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avoid the overhead of channel estimation, [11] proposed the 
 blind CoMAC via provable Wirtinger Flow. To verify the feasi- 
 bility of the analog CoMAC in practice, software-defined radio 

was built in [12], and the authors in [13] implemented a coop- 
 erative wide-band spectrum sensing system using CoMAC. For 
 robustness to noise, the digital CoMAC was further proposed 
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Abstract—For future wireless networks, enormous numbers
of interconnections are required, creating a multi-hop topology
and leading to a great challenge on data aggregation. Instead
of collecting data individually, a more efficient technique, com-
putation over multi-access channels (CoMAC), has emerged to
compute functions by exploiting the signal-superposition property
of wireless channels. However, it is still an open problem on
the implementation of CoMAC in multi-hop wireless networks
considering fading channel and resource allocation. In this paper,
we propose multi-layer CoMAC (ML-CoMAC) by combining
CoMAC and orthogonal communication to compute functions in
the multi-hop network. Firstly, to make the multi-hop network
more tractable, we reorganize it into a hierarchical network with
multiple layers that consists of subgroups and groups. Then, in
the hierarchical network, the implementation of ML-CoMAC is
given by computing and communicating subgroup and group
functions over layers, where CoMAC is applied to compute each
subgroup function and orthogonal communication is adopted
for each group to obtain the group function. The general
computation rate is derived and the performance is further
improved through time allocation and power control. The closed-
form solutions to optimization problems are obtained, which
suggests that orthogonal communication and existing CoMAC
schemes are generalized.

Index Terms—Achievable computation rate, data aggregation,
function computation, hierarchical networks, resource allocation.

I. INTRODUCTION

5G and the Internet of Things will lead to a revolution in
wireless networks [1], [2]. With such enormous numbers of
nodes, it is impractical to wirelessly aggregate a large amount
of distributed data by using conventional multi-access schemes
since this would result in excessive network latency and low
spectrum utilization efficiency. Thus, how to aggregate data
efficiently from distributed nodes is of great importance.
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Recently, computation over multi-access channels (Co-
MAC) has emerged as a promising solution that merges
computation and communication by exploiting the signal-
superposition property of wireless channels. Instead of col-
lecting individual data, it collects a relevant function of the
measurements from distributed nodes via concurrent node
transmissions [3]–[21]. These functions computed by CoMAC
belong to a class of nomographic functions such as averaging
and geometric mean, and are widely used in data aggregation
[3]. As a straightforward use of CoMAC, nodes in wireless
sensor networks can simultaneously transmit their readings
over the air to compute a function value of the sensor readings
(e.g., arithmetic mean, polynomial or the number of active
nodes) instead of requiring individual readings. Besides, in
federated learning, to obtain the average learning model from
the local models of distributed nodes, CoMAC is deployed to
significantly reduce the aggregation latency [4].

CoMAC was traced back to [5]–[7], where the capacity
bounds of the different types of networks were analyzed.
In [5], a source coding problem involving communicating a
function of two variables in a simple two-node network with
side information at the receiver has been solved. Considering
the multi-source network, [6] described it as one of com-
municating possibly correlated sources over a multi-terminal
wireless network. For collocated networks and random planar
networks, the capacity bounds are derived in [7]. The above
works indicated that transmitting functions, instead of individ-
ual data, is a significant way to improve the network capacity
from an information-theoretic perspective.

Inspired by the information-theoretic conclusion, CoMAC
were first proposed via some analog approaches [8]–[13],
where pre-processing at each node and post-processing at the
fusion center were carried out against channel fading. The
designs of pre-processing and post-processing used to compute
linear and non-linear functions have been proposed in [8],
and the design of multi-function CoMAC was proposed in [9]
by using multiple antennas. The impact of channel estimation
error for the analog CoMAC was characterized in [10] and to

using joint source-channel coding in [14]–[21] to improve the
equivalent signal-to-noise ratio (SNR). The potential of linear
source coding was discussed in [14], and its application for



2

CoMAC was presented in [15]. Compared with linear source
coding, nested lattice coding could approach the performance
of a standard random coding [16]. The lattice-based CoMAC
was extended to a general framework in [17] for networks with
linear channels and additive white Gaussian noise. In [18], the
authors derived the exact achievable computation rate of the
digital CoMAC considering channel fading. Compared with
the traditional communication-based computation scheme, the
performance gain of CoMAC was derived in [19]. To improve
the performance, some CoMAC schemes based on function
division was given in [20], [21] through theoretical analysis.

Most of CoMAC works only considered single-hop net-
works through direct communications. Compared with single-
hop networks, the emergent of large-scale networks, e.g.,
wireless community networks and sensor networks, makes the
multi-hop networks a trend [22] and the deployment of multi-
hop networks is an important approach to fully utilize the
potential capacity of the network [23]. This implies that the
implementation of CoMAC in multi-hop networks is of great
importance for the upcoming 5G and the Internet of Things. It
is worth mentioning that, in [7], [18], only the capacity bounds
of multi-hop networks transmitting functions were derived
considering the non-fading and fading channel, respectively.
However, they still lack the general implementation for multi-
hop networks to achieve CoMAC, the exact performance
analysis, and the resource allocation to fully use the flexibility
of the network resources. Thus, for multi-hop networks, it
is still an open problem on how to practically implement
CoMAC and how to derive the exact performance considering
the fading channel and resource allocation.

Motivated by these observations, we try to extend the
CoMAC implementation of single-hop networks to the one of
multi-hop networks. The multi-layer CoMAC (ML-CoMAC)
is proposed to compute functions over layers. More specif-
ically, we first recast the multi-hop network into a hierar-
chical network with multiple layers consisting of subgroups
and groups. Then, the implementation of ML-CoMAC is
given based on the hierarchical network. Exact expressions
of achievable computation rates are derived based on nested
lattice coding. Furthermore, resource allocation is considered
to improve the computation rate, and the corresponding closed-
form solutions are given. Our contributions are summarized as
follows:
• ML-CoMAC implementation. To easily characterize a

series of multi-hop networks, we reorganize the multi-
hop network into the hierarchical network with multi-
ple layers by introducing two components, i.e., groups
and subgroups. In the hierarchical network, we rule the
behaviors of subgroups and groups, and propose ML-
CoMAC by computing and communicating subgroup and
group functions over layers and reconstructing the desired
function at the fusion center. Each subgroup function is
obtained by using CoMAC and the group function is
obtained by using orthogonal communication.

• General computation rate. The theoretical expression of
the computation rate of ML-CoMAC is derived, and it
suggests that the subgroup with the worst computation
rate plays an important role in the network. Also, the

Fusion Center

Relay Node

Source Node

Fig. 1. The topology of the multi-hop network.

orthogonal communication and existing CoMAC schemes
in [18] are generalized.

• Time allocation and power control. We formulate two
optimization problems considering time allocation with
fixed power control and adaptive power control, respec-
tively. Both closed-form solutions are derived, which
suggests that compared with fixed power control, the per-
formance with adaptive power control is further improved
as expected.

The rest of the paper is organized as follows. Section
II introduces the considered the multi-hop network and the
classical schemes of function computation. The proposed ML-
CoMAC is presented in Section III. Based on ML-CoMAC,
we derive the computation rate of ML-CoMAC in Section
IV. Section V focuses on the analysis of the performance
of the proposed ML-CoMAC, which includes power control
and time allocation. Simulation results and the corresponding
discussion are presented in Section VI, and conclusions are
given in Section VII.
Notations : Throughout this paper, we define C(x) =

log(1+x) and C+(x) = max
{

1
2 log(x), 0

}
. Let [1 : n] denote

a set {1, 2, · · · , n}. For a set A, |A| denotes the cardinality of
A. Let the entropy of a random variable A be H(A) and the
expectation of it be E [A]. A set {x1, x2, · · · , xN} is written
as {xi}i∈[1:N ] or {xi}Ni=1 for short.

