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Abstract—In this paper, we study simultaneous wireless infor-
mation and power transfer (SWIPT) systems employing practical
non-linear energy harvester (EH) circuits. Since the voltage
across the reactive elements of realistic EH circuits cannot drop
or rise instantaneously, EHs have memory which we model with
a Markov decision process (MDP). Moreover, since an analytical
model that accurately models all non-linear effects and the
unavoidable impedance mismatch of EHs is not tractable, we
propose a learning based model for the EH circuit. We optimize
the input signal distribution for maximization of the harvested
power under a constraint on the minimum mutual information
between transmitter (TX) and information receiver (IR). We
distinguish the cases where the MDP state is known and not
known at TX and IR. When the MDP state is known, the
formulated optimization problem for the harvested power is
convex. In contrast, if TX and IR do not know the MDP state,
the resulting optimization problem is non-convex and solved via
alternating optimization, which is shown to yield a limit point of
the problem. Our simulation results reveal that the rate-power
region of the considered SWIPT system depends on the symbol
duration, the EH input power level, the EH impedance mismatch,
and the type of EH circuit. In particular, a shorter symbol
duration enables higher bit rates at the expense of a significant
decrease in the average harvested power. Furthermore, whereas
half-wave rectifiers outperform full-wave rectifiers in the low and
medium input power regimes, full-wave rectifiers are preferable
if the input power at the EH is high.

I. INTRODUCTION

The Internet-of-Things (IoT) and the related tremendous
growth of the number of low-power devices have attracted
significant attention in recent years. Nevertheless, the problem
of efficient recharging or replacement of the batteries of billions
of IoT devices, such as wireless sensors and actuators, remains
unsolved [2]. A promising exploitable feature to address this
problem is the ability of radio frequency (RF) signals to transfer
not only information but also energy, which can be harvested
by these devices. This prospect has fueled significant interest in
simultaneous wireless information and power transfer (SWIPT)
systems [1]–[19].

SWIPT was studied first in [3]. The author showed that
there exists a fundamental trade-off between the achievable
information rate and the transferred power in discrete-time
memoryless Gaussian channels. This trade-off is characterized
by a non-increasing concave capacity-energy function. Further,
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in [4], two fundamental SWIPT system architectures were
proposed. Specifically, the authors considered SWIPT systems,
where the energy harvester (EH) and the information receiver
(IR) are equipped with a single antenna and separate antennas,
respectively. Receivers with a single antenna serving co-located
IR and EH have been studied for single-user [2, Section III],
[11], [14] and relay-based [5], [6] SWIPT systems, whereas
SWIPT systems with separate antennas for IR and EH have
been considered in [2, Section IV], [7], [10], [12], [14], [17]–
[19].

An essential prerequisite for the design of a SWIPT system
is to accurately model the EH circuit which is employed to
convert the received RF signal to a direct current (DC) signal.
An EH circuit typically includes a rectenna, i.e., an antenna
followed by a rectifier. In [3]–[6], the authors assumed a linear
relationship between the harvested power and the received
RF power. However, recently, practical non-linear models for
EH circuits were proposed for the optimization of SWIPT
systems [7]–[19]. We note that for high input powers, typical
EH circuits are driven into saturation by the diode breakdown
effect, see, e.g., [7, Figure 3]. In [8] and [9], power splitting
between several rectifiers was proposed to mitigate saturation,
which however leads to a more complicated EH design. The
saturation behavior of the EH was modeled in [10] based
on a sigmoid function, whose parameters are obtained by
fitting the parameterized model to experimental data. A similar
model for the EH circuit was assumed in [11], where the
authors determined the rate-energy trade-off of a SWIPT system
employing a single-antenna receiver architecture. The analysis
in [11] was further extended to a SWIPT system with multiple
antennas at the transmitter (TX), IR, and EH in [12] and ergodic
fading channels in [13]. Furthermore, in [14]–[16], the authors
investigated a non-linear diode model based on a Taylor series
approximation of the current flow. In [14] and [15], for SWIPT
systems with single-antenna receivers and wireless powered
communication systems, respectively, the authors neglected the
higher-order terms in the Taylor series expansion such that the
EH model reduced to the linear model in [3]–[6], whereas, in
[16], for multi-carrier transmission, the author showed that the
input signal distributions maximizing the information rate and
the transferred energy are different if the higher-order terms are
not neglected. By varying the input distribution, different points
in the corresponding rate-energy region can be achieved. In [17],
the authors considered a rectenna circuit comprising a single
diode for signal rectification, developed a non-linear diode
model for this circuit, and characterized the corresponding rate-
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energy region by optimally designing the input distribution
to maximize the mutual information between the TX and the
IR under a constraint on the minimum harvested power. The
analysis in [17] showed that the harvested power is maximized
by allocating non-zero probabilities to two mass points which
correspond to the maximum and minimum transmit power
values and satisfy the peak power (PP) and average power
(AP) constraints of the TX. Finally, in [18] and [19], based on
the concept of autoencoder [20], the authors used a learning
approach to optimize the modulation scheme to determine the
trade-off between the symbol error rate for data transmission
and the harvested power. In [18], the design of the modulation
scheme was based on the EH model in [17], whereas in [19],
the authors utilized two different EH circuit models, one similar
to the model in [16] and one based on the model in [10], for
low and high EH input powers, respectively. Similarly to [17],
the results in [19] suggest that on-off signaling is optimal for
power transfer.

Although the non-linear EH models considered in [7]–[19]
constitute a significant progress compared to the linear model
in [3]–[6], they are still based on strong assumptions. First, it
is assumed that the instantaneous harvested power depends on
the currently received signal only. However, rectifier circuits
typically include a reactive element, usually a capacitor, as part
of a low-pass filter (LPF). Since the voltage (or current) level on
this element cannot drop instantaneously [21], rectenna circuits
have memory. Furthermore, for high RF signal powers, EHs
suffer from the diode breakdown effect which was only partially
analyzed in [7]–[13], [17], [19] and completely neglected in
[14]–[16], [18]. Moreover, the impedance values of the antenna
and the rectifier have to be properly matched by a matching
circuit (MC) in order to maximize the efficiency of the EH. This
MC was assumed to be ideal in [7]–[19]. However, because
of the rectifier non-linearity, perfect matching is possible for a
single input signal frequency and a single power value only
[22], [23]. Finally, in [7], [10], [16]–[19] and other related
works, the authors considered a rectenna circuit that comprised
a single diode for half-wave signal rectification. However, other
rectifier circuits may be beneficial for SWIPT system design,
e.g., the full-wave rectifier based on a bridge configuration
with multiple diodes has been shown to lead to smaller output
ripple [24] and higher diode breakdown voltage levels [21].

In this paper, we develop an analytical framework for SWIPT
system design and maximization of the rate-power region by
optimization of the input signal distribution taking into account
the above mentioned effects that were ignored in previous
works. The main contributions of this paper can be summarized
as follows:
• Since the behavior of an electrical circuit is determined

by the initial state of its reactive elements and the input
signal, we model the EH circuit by a discrete-time Markov
decision process (MDP) [25] which is a widely used
framework to model and control systems with memory.
For SWIPT systems, MDPs were recently utilized to
model the temporal correlation of wireless channels [26]–
[28]. Furthermore, in [5] and [29], the authors considered
relay-based systems and used MDPs to determine the
transmit power at the relay nodes depending on time-

varying system parameters. In contrast to these works, we
utilize an MDP to investigate the impact of the memory
introduced by the reactive elements of practical EH circuits
on the performance of SWIPT systems.

• Based on the MDP model, we study a SWIPT system,
where IR and EH are equipped with separate antennas,
and consider the cases where TX and IR have and do not
have perfect knowledge of the instantaneous EH state. For
both cases, we optimize the input signal distribution for
maximization of the harvested power under constraints
on the minimum mutual information between TX and
IR and the maximum AP and PP at the TX. While, for
the case, where TX and IR have perfect knowledge of
the EH state, the formulated problem is convex, in the
other case, the optimization problem is non-convex and
we exploit alternating optimization [30]–[32] to develop
a low-complexity algorithm which is guaranteed to find a
limit point of the problem. We note that while, in practice,
it may be difficult for TX and IR to track the EH state,
the obtained boundary of the corresponding rate-power
region can serve as a performance upper bound for SWIPT
systems where this is not possible.

• Since an analytical model for the EH circuit that includes
all non-linear effects of the rectifier and impedance
mismatch is not tractable, we propose a learning based
approach to deal with the non-idealities of the EH circuit.
In particular, we utilize dense neural networks (DNNs)
to estimate the state transition probabilities and the
immediate reward of the MDP.

