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Abstract

In this paper, we investigate a coordinated multipoint (CoMP) beamforming and power control

problem for base stations (BSs) with a massive number of antenna arrays under coarse quantization

at low-resolution analog-to-digital converters (ADCs) and digital-to-analog converter (DACs). Unlike

high-resolution ADC and DAC systems, non-negligible quantization noise that needs to be considered

in CoMP design makes the problem more challenging. We first formulate total power minimization

problems of both uplink (UL) and downlink (DL) systems subject to signal-to-interference-and-noise

ratio (SINR) constraints. We then derive strong duality for the UL and DL problems under coarse quan-

tization systems. Leveraging the duality, we propose a framework that is directed toward a twofold aim:

to discover the optimal transmit powers in UL by developing iterative algorithm in a distributed manner

and to obtain the optimal precoder in DL as a scaled instance of UL combiner. Under homogeneous

transmit power and SINR constraints per cell, we further derive a deterministic solution for the UL CoMP

problem by analyzing the lower bound of the SINR. Lastly, we extend the derived result to wideband

orthogonal frequency-division multiplexing systems to optimize transmit power and beamformer for all

subcarriers. Simulation results validate the theoretical results and proposed algorithms.

Index Terms

Coordinated multipoint, joint beamforming and power control, low-resolution ADC/DAC, total

transmit power minimization, UL-DL strong duality

J. Choi is with Qualcomm Inc. Wireless R&D, San Diego, CA 92121 USA (e-mail:jinseokchoi89@utexas.edu). Y. Cho and

B. L. Evans are with the Wireless Networking and Communication Group (WNCG), Department of Electrical and Computer

Engineering, The University of Texas at Austin, Austin, TX 78701 USA. (e-mail: yscho@utexas.edu, bevans@ece.utexas.edu).

ar
X

iv
:2

00
5.

07
85

3v
1 

 [
cs

.I
T

] 
 1

6 
M

ay
 2

02
0



2

I. INTRODUCTION

Employing large-scale antenna arrays at the BS has been widely studied in last decades as

a potential future wireless communication technology because of its significant gain in spectral

efficiency [1]. Due to the large number of antennas followed by power-demanding high-resolution

analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), however, significant

power consumption becomes one of the primary practical challenges in realizing the system.

Accordingly, employing low-resolution quantizers has attracted the most interest as a low-power

solution in recent years [2]–[5]. In multicell systems, non-negligible quantization error due to the

low-resolution quantizers is a function of not only the in-cell channels and beamformers but also

the inter-cell channels and beamformers. In this regard, we investigate coordinated multipoint

(CoMP) beamforming (BF) and power control (PC) problems in low-resolution massive multiple-

input and multiple-output (MIMO) systems to take into account the effect of the quantization

error to the beamformer design and power allocation in the multicell communications.

A. Prior Work

As modern cellular systems operate on the interference-limited regime, the coordination be-

tween base stations (BSs) has shown large gain in communication performance [6]–[16]. Prob-

lems of minimizing transmit power for given quality of service constraints were often investigated

in multicell CoMP networks. In [6], an uplink (UL) BF and PC method was developed by utilizing

a fixed point iteration method. In addition, a downlink (DL) BF and PC method was further

proposed in [7]. Due to the difficulty in designing DL BF, the DL BF was derived by exploiting

a virtual UL concept based on the duality between UL single-input and multiple-output and DL

multiple-input and single-output systems. In [8], relaxing and casting the DL BF problem into a

semidefinite optimization problem, a DL BF solution was efficiently computed by using interior

point methods. In addition to the semidefinite relaxation optimization for the BF design, BS

allocation and congestion control were further investigated in [9], providing substantial increase

in the system performance. Assuming interference only from adjacent cells, a Kalman smoothing

based BF method was developed by recasting the DL BF problem to a virtual minimum mean-

squared error (MMSE) estimation problem to design network-wide MMSE BF without requiring

a central processing unit [10]. Linear programming-based network duality for MIMO UL and

DL with a single layer was leveraged in [11] to develop more efficient BF algorithms both in

convergence and performance. Lagrangian based duality for multiuser MIMO systems was further
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derived in [12] and used to propose an distributed algorithm, requiring less synchronization and

complexity burden on users and BSs. Practical contraints such as limited backhaul capacity was

considered in [13], and a CoMP BF system was implemented in a real field testbed in [14],

showing its benefits in spectral efficiency especially for cell edge users. Improving the data rates

of cell-edge users, a CoMP BF problem based on interference alignment was also studied in a

non-orthogonal multiple access system [15]. Recently, understanding the benefit of employing

a large antenna arrays at the BS, the performance gain from using massive antenna arrays

jointly with CoMP BF was demonstrated by providing a more robust link and more localized

interference [16]. Although prior findings in MIMO CoMP systems can be naturally extended to

massive MIMO systems with high-resolution ADCs and DACs, employing low-resolution ADCs

and DACs further needs to be considered to address the excessive power consumption problem.

To achieve power-efficient communications, low-resolution ADC architectures have been ex-

tensively investigated in recent years [4], [5], [17]–[27]. As an effort to realize low-resolution

ADC systems, essential wireless communication techniques such as channel estimation and detec-

tion have been developed in low-resolution ADC systems [4], [5], [17]–[22]. Unified frameworks

for channel estimation and symbol detection were developed for 1-bit ADC systems by using

1-bit maximum likelihood estimation [4]. Quantized maximum a-posteriori channel estimation

and data detection were also developed by showing that 4-bit ADCs yield no performance

loss from infinite-resolution ADCs [5]. For orthogonal frequency-division multiplexing (OFDM)

systems, a generalized turbo estimator was utilized for channel estimation and symbol detection

with over-the-air experiments, showing reasonable reliability when using low-resolution ADCs

[17], [18]. In [19], [20], learning-based detectors were proposed without requiring explicit

channel estimation. As a special low-resolution ADC system, a detector for mixed-ADC systems

was proposed in [23]. In addition, a resolution-adaptive ADC system was proposed with near

optimal bit-allocation solutions [24]. For tractability, linear quantization models such as Bussgang

decomposition [21], [22] and an additive quantization noise model (AQNM) [25]–[27] were

utilized by providing insightful analytical results.

Low-resolution DAC systems have also been studied in many literatures [2], [3], [28]. Achiev-

able rates with linear precoders were derived in low-resolution DAC systems, and a nonlinear

precoder was developed for 1-bit DAC systems, showing that using 3-4 bits offers comparable

performance to infinite-resolution DACs and that the proposed 1-bit precoder causes only 3 dB

loss from infinite-resolution DACs [2]. A universal precoding approach was further developed
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in [28] by improving the performance and complexity trade-off from [2]. The rate analysis in

[29] showed that using 2.5× more antennas can compensate for performance loss due to using

1-bit DACs. In addition, a constructive interference approach was adopted in [3] to develop a

low-complexity precoder for 1-bit DAC systems. For orthogonal frequency-division multiplexing

(OFDM) systems, the rate and bit-error-rate (BER) analysis in [30] demonstrated that using 3-4

bits can achieve the BER comparable to that of infinite-resolution DAC systems. A mixed-DAC

as well as mixed-ADC system was also considered in [31] for relaying channels. Bussgang

decomposition was adopted in [2], [29], [32] to linearize the low-resolution DAC system to

develop precoder and analyze system performance. Interestingly, it was shown in [32] that

employing low-resolution DACs can offer more reliable secure communication depending on

system configuration. The AQNM was also used in [33], [34]. In [33], numerical comparison

among digital BF and hybrid analog and digital BF with fully-connected and partially-connected

phase shifter networks was provided. In [34], using low-resolution ADCs and DACs provided

benefits in reducing power consumption while maintaining achievable rate in full duplex systems.

The prior work on low-resolution ADCs and DACs discloses that using low-resolution quan-

tizers can significantly reduce the power consumption at the BSs while maintaining desirable

spectral efficiency. Given the benefit of using low-resolution ADCs and DACs in the SE-EE

trade-off, it is indispensable to consider coarse quantization systems for CoMP BF with massive

antenna arrays. However, the non-negligible quantization error that is a function of channels,

beamformers and transmit power makes the CoMP problem more challenging to solve. Due to

the quantization error, it is unknown whether previous findings in the prior work can still be

valid in the low-resolution ADC and DAC systems. When it comes to the OFDM system, the

quantization involves the OFDM modulations as well as BF and channels, which leads to highly

complicated problems. Therefore, comprehensive study on CoMP for massive MIMO systems

with low-resolution ADCs and DACs is desirable.

B. Contributions

In this paper, we investigate joint BF and PC problems in coordinated multicell networks

with BSs equipped with a large number of antenna arrays. We focus on coarse quantization

systems where the BSs are equipped with low-resolution ADCs and DACs to achieve energy-

efficient communications. Accordingly, the non-negligible quantization error which involves
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various system functions needs to be properly manipulated. For tractability, we adopt the AQNM

for modeling the quantization system. The contributions are summarized as follows:

• We first formulate the minimum total transmit power problem subject to individual SINR

constraints for both DL and UL. Then we prove the duality between the DL and UL problems

under the coarse quantization systems by showing that the Lagrangian dual problem of the DL

problem is equivalent to the UL problem with MMSE combiners. We further demonstrate that

there is no duality gap, i.e., strong duality holds, by casting the DL problem into a standard

second order conic problem and by showing strict feasibility with respect to the beamformer.

• Leveraging the strong duality, we propose a fixed point iterative algorithm to jointly solve the

DL and UL problems. Using the properties of a standard function, we show that the algorithm

converges to a unique optimal set of transmit powers for the UL problem. We further show

that the optimal DL beamformers can be obtained by scaling the UL MMSE combiner that is

design based on the optimal transmit powers. We also remark that the proposed algorithm can

be implemented in a distributed manner with in-cell channel knowledge and without requiring

explicit estimation of inter-cell channels.