II. SYSTEM MODEL

In this section, we first present the topology of the multi-hop
network and then introduce two classical schemes for function
computation, i.e., CoMAC and orthogonal communication. At
the end of this section, we raise some open problems that need
to solve.

A. Multi-hop Networks

In practical terms, the topology of a wireless network is ar-
bitrary. With different deployment environments, the network
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would be different. Thus, we follow [7] considering the multi-
hop network that is the tree topology with designated roots
as data collectors and only the leaves appearing to have data
sources. More specifically, it consists of source nodes at the
edge, relay nodes, and one fusion center as the destination. In
the multi-hop network, the fusion center wishes to compute the
desired function concerning the data of all the source nodes.
With a given topology, the network is demonstrated as Fig. 1.
We assume that the number of the source nodes is K and
define a set K including the indexes of all the source nodes.
The i-th source node Ni draws data from the corresponding
random source Si for Td times and then provides a length-Td
data vector as si = [si[1], · · · , si[j], · · · si[Td]].

Let bv = [S1, S2, · · · , SK ] be the random source vector
associated with a joint probability mass function pbv(·). The
desired function determined by the random source vector bv

is expressed as f(bv), and its definition is given as follows.

Definition 1 (Desired Function). For all j ∈ [1 : Td], the
function with variables {s1[j], s2[j], · · · , sK [j]} is called the
desired function with the form as

f(s1[j], s2[j], · · · , sK [j]) = f(s[j]), (1)

where s[j] = [s1[j], s2[j], · · · , sK [j]] is drawn from pbv(·).
Every function f(s[j]) is seen as a realization of f(bv). Thus,
the fusion center computes Td desired functions when each
source node gets data from each random source for Td times.

Remark 1 (Typical Desired Functions). As studied in [18],
[24], CoMAC is designed to compute different types of
desired functions. There are two typical functions that we
focus on. The function f(s[j]), with values in the set
{
∑K
i=1 a1,isi[j], · · · ,

∑K
i=1 aLs,isi[j]}, is called the arith-

metic sum function, where al,i ∈ R is the weighting factor for
the node N1,i, and Ls is the number of available weighting
factors and belongs to N. The arithmetic sum function is a
weighted sum function, which includes the mean function
f(s[j]) = 1

K1

∑K
i=1 si[j] and the function for the active

node only f(s[j]) = {s1[j], s2[j], · · · , sK [j]} as special cases.
Otherwise, the function f(s[j]), with values in the set of
{
∑K
i=1 1si[j]=0, · · · ,

∑K
i=1 1si[j]=p}, is regarded as the type

function where 1(·) denotes the indicator function and p ∈ N.
As pointed out in [7], any symmetric function such as mean,
variance, maximum, minimum and median can be attained
from the type function.

To attain reliable computations against noise, a block code,
named sequences of nested lattice codes [17], is used. With
the length-n block code, the computation rate is used as
performance metrics [3], [17], [18], [21], [24], of which the
definition is given as follows.

Definition 2 (Computation rate [18], [20]). The computation
rate specifies how many function values can be computed per
channel use within a predefined accuracy. It can be written as
R = lim

n→∞
Td(n)
n H(f(bv)) where Td is the number of function

values, n is the length of the block code and H(f(bv))
is the entropy of f(bv). Apart from this, R is achievable
only if there is a length-n block code so that the probability
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Fig. 2. The classical CoMAC for the single-hop network.

Pr
(⋃Td

j=1

{
f̂(s[j]) 6= f(s[j])

})
→ 0 as n increases1, where

f̂(s[j]) is the estimated desired function.

Remark 2 (Distribution of Samples). The computation rate is
determined by the information entropy H(f(bv)) of f(bv),
not every realization. Hence, the identically and independently
distributed (i.i.d.) or non-i.i.d. samples only lead to different
information entropy, which is a constant with a given desired
function and a given distribution. In our design, the distribution
of the random source vector follows the joint probability mass
function pbv(·) without loss of generality, which includes
the i.i.d. case and the non-i.i.d. case. With a given function
(e.g., the arithmetic sum function and the type function), the
information entropy is regarded as a constant that can be
derived or estimated, which implies that the influence of the
distribution of the samples on the computation rate is included.

B. Schemes of Function Computation

There exist two classical schemes, namely CoMAC and
orthogonal communication, to achieve function computation
in a single-hop wireless network.
• CoMAC. CoMAC has been well investigated as the

efficient aggregation scheme in the single-hop network
and its classical framework is given in Fig. 2. Different
from the multi-hop network, in Fig. 2, all the source
nodes and the fusion center can be communicated with
each other directly.
Referring to the existing CoMAC works [3], [17],
[18], [20], [21], [24], let si represent the data vector
of the node Ni whose length is Td. Denote xi =
[xi[1], xi[2], · · · , xi[n]] as the length-n transmitted vector
of the node Ni. The univariate function Ei(·) which
generates xi = Ei(si) is an encoding function of Ni. This
means that si with length Td is mapped to a transmitted
vector xi with length n for Ni. Then, the received signal
for the m-th channel use can be expressed as

y[m] =

K∑
i=1

vi[m]hi[m]xi[m] + w[m], (2)

where hi[m] is the channel from Ni to the fusion center
at the m-th channel use, xi[m] is the m-th element of

1Note that Td(n) denotes the number of reliably computable function
values with a length-n block code, which is a function of n.
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the transmitted vector xi, vi[m] = |hi[m]|
hi[m]

√
Pi[m] is the

power factor of Ni, Pi[m] is the transmitted power of
Ni and w[m] is i.i.d. complex Gaussian random noise
following CN (0, 1).
After n channel uses, the received vector y is obtained at
the fusion center. The decoding function Dj(·) is used to
estimate the j-th desired function f(s[j]), which satisfies
f̂(s[j]) = Dj(y). This implies that the fusion center
obtains Td desired functions depending on the received
vector with length n. Its computation rate [18, Theorem
3] is given as

R = C+

(
1

K
+ E

[
min
i∈[1:K]

|hi|2
]
P

)
, (3)

where K is the number of source nodes in the network,
P is the transmitted power of each node and |hi|2 is the
channel gain from Ni to the fusion center.

• Orthogonal Communication. The other solution to com-
puting functions uses orthogonal resource blocks (e.g.,
channel uses, code sequences, and sub-carriers) to trans-
mit all the individual data to the fusion center and
then finish the computation. To compute the j-th desired
function f(s1[j]), the fusion center should first obtain the
individual data {si[j]}Ki=1 during K channel uses. Then,
the corresponding desired function f(s[j]) is calculated.
It is also known as the time-sharing technique, which
achieves a computation rate of

R =
1

K
C
(
E
[
|h|2
]
P
)
, (4)

where |h|2 is the channel gain of each node without loss
of generality.

Remark 3 (Implementation of Digital CoMAC). The digital
CoMAC is based on the digital communication schemes (see
[24, Chapter. 4], also [14]–[18], [20] ), and is more easily
implemented in our current digital base-bands and more ef-
fectively against the noise. In our design, the implemented
framework is the digital CoMAC based on the nested lattice
coding so that we evaluate the performance of the proposed
scheme by the computation rate. The unique difference be-
tween the digital CoMAC and the analog CoMAC is the
added computation code (sequences of nested lattice codes
are usually employed for the digital framework) to protect the
function value against the noise. Firstly, each data vector si is
converted to a bit sequence by a quantizer. Then, each encoder
maps the bit sequence to a code-word xi. After the pre-
equalization to control power and remove the fading channel,
each node transmits its vector simultaneously. At the fusion
center, the received vector y is decoded and recovered by the
inverse quantizer. By carefully choosing the parameters for the
nested lattice code, there exists an achievable computation rate
such that the function value can be recovered without error.