• Our simulation results reveal that knowledge of the
EH state at TX and IR can improve SWIPT system
performance. Moreover, our results show that the optimal
input distribution and the rate-power region depend on
the symbol duration, the EH impedance mismatch, the
EH input signal power, and the type of rectifier circuit.
In particular, a shorter symbol duration increases the
achievable bit rate at the expense of a decrease of the
average harvested power. Furthermore, the half-wave
rectifier is shown to yield a larger rate-power region in
the low and medium input power regimes, whereas the
full-wave rectifier is beneficial if the input power level at
the EH is high.

The rest of the paper is organized as follows. In Section II,
we introduce the system model, propose the MDP model for
the EH, and discuss the information transmission to the IR.
In Section III, to determine the boundary of the rate-power
region of the considered SWIPT system, we formulate two
optimization problems for the cases where both TX and IR
know and do not know the instantaneous EH state, respectively.
In Section IV, we provide simulation results for performance
evaluation. Finally, in Section V, we draw some conclusions.

Throughout this paper, we use the following notations. Bold
lower case letters stand for vectors, i.e., x is a vector, and its
ith element is denoted by xi. Bold upper case letters represent
matrices, i.e.,X is a matrix and Xi,j is its element in the ith row
and jth column. The average value of random variable (RV) x
is denoted by x. f(x, y; z) denotes a function of variables
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x and y for a given parameter z. The indicator function
1X(x) takes value 1 if x is in set X and 0 otherwise. The
exponential function of x is denoted by ex. Ex{·} denotes
the expectation with respect to the distribution of RV x.
Operator <{·} denotes the real part of a complex number.
The Moore-Penrose pseudoinverse of a matrix is denoted by
(·)†. R and C indicate the sets of real and complex numbers,
respectively. The imaginary unit is denoted by j. The circularly-
symmetric complex Gaussian distribution with mean vector µ
and covariance matrix Γ is denoted by CN (µ,Γ). Pr{x = xi}
stands for the probability that RV x is equal to a particular
value xi.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, first, we present the considered SWIPT system
model. Then, we model the EH by an MDP and discuss the
information transmission to the IR.

A. System Model

Let us consider a SWIPT system where the TX, IR,
and EH each have a single antenna1, see Fig. 1. The TX
broadcasts a pulse-modulated signal, which is modeled as
x(t) =

∑∞
k=0 x[k]ψ(t− kT ), where T is the symbol duration,

ψ(t) is a rectangular transmit pulse shape, and x[k] ∈ C is the
information symbol transmitted in time slot k.

The complex-valued information symbol x[k], k ∈ {0, 1, ...},
is expressed in polar coordinates as x[k] = rx[k]ejφx[k], where
the amplitude rx[k] ≥ 0 is a realization of an independent
and identically distributed (i.i.d.) RV rx, whereas the phase
φx[k] ∈ [−π, π) is a realization of an i.i.d. RV φx. We denote
the joint probability density function (pdf) of RVs rx and
φx by prx,φx(r, φ). The complex-valued fading gains of the
IR and EH channels are assumed to be constant within a
coherence time interval and are given by hI = |hI |ejφI and
hE = |hE |ejφE , respectively. We assume that the TX has
perfect knowledge of both channel gains and, additionally, hI
is known at the IR. The RF signals received at the IR and the EH
can be expressed as yRFI (t) =

√
2<{[hIx(t) + n(t)]ej2πfct}

and yRFE (t) =
√

2<{hEx(t) ej2πfct}, respectively, where fc
and n(t) denote the carrier frequency and complex-valued zero-
mean additive white Gaussian noise (AWGN), respectively. We
note that the noise received at the EH is ignored because its
contribution to the harvested energy is negligible.

B. MDP Model of EH

In this section, we develop an MDP model for the
EH. An MDP consists of a finite state space of size SΞ,
Ξ = {ξ1, ξ2, ..., ξSΞ}, a set of actions, XE , transition
probabilities, and a reward function. In particular, the current
MDP state ξ[k] ∈ Ξ depends on the previous state ξ[k−1] ∈ Ξ
and action xE [k] ∈ XE only. Moreover, the transition from
state ξi ∈ Ξ to state ξj ∈ Ξ due to action xE occurs with

1As in [2, Section IV], [17], and references therein, in this paper, we assume
that the EH and IR are separate devices. Our framework can be applied to
SWIPT systems with spatially separated or co-located EH and IR as long as
both devices are equipped with their own antenna, respectively.

TX
x(t)

hI +

n(t)

yI(t)
IR

hE

yE(t)
EH

Fig. 1. SWIPT system model comprising a TX, an IR, and an EH.

vs(t)
Rs Z1 Z2

MC

RL vL(t)
Rectifier

+
LPF

Antenna

Fig. 2. EH circuit model comprising an antenna, an MC, a rectifier with an
LPF, and a load resistor RL.

transition probability ρ̂i,j(xE), and, during this transition, an
immediate reward P̂i,j(xE) is received.

In the following, first, we present the rectenna circuit
employed by the EH. Then, we provide the MDP model for
the EH. Finally, we derive an expression for the average power
harvested by the EH which represents the average reward of
the MDP.

1) EH Circuit: Similar to [2], [17], and references therein,
we assume that the EH is equipped with a non-linear rectenna
circuit comprising an antenna, an MC, a rectifier with an LPF,
and a load resistor, cf. Fig. 2. The antenna is modeled as a
voltage source vs(t) connected in series with resistance Rs.
The rectifier circuit typically includes a non-linear diode circuit
and an LPF to convert the RF signal received at the EH to a
low frequency output voltage vL(t) across the load resistance
RL. Finally, as in [17] and [33], the EH includes an impedance
MC, which matches the antenna output impedance Z1 and the
input impedance of the rectifier circuit Z2 to maximize the
power transferred from the antenna to the rectifier. Note that
since the rectifier circuit includes non-linear elements, typically
diodes, exact matching is possible for one frequency and one
power value of the received signal only. Examples for the
employed rectifiers and MCs will be provided in Section III-E.

Since the output voltage of the rectenna circuit vL(t) is
always bounded above due to the diode breakdown effect
[34], we define the maximum load voltage level as V max

L .
We introduce a finite set of voltage levels of size SΞ + 1,
whose elements are defined as v̂l =

V max
L

SΞ
l, l ∈ {0, 1, ..., SΞ}.

Furthermore, we define the set of quantized load voltage
levels of size SΞ, whose elements are given by ṽi = v̂i−1+v̂i

2 ,
i ∈ {1, 2, ..., SΞ}. We approximate the output voltage level
vL(t) by discrete value ṽi if vL(t) ∈ [v̂i−1, v̂i). Note that
if the number of quantization levels approaches infinity, i.e.,
SΞ →∞, then ṽ(t)→ vL(t).

2) EH States: In the following, we model the EH as an
MDP. For the proposed model, we treat the quantized voltage
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levels at the load resistor, ṽl, l ∈ {1, 2, ..., SΞ}, and the received
symbols at the EH, xE [k] = hEx[k], as the states and actions
of the MDP, respectively. Furthermore, we approximate the
amount of power harvested during the transition from the
previous EH state ξ to the current state due to received symbol
xE by the immediate reward function P (ξ, xE).

More in detail, we map the discrete voltage levels ṽ to the EH
states ξ ∈ Ξ of a stochastic process, where Ξ ⊂ RSΞ is a finite
state space2. We note that since the received RF signal yRFE (t)
is time-slotted, so is the output voltage signal vL(t). Thus, the
system is in state ξ[k] = ξi ∈ Ξ, if at time instant t = kT ,
the load voltage level vL(kT ) ∈ [v̂i−1, v̂i), such that it is
approximated by the quantized voltage level ṽ(kT ) associated
with this state, i.e., ξ[k] = ξi = ṽi = ṽ

(
kT
)
. Furthermore, we

assume that when the EH is in state ξi, each voltage level from
the range [v̂i−1, v̂i) is equiprobable. This assumption is justified
if the number of quantization levels is large. Moreover, due to
the memory introduced by the LPF, at the end of time interval
k, the attained value vL(kT ) of the load voltage level depends
on the received symbol xE [k] = hEx[k] and the load voltage
level at the end of the previous time interval, vL((k−1)T ). We
note that although the MC typically includes additional reactive
elements, it is designed as a band-pass filter for the received
signal and fine-tuned to carrier frequency fc. Furthermore, the
bandwidth of this filter is much larger than the symbol rate 1

T .
Therefore, the memory introduced by the MC to the energy
harvesting process is negligible, and thus, we do not include
the reactive elements of the MC in our MDP model.