• Assuming homogeneous transmit powers and SINR constraints per cell, a deterministic al-

gorithm is developed to provide a closed-form solution for the UL BF and PC problem. To

this end, we consider an MMSE equalizer and derive a lower bound of the minimum SINR

for each cell. Then the solution is derived as a linear function of the SINR constraints and

maximum eigenvalues of matrices that are composed of channels.

• We extend the CoMP BF and PC problem to a wideband OFDM system. We first derive

DL and UL system models by incorporating the coarse quantization effect into the OFDM

modulation. Then we formulate the minimum total transmit power problems for UL and DL

to find the optimal beamformer and transmit power for each user and subcarrier subject to

the SINR constraints for each user and subcarrier. Manipulating the quantization error that is

intertwined with not only the channels, beamformers, and transmit power but also the OFDM

modulation, we show that the strong duality also holds for the wideband OFDM systems and

the similar results as the narrowband system can be applied.

• Simulation results validate the derived theoretical results and demonstrate that the proposed

iterative CoMP algorithm achieves the target SINR. The algorithm also outperforms a con-

ventional per-cell based method in terms of accuracy and minimizing total transmit power. In
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Figure 1. Multicell multiuser-MIMO network which is incorporated with low-resolution ADCs and DACs at the BS.

addition, the deterministic approach whose total transmit power lies between these two methods

in the medium-to-high target SINR range show a reasonable trade-off between transmit power

and achieved SINR.

Notation: A is a matrix and a is a column vector. AH and AT denote conjugate transpose

and transpose. [A]i,: and ai indicate the ith row and column vectors of A. We denote ai,j

as the {i, j}th element of A and ai as the ith element of a. CN (µ, σ2) is a complex Gaussian

distribution with mean µ and variance σ2. The diagonal matrix diag(A) has {ai,i} at its diagonal

entries, and diag(a) or diag(aT) has {ai} at its diagonal entries. A block diagonal matrix is

presented as blkdiag(A1, . . . ,AN). A block circulant matrix is denoted as blkcirc(A1, . . . ,AN)

with a first block-row of A1, . . . ,AN . eigM(A) and eigm(A) denote the maximum and minimum

eigenvalues of A, respectively. We use vec(A) to represent the vectorization operator. IN is a

N ×N identity matrix and 0N is a N × 1 zero vector. ‖A‖ represents L2 norm.

II. SYSTEM MODEL

We consider a multicell multiuser-MIMO network with Nc cells, Nu single-antenna users per

cell. Users are served by an associated BS with Nb antennas (Nb � Nu), i.e., users in cell i

are served by a BS in cell i. We assume that the BSs for all Nc cells are equipped with low-

resolution ADCs and DACs with equal bits, i.e., b-bit ADCs and DACs for all BSs, and they

cooperate as shown in Fig. 1. Time division multiplexing (TDD) is considered in the system.

A. Uplink Narrowband System

Each user u in cell i transmits signal xuli,u =
√
λi,us

ul
i,u over a narrowband channel, where λi,u

and suli,u are transmit power and a symbol, respectively. The narrowband channel vector between
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user u in cell j and the BS in cell i (BSi) is represented as hi,j,u ∈ CNb . Then, the received

baseband analog signal at BSi is expressed as

ruli = Hi,ix
ul
i +

Nc∑
j 6=i

Hi,jx
ul
j + nul

i = Hi,iΛΛΛ
1/2
i suli +

Nc∑
j 6=i

Hi,jΛΛΛ
1/2
j sulj + nul

i (1)

where Hi,j ∈ CNb×Nu is the channel matrix between BSi and users in cell j whose uth column

is hi,j,u, xul
i ∈ CNu and suli ∈ CNu are the transmit signal and symbol vectors of the Nu users

in cell i, whose uth entries are xuli,u and suli,u, respectively, ΛΛΛi = diag(λi,1, . . . , λi,Nu) is the the

transmit power matrix of the users in cell i, and nul
i ∈ CNb is the additive white Gaussian noise

(AWGN) vector at BSi. Throughout this paper, we consider a normalized variance for AWGN

without loss of generality, i.e, nul
i ∼ CN (0, INb). We further consider that suli has a zero mean

and unit variance. We can rewrite the analog received signal (1) in a more compact form as

ri = HiΛΛΛ
1/2sul + nul

i

where Hi = [Hi,1, . . . ,Hi,Nc ] ∈ CNb×NcNu , ΛΛΛ = blkdiag(ΛΛΛ1, . . . ,ΛΛΛNc) ∈ CNcNu×NcNu , and

sul = [(sul1 )T , . . . , (sulNc)
T ]T ∈ CNcNu .

We consider that each ADC has b quantization bits. We adopt the AQNM [25], [35] to obtain

a linearized approximation of the quantization process derived from assuming a scalar MMSE

quantizer. Under the AQNM, the quantized signal vector can be given as [35]

Q(ri) ≈ rq,i = αHi,iΛΛΛ
1/2
i suli + α

Nc∑
j 6=i

Hi,jΛΛΛ
1/2
j sulj + αnul

i + qul
i (2)

where Q(·) is an element-wise quantizer function applied to the real and imaginary parts. The

quantization gain α is a function of the number of ADC bits and defined as α = 1− β, where

β = E[|r−rq|2]
E[|r|2] [35], [36]. Assuming that suli is Gaussian distributed, i.e., suli ∼ CN (0, INu),∀i,

the values of β are listed in Table 1 in [36] for b ≤ 5, and β is approximated as β ≈ π
√
3

2
2−2b

for b > 5 [37]. The quantization noise qul
i is uncorrelated with ri [35] and considered to follow

the complex Gaussian distribution with a zero mean and covariance of [25], [35]

Cqul
i qul

i
= α(1− α) diag

(
HiΛΛΛHH

i + INb
)
. (3)

Once the received signals are quantized, they are combined with Fi at BSi. Then we have

yul
i = FH

i rq,i = αFH
i Hi,iΛΛΛ

1/2
i suli + α

Nc∑
j 6=i

FH
i Hi,jΛΛΛ

1/2
j sulj + αFH

i nul
i + FH

i qul
i .
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Accordingly, the quantized and combined received signal for user u in cell i is given as

yuli,u = α
√
λi,uf

H
i,uhi,i,us

ul
i,u+α

Nu∑
v 6=u

√
λi,vf

H
i,uhi,i,vs

ul
i,v+α

Nc,Nu∑
j 6=i
v

√
λj,vf

H
i,uhi,j,vs

ul
j,v+αfHi,un

ul
i +fHi,uq

ul
i

= α
√
λi,uf

H
i,uhi,i,us

ul
i,u + α

(Nc,Nu)∑
(j,v)6=(i,u)

√
λj,vf

H
i,uhi,j,vs

ul
j,v + αfHi,un

ul
i + fHi,uq

ul
i

where fi,u is the uth column of Fi.

B. Downlink Narrowband System

Similarly to the UL quantized signals, the transmit signal vector quantized at low-resolution

DACs of BSi with a precoder Wi ∈ CNb×Nu is expressed as xdl
i = αWis

dl
i + qdl

i ∈ CNb [33],

[34], [38], where sdli ∼ CN (0, INu) denotes the transmit symbol vector for the Nu users in cell

i, and qdl
i ∈ CNb is a quantization noise vector with a covariance [34]

Cqdl
i qdl

i
= α(1− α)diag(WiW

H
i ). (4)

The same assumptions are made for the quantization as the UL system and α is also identical

to the one in the UL system with the equal quantization resolution as the ADCs. Under TDD,

the channel vector between BSj and user u in cell i is hHj,i,u. The received signal at user u is

ydli,u = αhHi,i,uwi,us
dl
i,u + α

(Nc,Nu)∑
(j,v)6=(i,u)

hHj,i,vwj,vs
dl
j,v +

Nc∑
j=1

hHj,i,uq
dl
j + ndl

i,u

where wi,u is the uth column of Wi and ndl
i,u is the AWGN distributed as ndl

i,u ∼ CN (0, 1).

III. UPLINK AND DOWNLINK JOINT BEAMFORMING AND POWER CONTROL

In this section, we formulate transmit power minimization problems for the UL and DL

systems subject to given SINR constraints and propose algorithms that solve the problems. In

this paper, we assume that the problems are feasible. First, the UL problem is formulated to

minimize the transmit power of the users in Nc cells with an individual user SINR constraint as

P1 : min
fi,u,λi,u,∀i,u

Nc,Nu∑
i,u

λi,u s.t. max
fi,u

Γul
i,u ≥ γi,u, ∀ i, u (5)

where Γul
i,u is the UL SINR of user u in cell i, which is computed as

Γul
i,u =

α2λi,u|fHi,uhi,i,u|2

α2
∑(Nc,Nu)

(j,v)6=(i,u) λj,v|fHi,uhi,j,v|2 + α2‖fi,u‖2 + fHi,uCqiqifi,u
. (6)
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Unlike the perfect quantization system (no quantization error), Γul
i,u has the additional term

associated with quantization error, fHi,uCqiqifi,u, which is a function of the channel and the

transmit power λi,u. In addition, it is also involved with the combiner fi,u. Accordingly, the

effect of coarse quantization needs to be incorporated when solving P1.

Now the DL problem is formulated to minimize the transmit power of the BSs in Nc cells

with an individual user SINR constraint as

P2 : min
wi,u,∀i,u

α

Nc,Nu∑
i,u

wH
i,uwi,u subject to Γdl

i,u ≥ γi,u, ∀ i, u (7)

where

Γdl
i,u =

α2|wH
i,uhi,i,u|2

α2
∑(Nc,Nu)

(j,v)6=(i,u) |wH
j,vhj,i,u|2 +

∑Nc
j=1 hHj,i,uCqdl

j qdl
j
hj,i,u + 1

. (8)

Note that α in the objective function is a fixed scalar which does not change the solution of

P2. The solution of P2 also needs to incorporate the effect of the coarse quantization, i.e.,

quantization noise covariance Cqdl
j qdl

j
as it is a function of Wj and involved with channels hj,i,u.