C. Open Problems

Neither orthogonal communication nor CoMAC can be
implemented directly in the multi-hop network. For orthogonal
communication, the collection of individual data from nodes

results in excessive latency as the number of nodes increases.
As for CoMAC, different nodes may have a different next hop
in the multi-hop network, which is different from the case in
the single-hop network with direct communications. Besides,
some practical issues, i.e., channel fading and limited network
resources, need to consider. Thus, we expect to implement
CoMAC in the multi-hop network and expand the analysis
of single-hop networks to the one of multi-hop networks
considering the practical case. Since the analysis of multi-hop
networks is more general but also challenging, several issues
need to be solved.
1. The multi-hop network needs to be reorganized to make

further design possible. It needs to be considered that how
to recast the multi-hop network into a hierarchical network
without topology modification and how to design a scheme
that ensures the reliable computation of the desired function
at the fusion center.

2. With the proposed scheme, it becomes important to evaluate
the performance through computation rate and further op-
timize it. Thus, the corresponding computation rate should
be derived and the resource allocation should be discussed.

III. THE PROPOSED ML-COMAC
For the multi-hop network shown as Fig. 1, the network’s

structure makes the analysis difficult. Before proposing the
scheme, in Section III-A, we first reorganize the multi-hop
network into a hierarchical network with multiple layers,
which consists of groups and subgroups. In Section III-B, we
rule the behaviors of these subgroups and groups to achieve
the division and reconstruction of the desired functions. At
last, in Section III-C, the procedure of ML-CoMAC is given.

A. Hierarchical Networks

We introduce two components to reorganize the multi-hop
network, which are given as follows.
• Subgroups. Assume there are two layers, namely the

(l − 1)-th layer and the l-th layer. We place K̄ nodes2

in the (l − 1)-th layer and one node in the l-th layer as
Nl,k, where these K̄ nodes wish to transmit their data to
Nl,k. The subgroup, whose index is c, consists of these
K̄ nodes where the i-th node is denoted as Nl−1,i, and
the node Nl,k computes the subgroup function f

(c)
l,k (·)

associated with the subgroup c.
As given in Fig. 3a, each node Nl−1,i in the (l − 1)-th
layer owns a data vector sl−1,i of length Td. In the l-
th layer, the node Nl,k computes the subgroup function
f

(c)
l,k (·) via concurrent node transmissions. Based on Sec-

tion II-B, CoMAC is applied to compute the subgroup
function.

• Groups. As shown in Fig. 3b, one group, which is
allocated to the node Nl,k in the l-th layer, consists of
several subgroups in the (l − 1)-th layer. Assume the
number of subgroups is C̄3, then the node Nl,k needs to

2Since the number of nodes in the (l − 1)-th layer can be arbitrary, we
assume that it is K̄ without loss of generality.

3Since the number of subgroups for a group can be arbitrary, we assume
that it is C̄ without loss of generality.
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Fig. 3. Reorganization of the multi-hop network.

reconstruct the group function fl,k(·) using C̄ subgroup
functions.
To reconstruct the group function fl,k(·) at Nl,k, all
the subgroup functions must be obtained first. Based on
Section II-B, orthogonal communication is applied by
communicating the subgroup functions to Nl,k during the
given channel uses, where different subgroup is active to
compute different subgroup function f

(c)
l,k (·) at different

channel use. After obtaining all the subgroup functions
{f (c)
l,k (·)}C̄c=1, the node Nl,k can reconstruct the group

function fl,k(·).

Remark 4 (Generalization of Classical Function-Computation
Schemes). With the description of two components, one can
observe that these two classical schemes are combined in
our scheme, where the subgroup function is obtained by
CoMAC whereas the group function is obtained by orthogonal
communication. Also, the structure of the group shown as
Fig. 3b is a single-hop network in a general way. By setting the
number of subgroups C̄ to one, CoMAC is generalized, which
implies that the only one subgroup is treated as a group. Also,
by setting the number of subgroups C̄ to the number of nodes
K̄, orthogonal communication is generalized, which implies
that each node as a subgroup transmits its data individually.

With the help of subgroups and groups, the aggregation
from the (l − 1)-th layer to the l-th layer is given as Fig. 3c.
Each node Nl,k in the l-th layer serves a group to reconstruct
the corresponding group function fl,k(·). Similar to orthog-
onal communication, different group in the (l − 1)-th layer
is allocated some orthogonal channel uses to compute the
subgroup functions and reconstruct the group function at the
corresponding node in the l-th layer. Based on Fig. 3c, we
further expand it to the case with multiple layers. Then, the
hierarchical network is obtained as shown in Fig. 3d, where
the orthogonal transmission is used for each group since the
groups in the (l − 1)-th layer have to communicate with
different relay nodes in the l-th layer.

Hierarchical Networks. The multi-hop network in Fig. 1 is
reorganized into the hierarchical network, which consists of
L (L ≥ 2) layers where the l-th layer includes Kl nodes and
the indexes of them belong to a set Kl. Compared with the
multi-hop network, in the hierarchical network, K1 nodes in
the first layer are the source nodes, the nodes from the second
layer to the (L−1)-th layer are relay nodes, and the only one
node in the L-th layer is regarded as a fusion center. Finally,
the desired function will be computed at the fusion center over
layers.
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Remark 5 (Topology-Modification-Free Operation). In both
multi-hop networks and hierarchical networks, the routing path
of each node does not be changed, which implies that the
next hop of one node in the multi-hop network is the same
as the one in the corresponding hierarchical network. Further,
the condition, where each node only owns one next hop, is
satisfied in both multi-hop networks and hierarchical networks.
Thus, we can always find an equivalent hierarchical network
by changing the parameters of the hierarchical network to re-
place the multi-hop one. This implies that our design does not
break the network topology. Protecting the topology can avoid
the cost of physically reorganizing the network, especially for
a network with massive numbers of nodes.

B. Division and Reconstruction of Functions
In the hierarchical network including L layers, the fu-

sion center computes the desired function f
(
{s1,k[j]}k∈K1

)
,

where s1,k[j] is the data sampled by the node N1,k, k ∈ K1.
Depending on a given topology, all these nodes in Kl−1 are
divided into Kl groups and allocated to Kl nodes in the l-
th layer for l ≥ 2. We define the set KNl,k including the
indexes of the nodes in the group allocated to Nl,k. Thus,
the desired function is divided into group functions and each
group function, associated with the data {sl−1,i[j]}i∈KNl,k

, is
computed at Nl,k. The detailed definition of the group function
is given as follows.

Definition 3 (Group Function). For l ≥ 2, let

KNl,k = {x : x ∈ Kl−1} (5)

denote a set including these indexes of the nodes as a group
allocated to Nl,k. Each element x in KNl,k is the index of a
node from the set Kl−1. Suppose that

⋃
k∈Kl KNl,k = Kl−1

and KNl,u

⋂
KNl,v = ∅ for all u, v ∈ Kl. A function

fl,k({sl−1,i[j]}i∈KNl,k
) is said to be a group function if and

only if there exists a function gl(·) satisfying

f(s1[j]) = gl(fl,1({sl−1,i[j]}i∈KNl,1
), fl,2({sl−1,i[j]}i∈KNl,2

),

· · · , fl,Kl({sl−1,i[j]}i∈KNl,Kl

))

(6)

for l ≥ 2.