Stochastic process {ξ[k]} may change its value in each
symbol interval, i.e., when the EH receives a new symbol.
Therefore, {ξ[k]} is a discrete-time process and its time step is
equal to the symbol duration. Thus, since the behavior of the EH
circuit in a given time interval is completely determined by the
initial conditions and the input signal [21], ξ[k] depends only on
the voltage level of the load resistance at time (k−1)T , i.e., the
previous state ξ[k− 1], and the received symbol xE [k]. Hence,
the symbol xE [k] received at the EH corresponds to an action of
the MDP that is taken in time step k, i.e., when the MDP transits
from state ξ[k − 1] to state ξ[k]. Thus, the probability of any
state of the stochastic process ξ[k] depends only on the previous
state ξ[k − 1] and the received symbol3 xE [k], i.e., Pr{ξ[k] |
xE [k], ξ[k − 1], xE [k − 1], ξ[k − 2], ..., xE [1], ξ[0]} =

2In this work, we consider EH circuits comprising a first-order LPF, which
includes a single reactive element. We note that the proposed framework can be
extended to general EH circuits with multiple reactive elements as part of, e.g.,
a higher-order LPF [23] or the model of a battery [35], where the harvested
energy may be stored for future use [36], by increasing the dimensions of
the MDP state space [37]. In this case, the general MDP state is an m-tuple
{ξ1, ..., ξm} ∈ Ξ1 × ...× Ξm, where m is the number of reactive elements
and ξi ∈ Ξi, i ∈ {1, 2, ...,m} represents the voltage (or current) level at the
ith reactive element.

3In this work, as in [16], [17], and references therein, we assume a
rectangular pulse shape for the transmit filter. Therefore, there is no interference
between consecutive received symbols at the EH antenna. We note that if, for
example, a Root-Raised Cosine pulse shaping filter is employed at the TX,
the intersymbol interference caused at the EH introduces additional memory.
In particular, in this case, ξ[k] depends also on xE [k + i], i 6= 0, which
influences the power harvested at the EH. The study of the impact of the
memory introduced by pulse shaping filters that span several symbol intervals
on system performance is beyond the scope of this work. Nevertheless, we
note that SWIPT systems employing such pulse shaping filters can be studied
by increasing the dimension of the Markov process [37], [38].

Pr{ξ[k] | xE [k], ξ[k − 1]}. Furthermore, we note that for
the considered narrowband signals, the symbol duration is
typically much larger than the period of the RF signal, i.e.,
T � 1

fc
. Moreover, the time constant of the LPF is typically

also much larger than 1
fc

. Hence, we assume that the rectifier
behaves as an envelope detector [23], and hence, neglect the
influence of the phase changes from one received symbol to
the next one on the harvested power. Therefore, the state ξ is
independent of the phase φxE = φx+φE of the received signal
and depends on its amplitude rE = |hE |rx only. Moreover,
since channel gain hE is assumed to be perfectly known at
the TX, Pr{ξ[k] | rx[k], ξ[k−1]} = Pr{ξ[k] | xE [k], ξ[k−1]}
and, thus, the sequence of pairs {ξ, rx} can be modeled as an
MDP [39], [40].

We denote the probability of transition from state ξi ∈ Ξ to
state ξj ∈ Ξ when a symbol with amplitude rx is transmitted
by ρi,j(rx) = Pr{ξj | rx, ξi}. Next, we note that for a given
vL
(
(k− 1)T

)
= vν , the reception of a symbol with amplitude

rE = |hE |rx determines the output voltage level in the next
time slot, vL

(
kT
)

= vµ. Then, Pr{vµ | rE , vν} is equal
to 1 if the reception of a symbol with amplitude rE leads
to the transition from vν to vµ and 0, otherwise. Thus, vµ
can be obtained as a deterministic function of rE and vν ,
i.e., vµ = fv(vν , rE). However, since the states ξi and ξj
comprise voltage levels from the intervals V̂i = [v̂i−1, v̂i) and
V̂j = [v̂j−1, v̂j), respectively, the transition probabilities of the
discrete MDP ρi,j(rx) may take any value from the interval
[0, 1] and can be calculated as follows

ρi,j(rx) =

∫
V̂i

1V̂j
(
fv(v, |hE |rx)

)
dv

v̂i − v̂i−1
. (1)

We note that an analytical evaluation of ρi,j(rx) is intractable
since the transition function fv(vν , rE) cannot be derived
analytically due to the rectifier non-linearity, the imperfections
of the MC, and the circuit memory. Therefore, in Section III-E,
we employ a DNN [20] to approximate fv(vν , rE) and, thus,
to compute the transition probabilities ρi,j(rx).

Finally, we assume that the MDP is unichain and ergodic,
i.e., for a given input signal distribution, starting from any
initial state, the MDP always reaches the same steady-state
distribution [39]. Then, we denote the joint pdf of state ξi ∈ Ξ
and symbol amplitude rx by πi(rx) and collect these pdfs
in vector π(rx) ∈ RSΞ , which is a solution of the following
system of balance equations [25]

SΞ∑

i=1

∫

rx

πi(rx)
(
1j(i)− ρi,jx(rx)

)
drx = 0,

∀j ∈ {1, 2, ...SΞ},
(2)

SΞ∑

i=1

∫

rx

πi(rx)drx = 1. (3)

3) MDP Reward: In the following, we derive an expression
for the average harvested power which constitutes the average
reward of the MDP.

First, we note that the instantaneous harvested power can
be expressed as P (t) =

v2
L(t)
RL

and, thus, similarly to vL(t),
P (t) is a time-slotted random process. We denote the average
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power harvested while receiving an infinitely long sequence of
random symbols {xE [k]} by P . This value can be estimated
by averaging function P (t) over time, or equivalently, over
time intervals, assuming that the number of time intervals K
approaches infinity:

P = lim
t→∞

1

t

∫ t

0

P (τ)dτ

= lim
K→∞

1

K

K−1∑

k=0

1

T

∫ T

0

P (t+ kT )dt.

(4)

Since the amount of power harvested by the EH during time
slot k depends on the amplitude rE = |hE |rx of the symbol
received in time slot k and on the load voltage level at the
end of the previous time slot vµ = vL

(
(k − 1)T

)
, we define

the harvested power averaged over symbol duration T by
P ′(vµ, rE) = 1

T

∫ T
0
P
(
t + (k − 1)T

)
dt. Furthermore, the

average amount of power, P̃i(rx), harvested if the previous state
is ξ[k−1] = ξi ∈ Ξ and a symbol with amplitude rE = |hE |rx
is received, is approximated as P̃i(rx) = P ′(ṽi, |hE |rx). Addi-
tionally, since the MDP is assumed to be ergodic, the influence
of the initial state on the average harvested power vanishes
as the length of the symbol sequence {x[k]}, k = {0, 1, 2, ...},
increases. Hence, the average harvested power can be obtained
as a function of π(rx) by averaging P̃i(rx) over both the EH
states and the transmitted symbols as follows4

P (π) = Eξ,rx
{
P̃i(rx)

}
=

SΞ∑

i=1

∫

rx

πi(rx)P̃i(rx)drx. (5)

Since P ′(v, rE) is also not analytically tractable, in Section
III-E, we employ a second DNN to approximate this function.

C. Information Receiver

Let us consider the signal received at the IR, yRFI (t). Since
yRFI (t) is a time-slotted signal, after down-conversion, matched
filtering, and sampling, the received signal in time slot k can
be expressed as y[k] = hIx[k] + n[k], where n[k] is discrete-
time AWGN distributed as CN (0, 2σ2

n). Furthermore, y[k] can
be expressed in polar coordinates as y[k] = ry[k]ejφy [k] with
ry[k] ≥ 0 and φy[k] ∈ [−π, π), where amplitude ry[k] and
phase φy[k] are realizations of i.i.d. RVs ry and φy , respectively.
We denote the joint pdf of RVs ry and φy as a function of the
joint input pdf prx,φx by pry,φy

(
r, φ; prx,φx

)
.

The mutual information between x and y as a function of
the joint input pdf prx,φx(r, φ) can be expressed as [41]

I
(
prx,φx

)
= Hy

(
prx,φx

)
−Hn, (6)

where Hy

(
prx,φx

)
and Hn are the differential entropies of the

received signal and the noise, respectively. We note that the
differential entropy of the noise does not depend on the input
pdf prx,φx(r, φ) and is equal to Hn = log2(2πeσ2

n) [42]. The

4From our simulations (not included in the paper), we observed that because
of the unichain ergodicity of the MDP, for a valid pdf π(rx), the time averaged
harvested power in (4) converges to the value P (π) in (5) after a finite transient
time (e.g., K = 5000 time slots), which we assume to be sufficiently short
compared to the coherence time interval of the EH channel.

differential entropy of the complex-valued received signal can
be expressed as follows [43]

Hy

(
prx,φx

)
= Hry,φy

(
prx,φx

)

+

∫ ∞

0

pry
(
r; prx,φx

)
log2(r) dr,

(7)

where pry
(
r; prx,φx

)
and Hry,φy

(
prx,φx

)
denote the pdf of RV

ry and the differential entropy of RVs ry and φy as functions
of input pdf prx,φx , respectively.