A. Uplink and Downlink Duality

In this subsection, we extend the duality of the UL and DL power minimization problems for

infinite-resolution quantizer systems [12] to low-resolution quantizer systems by incorporating

the quantization error terms. Exploiting the duality, we propose an iterative algorithm based on

the fixed-point iteration [39] to solve both the UL and DL problems and further prove optimality

and convergence of the algorithm.

Theorem 1 (Duality). The uplink transmit power minimization problem P1 in (5) is equivalent

to a Lagrangian dual problem of the downlink transmit minimization problem P2 in (7).

Proof. The SINR constraints of P1 can be simplified by applying MMSE equalizers Fi that

maximize the SINR. Let zi,u be the interference-plus-noise term of the UL quantized signal in

(2) whose covariance matrix is expressed as

Czi,uzi,u = α2
∑

(j,v)6=(i,u)

λj,vhi,j,vh
H
i,j,v + α2INb + α(1− α)diag(HiΛΛΛHH

i + INb)

= α2
∑

(j,v)6=(i,u)

λj,vhi,j,vh
H
i,j,v + αINb + α(1− α)diag(HiΛΛΛHH

i ).
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Then, the MMSE equalizer fi,u can be given as [40]

fi,u = C−1zi,uzi,u
hi,i,u. (9)

Applying (9) to the UL SINR in (6), the constraints in P1 become α2λi,uh
H
i,i,uC

−1
zi,u

hi,i,u ≥ γi,u.

Then we multiply both sides with hHi,i,uhi,i,u as

α2λi,uh
H
i,i,uhi,i,uh

H
i,i,uC

−1
zi,uzi,u

hi,i,u ≥ γi,uh
H
i,i,uhi,i,u

hHi,i,u(α
2λi,uhi,i,uh

H
i,i,uC

−1
zi,uzi,u

− γi,uINb)hi,i,u ≥ 0 (10)

To satisfy (10), we need α2λi,uhi,i,uh
H
i,i,uC

−1
zi,uzi,u

− γi,uINb � 0. Rearranging this condition, we

can rewrite P1 as

min
λi,u

∑
i,u

λi,u s.t. Ki(ΛΛΛ) � α

(
1 +

1

γi,u

)
λi,uhi,i,uh

H
i,i,u, ∀i, u. (11)

where

Ki(ΛΛΛ) = INb + α
∑
j,v

λj,vhi,j,vh
H
i,j,v + (1− α)diag

(
HiΛΛΛHH

i

)
.

Now, we prove the duality between P1 and P2 by managing the quantization error term and

by showing that the Lagrangian dual problem of P2 is equivalent to (11). The Lagrangian of

P2 is given as

L(wi,u, µi,u) =
∑
i,u

αwH
i,uwi,u −

∑
i,u

µi,u

(
α2
|wH

i,uhi,i,u|2

γi,u
− α2

∑
v 6=u

|wH
i,vhi,i,u|2

− α2
∑
j 6=i
v

|wH
j,vhj,i,u|2 + α(1− α)

∑
j

hHj,i,udiag
(
WjW

H
j

)
hj,i,u + 1

)
(12)

where µi,u is a Lagrangian multiplier. Rearranging and rewriting (12), the Lagrangian becomes

L(wi,u,µi,u) =
∑
i,u

µi,u + α
∑
i,u

wH
i,u

(
INb − α

(
1 +

1

γi,u

)
µi,uhi,i,uh

H
i,i,u

+ α
∑
j,v

µj,vhi,j,vh
H
i,j,v

)
wi,u + α(1− α)

∑
i,u

µi,u
∑
j

hHj,i,udiag(WjW
H
j )hj,i,u. (13)
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We need to rewrite the quantization error term in (13) to manipulate Wj in the diagonal matrix.

Let Mi = diag(µi,1, . . . , µi,Nu) and M = blkdiag(M1, . . . ,MNc) ∈ CNcNu×NcNu . Changing the

indices of
∑

i,u µi,u
∑

j hHj,i,udiag(WjW
H
j )hj,i,u from (i, u, j) to (j, v, i), we have

Nc,Nu∑
j,v

µj,v

Nc∑
i

hHi,j,vdiag
(
WiW

H
i

)
hi,j,v=

Nc,Nu∑
j,v

µj,v

Nc,Nb∑
i,n

|hi,j,v,n|2
Nu∑
u

|wi,u,n|2

=

Nc,Nu∑
i,u

wH
i,udiag

(Nc,Nu∑
j,v

µj,v|hi,j,v,1|2, . . . ,
Nc,Nu∑
j,v

µj,v|hi,j,v,Nb|2
)
wi,u

=

Nc,Nu∑
i,u

wH
i,udiag(HiMMMHH

i )wi,u, (14)

where hi,j,v,n and wi,u,n are the nth entries of hi,j,v and wi,u, respectively, and Hi=[Hi,1, . . . ,Hi,Nc ]

as defined earlier. Applying (14) to (13), the Lagrangian becomes

L(wi,u, µi,u) =
∑
i,u

µi,u + α
∑
i,u

wH
i,u

(
INb − α

(
1 +

1

γi,u

)
µi,uhi,i,uh

H
i,i,u

+ α
∑
j,v

µj,vhi,j,vh
H
i,j,v + (1− α)diag

(
HiMHH

i

))
wi,u. (15)

Let the dual objective function g(µi,u) = minwi,u L(wi,u, µi,u). To prevent an unbounded solution,

we need INb − α
(

1 + 1
γi,u

)
µi,uhi,i,uh

H
i,i,u + α

∑
j,v µj,vhi,j,vh

H
i,j,v + (1 − α)diag(HiMHH

i ) � 0.

Accordingly, the Lagrangian dual problem of P2 in (7) becomes equivalent to

max
µi,u

Nc,Nu∑
i,u

µi,u s.t. Ki(M) � α

(
1 +

1

γi,u

)
µi,uhi,i,uh

H
i,i,u, ∀ i, u (16)

where Ki(M) = INb + α
∑

j,v µj,vhi,j,vh
H
i,j,v + (1− α)diag

(
HiMMMHH

i

)
.

The dual problem in (16) is equivalent to (11); although the Lagrangian dual problem of P2

in (16) and the UL problem in (11) have the opposite objectives (max vs. min) with the reversed

inequality in the constraints, optimal solutions of P1 and the Lagrangian dual problem (16) can

be obtained with active constraints, and (16) and (11) have the same optimal solutions with

active constraints. Therefore, (16) and (11) become equivalent by replacing µi,u in (16) with

λi,u, ∀i, u, i.e., the Lagrangian multiplier of P2, µi,u, is indeed equivalent to the UL transmit

power λi,u in P1. This completes the proof for Theorem 1. �

This result generalizes the UL-DL duality derived in [12] to any quantization resolution since

the P1 and P2 become equivalent to the UL and DL power minimization problem without
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quantization error, i.e., b → ∞ (equivalently, α → 1). To propose an algorithm which solves

P1 and P2, and to prove its optimality, we first show strong duality between P1 and P2.

Corollary 1 (Strong duality). Strong duality holds for P2 and its Lagrangian dual problem.

Proof. See Appendix A. �

B. Distributed Iterative Algorithm

In this subsection, we characterize solutions by exploiting the strong duality between P1 and

P2, and develop an iterative algorithm that finds the solutions for P1 and P2 simultaneously.

Corollary 2. The optimal transmit power for the uplink minimization problem (5) is derived as

λi,u =
1

α
(

1 + 1
γi,u

)
hHi,i,uK

−1
i (ΛΛΛ)hi,i,u

(17)

where Ki(ΛΛΛ) = INb + α
∑

j,v λj,vhi,j,vh
H
i,j,v + (1 − α)diag(HiΛΛΛHH

i ) with the MMSE receiver

given as

fi,u =

(
α2

∑
(j,v)6=(i,u)

λj,vhi,j,vh
H
i,j,v + αINb + α(1− α)diag(HiΛΛΛHH

i )

)−1
hi,i,u. (18)

Proof. Here we use λi,u instead of µi,u since we showed that they are equivalent. The derivative

of the Lagrangian (15) with respect to wi,u is given as

∂L(wi,u, λi,u)

∂wi,u

= 2α

(
INb − α

(
1 +

1

γi,u

)
λi,uhi,i,uh

H
i,i,u + α

∑
j,v

λj,vhi,j,vh
H
i,j,v

+ (1− α)diag(HiΛΛΛHH
i )

)
wi,u. (19)

Setting (19) equal to zero, we derive (17). Accordingly, it is the Lagrangian multiplier that

satisfies the stationarity condition. In addition, at the optimal solution, all the constraints in P2

are active, which satisfies the complementary slackness condition. Therefore, (17) is the optimal

Lagrangian multiplier, equivalently, optimal transmit power for P1. �

The solution in (17), however, is a function of all transmit powers including itself. Hence

the solution does not fully solve the problem; we develop an algorithm to find an optimal set

of transmit power by utilizing the solution. Once we find the optimal transmit power, we can

compute the MMSE combiner Fi based on the transmit power. In addition, we show the linear
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relationship between the optimal UL MMSE combiner and the optimal DL precoder; the optimal

DL precoder is a scaled version of the UL MMSE combiner.

Corollary 3 (DL precoder). With the carefully designed scaling factor, an optimal downlink

precoder can be linearly proportional to the uplink MMSE receiver, i.e., wi,u =
√
τi,ufi,u ∀i, u,

and τi,u is derived as τ = Σ−11, where 1 is a NuNc× 1 column vector with entries of all ones,

τ = [τ T1 , τ
T
2 , · · · , τ TNc ]

T with τ Ti = [τi,1, τi,2, · · · , τi,Nu ]T , and

Σ =


Σ1,1 Σ1,2 · · · Σ1,Nc

Σ2,1 Σ2,2 · · · Σ2,Nc

...
... . . . ...