Definition 3 suggests that the group functions in each layer
can reconstruct the desired function, even though the desired
function only needs to be reconstructed at the fusion center in
the last layer by these group functions in the (L− 1)-th layer.

To attain the computation of the group function at Nl,k,
all these subgroup functions should be obtained at Nl,k first
since a group function is further divided into several subgroup
functions4. The function computed by a subgroup is called a
subgroup function, and its definition is given as follows.

Definition 4 (Subgroup Function). Assume the nodes in
KNl,k as a group is divided into CNl,k subgroups. The
set CNl,k includes indexes of these CNl,k subgroups satis-
fying that

⋃
c∈CNl,k

K(c)
Nl,k

= KNl,k , where K(c)
Nl,k

⊆ KNl,k

4Shown in Fig. 3b, a group is divided into several subgroups.

and K(u)
Nl,k

⋂
K(v)

Nl,k
= ∅ for all u, v ∈ CNl,k . A function

f
(c)
l,k ({sl−1,i[j]}i∈K(c)

Nl,k

) is said to be a subgroup function if

and only if there exists a function gl,k(·) satisfying

fl,k({sl−1,i[j]}i∈KNl,k
)

= gl,k(f
(1)
l,k ({sl−1,i[j]}i∈K(1)

Nl,k

, · · · ,

f
(CNl,k

)

l,k ({sl−1,i[j]}
i∈K

(CNl,k
)

Nl,k

)).

(7)

The property of subgroup functions is similar to the one
of group functions, which shows that a group function
fl,k({sl−1,i[j]}i∈KNl,k

) can be reconstructed at Nl,k after Nl,k

obtains CNl,k subgroup functions.
To compute the subgroup functions reliably against noise,

we apply sequences of nested lattice codes. For the node
Nl−1,i in the (l − 1)-th layer, the length-Td data vector
sl−1,i is mapped to the length-n transmitted vector xl−1,i =
[xl−1,i[1], xl−1,i[2], · · · , xl−1,i[n]]. Then, similar to Eq. (2),
the length-n received vector y(c)

l,k of the c-th subgroup at Nl,k

is given as

y
(c)
l,k [m] =

∑
i∈K(c)

Nl,k

vi→kl−1 [m]hi→kl−1 [m]xi→kl−1 [m] + w[m], (8)

where hi→kl−1 [m] is the channel from Nl−1,i to Nl,k at the m-th
channel use, xi→kl−1 [m] is the m-th element of the transmitted

vector xl−1,i, vi→kl−1 [m] =
|hi→kl−1 [m]|
hi→kl−1 [m]

√
P i→kl−1 [m] is the power

factor of Nl−1,i, P i→kl−1 [m] is the transmitted power of Nl−1,i

and w[m] is i.i.d. complex Gaussian random noise following
CN (0, 1).

After receiving y
(c)
l,k , the decoding function is used to

unmap the length-n received vector to Td subgroup functions
{f (c)
l,k ({sl−1,i[j]}i∈K(c)

Nl,k

)}Tdj=1.

C. Procedure of ML-CoMAC

Recalling the hierarchical network in Section III-A, we
assume that the number of the overall layers is L, the number
of nodes in each layer is Kl, and the data of Nl,k is denoted as
sl,k. For l ≥ 2, each node Nl,k is assigned CNl,k subgroups.
We show the recurrence relation among these (subgroup and
group) functions over layers.

In the second layer, each node N2,k computes CN2,k
sub-

group functions. Then, it reconstructs the group function as

f2,k

({
{s1,i}i∈K(c)

N2,k

}
c∈CN2,k

)

= g2,k

({
f

(c)
2,k

(
{s1,i}i∈K(c)

N2,k

)}
c∈CN2,k

)
.

(9)

By setting the data s2,k = f2,k({{s1,i}i∈K(c)
N2,k

}c∈CN2,k
)

for each node in K2, the node N3,k in the third layer also
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2,3 )(f ×
(2)
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(1)
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(1)

4,1 )(f ×

Fig. 4. An example of the implementation of ML-CoMAC.

reconstructs the corresponding group function as

f3,k

({
{s2,i}i∈K(c)

N3,k

}
c∈CN3,k

)

= g3,k

({
f

(c)
3,k

(
{s2,i}i∈K(c)

N3,k

)}
c∈CN3,k

)
.

(10)

Thus, we can obtain the recurrence relation between the l-th
layer and the (l − 1)-th layer as

fl,k

({
{sl−1,i}i∈K(c)

Nl,k

}
c∈CNl,k

)

= gl,k

({
f

(c)
l,k

(
{sl−1,i}i∈K(c)

Nl,k

)}
c∈CNl−1,k

)
,

(11)

where sl,k = fl,k({{sl−1,i}i∈K(c)
Nl,k

}c∈CNl,k ).

At the last layer, i.e., l = L, only including the fusion center,
the desired function is finally computed because of

fL

({
{sL−1,i}i∈K(c)

NL

}
c∈CNL

)
(a)
= fL

(
{sL−1,i}i∈KL−1

)
(b)
= fL

(
{sL−2,i}i∈KL−2

)
= · · ·
(c)
= fL

(
{s1,i}i∈K1

)
,

(12)

where the condition (a) follows since KL = 1, the condi-
tion (b) follows because the values of {sL−1,i}i∈KL−1

are
associated with {sL−2,i}i∈KL−2

and the condition (c) follows
due to the recurrence relation Eq. (11). Eq. (12) shows that
through computing and communicating subgroup and group
functions, the desired function at the fusion center can be
reliably reconstructed, which gives rise to ML-CoMAC.

Fig. 45 is an example of the hierarchical network with the
given topology, which aims at computing the desired function
f
(
{s1,i}i∈K1

)
over 4 layers. We provide the implementation

of ML-CoMAC as Algorithm 1.

5In Fig. 4, {sl,u, sl,v} is denoted as sl,{u,v} for short.

Algorithm 1 Procedure of ML-CoMAC
1: procedure INITIALIZATION FOR SOURCE NODES
2: The sources nodes in K1 are divided into K2 groups.
3: Each group KN2,k

is allocated to the node N2,k,∀k ∈
K2 in the second layer.

4: The data of N1,k is s1,k, which is sampled from the
corresponding source.

5: end procedure
6: procedure COMPUTATION WITHIN GROUP
7: The given channel uses for the group KNl,k belongs a

set Tl,k.
8: The group function needs to be computed at Nl,k

during these channel uses.
9: To obtain this group function, CNl,k subgroup func-

tions should first be computed at Nl,k.
10: Given channel uses in T (c)

l,k , the subgroup function
f

(c)
l,k ({sl−1,i}i∈K(1)

Nl,k

is computed at the node Nl,k for each

c ∈ CNl,k by using CoMAC.
11: After |Tl,k| channel uses, at Nl,k, all subgroup func-

tions are computed.
12: Using Definition 4, the group function

fl,k({sl−1,i}i∈KNl,k
) can be reconstructed.

13: end procedure
14: procedure FROM ONE LAYER TO ANOTHER LAYER
15: Using the same steps in the procedure of computation

within group (Line 6 in Algorithm 1), each group finishes
the computation of the group function at the corresponding
node Nl,k.