III. RATE-POWER REGION OF SWIPT SYSTEM

We refer to the set of all attainable pairs of average harvested
powers and achievable rates as the rate-power region of the
SWIPT system [17]. In order to obtain the boundary of this
rate-power region, in this section, we jointly optimize the pdfs
of the EH states ξ, transmit symbol amplitudes rx, and transmit
symbol phases φx for maximization of the harvested power at
the EH under a constraint on the minimum required mutual
information between TX and IR. To this end, we first consider
the case where both TX and IR have perfect knowledge of the
instantaneous EH state which leads to a convex optimization
problem. Then, we consider the more practical case, where
the EH state is not known at TX and IR. In this case, the
resulting optimization problem is non-convex, and we develop
an iterative algorithm to obtain a limit point [32].

A. EH State Is Known at TX and IR

In this section, we formulate a convex optimization problem
for the joint pdf of the EH states ξ, transmit symbol amplitudes
rx, and phases φx for the case when the EH state is known at
the TX and the IR. Then, we show that for the solution of the
problem, the phase φx is statistically independent from ξ and rx
and uniformly distributed. Finally, exploiting this observation,
we reformulate and solve the optimization problem.

In this section, we assume that both TX and IR know the
current EH state. This assumption may hold in practice if, e.g.,
the IR and EH are co-located devices [2] and the TX is able
to track the EH state. Under this assumption, the pdf of the
transmit symbols, which must be known at TX and IR, can
be made dependent on the EH state ξ and, hence, be modeled
as pirx,φx = pirxp

i
φx|rx , where subscript i refers to the pdf for

EH state ξi and piφx|rx is the conditional pdf of phase φx for
a given amplitude rx. Thus, we obtain the boundary of the
rate-power region by jointly optimizing the joint pdf of the EH
states ξ and the amplitudes rx of transmitted symbol x, π(rx),
and the set of conditional pdfs Pφx|rx , whose ith element is
Piφx|rx = piφx|rx , i ∈ {1, 2, ..., SΞ}.

We note that for a given joint pdf π(rx), the pdf of the
symbol amplitudes in state ξi is given by [25]

pirx(r) =
πi(r)

γi
, (8)

where γi =
∫
rx
πi(rx)drx denotes the marginal probability

of state ξi ∈ Ξ. Additionally, since in each symbol interval
k, transmitted symbol x[k] may be taken from a different
distribution depending on the current EH state, we introduce
the expected mutual information averaged over the EH states,



6

I
(
pirx,φx

)
= I
(
pirx
)

= −
∫ ∞

0

pry
(
ry; pirx

)
log2

( 1

ry
pry
(
ry; pirx

))
dry + log2(2π)−Hn, (10)

pry
(
ry; pirx

)
=

1

σ2
n

∫

rx

rye
− r

2
y+r2x|hI |

2

2σ2
n I0

(
ry rx |hI |

σ2
n

)
pirx(rx)drx. (11)

which is given by I
(
π,Pφx|rx

)
=
∑SΞ

i=1 γiI
(
pirx,φx

)
. Hence,

we formulate the following constrained optimization problem

maximize
π(rx),Pφx|rx

P (π) (9a)

subject to I
(
π,Pφx|rx

)
≥ Ireq, (9b)

SΞ∑

i=1

∫

rx

r2
xπi(rx)drx ≤ σ2

rx , (9c)

|rx| ≤ rmax
x , (9d)

SΞ∑

i=1

∫

rx

πi(rx)drx = 1, (9e)

SΞ∑

i=1

∫

rx

πi(rx)
(
1j(i)− ρi,j(rx)

)
drx

= 0, j ∈ {1, 2, ...SΞ},
(9f)

where Ireq in (9b) is the minimum required expected mutual
information between TX and IR. Constraint (9c) limits the AP
budget at the TX to σ2

rx to avoid excessive power consumption
and interference to other systems. Moreover, to avoid driving
the power amplifier into a non-linear regime, we impose
constraint (9d) to limit the PP at the TX by introducing the
maximum amplitude rmax

x . Furthermore, constraints (9e) and
(9f) ensure that the solution π(rx) is a valid pdf, i.e., summing
the probabilities over the MDP state and action spaces yields
one, and corresponds to the steady-state distribution of the
MDP described in Section II-B, respectively.

Note that since π(rx) is independent of φx, in (9), only
I
(
π,Pφx|rx

)
depends on the distribution of the phases φx. In

the following proposition, we show that for the solution of (9),
the individual phase distributions in Pφx|rx are independent of
EH state ξ, i.e., p1

φx|rx = p2
φx|rx = ... = pSΞ

φx|rx , and the phases
φx are statistically independent of the symbol amplitude rx
and uniformly distributed.

Proposition 1. For the solution of (9), the phase φx of
transmitted symbol x = rx e

jφx is uniformly distributed and
statistically independent from amplitude rx and EH state ξ.
Moreover, RVs ry and φy are also statistically independent and
phase φy is uniformly distributed. Furthermore, the mutual
information and the distribution of the amplitudes of the
received symbol, when the EH is in state ξi, can be simplified
as in (10) and (11), shown on top of this page, respectively.

Proof. Please refer to Appendix A.

Exploiting Proposition 1, we can reformulate the constrained
optimization problem in (9) as follows:

maximize
π(rx)

P (π) (12a)

subject to I(π) =

SΞ∑

i=1

γiI
(
pirx
)
≥ Ireq, (12b)

(9c)-(9f),

where the pdf of the symbol amplitudes, pirx(r), is calculated
as in (8).

The solution of (12), π∗(rx), is the optimal joint pdf of
the EH states and the transmitted symbols and maximizes the
average harvested power at the EH subject to the constraints
on the expected mutual information between TX and IR, the
AP, and the PP at the TX. Since the EH state and the EH
circuit parameters are assumed to be known at the TX, convex
optimization problem (12) can be efficiently solved at the TX
node using standard numerical tools, such as CVX [44].

To implement the policy obtained by solving (12), the
input distribution has to be adapted at the TX according
to the instantaneous EH state, i.e., TX and IR must have
perfect knowledge of the current EH state. This may be
difficult to realize in practice. Nevertheless, π∗(rx) constitutes
a performance upper-bound for the more practical case where
the EH state is not known at TX and IR. The rate-power region
for this case will be tackled next.

B. EH State Is Not Known at TX and IR

Now, we consider SWIPT systems where the current EH state
is not known at TX and IR. Tracking the EH state increases
complexity and may not be possible when EH and IR are
separated.

If the EH state is not known, the pdf of the input symbol am-
plitudes, prx , which must be known at both TX and IR, has to
be independent of ξ, i.e., pirx(r) = prx(r), ∀i ∈ {1, 2, ..., SΞ}.
Then, the joint pdf π(rx) and the average harvested power, P ,
reduce as follows

πi(rx) = γi prx(rx), (13)

P
(
γ, prx

)
=

SΞ∑

i=1

∫

rx

γiprx(rx)P̃i(rx)drx, (14)

where vector γ = [γ1, γ2, ..., γSΞ
]> collects the marginal

probabilities of the EH states ξi, i ∈ {1, 2, ..., SΞ}. In order to
obtain the boundary of the rate-power region, we formulate
the following optimization problem:
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maximize
γ,prx

P
(
γ, prx

)
(15a)

subject to I
(
prx
)
≥ Ireq, (15b)∫

rx

r2
xprx(rx)drx ≤ σ2

rx , (15c)

|rx| ≤ rmax
x , (15d)

SΞ∑

i=1

∫

rx

γiprx(rx)
(
1j(i)− ρi,j(rx)

)
drx

= 0, j ∈ {1, 2, ...SΞ},
(15e)

∫

rx

prx(rx)drx = 1, (15f)

SΞ∑

i=1

γi = 1, (15g)

where, similar to (9), we maximize the average harvested
power at the EH, P , subject to the minimum required mutual
information, Ireq, between TX and IR. Note that in contrast to
problem (9), since, in this case, the distribution prx is identical
in each symbol interval, the expected mutual information I(π)
is equal to the mutual information I(prx) for any given state,
cf. (15b). Constraints (15c) and (15d) ensure that the input
distribution prx satisfies the AP and PP limits at the TX,
respectively. Furthermore, we have reformulated constraint (9f)
as (15e), whereas (9e) has been decomposed into (15f) and
(15g).

We observe that objective function (15a) and constraint
(15e) are not jointly concave and convex with respect to γ and
prx , respectively. Hence, (15) is a non-convex optimization
problem, and therefore, the computation of its global optimal
solution entails a high complexity. However, if we fix one
of the variables, i.e., γ or prx , both (15a) and (15e) become
linear in the other variable. Hence, the subproblems obtained
from (15) by fixing either γ or prx are convex and can
be solved efficiently. Therefore, in the following, to find a
suboptimal solution of (15), we adopt alternating optimization,
e.g., [30], which is known for its high efficiency and fast
convergence speed. The solution obtained by the proposed
algorithm converges to a limit point of (15).