ΣNc,1 ΣNc,2 · · · ΣNc,Nc

 . (20)

Each element of Σi,j ∈ RNu×Nu is defined as (21)

[Σi,j]u,v =


α2

γi,u
|fHi,uhi,i,u|2 − α(1− α)fHi,udiag(hi,i,uh

H
i,i,u)fi,u if i = j and u = v,

−α2|fHj,vhj,i,u|2 − α(1− α)fHj,vdiag(hj,i,uh
H
j,i,u)fj,v otherwise.

(21)

Proof. See Appendix B. �

Now, we use an iterative standard PC algorithm [12], [39], [41] to find the optimal UL transmit

power by exploiting (17), which allows us to compute the optimal UL MMSE combiner and DL

precoder; let λ(n)i,u be the UL transmit power at nth iteration. The algorithm is as follows:

Step 1. Initialize λ(0)i,u , ∀i, u.

Step 2. Iteratively update the transmit power λ(n+1)
i,u until converges, using (17) as

λ
(n+1)
i,u =

1

α
(

1 + 1
γi,u

)
hHi,i,uK

−1
i (ΛΛΛ(n))hi,i,u

, ∀i, u. (22)

Step 3. Find the UL MMSE combiner fi,u in (18) with λi,u obtained from the Step 1 and 2.

Step 4. Compute the DL precoder wi,u based on Corollary 3.

As remarked in [12], Ki is a covariance matrix of received signals which may be estimated

locally at each BSi, the fixed-point iteration in Step 2 for the optimal UL transmit power only

requires the user channel information in the associated cell at the BS without the need for the

explicit out-of-cell channel knowledge. In addition, the scaling coefficient τi,u for each user can

be considered as a DL transmit power on the effective channel that achieves the target SINR.

According to [42], the transmit power (equivalently, τi,u) can be obtained using a per-user power
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update algorithm, whose convergence is guaranteed [39]; each step of the algorithm computes

τi,u that satisfies its target SINR while assuming other τi′,u′’s are fixed. Therefore, the proposed

algorithm can be implemented in a distributed manner.

Corollary 4 (Convergence). For any initial points λ(0)i,u , ∀i, u, the proposed fixed-point iterative

algorithm converges to an unique fixed point at which total transmit power is minimized.

Proof. The proof is based on the standard function approach [39]. Let us rewrite (22) as λ(n+1)
i,u =

Fi,u(ΛΛΛ(n)). We need to show that Fi,u(λλλ) is a standard function which satisfies the followings:

• (positivity) If λi,u ≥ 0 ∀i, u, then Fi,u(ΛΛΛ) > 0.

• (monotonicity) If λi,u ≥ λ′i,u∀i, u, then Fi,u(ΛΛΛ) ≥ Fi,u(ΛΛΛ′).

• (scalability) For ρ > 1, ρFi,u(ΛΛΛ) > Fi,u(ρΛΛΛ).

It can be shown that Fi,u(ΛΛΛ(n)) satisfies the properties by carefully following the proof in

Appendix II in [41]. �

Therefore, the fixed-point iteration in Step 2 always converges to an unique fixed point that

is the optimal transmit power, and the optimal solutions for P1 and P2 can be obtained.

C. Deterministic Solution for Homogeneous Transmit Power and SINR Constraint per Cell

In this subsection, we derive a deterministic transmit power solution for a special case in

which transmit powers and SINR constraints are homogeneous within each cell for UL, i.e.,

λi,u = λi and γi,u = γi, ∀u. We solve this problem by forcing the minimum SINR to satisfy the

SINR constraint; minu Γi,u ≥ γi, ∀i, u, and by relaxing the problem with the lower bound of the

minimum SINR. With the MMSE equalizer Fi, the matrix of MSE for UL in cell i becomes

Emmse
i =

α2λiH
H
i,i

(
α2

Nc∑
j 6=i

λjHi,jH
H
i,j + α2INb + Cqul

i qul
i

)−1
Hi,i + INu

−1 .
Accordingly, the SINR of user u in cell i can be expressed as Γi,u = 1/[Emmse

i ]u,u−1. As shown

in [43], the minimum SINR in cell i is given as

min
u

Γi,u =
1

maxu[Emmse
i ]u,u

− 1

≥ 1

eigM (Emmse
i )

− 1

=eigm

αλiHH
i,i

(
α

Nc∑
j 6=i

λjHi,jH
H
i,j+INb+(1−α)diag(HiΛΛΛHH

i )

)−1
Hi,i

 . (23)
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Let H†i,i = (HH
i,iHi,i)

−1HH
i,i, Ai,j = eigM

(
H†i,iHi,jH

H
i,jH

†H
i,i

)
, Bi = eigM

((
HH
i,iHi,i

)−1), and Ci,j =

eigM

(
H†i,idiag(Hi,jH

H
i,j)H

†H
i,i

)
. Then (23) further becomes

αλi

eigM

(
H†i,i

(
α
∑

j 6=i λjHi,jHH
i,j + INb + (1− α)diag(HiΛΛΛHH

i )
)

H†Hi,i

)
(a)

≥ αλi

α
∑

j 6=i λjeigM

(
H†i,iHi,jHH

i,jH
†H
i,i

)
+eigM

(
H†i,iH

†H
i,i

)
+(1−α)eigM

(
H†i,idiag(HiΛΛΛHH

i )H†Hi,i

)
(b)

≥ αλi
α
∑

j 6=i λjAi,j +Bi + (1−α)
∑

j λjCi,j
(24)

where (a) comes from Corollary 1 in [43], and (b) is from diag(HiΛΛΛHH
i ) =

∑
j λjdiag(Hi,jH

H
i,j)

due to ΛΛΛi = λiINu , ∀i and Corollary 1 in [43].

Setting (24) equal to γi ∀i, we have the following linear equation:

λλλ =
1

α
ΓΓΓ(ΩΩΩλλλ+ b)

where λλλ = [λ1, . . . , λNc ]
T , ΓΓΓ = diag(γ1, . . . , γNc), b = [B1, . . . , BNc ]

T , and the (i, j)th element

of ΩΩΩ is given as

ωi,j =

(1− α)Ci,i if i = j

αAi,j + (1− α)Ci,j otherwise.

Finally, the deterministic UL transmit power can be derived as

λλλ =
1

α
(INc −

1

α
ΓΓΓΩΩΩ)−1ΓΓΓb. (25)

We note that the deterministic solution in (25) may have negative λi when the target SINRs

become high, i.e., the problem may easily become infeasible since the deterministic approach

has a reduced feasible set by assuming homogeneous transmit powers per cell and by solving

the problem for the SINR lower bound. We briefly introduce a possible approach to manage

this issue. Since the communication often operates in the interference-limited regime in the

multicell system, changing the signs of all transmit powers only causes a marginal change in

the SINR according to (6). In this regard, if λi < 0, ∀i, we simply take the absolute value of

λi as a solution. If there exists λi < 0 only for a subset of the cells, we can set the largest λi

to zero and re-compute (25) until we have λi ≥ 0, ∀i, because the cell with the large λi can

be considered to have weak channels. As a result, some of the cells can be assigned with zero

transmit power. Then those cells can be scheduled in different time or frequency resources.
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IV. EXTENSION TO WIDEBAND OFDM SYSTEMS

In this section, we extend the transmit power minimization problem to wideband OFDM

systems under coarse quantization at the BSs. To this end, we first need to derive signal models

for multicell OFDM systems by taking into account quantization error coupled with OFDM

modulations across all BSs.

A. Uplink OFDM System with Low-resolution ADCs

Let suli (k) ∈ CNu denote the vector of symbols of Nu users in cell i at subcarrier k, and let

uul
i (k) = ΛΛΛi(k)1/2suli (k),

where ΛΛΛi(k) = diag
(
λi,1(k), . . . , λi,Nu(k)

)
is the diagonal matrix of transmit power. Let xi(k)ul ∈

CNu be the vector of OFDM symbols of Nu users in cell i at time k. We stack the OFDM symbol

vectors as xul
i = [xul

i (0)T , . . . ,xul
i (K − 1)T ]T ∈ CKNu . Then xul

i can be represented as

xul
i = (WH

DFT ⊗ INu)uul
i = ΨΨΨH

NuΛΛΛ
1/2
i suli

where ΨΨΨNu = (WDFT ⊗ INu), uul
i = [uul

i (0)T , . . . ,uul
i (K − 1)T ]T , suli = [suli (0)T , . . . , suli (K −

1)T ]T , and ΛΛΛi = blkdiag
(
ΛΛΛi(0), . . . ,ΛΛΛi(K − 1)

)
.

Let ruli (k) ∈ CNb be the received baseband analog signal at time k after cyclic prefix (CP)

removal at BSi. Staking for K-symbol time as ruli = [ruli (0)T , . . . , ruli (K − 1)T ]T ∈ CKNb , the

stacked received baseband analog signals at BSi is expressed as

ruli = Hi,ix
ul
i +

Nc∑
j 6=i

Hi,jx
ul
j + nul

i

where Hi,j = blkcirc
(
Hi,j,0,0, . . . ,0,Hi,j,L−1, . . . ,Hi,j,1

)
∈ CKNb×KNu represents the block

circulant channel matrix, Hi,j,` denotes the time domain channel matrix between BSi and users

in cell j for `th tap, L is the channel delay spread, and nul
i is the stacked AWGN vector

nul
i = [nul

i (0)T , . . . ,nul
i (K − 1)T ]T ∼ CN (0, IKNb).