16: end procedure
17: procedure INITIALIZATION FOR RELAY NODES
18: In the l-th layer (l ≥ 2), the data of Nl,k is sl,k

satisfying sl,k = fl,k(·).
19: All the nodes in Kl is divided into Kl+1 groups that

are allocated to the nodes in the (l + 1)-th layer.
20: end procedure
21: procedure RECONSTRUCTION OF DESIRED FUNCTION
22: Using similar steps in the procedure of computation

within group (Line 6 in Algorithm 1) and from one layer
to another layer (Line 14 in Algorithm 1), the desired
function f(s1) is obtained at the fusion center using
Definition 3.

23: end procedure

IV. ACHIEVABLE COMPUTATION RATES OF ML-COMAC

With the help of the hierarchical network, the analysis of the
multi-hop network becomes tractable. With the procedure of
ML-CoMAC, we derive the computation rate of ML-CoMAC
based on the relationship between these different kinds of
functions.

Eq. (11) shows that the computation rate of the desired
function is determined by all the group functions over L layers,
and each group function is reconstructed by the corresponding
subgroup functions. Thus, we present the computation rates
of the subgroup function, the group function and the desired
function step by step.
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Lemma 1 (Rate of Subgroup Function). For a subgroup
K(c)

Nl,k
with K(c)

Nl,k
nodes, the computation rate of the subgroup

function f (c)
l,k ({sl−1,i}i∈K(c)

Nl,k

) at the m-th channel use is given
as

R
(c)
l,k [m] = C+

 1

K
(c)
Nl,k

+ min
i∈K(c)

Nl,k

[
|hi→kl−1 [m]|2P i→kl−1 [m]

] ,

(13)
where |hi→kl−1 [m]|2 is the channel gain and P i→kl−1 [m] is the
transmitted power (see Eq. (8)).

Proof: Please refer to Eqs. (3) and (8) and [18, Theorem
3 and Section IV-A].

To reconstruct the group function
fl,k({{sl−1,i}i∈K(c)

Nl,k

}c∈CNl,k ) during the given |Tl,k|
channel uses where the set Tl,k includes the channel uses
for Nl,k, the subgroup functions should be computed first
at different channel uses belonging to Tl,k. Assume that
the channel uses allocated to the corresponding subgroup
K(c)

Nl,k
are in a set T (c)

l,k ⊆ Tl,k satisfying |T (c)
l,k | = β

(c)
l,k |Tl,k|

and
∑
c∈CNl,k

β
(c)
l,k = 1. After obtaining all the subgroup

functions, the group function is reconstructed by Eq. (11).
Thus, the computation rate of the group function is given as
follows.

Theorem 1 (Rate of Group Function). For any group KNl,k

with CNl,k subgroups, the computation rate of the group
function reconstructed at Nl,k is

Rl,k = min
c∈CNl,k

β
(c)
l,k

|T (c)
l,k |

∑
m∈T (c)

l,k

C+

 1

K
(c)
Nl,k

+

min
i∈K(c)

Nl,k

[
|hi→kl−1 [m]|2P i→kl−1 [m]

]
= min
c∈CNl,k

β
(c)
l,kE

C+

 1

K
(c)
Nl,k

+ min
i∈K(c)

Nl,k

[
|hi→kl−1 |2P i→kl−1

] .
(14)

Proof: Based on Lemma 1, the average computation rate

R
(c)
l,k =

1

|T (c)
l,k |

∑
m∈T (c)

l,k

R
(c)
l,k [m] (15)

is achievable for computing the subgroup function
f

(c)
l,k ({sl−1,i[j]}i∈K(c)

Nl,k

) during |T (c)
l,k | channel uses when

|Tl,k| increases. Depending on Definition 2, the number of
the values of the subgroup function computed during |T (c)

l,k |

channel uses is U
(c)
l,k =

R
(c)
l,k

∣∣∣T (c)
l,k

∣∣∣
H(f(bv)) . From Eq. (11), we can

observe that the group function is reconstructed by CNl,k

subgroup functions, which implies that the computation
rate of the group function is determined by the rates
of these subgroup functions. Since the number of the
values of each subgroup function U

(c)
l,k is different, only

Ul,k = minc∈CNl,k U
(c)
l,k group functions can be reconstructed.

Hence, the computation rate based on Definition 2 to compute
the group function fl,k({{sl−1,i}i∈K(c)

Nl,k

}c∈CNl,k ) is

Rl,k = lim
n→∞

Ul,k
|Tl,k|

H(f(bv))

(a)
= lim

n→∞

minc∈CNl,k U
(c)
l,k

|Tl,k|
H(f(bv))

(b)
= lim
n→∞

min
c∈CNl,k

R
(c)
l,k

∣∣∣T (c)
l,k

∣∣∣
|Tl,k|

(c)
= min
c∈CNl,k

β
(c)
l,kR

(c)
l,k ,

(16)

where the condition (a) follows because of Ul,k =

minc∈CNl,k U
(c)
l,k , the condition (b) follows because the expres-

sion of U (c)
l,k and the condition (c) follows due to

∣∣∣T (c)
l,k

∣∣∣
|Tl,k| = β

(c)
l,k .

To reconstruct the desired function f
(
{s1,k}k∈K1

)
com-

puted at the fusion center during n channel uses over L layers,
the group allocated to Nl,k is active to compute the group
function in the given channel uses in a set Tl,k. Assume the
number of the given channel uses is given as |Tl,k| = αl,kn

satisfying
∑L
l=2

∑
k∈Kl αl,k = 1. With the help of Theorem 1,

the computation rate of the desired function in the hierarchical
network with L layers is given as follows.

Theorem 2 (General Rate of ML-CoMAC). For any L ∈ N
satisfying L ≥ 2, the computation rate of the desired function
in the hierarchical network over fading MAC is given as

R = min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,k

1

|T (c)
l,k |

∑
m∈T (c)

l,k

C+

 1

K
(c)
Nl,k

+

min
i∈K(c)

Nl,k

[
|hi→kl−1 [m]|2P i→kl−1 [m]

]
= min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,kE

C+

 1

K
(c)
Nl,k

+

min
i∈K(c)

Nl,k

[
|hi→kl−1 |2P i→kl−1

] .
(17)

Proof: Theorem 1 suggests that the computation rate of
the group function computed at Nl,k is Rl,k. However, to
reconstruct the group function at Nl,k, all the nodes in KNl,k

need to obtain the data vector first. In the hierarchical network
with L layers, the data vector of Nl−1,i, i ∈ KNl,k is obtained
by the values of the group function computed by the group
KNl−1,i

(see Eq. (11)). Thus, when considering the relation
between layers, the number of the values of the group function
computed at Nl,k is determined by not only KNl,k but also
{KNl−1,i

}i∈KNl,k
, which is expressed as

Ūl,k = min

{
Rl,k|Tl,k|
H(f(bv))

, min
i∈KNl,k

Ūl−1,i

}
. (18)
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For the sake of simplicity, we denote Rl,k|Tl,k|
H(f(bv)) as ρl,k. Based

on the recurrence relation Eq. (18), at the fusion center (l =
L), the number of the values of the desired function is

ŪL,1 = min

{
ρL,1, min

i∈KNL,1

Ūl−1,i

}
(a)
= min

{
ρL,1, min

i1∈KL−1

min

{
ρL−1,i1 , min

i2∈KNL−1,i1

ŪL−2,i2

}}
(b)
= min

{
ρL,1, min

i1∈KL−1

ρL−1,i1 , min
i1∈KL−1

min
i2∈KNL−1,i1

ŪL−2,i2

}
(c)
= min

{
ρL,1, min

i1∈KL−1

ρL−1,i1 , min
i1∈KL−2

ŪL−2,i2

}
= min
l∈[2:L]

min
k∈Kl

ρl,k,

(19)
where the condition (a) follows because of KL = 1
and Eq. (18), the condition (b) follows since min oper-
ation is associative and the condition (c) follows due to
∪i1∈KL−1

KNL−1,i1
= KL−2 (see Definition 3).