C. Algorithm for Solving (15)

In the following, we develop an iterative algorithm, which
involves an inner and an outer loop, to obtain a suboptimal
solution of (15). In the outer loop of the algorithm, as in
[45], we relax the equality constraints in (15e) to inequality
constraints and tighten the relaxation in each iteration. In the
inner loop, adopting alternating optimization, we obtain a limit
point for the relaxed version of problem (15).

1) Outer Loop: We observe that the optimization variables in
problem (15) can be separated into two non-overlapping subsets,
i.e., the pdf of symbol amplitudes, prx , and the distribution
of EH states, γ, and therefore, alternating optimization is
a promising approach for solving (15) [31]. However, (15e)
imposes SΞ equality constraints. Hence, applying alternating
optimization directly to (15) may lead to a strongly suboptimal
solution since, in each iteration, the degrees of freedom for the
optimization of prx and γ are very limited. Thus, to overcome

this issue, similar to [45], in iteration m of the outer loop, we
relax the equality constraints in (15e) to inequality constraints
as follows
∣∣∣∣∣

∫

rx

prx(rx)

SΞ∑

i=1

γi
(
1j(i)− ρi,j(rx)

)
drx

∣∣∣∣∣ ≤ ε
tol
m,

j ∈ {1, 2, ...SΞ},
(16)

where εtol
m = εtol

m−1δε is the tolerance for the constraint violation,
which will be tightened from one iteration of the outer loop to
the next, and δε ∈ (0, 1) is a constant factor.

Furthermore, we note that for a given distribution of symbol
amplitudes prx which satisfies (15b) - (15d), (15f), there exists a
unique distribution of EH states γ, such that the pair {prx ,γ} is
in the feasible set of (15) [39]. This distribution of EH states, γ,
can be obtained as the unique solution of the system of balance
equations defined by constraints (15e) and (15g). Moreover,
we note that (15e) and (15g) can be rewritten in matrix form as
R(prx)γ = e, where the elements of R(prx) ∈ R(SΞ+1)×SΞ

are given by R(prx)j,i =
∫
rx
prx(rx)

(
1j(i) − ρi,j(rx)

)
drx

and R(prx)SΞ+1,i = 1, i, j ∈ {1, 2, ..., SΞ}, whereas the
elements of e ∈ R(SΞ+1) are all equal to zero, i.e., ei = 0
if i ∈ {1, 2, ..., SΞ}, except for the last element, which is
eSΞ+1 = 1.

We note that one of the equations in (15e) is redundant and,
hence, the rank of matrix R(prx) is equal to SΞ [39]. Thus,
for an initial feasible pdf of symbol amplitudes in iteration m,
pm,0rx , we obtain the corresponding distribution of states γm,0

as follows
γm,0 =

(
R(pm,0rx )

)†
e. (17)

Then, starting from the initial point {pm,0rx ,γm,0}, we find a
limit point of problem (15) with constraint (15e) relaxed to
(16), {pm,∗rx ,γm,∗}, utilizing alternating optimization, which
is implemented in the inner loop of the proposed algorithm.
Finally, we obtain the initial point for the next iteration m+ 1
from {pm,∗rx ,γm,∗} by setting pm+1,0

rx = pm,∗rx and calculating
the corresponding feasible distribution of EH states, γm+1,0,
as in (17).

2) Inner Loop: In the inner loop, exploiting alternating
optimization, we solve the subproblem obtained in outer loop
iteration m by relaxing constraint (15e) to (16). To this end,
we sequentially fix one of the optimization variables, i.e., γ or
prx , and solve the resulting convex subproblem with respect
to the other variable.

Step 1: In the first step of the nth iteration of the inner
loop, we optimize the pdf of the symbol amplitudes prx for
the given distribution of states γm,n−1 calculated in iteration
n−1. Since constraint (15g) does not depend on pdf prx , in the
current step, we obtain the pdf of symbol amplitudes pm,nrx as
the solution of the following convex optimization subproblem

maximize
prx

P
(
γm,n−1, prx

)
(18)

subject to

∣∣∣∣∣

∫

rx

prx(rx)

SΞ∑

i=1

γm,n−1
i

(
1j(i)− ρi,j(rx)

)
drx

∣∣∣∣∣
≤ εtol

m, j ∈ {1, 2, ...SΞ}
(15b), (15c), (15d), (15f).
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Algorithm 1: Iterative algorithm for solving optimiza-
tion problem (15)

Initialize: Maximum number of iterations Mmax, Nmax,
iteration indices m = 1, n = 1, initial tolerance εtol

1 ,
constant factor δε, and initial distribution p1,0

rx
satisfying (15b)-(15d), (15f).

repeat
1. For distribution pm,0rx , set the elements of
R(pm,0rx ) as
R(pm,0rx )i,j =

∫
rx
pm,0rx (rx)

(
1j(i)− ρi,j(rx)

)
drx

and R(pm,0rx )i,SΞ+1 = 1, i, j ∈ {1, 2, ..., SΞ}
2. Find the initial distribution of states γm,0 from
(17)

repeat
a. For the given γm,n−1, solve convex problem
(18) with CVX [44], and store the intermediate
pdf of transmit symbol amplitudes pm,nrx

b. For the given pm,nrx , solve convex problem
(19) with CVX [44], and store the intermediate
distribution of states γm,n

c. Set n = n+ 1
until termination condition5 is met or
n = Nmax + 1;

3. Set initial value for the next iteration
pm+1,0
rx = pm,n−1

rx
4. Update the constraint violation tolerance
εtol
m+1 = εtol

mδε
5. Set m = m+ 1

until termination condition5 is met or
m = Mmax + 1;

Output: γMmax,Nmax , pMmax,Nmax
rx

Step 2: We note that constraints (15b), (15c), (15d), and
(15f) do not depend on the distribution of states γ. Hence, for
the given pdf pm,nrx , we formulate the subproblem to obtain
γm,n as follows

maximize
γ

P
(
γ, pm,nrx

)
(19)

subject to

∣∣∣∣∣
SΞ∑

i=1

γi

∫

rx

pm,nrx (rx)
(
1j(i)− ρi,j(rx)

)
drx

∣∣∣∣∣
≤ εtol

m, j ∈ {1, 2, ...SΞ},
(15g).

The proposed optimization algorithm is summarized in Algo-
rithm 1.

In the following, we discuss the convergence of Algo-
rithm 1. First, we note that problem (18) is convex, whereas
(19) is linear and, hence, both problems can be efficiently
solved using standard numerical optimization tools, such as
CVX. As shown in [30], starting from the feasible point
{γm,0, pm,0rx }, in the inner loop, the sequence {γm,n, pm,nrx }
converges monotonically to a limit point of the corresponding

vs(t)

Rs

C1

L1

C2

MC

CL RL vL(t)

RectifierAntenna

Fig. 3. EH circuit model comprising an MC, a single diode half-wave rectifier,
and a capacitor CL as part of an LPF.

relaxed subproblem, {γm,∗, pm,∗rx }. Moreover, as outer loop
iteration m increases, the sequence of feasible sets of the
relaxed subproblems determined by constraints (15b) - (15d),
(15f), (15g), and (16) converges to the feasible set of the
initial problem (15). Hence, the sequence of feasible points
{γm,0, pm,0rx } converges to a limit point of (15) denoted
by {γ∗, p∗rx}. Furthermore, since the monotonicity of the
sequence P

(
γm,0, pm,0rx

)
,m ∈ {1, 2, ..}, cannot be guaranteed

in general, as a suboptimal solution of (15), one may choose
the pair 〈γ′, p′rx〉 = arg max〈γ,prx 〉∈G P

(
γ, prx

)
, where

G =
{
〈γm,0, pm,0rx 〉 | m ∈ {1, 2, ...}

}
is the set of feasible

points obtained in the outer loop. However, we observed
monotonic convergence of the sequence P (γm,0, pm,0rx ) in our
simulations. Therefore, as a solution of (15), we adopt the pair
{γMmax,0, pMmax,0

rx }, which is a limit point of (15) provided that
the maximum number of iterations of the outer loop, Mmax, is
large enough to ensure that εtol

Mmax
≈ 0.

Remark 1: The computational complexity of Algorithm 1
depends on the methods used to solve subproblems (18) and
(19). The computational complexity order of a widely used
interior-point algorithm [47] for linear and conic problems with
n variables and m constraints is O

(
n3 + n2m

)
, where O

(
·
)

is the big-O notation [48]–[50]. Therefore, the computational
complexity of the proposed algorithm per iteration of the inner
loop as a function of the size of the constellation set6 S of the
transmit symbols and the MDP state space size SΞ is given by
O
(
S3

Ξ + SΞS
2 + S3

)
. Note that algorithms with polynomial

time complexity are usually considered to be fast algorithms
in the literature [46], [49]. Since the EH circuit parameters are
known at the TX, optimization problem (15) can be efficiently
solved at TX with Algorithm 1.

