot be found to satisfy the

quasi-degradation constraint. Conversely, if �min (⌥2 �⌥1)  0, i.e., �max (⌥1 �⌥2) � 0, the

quasi-degradation constraint is always feasible. This completes the proof.

B. Proof of Corollary 1

Assume the IRS is set at the location of user 1, we note that khr1k
2
! +1, and hence

kh1k2

kh2k2
= khr1⇥G+hd1k2

khr2⇥G+hd2k2
! +1. In addition, the function

L
�
cos2 ↵

�
=

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2

(59)

is monotonically decreasing function of cos2 ↵. The supposition h
H
1 h2 6= 0 implies that cos2 ↵ �

 > 0. Therefore, L (cos2 ↵)  L () < +1, this in turn implies that the quasi-degradation

condition, (6d), can always be satisfied.

C. Proof of Proposition 2

Since hkh
H
k = �kQ�

H
k for k = 1, 2, using condition (24), we always have

h1h
H
1 �

�
1 + rmin

1

�
h2h

H
2 ⌫ 0, (60)

and hence

h
H
2

�
h1h

H
1 �

�
1 + rmin

1

�
h2h

H
2

�
h2 � 0, (61)

which is equivalently written as
1 + rmin

1

cos2 ↵


kh1k
2

kh2k
2 . (62)
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In addition, according to the quasi-degradation condition (6d), with 0  cos2 ↵  1, we have

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


1 + rmin

1

cos2 ↵
. (63)

Combining (62) and (63), we have

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2


kh1k

2

kh2k
2 , (64)

which is in fact the quasi-degradation constraint shown in (20b).

D. Proof of Proposition 3

Since 0  cos2 ↵  1, we have

F = �2
1

⇣�
1 + rmin

2

�2
�

�
2 + rmin

2

�
rmin
2 cos2 ↵

⌘
+ �2

2,

=
�2

�
rmin
1

�
1 + rmin

2

��

Tr (Q⌥1)

1

1 + rmin
2 (1� cos2 ↵)

+
�2rmin

2

Tr (Q⌥2)
,


�2

�
rmin
1

�
1 + rmin

2

��

Tr (Q⌥1)
+

�2rmin
2

Tr (Q⌥2)
, (65)

which completes the proof.

E. Proof of Lemma 3

By using the least square property of Moore-Penrose inverse [37], the optimal solution to

problem (8a) with given ⇥ is trivially obtained. Specifically, let H = [h1,h2], the optimal

solution is given as

[w⇤
1,w

⇤
2] = H

H†

2

4
p

rmin
1 0

0
p

rmin
2

3

5 ,

=

hp
rmin
1 a1,

p
rmin
2 a2

i

kh1k
2
kh2k

2 sin2 ↵
, (66)

where † represents the Moore-Penrose inverse.

F. Proof of Theorem 1

Note that
rmin
2 �2

kh2k
2 

�2

sin2 ↵

rmin
2 �2

kh2k
2 , (67)
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and

rmin
1

�
1 + rmin

2

�
�2

kh1k
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2 sin2 ↵
� 

rmin
1

�
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2 �sin2 ↵ + rmin
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Therefore,

PNOMA =
rmin
1

�
1 + rmin

2

�
�2

kh1k
2 �1 + rmin

2 sin2 ↵
� +

rmin
2 �2

kh2k
2 ,


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2 ,

=
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sin2 ↵

✓
rmin
1

kh1k
2 +

rmin
2

kh2k
2

◆
= PZFBF . (69)

G. Proof of Proposition 4

Given h
H
1 h2 = 0, we have cos2 ↵ = 0 and hence

1 + rmin
1

cos2 ↵
�

rmin
1 cos2 ↵

(1 + rmin
2 (1� cos2 ↵))2

! +1,

which implying the quasi-degradation condition in (6d) is invalid.

Here, we prove that h
H
1 h2 = 0 can be satisfied if and only if R = 0. First, we prove the

necessary condition. If hH
1 h2 = 0, i.e., the channel vectors of the two users are orthogonal, we

have

h
H
1 h2 = evH

Rev = 0. (70)

Since ev 6= 0, (51) implies that R is a zero matrix, i.e., condition (51).

We then prove the sufficiency. Given R = 0, we have v
H
Rv = 0, for any possible v. In

addition, from (70), one can easily find out that

v
H
Rv = h

H
1 h2 = 0. (71)

From Lemma 3, if hH
1 h2 = 0, the minimum transmission power of the BS achieved by using

ZFBF is

p = �2

✓
rmin
1

kh1k
2 +

rmin
2

kh2k
2

◆
, (72)

which also satisfies

p  PZFBF =
�2

sin2 ↵

✓
rmin
1

kh1k
2 +

rmin
2

kh2k
2

◆
, (73)
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and

p  PNOMA =
rmin
1

�
1 + rmin

2

�
�2

kh1k
2 �1 + rmin

2 sin2 ↵
� +

rmin
2 �2

kh2k
2 . (74)

From (73) and (74), one can easily find that if the channels of user 1 and user 2 are orthogonal,

the ZFBF scheme obtains the optimal performance.
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