At last, the fusion center computes ŪL,1 desired functions
over L layers. And, the computation rate of the desired
function in the hierarchical network is given as

R = lim
n→∞

ŪL,1
n

H(f(bv))

(a)
= lim

n→∞

minl∈[2:L] mink∈Kl ρl,k

n
H(f(bv))

(b)
= lim
n→∞

min
l∈[2:L]

min
k∈Kl

Rl,k|Tl,k|
n

(c)
= min
l∈[2:L]

min
k∈Kl

αl,kRl,k,

(20)

where the condition (a) follows because of Eq. (18), the
condition (b) follows due to ρl,k =

Rl,k|Tl,k|
H(f(bv)) and the condition

(c) follows as |Tl,k| = αl,kn.

The rate of Theorem 2 considers the general case and can
reduce to the rate in the single-hop network by setting L = 2.
Based on the general rate, we can apply different resource
allocation to analyze the corresponding rate and to improve
the performance.

V. OPTIMAL RESOURCE ALLOCATION

The derived general computation rate suggests that the
performance is determined by the allocated channel uses to
each subgroup or each group and the power to each node. To
fully use the flexibility of the total channel uses and the power
of each node, we consider optimal time allocation and fixed
power control as a simple case in Section V-A, and optimal
time allocation and adaptive power control in Section V-B.

A. Optimal Time Allocation and Fixed Power Control

Considering the fixed power constraint for each user, we
obtain the computation rate from Theorem 2 easily as

R = min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,k

1

|T (c)
l,k |

∑
m∈T (c)

l,k

C+

 1

K
(c)
Nl,k

+ min
i∈K(c)

Nl,k

|hi→kl−1 [m]|2P


(a)

≤ min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,kC

+

 1

K
(c)
Nl,k

+E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P


(21)

by setting P i→kl−1 [m] = P , where the condition (a) follows
because of the increase in n and Jensen’s inequality.

One can observe that each αl,k and each β
(c)
l,k should be

optimized to approach the optimal computation rate since the
computation rate of each subgroup function is different. A
subgroup function with higher computation rate should be
allocated fewer channel uses as the number of the desired
functions computed at the fusion center is determined by the
minimum of the number of each subgroup function. Thus, we
formulate the following optimization problem.

Problem 1.

maximize
αl,k,β

(c)
l,k

min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,kC

+

 1

K
(c)
Nl,k

+

E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P


s.t.

L∑
l=2

∑
k∈Kl

αl,k = 1 (22)∑
c∈CNl,k

β
(c)
l,k = 1,∀l ∈ [2 : L],∀k ∈ Kl (23)

Although the objective function is non-convex, it can be
transformed into a convex function by relaxing the bi-linear
function through McCormick relaxation [25]. We introduce
p

(c)
l,k = αl,kβ

(c)
l,k . Then, the constraints (22) and (23) can be

jointly rewritten as
∑L
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k = 1. There-

fore, the max−min problem can be reformed as
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Problem 2.

maximize
p
(c)
l,k,t

t

s.t. p
(c)
l,kC

+

 1

K
(c)
Nl,k

+ E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P

 ≥ t,
∀l ∈ [2 : L],∀k ∈ Kl,∀c ∈ Cl,k (24)

L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k = 1

Since Problem 2 is a linear programming problem, the
problem can be solved by the interior-point methods or La-
grangian duality approach [26]. However, such an optimal
solution requires iteratively updating Lagrange multipliers
using sub-gradient methods. By exploring the special structure
of Problem 2, we obtain a simple optimal solution that does
not require iterations. The optimal

{
p∗

(c)
l,k

}
c∈CNl,k

and t∗ can

be obtained as closed-form expressions though the Lagrangian
function

L = t−
L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

λ
(c)
l,k

t− p(c)
l,kC

+

 1

K
(c)
Nl,k

+E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P


− µ(

L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k − 1),

(25)

where
{
λ

(c)
l,k

}
and µ are Lagrange multipliers.

By setting the first derivative of L with respect to t, we
have

∑L
l=2

∑
k∈Kl

∑
c∈CNl,k

λ
(c)
l,k = 1 with the complementary

slackness condition for all c ∈ CNl,k

λ
(c)
l,k

t− p(c)
l,kC

+

 1

K
(c)
Nl,k

+ E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P

 = 0.

(26)
Also, by setting the first derivative of L with respect to p(c)

l,k

for all c ∈ CNl,k , we have

λ
(c)
l,kC

+

 1

K
(c)
Nl,k

+ E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P

− µ = 0 (27)

with the complementary slackness condition
µ(
∑L
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k − 1) = 0.

From Eq. (27), one can observe that λ(c)
l,k = 0,∀c ∈ CNl,k

if µ = 0, which is contrary to
∑
c∈CNl,k

λ
(c)
l,k = 1. Thus, to

obtain the optimal solution, µ 6= 0 should hold. For each c

in CNl,k , p(c)
l,kC

+

(
1

K
(c)
Nl,k

+ E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

)
should

be the same and equal to t due to µ 6= 0, λ(c)
l,k 6= 0 and Eq. (26).

Using
∑L
l=2

∑
k∈Kl

∑
c∈CNl,k

λ
(c)
l,k = 1 and

p
(c)
l,k =

t

C+

(
1

K
(c)
Nl,k

+ E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

) , (28)

the optimal t∗ is given as

t∗ =

 L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

C+

 1

K
(c)
Nl,k

+

E

 min
i∈K(c)

Nl,k

|hi→kl−1 |2
P

−1

−1 (29)

and the optimal p∗(c)l,k is given as

p∗
(c)
l,k =

t∗

C+

(
1

K
(c)
Nl,k

+ E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

) . (30)

As a result, the computation rate with optimal time alloca-
tion and fixed power control is given as t∗ (Eq. (29)).

Remark 6 (Special Cases). By setting L = 2, K2 = 1 and
CN2,1

= 1 in Eq. (29), it reduces to a simple case where K1

nodes wish to compute a desired function at the fusion center
directly as classical CoMAC mentioned in Section II-B, and
the rate of it, named the rate of CoMAC with fixed power
control, is the same as Eq. (3) [18]. Also, by setting L = 2,
K2 = 1, CN2,1

= K1, and K(c)
N2,1

= 1 in Eq. (29), it reduces
to the time-sharing case as Eq. (4).

B. Optimal Time Allocation and Adaptive Power Control

We observe that each node in the hierarchical network is
active only in the corresponding channel uses. To compute
the functions more efficiently, long-term power control should
be considered as E

[
P i→kl−1 [m]

]
= P . The transmitted power

of each node is set to

P i→kl−1 [m] =

c
min

j∈K(c)
Nl,k

|hj→kl−1 [m]|2

|hi→kl−1 [m]|2
,m ∈ T (c)

l,k

0 , otherwise

. (31)

To satisfy the long-term power control constrain, we have

E
[
P i→kl−1 [m]

]
=

n∑
t=1

Pr(m = t)P i→kl−1 [m]|m=t

(a)
=
c

n

∑
t∈T (c)

l,k

min
j∈K(c)

Nl,k

|hj→kl−1 [t]|2

|hi→kl−1 [t]|2

(b)
=cαl,kβ

(c)
l,kE

min
j∈K(c)

Nl,k

|hj→kl−1 |2

|hi→kl−1 |2


, (32)
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which should be equal to P . Then, c is obtained as

c =
P

αl,kβ
(c)
l,kE

min
i∈K(c)

Nl,k

|hi→kl−1 |2

|hj→kl−1 |2

 . (33)

Substituting Eqs. (31) and (33) into the rate in Theorem 2,
the computation rate is expressed as

R = min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,kC

+

 1

K
(c)
Nl,k

+

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

αl,kβ
(c)
l,kE

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2/|h|
2

]
 ,

(34)

where h is used as a representative coefficient without loss of
generality.