D. Infinitely Large Symbol Duration

In the following, we consider the special case of a SWIPT
system with symbol duration T → ∞. First, in this case,
we observe that the reactive element of the LPF in the EH
circuit saturates to a voltage level which depends on the
received symbol only [21]. Hence, the next state ξ[k] of the
MDP does not depend on the previous state ξ[k − 1], i.e.,
Pr{ξ[k] | rx[k], ξ[k − 1]} = Pr{ξ[k] | rx[k]}. Then, the

5Here, in order to verify convergence, as in [46], a termination con-
dition can be used in the inner and outer loops of the algorithm, e.g.,
|pm,n−1

rx − pm,n−2
rx | ≤ εip and |pm,0

rx − pm−1,0
rx | ≤ εop, respectively,

where | · | is the L1-norm, and εip and εop are pre-defined maximum values
for the errors in the inner and outer loops, respectively.

6To determine the pdf of the transmit symbol amplitudes, prx , numerically,
as in, e.g., [17], [41], in our simulations, we assume that the symbol amplitudes
rx are taken from a constellation set of size S, see Section IV-A.



9

TABLE I
EH CIRCUIT PARAMETERS.

Rectifier circuit Half-wave rectifier Full-wave rectifier
Input power level for MC design −13 dBm 0 dBm −13 dBm 0 dBm

Diode model SMS7630
Antenna resistance Rs = 50 Ω

Load capacitor CL = 1 nF

Load resistor RL = 10 kΩ

Inductance of the MC L1 = 26.7 nH L1 = 9.62 nH L1 = 23.2 nH L1 = 11.1 nH

Capacitance of the MC
C1 = 0.73 pF C1 = 1.41 pF C1 = 0.3 pF C1 = 2.72 pF

- C2 = 0.375 pF - C2 = 0.3 pF

3 dB bandwidth of the MC 270 MHz 280 MHz 310 MHz 300 MHz

transition pdf of this process reduces to ρi,j(rx) = ρi(rx),
∀ j ∈ {1, 2, ..., SΞ}. Moreover, in this scenario, the power
harvested by the EH before the voltage level at the reactive
element in the LPF saturates becomes negligible as T →∞.
Hence, the amount of power harvested by the EH during time
slot k does not depend on the initial state ξ[k], i.e., P̃i(rx) =
P ′(ṽi, |hE |rx) = P ′(|hE |rx),∀i ∈ {1, 2, ..., SΞ}. Thus, the
average harvested power in (5) depends on the pdf prx only,
i.e., P (π) = P

(
prx
)

= Erx
{
P ′(|hE |rx)

}
. In this case, the

average harvested power P
(
prx
)

=
∫
rx
prx(rx)P ′(|hE |rx) drx

is maximized by optimizing the pdf of the transmitted symbols
prx which is independent of ξ, and hence, is identical in each
symbol interval. Consequently, (9) simplifies as follows

maximize
prx

P
(
prx
)

(20a)

subject to I
(
prx
)
≥ Ireq, (20b)∫

rx

prx(rx) drx = 1, (20c)

(9c), (9d). (20d)

We observe that optimization problem (20) is convex and
can be solved using standard numerical solvers, such as CVX.
Moreover, problem (20) is equivalent to [17, Eq. (18)], where
an analytical expression for P ′(rE) was derived assuming a
half-wave rectifier circuit with a single diode at the EH, a
clipping model for the EH saturation, and perfect impedance
matching. Thus, for this special case, (20), and hence, (9)
yield the same solution as the one obtained in [17]. We note,
however, that in this paper, we use a learning based model for
P ′(rE), which is applicable for imperfect impedance matching
and arbitrary rectifier circuits.

E. Learning Based Model For EH Circuits

In this section, we discuss a learning based approach to
approximate functions fv(v, rE) and P ′(v, rE), which are
required for calculation of the transition pdf ρi,j(rx) and the
harvested power P̃i(rx) in optimization problems (9), (15), and
(20). As discussed in Section II-B, for practical EHs, given
load voltage level, v, and the amplitude of the received symbol,
rE = |hE |rx, it is not tractable to develop exact analytical

vs(t)
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CL RL vL(t)

RectifierAntenna

Fig. 4. EH circuit model comprising an MC, a full-wave rectifier based on
the bridge diode configuration, and a capacitor CL as part of an LPF.

expressions of the transition function fv(v, rE) and the reward
associated with the corresponding transition P ′(ṽ, rE), where
ṽ is the quantized voltage level v, because of the imperfections
of the EH circuit. However, due to the universal approximation
theorem for DNNs [51], [52], it is possible to estimate the
values of these functions with DNNs.

A DNN is comprised of nodes organized into groups
called layers [20]. The outputs of the nodes in layer i are
collected in vector h(i) ∈ Rωi , where ωi is the number
of nodes in layer i. The output vector of the first layer
is given by h(1) = g(1)(W (1)x + b(1)), where x is the
input vector of the DNN, whereas the outputs of the hid-
den layers, i.e., the layers following the first layer, are
functions of the outputs of the layers preceding them, i.e.,
h(i) = g(i)(W (i)h(i−1) + b(i)), i ∈ {2, ..., Nl}, where g(i)(·),
W (i) ∈ Rωi×ωi−1 , and b(i) ∈ Rωi are the activation function,
the weight matrix, and the bias vector adopted in layer i,
respectively, and Nl is the total number of layers of the DNN
[20]. Commonly used activation functions for DNNs, g(i)(·),
include ReLU and sigmoid functions [20], which are computed
element-wise. The parameters of the DNN, i.e., the weight
matrices and bias vectors of each layer, are collected in a
set Ω = {W (1), b(1),W (2), b(2), ...,W (Nl), b(Nl)} and can
be obtained using a gradient-based back-propagation algorithm
[20]. The last layer of a DNN is usually composed of a single
node, i.e., ωNl = 1, whose output is the output of the DNN,
i.e., h(Nl) = N (x,Ω). Finally, we note that as shown in [51],
[52], a DNN with at least one hidden layer can approximate
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TABLE II
SIMULATION PARAMETERS.

Carrier frequency fc = 2.45 GHz AWGN variance at IR σ2
n = −70 dBm

PP limit at TX P TX
max = 50 dBm AP limit at TX σ2

x = 42 dBm

Constellation size S = 64 EH state space size SΞ = 50

Pathloss exponent of IR channel αI = 3 Pathloss exponent of EH channel αE = 2

Distance between TX and IR dI = 40 m Distance between TX and EH

LP regime: dE = 20 m

MP regime: dE = 10 m

HP regime: dE = 2 m

Initial tolerance in Algorithm 1 εtol
1 = 0.5 Tolerance decrease factor in Algorithm 1 δε = 0.5

Maximum number of iterations Mmax = 15 Maximum error tolerance in the εip = 10−7

of Algorithm 1 Nmax = 10 termination conditions in Algorithm 1 εop = 10−7

any Borel measurable function with any desired non-zero error.
Here, we train two DNNs, f̂v(v, rE) = N1(v, rE ,Ω1) and

P̂ ′(v, rE) = N2(v, rE ,Ω2), where x = [v, rE ]> is the input
vector of the DNNs, and f̂v(v, rE) and P̂ ′(v, rE) are the
approximations of fv(v, rE) and P ′(v, rE), respectively. Since
the related approximation error depends on the network size
[51], the numbers of nodes of DNNs N1 and N2 have to be
chosen properly. For our simulations, we use DNNs where
the hidden nodes employ the ReLU activation functions. In
the output layer, as the suitability of the logistic function for
modeling saturation effects in EH circuits was demonstrated
in [10], we use the sigmoid activation function.

In this paper, we consider two different rectenna EH circuits,
namely, a single diode half-wave rectifier [17], cf. Fig. 3,
and a bridge full-wave rectifier [23], cf. Fig. 4. For both
rectenna circuits, we designed two different LC matching
networks, fine-tuned for input signal frequency 2.45 GHz and
input power values −13 dBm and 0 dBm representing low
and high input power levels, respectively. As discussed in
Section II-B, although the MCs also include reactive elements,
the memory introduced by the MC can be neglected in the
MDP model since the MCs behave as band-pass filters, whose
bandwidths are much larger than the considered symbol rates 1

T ,
which do not exceed 200 kHz in our simulations. The adopted
EH circuit parameters are specified in Table I.

Data for the training of the DNNs can be obtained from a
circuit simulator, such as ADS [53]. To train the DNNs, we
randomly generate the i.i.d. amplitudes of the received symbols,
rE , that are uniformly distributed over a space of symbols
that can be realistically received by the EH and determine
the corresponding 4-tuples

{
P ′(vν , rE), fv(vν , rE), vν , rE

}

using the circuit simulator. Specifically, we used 11000, 3000,
and 750 4-tuples for training, validation, and testing of the
DNNs for all considered circuits, respectively. For training,
we used the Adam optimization algorithm [54] and the mean
absolute percentage loss function, see e.g. [55]. We note that
the parameters of the DNNs N1(v, rE ,Ω1) and N2(v, rE ,Ω2)
depend on the modeled EH circuit but not on the EH channel
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Fig. 5. Convergence of Algorithm 1.

gain. Thus, the DNNs can be pre-trained offline at a high
performance computing node.