The received signals are quantized and expressed under the AQNM as

Q(ruli ) ≈ rulq,i = αHi,ix
ul
i + α

Nc∑
j 6=i

Hi,jx
ul
j + αnul

i + qul

i

where qul
i

= [qul
i (0)T , . . . ,qul

i (K − 1)T ]T ∈ CKNb ∼ CN (0,Cqul
i
qul
i

) is the stacked quantization

noise vector for the received signal at BSi, whose covariance matrix is [35]

Cqul
i
qul
i

= α(1− α)diag
( Nc∑
j=1

Hi,jΨΨΨ
H
NuΛΛΛjΨΨΨNuHi,j + IKNb

)
. (26)
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Now the quantized signals go through DFT operation and become

yul

i
= (WDFT ⊗ INb)r

ul
i

= αΨΨΨNbHi,iΨΨΨ
H
NuΛΛΛ

1/2
i suli + α

∑
j 6=i

ΨΨΨNbHi,jΨΨΨ
H
NuΛΛΛ

1/2
j sulj + ΨΨΨNbn

ul
i + ΨΨΨNbq

ul

i

= αGi,iΛΛΛ
1/2
i suli + α

∑
j 6=i

Gi,jΛΛΛ
1/2
j sulj + ñul

i + q̃ul

i

where ΨΨΨNb = WDFT ⊗ INb , Gi,j = ΨΨΨNb Hi,jΨΨΨ
H
Nu = blkdiag

(
Gi,j(0), · · · ,Gi,j(K − 1)

)
∈

CKNb×KNu where Gi,j(k) =
∑L−1

`=0 Hi,j,` e
− j2πk`

K is the frequency domain UL channel matrix for

subcarrier k between BSi and users in cell j, ñul
i = [ñul

i (0)T , . . . , ñul
i (K − 1)T ]T = ΨΨΨNbn

ul
i , and

q̃ul

i
= [q̃ul

i (0)T , . . . , q̃ul
i (K − 1)T ]T = ΨΨΨNbq

ul
i

.

The received signal at subcarrier k is then given as

yul
i (k) = αGi,i(k)ΛΛΛi(k)suli (k) + α

Nc∑
j 6=i

Gi,j(k)ΛΛΛj(k)sulj (k) + αñul
i (k) + q̃ul

i (k) (27)

and yul
i (k) is combined with an equalizer Fi(k). The combined signal for user u at subcarrier

k is now given as

fHi,u(k)yul
i (k) = αλ

1/2
i,u (k)fHi,u(k)gi,i,u(k)suli,u(k)

+ α

Nc,Nu∑
(j,v)6=(i,u)

λ
1/2
j,v (k)fHi,u(k)gi,j,v(k)suli,v(k) + αfHi,u(k)ñi(k) + fHi,u(k)q̃ul

i (k),

where fHi,u(k) is the uth column of Fi(k) and gi,j,v(k) is the vth column of Gi,j(k). We note that

ñul
i ∼ CN (0, IKNb). The SINR for user u in cell i at subcarrier k is computed accordingly as

Γul
i,u(k) =

α2λi,u(k)|fHi,u(k)gi,i,u(k)|2

α2
∑Nc,Nu

(j,v) 6=(i,u)λj,v(k)|fHi,u(k)gi,j,v(k)|2 + α2|fi,u(k)|2 + fHi,u(k)Cq̃ul
i (k)q̃ul

i (k)fi,u(k)
. (28)

Based on (26), Cq̃i(k)q̃i(k) is expressed as

Cq̃ul
i (k)q̃ul

i (k) = α(1− α)ΨΨΨNb(k)diag
( Nc∑
j=1

Hi,jΨΨΨ
H
NuΛΛΛjΨΨΨNuHi,j + IKNb

)
ΨΨΨH
Nb

(k)

where ΨΨΨNb(k) =
(
[WDFT]k+1,: ⊗ INb

)
. Finally, using (28), the UL OFDM transmit power

minimization problem is formulated as

P3 : max
fi,u(k),λi,u(k)

∑
i,u,k

λi,u(k) s.t. max
fi,u(k)

Γul
i,u(k) ≥ γi,u,k, ∀ i, u, k. (29)

In addition to all users in all cells, the maximization needs to be performed for all subcarriers.
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B. Downlink OFDM System with Low-resolution DACs

The DL OFDM system with low-resolution DACs can be modeled by following similar

steps as the UL OFDM system with low-resolution ADCs. Accordingly, we briefly explain the

system model by pointing out the key differences such as precoding and DAC quantization, and

definitions of symbols are the same as the ones used in Sec. IV-A unless mentioned otherwise.

Similarly to the UL OFDM system, the stacked OFDM symbol vector at BSi over K-symbol

time, xdl
i ∈ CKNb , is expressed as

xdl
i = (WH

DFT ⊗ INb)u
dl
i = ΨΨΨH

Nb
Wis

dl
i

where the block diagonal precoding matrix is Wi = blkdiag
(
Wi(0), . . . ,Wi(K − 1)

)
∈

CKNb×KNu . Before being transmitted, xdl
i is quantized at the low-resolution DACs as [35], [38]

xdl
q,i = αxdl

i + qdl

i

where qdl
i
∼ CN (0,Cqdl

i
qdl
i

) is the stacked quantization noise vector at BSi and its covariance

matrix is computed as [35]

Cqdl
i
qdl
i

= α(1− α)diag
(
ΨΨΨH
Nb

WiW
H
i ΨΨΨNb

)
. (30)

After transmitting xdl
i , Nu users in cell i receive signals from all BSs. Stacking over K

subcarriers after CP removal and DFT, the received signals at the users in cell i becomes

ydl

i
= αGH

i,iWis
dl
i + α

Nc∑
j 6=i

GH
j,iWjs

dl
j +

Nc∑
j=1

GH
j,iΨΨΨNbq

dl

j
+ ΨΨΨNun

dl
i

= αGH
i,iWis

dl
i + α

Nc∑
j 6=i

GH
j,iWjs

dl
j + q̃dl

j
+ ñdl

i

where q̃dl

j
=
∑Nc

j=1 GH
j,iΨΨΨNbq

dl
j

and ñdl
i =ΨΨΨNun

dl
i . Recall that Gj,i=blkdiag(Gj,i(0),· · ·,Gj,i(K−

1)) ∈ CKNb×KNu is the block diagonal UL frequency domain channel matrix between BSi and

users in cell i. Accordingly, the DL frequency domain channel matrix is its conjugate GH
j,i in

the TDD system. Then the received signal at user u in cell i for subcarrier k is given as

ydli,u(k) = αgHi,i,u(k)wi,u(k)sdli,u(k) + α

Nc,Nu∑
(j,v)6=(i,u)

gHj,i,u(k)wj,v(k)sdlj,v(k) + q̃dli,u(k) + ñdl
i,u(k). (31)

Based on (30) and (31), the DL SINR for user u in cell i at subcarrier k is computed as

Γdl
i,u(k) = (32)

α2|gHi,i,u(k)wi,u(k)|2

α2
∑Nc,Nu

(j,v)6=(i,u)|gHj,i,u(k)wj,v(k)|2+α(1−α)
∑Nc

j=1 gH
j,i,u

(k)ΨΨΨNbdiag
(
ΨΨΨH
Nb

WjW
H
j ΨΨΨNb

)
ΨΨΨH
Nb

g
j,i,u

(k)+1
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where g
j,i,u

(k) denotes the (kNu + u)th column of Gj,i, i.e., the entire column of Gj,i that

corresponds to the channel for kth subcarrier of user u. Using (32), the DL OFDM transmit

power minimization problem is formulated as

P4 : min
wi,u(k)

α
∑
i,u,k

wH
i,u(k)wi,u(k) s.t. Γdl

i,u(k) ≥ γi,u,k, ∀ i, u, k. (33)

C. Joint Beamforming and Power Control for Wideband OFDM Systems

Unlike the narrowband system, the quantization noise terms coupled with not only beam-

formers and transmit power but also OFDM modulation are the main challenge for showing the

duality. In the following theorem, we prove the duality by handling this issue.

Theorem 2 (Duality). The duality holds between P3 and P4.

Proof. Let zi,u(k) be the interference-plus-noise term of (27) and Fi(k) be the MMSE equalizer

Fi(k) = C−1zi,u(k)zi,u(k)
gi,i,u(k) where

Czi,u(k)zi,u(k) = α2
∑

(j,v)6=(i,u)

λj,v(k)gi,j,v(k)gHi,j,v(k) + α2INb

+ α(1− α)ΨΨΨNb(k)diag
( Nc∑
j=1

Hi,jΨΨΨ
H
NuΛΛΛjΨΨΨNuHi,j + IKNb

)
ΨΨΨH
Nb

(k). (34)

Noting that ΨΨΨH
Nb

Gi,j = Hi,jΨΨΨ
H
Nu , we first rewrite the diagonal matrix in (34) as

diag
( Nc∑
j=1

Hi,jΨΨΨ
H
NuΛΛΛjΨΨΨNuHi,j + IKNb

)
= diag

(
ΨΨΨH
Nb

GiΛΛΛ GH
i ΨΨΨNb + IKNb

)
. (35)

where Gi = [Gi,1, . . . ,Gi,Nc ] and ΛΛΛ = blkdiag
(
ΛΛΛ1, . . . ,ΛΛΛNc

)
. Following the same steps in the

proof of Theorem 1 with (35) and ΨΨΨNb(k)ΨΨΨH
Nb

(k) = INb , P3 with the MMSE equalizer becomes

min
∑
i,u,k

λi,u(k) (36)

s.t. K̄i,k(ΛΛΛ) � α

(
1 +

1

γi,u(k)

)
λi,u(k)gi,i,u(k)gHi,i,u(k), ∀i, u, k.

where

K̄i,k(ΛΛΛ) = INb+α
∑
j,v

λj,v(k)gi,j,v(k)gHi,j,v(k)+(1−α)ΨΨΨNb(k)diag
(

ΨΨΨH
Nb

GiΛΛΛ GH
i ΨΨΨNb

)
ΨΨΨH
Nb

(k).