Considering adaptive power control, we formulate an opti-
mization problem as Problem 3 to maximize the computation
rate.

Problem 3.

maximize
αl,k,β

(c)
l,k

min
l∈[2:L]

min
k∈Kl

αl,k min
c∈CNl,k

β
(c)
l,kC

+

 1

K
(c)
Nl,k

+

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

αl,kβ
(c)
l,kE

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2/|h|
2

]


s.t.

L∑
l=2

∑
k∈Kl

αl,k = 1 (35)∑
c∈CNl,k

β
(c)
l,k = 1,∀l ∈ [2 : L],∀k ∈ Kl (36)

By introducing the convex relaxation as p(c)
l,k = αl,kβ

(c)
l,k ,

this problem is rewritten as the following form.

Problem 4.

maximize
p
(c)
l,k,t

t

s.t. p
(c)
l,kC

+

 1

K
(c)
Nl,k

+

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

p
(c)
l,kE

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2/|h|
2

]
 ≥ t,

∀l ∈ [2 : L],∀k ∈ Kl,∀c ∈ Cl,k (37)
L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k = 1

Problem 4 now is a convex problem since the constrain,
Eq. (37), is concave. Hence, the above optimization problem
has a unique maximum. The Lagrangian function is given as

L =t−
L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

λ
(c)
l,k

t− p(c)
l,kC

+

 1

K
(c)
Nl,k

+

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]
P

p
(c)
l,kE

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2/|h|
2

]



− µ

 L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k − 1



(38)

with the complementary slackness condition

µ

 L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p
(c)
l,k − 1

 = 0, (39)

where
{
λ

(c)
l,k

}
and µ are Lagrange multipliers.

We apply the KKT optimality conditions to the Lagrangian
function to obtain the optimal factor p∗(c)l,k . By setting the first
derivative of L as Eq. (38) with respect to p

(c)
l,k to zero, we

have

ln

 1

K
(c)
Nl,k

+
ε

(c)
l,k

p
(c)
l,k

− ε
(c)
l,k

p
(c)
l,k

 1

K
(c)
Nl,k

+
ε

(c)
l,k

p
(c)
l,k

 =
µ ln(2)

λ
(c)
l,k

,

(40)

where ε(c)
l,k =

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |
2

]
P

E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2/|h|
2

] .

Then, each optimal factor is expressed as

p∗
(c)
l,k = max

{
0,−ε(c)

l,kK
(c)
Nl,k

[
1 +

(
τ

(c)
l,k

)−1
]−1

}
, (41)

where τ (c)
l,k is a Lambert W function as

τ
(c)
l,k = W

(
−2
− µ

λ
(c)
l,k

(
K

(c)
Nl,k

)−1

exp(−1)

)
, (42)

while p∗(c)l,k satisfies

L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p∗
(c)
l,k ≤ 1, µ = 0

L∑
l=2

∑
k∈Kl

∑
c∈CNl,k

p∗
(c)
l,k = 1, µ > 0

. (43)

Remark 7 (Special Cases). By setting L = 2, K2 = 1 and
CN2,1

= 1 in Eq. (34), the rate of it is the same as the rate

R = C+

(
1

K1
+

E
[
mini∈[1:K1] |h1,i|2

]
P

E
[
mini∈[1:K1] |h1,i|2/|h|2

]) (44)
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Fig. 5. The simulated topology.

in [18, Theorem 3 and Section VII-C] as the rate of CoMAC
with adaptive power control. Also, by setting L = 2, K2 =

1, CN2,1 = K1, K(c)
N2,1

= 1 and β
(c)
l,k = 1

K1
in Eq. (34) as

the time-sharing case, an improved rate is obtained as R =
1
K1

E
[
C
(
|h|2K1P

)]
compared with Eq. (4).

We provide a low-overhead signaling procedure so that the
resource allocation can be carried out without collecting the
global channel state information (CSI).

Algorithm 2 Global-CSI-Free Signaling Procedure for Re-
source Allocation

1: procedure GLOBAL-CSI-FREE SIGNALING FOR RE-
SOURCE ALLOCATION

2: Each node Nl−1,i collects its statistical CSI
E
[
|hi→kl−1 |2

]
only once for i ∈ K(c)

Nl,k
, c ∈ CNl,k , k ∈

Kl, l ∈ [2 : L− 1].
3: Each relay Nl,k collects CNl,k statistical channel

parameters E

[
min

i∈K(c)
Nl,k

|hi→kl−1 |2
]

only once for k ∈
Kl, l ∈ [2 : L− 1]

4: The above statistical parameters are transmitted to the
fusion center one by one only once.

5: The fusion center calculates the optimal t∗ through
Eq. (29) (for fixed power control) or Problem 4 (for
adaptive power control).

6: t∗ is broadcast from one layer to another using L
channel uses.

7: Each node obtains the optimal time factor p∗
(c)
l,k

through Eq. (30) (for fixed power control) or the equation
form of the inequality (37) (for adaptive power control).

8: Broadcasting a pilot by either the relay or the fusion
center, each node can obtain its own CSI at the same time.

9: The power of each node is set to P (for fixed power
control) or Eq. (31) (for adaptive power control).

10: end procedure

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results of the compu-
tation rates of ML-CoMAC, the time-sharing scheme Eq. (4),

TABLE I
PARAMETERS DEFINITIONS

Parameters
L ∈ {2, 3, 4} The number of layers

Kg The number of nodes in each group
Ksub−g The number of nodes in each subgroup

K1 The number of nodes in the first layer
KL = 1 The number of nodes in the L-th layer

Kl = max {1,Kl−1/Kg} , The number of nodes in the l-th layer∀l ∈ [2 : L− 1]
Nl,k The k-th node in the l-th layer

CNl,k = Kg/Ksub−g The number of subgroups for Nl,k

CoMAC with fixed power control Eq. (3), and CoMAC
with adaptive power control Eq. (44). In our simulation, the
average signal-to-noise ratio (SNR) is the same as P because
the variance of the noise is set as one. We consider i.i.d.
Rayleigh fading channel, i.e., the exponential distribution with
parameter one. The abbreviations for fixed power control,
adaptive power control, average time allocation, and optimal
time allocation are FPC, APC, ATA, and OTA, respectively.

A. Simulated Topology Set Up

The simulated topology is given as Fig. 5 and the detailed
parameters are given in Tab. I. The key parameters of this
hierarchical network are the number Kg of nodes in each
group and the number Ksub−g of nodes in each sub-group. In
an existing multi-hop network, grouping is usually determined
by topology parameters (i.e., Kg is determined by how many
nodes each relay can hear) whereas sub-grouping within
each group can be arbitrary since it is a topology-protection
operation, i.e., sub-grouping divides the group into several sub-
groups in protocol not in topology. A general guideline on how
to construct groups and sub-groups is given as follows.
• How to Construct Groups: The groups are constructed

based on the topology parameters. In other words, Ml-
CoMAC is the efficient function-computation method
for the existing multi-hop networks without topology
modification since such a change in the topology can
be very capital intensive and in many cases seems not
easy to implement for existing networks. Each relay can
hear the distributed nodes within a common transmission
range and these distributed nodes that can be heard are
regarded as a group assigned to that relay [7].