To minimize the estimation error measured on the test set for
a given training set size, we trained several DNNs with different
numbers of layers to find the best setting. We found that for all
considered rectenna circuits, the values of the mean absolute
percentage error for DNNs N1(v, rE ,Ω1) and N2(v, rE ,Ω2)
do not significantly decrease if the size of the DNNs increases
beyond 7 layers and 15 nodes per hidden layer. The parameters
of each network obtained after training are saved to be used
for estimation of the transition pdf ρi,j(rx) and the power
values P̃i(rx), respectively, as needed for solving optimization
problems (9), (15), and (20).

IV. SIMULATION RESULTS

In this section, for convenience, we refer to the operational
modes corresponding to the solutions of problems (9), (15),
and (20) as Scheme I, Scheme II, and Scheme III, respectively.
In the following, after specifying the simulation parameters, we
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Fig. 6. Rate-power region for Schemes I, II, and III, and for the baseline scheme.

first study the convergence of Algorithm 1. Then, we validate
the proposed model by comparing the rate-power regions of the
SWIPT system obtained for Schemes I-III with that obtained for
the scheme proposed in [17]. Subsequently, we investigate the
impact of impedance mismatch between antenna and rectifier
on the rate-power region. Finally, we study the dependence of
the rate-power region on the symbol duration T , the type of
EH circuit, and the EH input power level, respectively.

A. Simulation Parameters

For all simulations, we adopted uniformly spaced symbol
amplitudes rx, i.e., rxk = k

S−1r
max
x , k = 0, 1, ..., S − 1, with

maximum symbol amplitude rmax
x = 10P

TX
max/20, where P TX

max
is the PP limit at the TX in dBm and S is the constellation
size. As in [56], the IR and EH channel gains are modeled

as |hl|2 = |h̃l|2
(

c
4πfcd0

)2(
d0

dl

)αl
, l ∈ {I, E}, where |h̃l| is

the small scale fading coefficient, which is kept constant and
equal to 1 unless specified otherwise, c denotes the speed of
light, αl is the pathloss exponent, d0 ≤ dl is the reference
distance, which is set to d0 = 1 m in our simulations, and
dI and dE represent the distances between TX and IR and
between TX and EH, respectively. Moreover, we consider three
different input power regimes at the EH, namely, the low power
(LP), the MP, and the high power (HP) regimes characterized
by different distances dE between TX and EH. The adopted
simulation parameters are summarized in Table II.

B. Convergence of Algorithm 1

In Fig. 5, we investigate the convergence of Algorithm 1
for the half-wave rectifier, an MC fine-tuned for −13 dBm,
a symbol duration of T = 10 µs, the MP regime for the
EH, and a required mutual information between the TX and
IR of Ireq = 7.8 bit

symbol . For the termination conditions in
Algorithm 1, we adopt error tolerance values of εip = 10−7

and εop = 10−7 for the inner and outer loops, respectively,

see Footnote 5. For all simulation parameters, the values in
Table II are adopted. The maximum numbers of iterations,
Nmax and Mmax, are chosen sufficiently large to ensure that
the termination conditions for the inner and outer loops of
Algorithm 1 are met, respectively.

In Fig. 5, we observe that in each iteration of the outer
loop m, starting from a feasible point of the initial prob-
lem {γm,0, pm,0rx }, the proposed algorithm monotonically
converges to a limit point of the corresponding relaxed
subproblem {γm,∗, pm,∗rx }. Also, we note that in the first
iteration of the outer loop, the limit point of the relaxed
subproblem, {γm,∗, pm,∗rx } yields a significantly higher average
harvested power than the corresponding initial feasible point
for the next iteration {γm+1,0, pm+1,0

rx }, i.e., P (γm,∗, pm,∗rx ) >
P (γm+1,0, pm,∗rx ) = P (γm+1,0, pm+1,0

rx ). However, as the outer
loop iterations m increase, both the sequence of limit points
{γm,∗, pm,∗rx } and the sequence of feasible points {γm,0, pm,0rx }
monotonically converge to a limit point of (15) within the
specified error tolerance.

Exhaustive simulations have shown that for convergence to a
limit point, i.e., to satisfy the termination conditions, Algorithm
1 requires at most Nmax = 5 and Mmax = 12 iterations in the
inner and outer loops, respectively. Therefore, in the following,
for the inner and outer loops, we set the maximum numbers
of iterations to Nmax = 10 and Mmax = 15, respectively, cf.
Table II.

C. Model Validation
In Fig. 6(a), for T = 100 µs, we compare the rate-power

regions of the SWIPT system obtained for Schemes I-III and the
baseline scheme from [17] in the LP and MP regimes. To this
end, for all considered schemes, we show the expected mutual
information I

(
p∗rx
)

and the average harvested power P
(
p∗rx
)

obtained with the circuit simulator ADS for the respective
optimal input distribution p∗rx . We observe that in the LP
regime, all four schemes yield a similar performance since, in
this case, the EH operates in the linear regime and the rectenna
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Fig. 7. Rate-power region for Schemes I and II for T = 10 µs.
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.

memory can be neglected because of the low input power
and the large symbol duration, cf. Section III-D, respectively.
However, in the MP regime, the saturation of the EH has
an impact on performance. Thus, in this regime, the baseline
scheme, which is based on an analytical model for the EH
circuit, has a worse performance than the other schemes, which
employ a learning based model for the EH circuit and are able
to better capture the impact of impedance mismatch and EH
saturation.

In Fig. 6(b), for the MP regime, we compare the rate-
power regions of the considered schemes for symbol durations
T = 100 µs and T = 10 µs, respectively. We observe that for
all considered schemes, a shorter symbol duration generally
leads to lower harvested powers. Furthermore, unlike for
T = 100 µs, for T = 10 µs, there is a significant performance
gap between Scheme I, for which the EH state is known
at TX and IR, and the other schemes, for which the EH
state is unknown at both devices. This is expected, since,

for short T , the memory introduced by the EH is significant,
which is exploited in Scheme I by finding the optimal input
distribution for each EH state. In contrast, the other schemes
have to find a compromise input distribution which yields
a good performance for all the EH states. Additionally, we
observe a larger performance gap between Schemes II and
III for the shorter symbol duration since the EH memory is
completely neglected in Scheme III. Finally, we note that for
a given symbol duration T and a given power regime, the
input distributions and, hence, the harvested powers for all
considered schemes are nearly identical for large I

(
p∗rx
)

since,
in this case, the solution of (9) is mainly determined by the
feasible set specified by (9b)-(9f).

D. Impact of Impedance Mismatch

In this section, we study the impact of impedance mismatch
between antenna and rectifier on the performance of the SWIPT
system. To this end, in Fig. 7, we show the rate-power regions
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for Schemes I and II for the LP, MP, and HP regimes. For
the results shown in Fig. 7, we adopt a symbol duration of
T = 10 µs and the MCs were tuned for two different input
power levels, namely, −13 dBm and 0 dBm. We show in Fig.
7(a) and Fig. 7(b) the rate-power regions obtained for half-
wave and full-wave rectifiers, respectively. We observe from
Fig. 7 that as expected, a larger input power generally leads
to a higher average harvested power P . Moreover, we note
that in the LP and MP regimes, for both rectifier circuits,
the impedance mismatch caused by employing an MC fine-
tuned for a relatively high input power level of 0 dBm yields
a significant performance loss compared to an MC designed
for a lower input power level of −13 dBm. In contrast, in the
HP regime, the MC tuned for 0 dBm outperforms the MC
tuned for −13 dBm for both rectifier circuits. However, the
performance difference is much larger for the full-wave rectifier
than for the half-wave rectifier. In fact, in the HP regime, the
EH employing the half-wave rectifier is almost always driven
into saturation which limits the amount of harvested power.
Additionally, we note that similar to Fig. 6, for a given rectifier
circuit at the EH and a given input power regime, exploiting
the knowledge of the EH state, i.e., Scheme I, typically yields
a performance gain.

E. Influence of Symbol Duration and Input Power Regime
In this section, we study the impact of symbol duration T

and the input power regime on the performance of Scheme II,
i.e., when the EH state is not known at TX and IR. We assume
that the EH is equipped with a half- or a full-wave rectifier
and the impedance MC is designed for the corresponding input
power levels, i.e., the MCs are tuned for −13 dBm in the LP
and MP regimes and for 0 dBm in the HP regime, cf. Fig. 7.

In Fig. 8, we show the optimal distributions for Scheme II
in the LP and MP regimes for symbol durations T = 100 µs
and T = 10 µs. The required mutual information was set to
Ireq = 6.5 bit

symbol . We observe that for both the half-wave
rectifier (Fig. 8(a)) and the full-wave rectifier (Fig. 8(b)), the
optimal input distribution is practically independent of symbol
duration T in the LP regime, where it is optimal to allocate a
probability of 0.12 and 0.14 to symbols having the maximum
amplitude rmax

x , respectively, as even for this large amplitude,
the EH circuit is not in saturation.