20

We need to show that (36) is equivalent to the Lagrangian dual problem of P4. Similarly to

the proof of Theorem 1, the Lagrangian of P4 is given in the rearranged form as

L̄ =
∑
i,u,k

µi,u(k) + α(1−α)
∑
i,u,k

µi,u(k)
∑
j

gH
j,i,u

(k)ΨΨΨNbdiag
(
ΨΨΨH
Nb

WjW
H
j ΨΨΨNb

)
ΨΨΨH
Nb

g
j,i,u

(k) +

∑
i,u,k

wH
i,u(k)

(
αINb−α2

(
1+

1

γi,u,k

)
µi,u(k)gi,i,u(k)gHi,i,u(k)+α2

∑
j,v

µj,v(k)gi,j,v(k)gHi,j,v(k)

)
wi,u(k).

(37)

We rewrite the quantization error term in (37) to manipulate Wj in the diagonal matrix. Changing

the indices of
∑

i,u,k µi,u(k)
∑

j gH
j,i,u

(k)ΨΨΨNbdiag
(
ΨΨΨH
Nb

WjW
H
j ΨΨΨNb

)
ΨΨΨH
Nb

g
j,i,u

(k) from (i, u, k, j)

to (j, v, `, i), we have∑
j,v,`,i

µj,v(`)g
H

i,j,v
(`)ΨΨΨNbdiag

(
ΨΨΨH
Nb

WiW
H
i ΨΨΨNb

)
ΨΨΨH
Nb

g
i,j,v

(`)

=
∑
j,v,`,i

µj,v(`)g
H

i,j,v
(`)ΨΨΨNbdiag

(∑
u,k

|ψψψHNb,m(n)wi,u(k)|2,∀m,n

)
ΨΨΨH
Nb

g
i,j,v

(`) (38)

where ψψψNb,m(n) denotes the (m+(n−1)Nb)th column of ΨΨΨNb , i.e., ψψψNb,m(n) = [wDFT,n⊗INb ]:,m

for m = 1, . . . , Nb, n = 1, . . . , K, and wi,u(k) is the (kNu + u)th column of Wi, i.e., the entire

column of Wi that corresponds to the precoder for kth subcarrier of user u. Let Mi(k) =

diag(µi,1(k), . . . , µi,Nu(k)), Mi = blkdiag
(
Mi(0), . . . ,Mi(K − 1)

)
, and M = [M1, . . . ,MNc ].

Recalling that ΨΨΨNb(k) =
(
[WDFT]k+1,: ⊗ INb

)
and Gi = [Gi,1, . . . ,Gi,Nc ], (38) is rewritten as∑

j,v,`,i

µj,v(`)
∑
m,n

(∑
u,k

|ψψψHNb,m(n)wi,u(k)|2
(∑

r

g∗
i,j,v,r

(`)ψNb,m,r(n)

)(∑
r′

g
i,j,v,r′

(`)ψ∗Nb,m,r′(n)

))

=
∑
i,u,k

wH
i,u(k)

(∑
m,n

ψψψNb,m(n)

(∑
j,v,`

µj,v(`)ψψψ
H
Nb,m

(n)g
i,j,v

(`)gH
i,j,v

(`)ψψψNb,m(n)

)
ψψψHNb,m(n)

)
wi,u(k)

=
∑
i,u,k

wH
i,u(k)

(∑
m,n

ψψψNb,m(n)ψψψHNb,m(n)Gi M GH
i ψψψNb,m(n)ψψψHNb,m(n)

)
wi,u(k)

=
∑
i,u,k

wH
i,u(k)ΨΨΨNbdiag

(
ΨΨΨH
Nb

Gi M GH
i ΨΨΨNb

)
ΨΨΨH
Nb

wi,u(k)

(a)
=
∑
i,u,k

wH
i,u(k)ΨΨΨNb(k)diag

(
ΨΨΨH
Nb

Gi M GH
i ΨΨΨNb

)
ΨΨΨH
Nb

(k)wi,u(k). (39)

Here (a) comes from wH
i,u(k)ΨΨΨNb = wH

i,u(k)ΨΨΨNb(k) as wi,u(k) has nonzero elements wi,u(k)

only in the place that corresponds to the precoder for subcarrier k, and g
i,j,v,r

(`) and ψNb,m,r(n)

are the rth elements of g
i,j,v

(`) and ψψψNb,m(n), respectively.
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Applying (39) to the Lagrangian in (37), we have

L̄ =
∑
i,u,k

µi,u(k) +
∑
i,u,k

wH
i,u(k)

(
αINb−α2

(
1+

1

γi,u,k

)
µi,u(k)gi,i,u(k)gHi,i,u(k) +

α2
∑
j,v

µj,v(k)gi,j,v(k)gHi,j,v(k)+α(1−α)ΨΨΨNb(k)diag
(
ΨΨΨH
Nb

Gi M GH
i ΨΨΨNb

)
ΨΨΨH
Nb

(k)

)
wi,u(k). (40)

Following similar steps in the proof of Theorem 1, the Lagrangian dual problem of P4 becomes

max
µi,u

∑
i,u,k

µi,u(k) (41)

s.t. K̄i,k(M) � α

(
1 +

1

γi,u,k

)
µi,u(k)gi,i,u(k)gHi,i,u(k), ∀ i, u, k

where

K̄i,k(M)=INb+α
∑
j,v

µj,v(k)gi,j,v(k)gHi,j,v(k)+(1−α)ΨΨΨNb(k)diag
(
ΨΨΨH
Nb

Gi M GH
i ΨΨΨNb

)
ΨΨΨH
Nb

(k).

Since the problem in (41) has its optimal solution when the constraints are active, it is also

equivalent to (36). This completes the proof. �

Corollary 5 (Strong duality). Strong duality holds for P4 and its Lagrangian dual problem.

Proof. We use (39) to manipulate the precoders Wi(k) in the diagonal matrix of the quantization

term in the SINR (32), and follow similar approach as the proof of Corollary 1. Then P4 can

be cast to the SOCP. In addition, P4 is strictly feasible. This completes the proof. �

Since we have shown that the duality between P3 and P4 with no duality gap, we can

characterize the optimal solutions via the duality. Here we briefly describe the overall procedures

as they are similar to the narrowband case; solving Karush-Kuhn-Tucker (KKT) conditions, we

can show that the UL ODFM problem P3 can be solved by the distributed iterative algorithm

that is proposed in Sec. III-B with the following solution:

λi,u(k) =
1

α
(

1 + 1
γi,u,k

)
gHi,i,u(k)K̄−1i,k (ΛΛΛ)gi,i,u(k)

. (42)

Note that (42) needs to be computed over not only users but also subcarriers at each BS. Now let

λ
(n+1)
i,u = fi,u,k

(
ΛΛΛ(n)

)
. Then, as in the proof of Corollary 4, the convergence of the iterative method

can be proved by showing that fi,u,k
(
ΛΛΛ(n)

)
is a standard function. Using the obtained optimal

UL transmit power λi,u(k) from the standard fixed-point iteration, the MMSE equalizer Fi(k)

for the received signal at each subcarrier yul
i (k) is computed as Fi(k) = C−1zi,u(k)zi,u(k)

gi,i,u(k)
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where C−1zi,u(k)zi,u(k)
is given in (34). Based on Fi(k), we can also obtain the optimal precoder

Wi(k) for P4 from appropriate scaling of Fi(k) as shown in Corollary 6.

Corollary 6 (Precoder). With the proper scaling coefficient in wideband case, an optimal DL pre-

coder can be proportional to the uplink MMSE receiver, i.e., wi,u(k) =
√
τ i,u(k)fi,u(k) ∀i, u, k,

and τ i,u is derived as τ = Σ−11, where 1 is a NuNcK×1 column vector, τ = [τ T (0), · · · , τ T (K−

1)]T with τ (k) = [τ T1 (k), τ T2 (k), · · · , τ TNc(k)]T and τ Ti (k) = [τ i,1(k), τ i,2(k), · · · , τ i,Nu(k)]T ,

and Σ = blkdiag(Σ(0), . . . ,Σ(K − 1)) whose submatrix is composed as

Σ(k) =


Σ1,1(k) Σ1,2(k) · · · Σ1,Nc(k)

Σ2,1(k) Σ2,2(k) · · · Σ2,Nc(k)
...

... . . . ...

ΣNc,1(k) ΣNc,2(k) · · · ΣNc,Nc(k)

 , (43)

and

[Σi,j(k)]u,v

=



α2

γi,u(k)
|gHi,i,u(k)fi,u(k)|2

−α(1−α)
∑

n fHi,u(n)ΨΨΨNb(n)diag
(
ΨΨΨH
Nb

g
i,i,u

(k)gH
i,i,u

(k)ΨΨΨNb

)
ΨΨΨH
Nb

(n)fi,u(n) if i = j, u = v,

−α2|gHj,i,u(k)fj,v(k)|2

−α(1−α)
∑

n fHj,v(n)ΨΨΨNb(n)diag
(
ΨΨΨH
Nb

g
j,i,u

(k)gH
j,i,u

(k)ΨΨΨNb

)
ΨΨΨH
Nb

(n)fj,v(n) otherwise.

Proof. See Appendix C. �

Therefore, since the strong duality also holds between the UL and DL wideband OFDM

systems with low-resolution ADCs and low-resolution DACs, respectively, we have shown that

P4 can also be solved by using the distributed iterative algorithm as the narrowaband case.