• How to Construct Subgroups: Since sub-grouping
within each group can be arbitrary and is a topology-
protection operation, we provide a (sub)optimal way
to construct the subgroups, which can achieve a
higher computation rate for each group. Recall the
rate Rl,k of group function (see Theorem 1) com-
puted by the relay Nl,k. Considering the indepen-
dent and identically distributed (i.i.d.) Rayleigh fading,

E

[
min

i∈K(c)
Nl,k

[
|hi→kl−1 |2P i→kl−1

]]
=

P

K
(c)
Nl,k

holds since the

average power of each node is the same as E
[
P i→kl−1

]
= P

and E[min
i∈K(c)

Nl,k

[|hi→kl−1 |2]] is equal to 1/K
(c)
Nl,k

. We

formulate the optimization problem to maximize the rate



13

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Fig. 6. Computation rates of CoMAC with different schemes with respect to
the number K1 of source nodes and P when L = 2.

by finding the optimal CNl,k , β(c)
l,k , and K

(c)
Nl,k

. Since
Rl,k is not concave, to find some insights, we set the
time factor β(c)

l,k = K
(c)
Nl,k

/K to relax it. This is because
the subgroup with more nodes has a slower computing
rate and needs more time slots to compute the subgroup
function in such a max−min problem. Since the ob-
jective function is now concave, under the case without
constraints, the optimal K(c)

Nl,k
can be obtained directly as

K
(c)
Nl,k

= (1 + P )/e. This implies that the optimal K(c)
Nl,k

is always the same with each other subgroup within the
group. Thus, the insightful solution considering the node
constraint

∑CNl,k

c=1 K
(c)
Nl,k

= KNl,k is given as

CNl,k
∗ =


KNl,k

min

{⌈
1 + P

e

⌉
,KNl,k

} − 1

2

 , (45)

where d·e is the ceiling function. This solution provides
a straightforward way to sub-grouping that can achieve a
improved computation rate.

In our simulation, to simply the topology, we consider the
case where the number of nodes in each subgroup is uniform
and the number of nodes in each group is also uniform. Still,
the influence of these main parameters on various aspects of
the network topology can be shown.

B. Computation Rates

Since the multi-hop network is a more general case com-
pared with the single-hop network, the rates of CoMAC
Eqs. (4), (3) and (44) should be generalized by the rates
of ML-CoMAC with specified parameters. Thus, in Fig. 6,
their relationship is given. By setting L = 2, the multi-
hop network reduces to the single-hop network aiming at
computing the desired function associated with K1 source
nodes directly. When Ksub−g = 1 and Kg = K1, the fusion
center collects all the individual data from K1 nodes as the
time-sharing case and the rate of ML-CoMAC with FPC is
the same as Eq. (4) by setting CN2,1

= Kg/Ksub−g = K1

1 10 20 30 40 50 60
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0.5

1

1.5

2

2.5

3

Fig. 7. Computation rates of ML-CoMAC with different schemes with respect
to the number Ksub−g of nodes in each subgroup and the number L of layers
when K1=64 and Kg = 64.
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Fig. 8. Computation rates of ML-CoMAC with different schemes with respect
to the number Kg of nodes in each group and the number L of layers when
K1 = 64 and Ksub−g = Kg/2.
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Fig. 9. Computation rates of ML-CoMAC with respect to the number Kg of
nodes in each group and the number K1 of source nodes when L = 3.
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Fig. 10. Comparison between ML-CoMAC, time-sharing, and CoMAC with
respect to the number K1 of source nodes and the number L of layers when
Kg = 64 and Ksub−g = Kg/2.

in Eq. (29). When Ksub−g = K1 and Kg = K1, by setting
CN2,1

= Kg/Ksub−g = 1 in Eq. (29), all the nodes transmit
signals simultaneously to the fusion center. It generalizes
the rate of CoMAC with FPC Eq. (3). Similarly, by setting
CN2,1 = 1 in Eq. (34), the rate of CoMAC with APC Eq. (44)
is obtained.

The computation rates of ML-CoMAC with different
schemes versus the number Ksub−g of nodes in each subgroup
and the number L of layers are demonstrated in Fig. 7. One
can observe that the computation rate decreases as the number
of layers increases. Since each layer has to be allocated some
channel uses to compute the corresponding functions, i.e.,
subgroup functions and group functions, the increase in the
number of layers causes the decrease in the number of channel
uses allocated to each layer when the total of channel uses is
fixed. Besides, the computation rate is improved by setting
Ksub−g = 32. This optimal Ksub−g also can be obtained
from Eq. (45) by setting KNl,k = Kg = 64 and P = 100.
This verifies the correctness of Eq. (45) and implies that the
group function divided into several subgroup functions will
improve the performance. Compared with ML-CoMAC with
FPC, ML-CoMAC with APC improves the rate. Also, optimal
time allocation provides further improvement.

However, the impact of the number Kg of nodes in each
group is different from the impact of the number of subgroups.
In Fig. 8, we show the computation rates of ML-CoMAC
for different schemes versus Kg and L. The main difference
from Fig. 7 is that the increase in the groups results in
the worse performance since each group is allocated fewer
channel uses. With fewer channel uses, the number of the
group functions computed at the corresponding node is fewer.
Thus, the computation rate of ML-CoMAC decreases.

Although Fig. 8 suggests that, with the fixed K1, the number
of groups in a network should be as few as possible, it does not
mean that the increase in the number of groups only has the
disadvantage. As shown in Fig. 9, we simulate the computation
rates with respect to Kg and K1. One can observe that all the
rates decrease as the number of source nodes K1 increases.
Also, when K1 is small, the relation between the rate and the

number of groups is the same as that in Fig. 8. However, as K1

becomes larger, unlike the rate of ML-CoMAC with one group
decreasing rapidly, the rates of ML-CoMAC with multiple
groups keep a slower decrease. Especially, ML-CoMAC with
eight groups provides the slowest decrease, which implies that
ML-CoMAC with more groups can support a network with
more nodes. Thus, it provides a way to design a network that
can afford massive numbers of nodes by increasing the number
of groups in this network.

Fig. 10 shows the computation rates with different schemes,
i.e., ML-CoMAC, time-sharing, and CoMAC, versus K1 and
L. For the implementation of the conventional CoMAC, we
consider the case that each group computes the group function
directly without sub-grouping to provide an approximate Co-
MAC rate since the conventional CoMAC cannot be directly
implemented in the multi-hop network. For time-sharing, each
node transmits its data one by one during the different channel
uses. For the proposed ML-CoMAC, we choose the sub-
grouping strategy (i.e., Ksub−g = Kg/2). One can observe
that ML-CoMAC can provide higher rates in the multi-hop
network, and the rate of ML-CoMAC with APC and OTA
provides the highest rate compared with the others. This
implies that the sub-grouping in ML-CoMAC can not only
improve the performance but also protect the existing topology.
Also, the rate of time-sharing is vanishing rapidly, which
implies that orthogonal communication to compute functions
is not suitable for a multi-hop network.

VII. CONCLUSION

In this paper, we have combined the uses of CoMAC and
orthogonal communication to attain the implementation of
CoMAC in the multi-hop network. ML-CoMAC has been de-
veloped based on the hierarchized multi-hop network including
multiple layers that consists of subgroups and groups. By
computing and communicating subgroup functions and group
functions over layers, the desired function is reconstructed at
the fusion center. Based on the proposed scheme, we have
derived the general computation rate, which suggests that the
computation rate is determined by the subgroup function with
the worst rate. Furthermore, we have formulated optimiza-
tion problems taking time allocation and power control into
account. The closed-form optimal solutions have been given
with respect to different cases, which generalizes the existing
CoMAC works.
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