However, in the MP regime, for both symbol durations, the
symbol amplitudes for the half-wave rectifier are limited to
values smaller than rmax

x to avoid that the EH circuit is driven
into saturation. Furthermore, the optimal input distribution
depends on the value of the symbol duration. For short symbol
durations, the capacitor CL in the EH circuit cannot be
fully charged within one symbol interval, and hence, larger
symbol amplitudes can be afforded without driving the EH
into saturation. Similarly, for the full-wave rectifier, in the MP
regime, the optimal input distribution favors smaller amplitudes
for T = 100 µs. However, the symbol amplitudes for the full-
wave rectifier in the MP regime tend to be larger than those
for the half-wave rectifier. This is due to the larger breakdown
voltage of the former, where two identical diodes are connected
in series, compared to the latter, which has only a single diode.
Hence, in the MP regime, the optimal input distribution depends
on the symbol duration and the rectifier circuit.

In Fig. 9, we show the boundaries of the rate-power region
for Scheme II. Here, in order to be able to illustrate the impact
of the symbol duration on the data rate, we show the bit rate,
R
(
p∗rx
)

= I
(
p∗rx
)
/T , as a function of the harvested power

P
(
p∗rx
)
. For the results shown in Fig. 9, we adopted Rayleigh
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pry
(
ry; prx

)
=

∫ rmax
x

0

∫ π

−π

∫ π

−π
pry,φy|rx,φx(ry, φy | rx, φx)

1

2π
prx(rx)dφx dφy drx

=
1

σ2
n

∫ rmax
x

0

rye
− r

2
y+r2x|hI |

2

2σ2
n I0

(
ry rx |hI |

σ2
n

)
prx(rx)drx.

(23)

I
(
pirx,φx

)
= I
(
pirx , p

i
φx|rx

)
= Hry,φy

(
pirx,φx

)
+

∫ ∞

0

pry
(
ry; pirx,φx

)
log2(ry)dry −Hn

≤ I
(
pirx , p

i
φx|rx = puni

φx

)
= Hry

(
pirx
)

+

∫ ∞

0

pry
(
ry; pirx

)
log2(ry)dry + log2(2π)−Hn,

(24)

fading for the IR channel, whereas, for the EH channel, we
assumed a line of sight and, hence, Rician fading with Rician
factor 1. The simulation results were averaged over 1000
channel realizations. In Fig. 9, the rate-power regions for
different symbol durations and for the LP, MP, and HP regimes
are depicted. First, similar to Fig. 7, we observe that for both
considered EH circuits and all considered symbol durations,
T , higher input power levels lead to higher average harvested
powers. Furthermore, for all considered symbol durations, T ,
the half-wave rectifier yields a better performance compared
to the full-wave rectifier in the LP and MP regimes due to the
smaller number of lossy non-linear diodes. However, in the HP
regime, the full-wave rectifier performs better since the two
diodes connected in series lead to a higher power saturation
level. Furthermore, for all input power regimes and for both EH
circuits, decreasing the symbol duration generally leads to an
increase of the bit rate at the IR and a reduction of the average
power that can be harvested by the EH. In particular, for the
half-wave rectifier in the MP regime, average harvested power
values larger than 10 µW can be achieved only if the symbol
duration exceeds T = 10 µs. Hence, Fig. 9 reveals that the
rate-power region of the considered SWIPT system depends on
the symbol duration, the input power level at the EH, and the
type of EH circuit since the memory and non-linearity of the
rectenna have a significant impact on the amount of harvested
power.

V. CONCLUSION

In this paper, we considered SWIPT systems that employ
EHs with practical non-linear rectifier circuits with memory and
impedance mismatch. We modeled the memory of the EH by an
MDP and used DNNs to model the non-linear effects of the EH
circuit. For optimization of the input symbol distribution, we
considered the cases where TX and IR know and do not know
the EH state. We showed that for the optimal input symbol
distribution, the phase of the transmit signal is independent of
the signal amplitude and uniformly distributed. Furthermore,
for the case where TX and IR know the instantaneous EH state,
we formulated a convex optimization problem to determine
the boundary of the rate-power region. Then, for the case
where the EH state is not known at TX and IR, we showed
that the corresponding optimization problem is non-convex
and proposed an iterative algorithm based on alternating
optimization to obtain a limit point. In our simulation results,
we considered EHs with half-wave and full-wave rectifier
circuits. We validated our model by comparing it with a baseline

scheme and studied the impact of the symbol duration, the EH
input power level, the impedance mismatch between antenna
and rectifier, and the type of EH circuit. We observed that in
the LP and MP regimes, the half-wave rectifier circuit yields a
larger average harvested power than the full-wave rectifier,
whereas, in the HP regime, the latter circuit significantly
outperforms the former. Additionally, our results showed that
for both rectifier circuits and all considered input power regimes,
a shorter symbol duration leads to a higher bit rate at the
expense of a decrease of the average harvested power.

The extension of the proposed MDP framework to SWIPT
systems with arbitrary transmit pulse shapes and EH circuits
comprising multiple memory elements as part of the LPF or a
battery storage are interesting directions for future research.

APPENDIX A
PROOF OF PROPOSITION 1

The following proof follows [43, Section II.B]. First, let us
observe that for any concave function f

(
·; ·
)
, and any F ∈ R,

if F ≤ f
(
p1; p2

)
≤ f

(
p1; p2 = p′2

)
, ∀p1, p2,

then {p1 | f
(
p1; p2

)
≥ F}
⊆ {p1 | f

(
p1; p2 = p′2

)
≥ F}, (21)

where p1 ∈ P1, p2, p
′
2 ∈ P2, and P1,P2 are some sets of

functions R 7→ R.
Then, we note that the joint pdf of RVs ry and φy conditioned

on rx and φx for the considered AWGN channel can be
expressed as [43, Eq. (10)]

pry,φy|rx,φx(ry,φy | rx, φx) =
ry

2πσ2
n

× e−
r2y+r2x|hI |

2−2rx|hI | ry cos(φy−φx−φI )

2σ2
n .

(22)

Therefore, if the pdf of phase φx ∈ (−π, π] is uniform and
independent of rx, then taking constraint (9d) into account, we
obtain the marginal pdf pry as a function of the input pdf prx
as in (23), shown on top of this page. Thus, if amplitude rx
and phase φx are statistically independent and φx is uniformly
distributed, then amplitude ry and phase φy of the received
signal are also mutually statistically independent. Moreover,
in this case, the phase of the received signal is uniformly
distributed and the pdf of the amplitude of the received signal,
ry , is given by (23).

Then, we note that the joint differential entropy of RVs ry
and φy is always bounded as [43] Hry,φy ≤ Hry + log2(2π),
where Hry denotes the entropy of ry. Moreover, the relation
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is satisfied with equality if φy is uniformly distributed and
independent of ry , or equivalently, if φx is uniformly distributed
and independent of rx. Hence, the mutual information achieved
by input pdf pirx,φx is given by (24), shown on top of this page,
where puni

φx
denotes the uniform pdf of φx. In (24), equality

holds if rx and φx are independent, φx is uniformly distributed
and, hence, is independent of EH state ξ.

Furthermore, we note that the average mutual information I
in (9b) is defined as a weighted sum of the individual values
I
(
pirx,φx

)
, i.e., I

(
π,Pφx|rx

)
=
∑SΞ

i=1 γiI
(
pirx,φx

)
. Hence, we

can rewrite constraint (9b) as follows

Ireq ≤ I
(
π,Pφx|rx

)
=

SΞ∑

i=1

γiI
(
pirx,φx

)

≤
SΞ∑

i=1

γiI
(
pirx , p

i
φx|rx = puni

φx

)
= I(π).

(25)

Since I
(
·, ·
)

and, hence, I
(
·, ·
)

in (25) are concave, then,
from (21),

{π | I
(
π,Pφx|rx

)
≥ Ireq}

⊆ {π | I
(
π; piφx|rx = puni

φx

)
≥ Ireq}.

(26)

Thus, independently distributed RVs ry and φy with uniformly
distributed φy lead to the largest set of pdfs π(rx) with
I
(
π,Pφx|rx

)
≥ Ireq. Since the objective function and the other

constraints in (9) do not depend on Pφx|rx , this condition
also leads to the largest feasible set of pdfs π(rx) for
optimization problem (9). Therefore, for the optimal solution
of (9), the phase φx is uniformly distributed and statistically
independent of the state ξ and the amplitude rx. Moreover, the
marginal pdf of the output symbol amplitudes, pry

(
ry; prx

)
,

is given by (23), whereas the mutual information in (24) can
be simplified to the expression in (10) This completes the proof.
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