V. SIMULATION RESULTS

In this section, we validate the derived theoretical results and the proposed quantization-aware

iterative CoMP (Q-iCoMP) algorithm and deterministic CoMP (Q-dCoMP) algorithm. We also

simulate the quantization-aware per-cell (Q-Percell) based iterative algorithm by adapting the per-

cell algorithm in [7] to low-resolution ADC systems based on the derived SINR with quantization

noise in (6). For the Q-Percell algorithm, each BS first finds its optimal solution based on the

iterative algorithm in [7] by considering the inter-cell interference as noise and assuming it to
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Figure 2. CDFs of the SINRs of users in all cells for γ = 0 dB target SINR, b = 3 quantiation bits, and Nb = 64 BS antennas

with (a) Nc = 2 cells with Nu = 2 users per cell and with (b) Nc = 7 cells with Nu = 4 users per cell.

be fixed. Once the BSs derive solutions for the given noise power, they update the noise power

and find solutions again. These steps are repeated until the solutions converge. For simulations,

we use networks with Nc ∈ {2, 7} cells. For Nc = 2, two cells are adjacent to each other.

For Nc = 7, six cells are adjacent to a center cell. Assuming narrowband communications, we

consider each BS to be located in the center of each hexagonal cell and randomly distribute

Nu users in each cell. For small scale fading, we assume Rayleigh channels with a zero mean

and unit variance. For large scale fading, we adopt the log-distance pathloss model in [44].

The distance between adjacent BSs is 2 km and the minimum distance between BSs and users

is 100 m. Considering a 2.4 GHz carrier frequency with 10 MHz bandwidth, we use 8.7 dB

lognormal shadowing variance and 5 dB noise figure. For simplicity, we assume that the target

SINR γ is equal for all users across all cells.

Fig. 2 shows the cumulative density function (CDF) of the SINR of users in all cells for

γ = 0 dB, b = 3, and Nb = 64 with (a) (Nc = 2, Nu = 2) and with (b) (Nc = 7, Nu = 4). The

proposed Q-iCoMP algorithm shows a step function-like CDF at 0 dB SINR with the minimum

total transmit power among the evaluated algorithms for both cases (a) and (b). This validates

the performance of the Q-iCoMP algorithm which provides an optimal solution for the UL and

DL problems in (5) and (7). Although the Q-Percell algorithm achieves similar SINR results

with slightly increased total transmit power for (a) (Nc = 2, Nu = 2), about 10% of users have
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Figure 3. Total transmit power versus the target SINR for Nb = 64 BS antennas, Nc = 2 cells and Nu = 2 users per cell.

the SINR less than the target SINR and the total transmit power becomes excessive for (b)

(Nc = 7, Nu = 4). Accordingly, the Q-Percell algorithm is only feasible when the numbers of

cooperating BSs and associated users are small. Regarding the deterministic approach, more than

95% of users meets the target SINR for (a) (Nc = 2, Nu = 2). For (b) (Nc = 7, Nu = 4), however,

about 50% of users cannot achieve the target SINR, and most of them have zero transmit power.

Although the Q-Percell algorithm shows better performance in satisfying the target SINR than

the Q-dCoMP algorithm, its total transmit power can easily diverge when the network becomes

denser. Therefore, the Q-iCoMP algorithm achieves the best performance and the Q-dCoMP

algorithm can be more practical than the Q-Percell algorithm for dense networks.

Fig. 3 shows the total transmit power versus the target SINRs for Nb = 64, Nc = 2, Nu = 2,

and b ∈ {2, 3,∞}. For the considered target SINR range, the Q-iCoMP algorithm shows

the minimum total transmit power. The increase in the transmit power due to the increased

quantization error is also small. Despite that the Q-Percell algorithm also achieves similar

performance at the low to medium target SINR, the transmit power of the algorithm diverges in

the medium to high target SINR range. The Q-dCoMP algorithm shows a larger gap between

different quantization resolutions than that in the iterative algorithms. We note that as the

target SINR increases, the total transmit power curves of the Q-dCoMP algorithm show larger

fluctuation, and there are crossing points between different resolutions; as the target SINR
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Figure 4. Total transmit power versus the target SINR for Nb ∈ {16, 128}, Nc = 7 cells, and Nu = 4 users per cell.

increases, more BSs are likely to assign with zero transmit power to reduce interference to

the other cells, which happens more often with a less number of quantization bits.

In Fig. 4, the network with Nc = 7 and Nu = 4 is considered for the different b and Nb. For

Nb = 16, the Q-Percell algorithm is almost infeasible and the Q-iCoMP algorithm also shows

divergence in the total transmit power at the medium to high target SINRs with a small number

of quantization bits. Increasing the number of BS antennas from 16 to 128 provides more than

10 dB SINR gain. Accordingly, for Nb = 128 which is considered as the massive MIMO system,

the Q-iCoMP algorithm achieves the target SINRs for all users without divergence even with

b = 3, whereas the Q-Percell algorithm still suffers from excessive power consumption in the

medium to high target SINR range. Therefore, in massive MIMO systems, the coordinated joint

BF and PC can provide reliable and power-efficient communications even with a small number

of quantization bits, thereby achieving spectrum- and energy-efficient communications.

VI. CONCLUSION

This paper investigated coordinated multipoint beamforming and power control for massive

MIMO systems with low-resolution ADCs and DACs. We showed that strong duality holds

between UL and DL total transmit power minimization problems under target SINR constraints

in low-resolution ADC and DAC systems based on the additive quantization noise model.



26

Leveraging the duality, a fixed-point CoMP algorithm was proposed to jointly solve the UL

and DL problems by incorporating the coarse quantization effect. The proposed algorithm

provides optimal solutions for the UL and DL problems in an efficient and distributed manner

without requiring explicit out-of-cell channel estimation. In addition, a deterministic algorithm

was developed to provide a closed-form solution for the UL problem with the assumption of

homogeneous transmit powers and SINR constraints within each cell. We proved that the derived

results can be extended to wideband OFDM systems when optimizing a beamformer and transmit

power for each user and subcarrier under coarse quantizaiton. Via simulations, we showed that

the proposed iterative CoMP algorithm can achieve high target SINRs without divergence of

transmit power for low-resolution ADC and DAC systems, whereas the conventional per-cell

based algorithm suffers from excessive power consumption even with infinite-resolution ADCs

and DACs. We also observe that the deterministic solution can achieve a reasonable trade-off

between total transmit power and achieved SINR. Overall, in massive MIMO systems integrated

with coarse quantization, the coordinated beamforming and power control offers spectrum- and

power-efficient wireless communication systems.

APPENDIX A

PROOF OF COROLLARY 1

We first show that (7) can be represented as a standard conic optimization problem. Let W

be defined as W = [W1, · · · ,WNc ], then the DL problem (7) is rewritten as

min
W,Po

Po (44)

s.t. Γdl
i,u ≥ γi,u, ∀i, u (45)

Tr
(
WHW

)
≤ Po (46)

where Po is a positive slack variable. As in [41], [45], we can take a diagonal phase scaling

on the right of each precoder as Widiag(ejφi,1 , . . . , ejφi,Nu ) for i = 1, · · · , Nc, without changing

the objective nor the constraints, we can design the precoder to be wH
i,uhi,i,u ≥ 0, ∀i, u .

Using (14), we rewrite the quantization term in (8) as∑
j

hHj,i,uCqdl
j qdl

j
hj,i,u = α(1− α)

∑
j

hHj,i,udiag(WjW
H
j )hj,i,u

= α(1− α)
∑
j,v

wH
j,vdiag(hj,i,uh

H
j,i,u)wj,v. (47)
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Let Dj,i,u = diag(hj,i,uh
H
j,i,u), WBD = blkdiag(W1, . . . ,WNc), and W̃BD = blkdiag((INb ⊗

W1), . . . , (INb ⊗WNc)). Using (47), the SINR constraints in (45) can be rearranged as

α2

(
1 +

1

γi,u

)
|wH

i,uhi,i,u|2 ≥

∥∥∥∥∥∥∥∥∥
αWH

BDvec(h1,i,u, . . . ,hNc,i,u)√
α(1− α)W̃H

BDvec(D
1/2
1,i,u, . . . ,D

1/2
Nc,i,u

)

1

∥∥∥∥∥∥∥∥∥
2

, ∀ i, u. (48)

Since we restrict the precoders to be wH
i,uhi,u ≥ 0, we can take square root for (48). In addition,

the power constraint (46) can be reformulated as ‖vec(W)‖ ≤
√
Po. Using (48) and ‖vec(W)‖ ≤

√
Po, the problem in (44) can be cast to the standard second order conic problem (SOCP) [41].

Next, (7) is strictly feasible because given a solution W, it can be always scaled by a factor

of c > 1 satisfying the constraints. Thus, the strong duality holds between (5) and (7). �

APPENDIX B

PROOF OF COROLLARY 3

To find the optimal wi,u, we set the derivative of the Lagrangian with respect to wi,u in (19)

to zero, and solve it for wi,u. Then we have

wi,u =

α2
∑

(j,v) 6=(i,u)

λj,vhi,j,vh
H
i,j,v+αINb+α(1−α)diag(HiΛΛΛHH

i )

−1α2

(
1+

1

γi,u

)
λi,uhi,i,uh

H
i,i,uwi,u

= α2

(
1 +

1

γi,u

)
λi,uh

H
i,i,uwi,ufi,u

where fi,u is in (18). We consider √τi,u = α2
(

1 + 1
γi,u

)
λi,uh

H
i,i,uwi,u and thus, wi,u =

√
τi,ufi,u.

Based on the Lagrangian dual problem, the global optimum occurs when the constraints satisfy

equality conditions, i.e., active constraints. By replacing wi,u in (8) with √τi,ufi,u, the constraints

of the primal DL problem satisfy the following conditions:

α2

γi,u
|wH

i,uhi,i,u|2 − α2
∑
v 6=u

|wH
i,vhi,i,u|2 − α2

∑
j 6=i
v

|wH
j,vhj,i,u|2 −

∑
j

hHj,i,uCqdl
j qdl

j
hj,i,u

(a)
=

α2

γi,u
|fHi,uhi,i,u|2τi,u − α2

∑
(j,v)6=(i,u)

|fHj,vhj,i,u|2τj,v − α(1− α)
∑
j,v

fHj,vdiag(hj,i,uh
H
j,i,u)fj,vτj,v

= 1, ∀i, u, (49)

where (a) is from (47) and wi,u =
√
τi,ufi,u. We express (49) for all i, u as a matrix form:

Στ = 1. Therefore, τi,u can be obtained as τ = Σ−11.
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APPENDIX C

PROOF OF COROLLARY 6

To guarantee the stationarity of the KKT condition with the DL constraint in (33), the SINR

of subcarrier k of user u in cell i needs to fulfill the target SINR with equality. To represent

the SINR constraint in a tractable form, we rewrite the quantization error term in (32). To this

end, let us define µi′,u′(n) where µi′,u′(n) = 1 if i′ = i, u′ = u and n = k, and µi′,u′(n) = 0

otherwise. Then the quantization error term becomes
Nc∑
j=1

gH
j,i,u

(k)ΨΨΨNbdiag
(
ΨΨΨH
Nb

WjW
H
j ΨΨΨNb

)
ΨΨΨH
Nb

g
j,i,u

(k)

=
∑

i′,u′,n,j

µi′,u′(n)gH
j,i′,u′

(n)ΨΨΨNbdiag
(
ΨΨΨH
Nb

WjW
H
j ΨΨΨNb

)
ΨΨΨH
Nb

g
j,i′,u′

(n)

(a)
=
∑
j,v,`

wH
j,v(`)ΨΨΨNb(`)diag

(
ΨΨΨH
Nb

Gj M GH
j ΨΨΨNb

)
ΨΨΨH
Nb

(`)wj,v(`)

(b)
=
∑
j,v,`

wH
j,v(`)ΨΨΨNb(`)diag

(
ΨΨΨH
Nb

g
j,i,u

(k)gH
j,i,u

(k)HΨΨΨNb

)
ΨΨΨH
Nb

(`)wH
j,v(`), (50)

where (a) comes from following the same steps in (38) and (39). Recalling the definition of M

defined in the proof of Theorem 2 with slight abuse of notations, (b) follows from Gj M GH
j =

g
j,i,u

(k)gH
j,i,u

(k). Replacing wi,u(n) with
√
τ i,u(n)fi,u(n) and using (50), the DL SINR constraint

in (33) can be rewritten, and the rest of the proof is similar to Corollary 3. �
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“The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp.

44–51, 2014.

[17] H. Wang, C.-K. Wen, and S. Jin, “Bayesian optimal data detector for mmWave OFDM system with low-resolution ADC,”

IEEE J. on Sel. Areas in Commun., vol. 35, no. 9, pp. 1962–1979, 2017.

[18] H. Wang, W.-T. Shih, C.-K. Wen, and S. Jin, “Reliable OFDM receiver with ultra-low resolution ADC,” IEEE Trans. on

Commun., vol. 67, no. 5, pp. 3566–3579, 2019.

[19] Y.-S. Jeon, S.-N. Hong, and N. Lee, “Supervised-learning-aided communication framework for MIMO systems with low-

resolution ADCs,” IEEE Trans. on Veh. Technol., vol. 67, no. 8, pp. 7299–7313, 2018.

[20] J. Choi, Y. Cho, B. L. Evans, and A. Gatherer, “Robust learning-based ML detection for massive MIMO systems with

one-bit quantized signals,” in IEEE Global Commun. Conf., 2019, pp. 1–6.

[21] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and L. Liu, “Channel estimation and performance

analysis of one-bit massive MIMO systems,” IEEE Trans. on Signal Process., vol. 65, no. 15, pp. 4075–4089, 2017.

[22] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “Throughput Analysis of Massive MIMO Uplink With

Low-Resolution ADCs,” IEEE Trans. on Wireless Commun., vol. 16, no. 6, pp. 4038–4051, 2017.

[23] T.-C. Zhang, C.-K. Wen, S. Jin, and T. Jiang, “Mixed-ADC massive MIMO detectors: Performance analysis and design

optimization,” IEEE Trans. Wireless Comm., vol. 15, no. 11, pp. 7738–7752, 2016.

[24] J. Choi, B. L. Evans, and A. Gatherer, “Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Commu-

nications,” IEEE Trans. on Signal Process., vol. PP, no. 99, pp. 1–1, 2017.

[25] O. Orhan, E. Erkip, and S. Rangan, “Low power analog-to-digital conversion in millimeter wave systems: Impact of

resolution and bandwidth on performance,” in IEEE Info. Theory and App. Work., Feb. 2015, pp. 191–198.

[26] L. Xu, X. Lu, S. Jin, F. Gao, and Y. Zhu, “On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution

ADC and RF Impairments,” IEEE Commun. Lett., vol. 23, no. 3, pp. 502–505, March 2019.

[27] J. Choi, G. Lee, and B. L. Evans, “Two-Stage Analog Combining in Hybrid Beamforming Systems With Low-Resolution

ADCs,” IEEE Trans. on Signal Process., vol. 67, no. 9, pp. 2410–2425, 2019.



30

[28] C. Wang, C. Wen, S. Jin, and S. Tsai, “Finite-Alphabet Precoding for Massive MU-MIMO With Low-Resolution DACs,”

IEEE Trans. on Wireless Commun., vol. 17, no. 7, pp. 4706–4720, 2018.

[29] Y. Li, C. Tao, A. Lee Swindlehurst, A. Mezghani, and L. Liu, “Downlink Achievable Rate Analysis in Massive MIMO

Systems With One-Bit DACs,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1669–1672, 2017.

[30] S. Jacobsson, G. Durisi, M. Coldrey, and C. Studer, “Linear Precoding With Low-Resolution DACs for Massive MU-

MIMO-OFDM Downlink,” IEEE Trans. on Wireless Commun., vol. 18, no. 3, pp. 1595–1609, 2019.

[31] J. Zhang, L. Dai, Z. He, B. Ai, and O. A. Dobre, “Mixed-ADC/DAC Multipair Massive MIMO Relaying Systems:

Performance Analysis and Power Optimization,” IEEE Trans. on Commun., vol. 67, no. 1, pp. 140–153, 2019.

[32] J. Xu, W. Xu, J. Zhu, D. W. K. Ng, and A. Lee Swindlehurst, “Secure Massive MIMO Communication With Low-Resolution

DACs,” IEEE Trans. on Commun., vol. 67, no. 5, pp. 3265–3278, 2019.

[33] L. N. Ribeiro, S. Schwarz, M. Rupp, and A. L. de Almeida, “Energy efficiency of mmWave massive MIMO precoding

with low-resolution DACs,” IEEE J. of Sel. Topics in Signal Process., vol. 12, no. 2, pp. 298–312, 2018.

[34] J. Dai, J. Liu, J. Wang, J. Zhao, C. Cheng, and J.-Y. Wang, “Achievable rates for full-duplex massive MIMO systems with

low-resolution ADCs/DACs,” IEEE Access, vol. 7, pp. 24 343–24 353, 2019.

[35] A. K. Fletcher, S. Rangan, V. K. Goyal, and K. Ramchandran, “Robust predictive quantization: Analysis and design via

convex optimization,” IEEE Journal Sel. Topics in Signal Process., vol. 1, no. 4, pp. 618–632, 2007.

[36] L. Fan, S. Jin, C.-K. Wen, and H. Zhang, “Uplink achievable rate for massive MIMO systems with low-resolution ADC,”

IEEE Comm. Letters, vol. 19, no. 12, pp. 2186–2189, Oct. 2015.

[37] A. Gersho and R. M. Gray, Vector quantization and signal compression. Springer, 2012.

[38] J. Zhang, L. Dai, Z. He, B. Ai, and O. A. Dobre, “Mixed-ADC/DAC multipair massive MIMO relaying systems:

Performance analysis and power optimization,” IEEE Trans. on Commun., vol. 67, no. 1, pp. 140–153, 2018.

[39] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. on Sel. Areas in Commun., vol. 13,

no. 7, pp. 1341–1347, 1995.

[40] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.

[41] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans.

on Signal Process., vol. 54, no. 1, pp. 161–176, 2005.

[42] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE

Trans. on Veh. Technol., vol. 42, no. 4, pp. 641–646, 1993.

[43] R. Chen, J. G. Andrews, R. W. Heath, and A. Ghosh, “Uplink power control in multi-cell spatial multiplexing wireless

systems,” IEEE Trans. on Wireless Commun., vol. 6, no. 7, pp. 2700–2711, 2007.

[44] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi, “An empirically

based path loss model for wireless channels in suburban environments,” IEEE J. on Sel. Areas in Commun., vol. 17, no. 7,

pp. 1205–1211, 1999.

[45] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE

Trans. on Signal process., vol. 55, no. 6, pp. 2646–2660, 2007.


	I Introduction
	I-A Prior Work
	I-B Contributions

	II System Model
	II-A Uplink Narrowband System
	II-B Downlink Narrowband System

	III Uplink and Downlink Joint Beamforming and Power Control
	III-A Uplink and Downlink Duality
	III-B Distributed Iterative Algorithm
	III-C Deterministic Solution for Homogeneous Transmit Power and SINR Constraint per Cell

	IV Extension to Wideband OFDM Systems
	IV-A Uplink OFDM System with Low-resolution ADCs
	IV-B Downlink OFDM System with Low-resolution DACs
	IV-C Joint Beamforming and Power Control for Wideband OFDM Systems

	V Simulation Results
	VI Conclusion
	Appendix A: Proof of Corollary 1
	Appendix B: Proof of Corollary 3
	Appendix C: Proof of Corollary 6
	References

