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Abstract

Low-density spreading non-orthogonal multiple-access (LDS-NOMA) is considered where K single-

antenna user-equipments (UEs) communicate with a base-station (BS) over F fading sub-carriers.

Each UE k spreads its data symbols over dk < F sub-carriers. We aim to identify the LDS-code

allocations that maximize the ergodic mutual information (EMI). The BS assigns resources solely based

on pathlosses. Conducting analysis in the regime where F , K, and dk,∀k converge to +∞ at the same

rate, we present EMI as a deterministic equivalent plus a residual term. The deterministic equivalent

is a function of pathlosses and spreading codes, and the small residual term scales as O( 1
min(d2

k)
).

We formulate an optimization problem to get the set of all spreading codes, irrespective of sparsity

constraints, which maximize the deterministic EMI. This yields a simple resource allocation rule that

facilitates the construction of desired LDS-codes via an efficient partitioning algorithm. The acquired

LDS-codes additionally harness the small incremental gain inherent in the residual term, and thus, attain

near-optimal values of EMI in the finite regime. While regular LDS-NOMA is found to be asymptotically

optimal in symmetric models, an irregular spreading arises in generic asymmetric cases. The spectral

efficiency enhancement relative to regular and random spreading is validated numerically.

I. INTRODUCTION

The objective in 5G and beyond network is to move on from merely connecting people to fully

realizing the internet of things (IoT) and the fourth industrial revolution [1]. This has resulted

in a shift towards techniques that both increase the spectral efficiency and support massive

connectivity. Non-orthogonal multiple access (NOMA) as such a technique allows multiple user

equipments (UEs) to share the same signal dimension via power domain (PD) or code domain
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(CD) multiplexing. PD-NOMA distinguishes UE’s signals via superposition decoding principle

and by exploiting the signal to interference plus noise ratio (SINR) difference among UEs. In CD-

NOMA, including low-density spreading (LDS) multiple access [2], sparse code multiple access

(SCMA) [3], multi-user shared access (MUSA) [4], distinctive codes are assigned to UEs as in

code division multiple access (CDMA) system [5], [6]. The focus of this work is on LDS-NOMA,

which employs an LDS code comprising a small number of dk non-zero elements for spreading

UE k’s symbol over a number of F shared radio resources [2], [7]–[9]. Link level aspects of

LDS-NOMA, e.g. bit-error-rate performance [2], [3], [8], [9] and envelop fluctuation [10], have

been well-studied in the literature. However, the theoretical results about the boundaries of the

achievable rates in LDS-NOMA is rather limited [11]. Here, a multi-carrier LDS-NOMA scheme

with spreading in frequency domain [8], [12] is considered. The objective is to characterize the

boundaries of the ergodic sum rates at which UEs can jointly transmit reliably, and identify

the LDS-code allocation policies that closely attain these boundaries. Such analysis provides

insight for system design [5], [12], and hence, is instrumental for the optimal utilization of

scarce radio resources.

A. Prior related works

The spectral efficiency (SE) analysis of LDS-NOMA with spreading in time domain has been

considered in [11], [13]–[17] under a symmetric AWGN channel model. These works compare

the SE limits in the structured regular LDS codes and in the randomly generated irregular ones.

The sparse mapping between numbers of K UEs and F resources in LDS-NOMA is called

regular when each UE occupies a number of dk = d,∀k resources and each resource is used by

a number of K
F
d UEs; or irregular otherwise [13]. The irregular schemes with dk being randomly

Poissonian distributed with fixed mean [16], [17], and randomly uniformly distributed [15] are

studied using replica method [18] and random matrix framework developed in [19], respectively.

The regular scheme is considered in [13], [14], where in [14] a closed-form approximation is

given for the SE limit. These analyses indicate that the regular codes, in symmetric AWGN

channel, yield superior SE as compared to the irregular and the dense spreading (the case with

dk = F, ∀k) schemes. The aforementioned works rely on the analysis of random matrices in the

large system regime [18], [20], where F grows large with a fixed ratio of K/F . Such analysis

yields rather accurate approximations in the finite regime that become arbitrarily tight as F

grows large. However, since the mathematical literature studying the limiting behavior of sparse

random matrices is distinctly smaller than that for non-sparse ones [21], the extension of such
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SE analysis to more generic settings is rather difficult. The only large system analysis on the

SE limit in presence of fading is considered in [22] in a special setting with dk = 1,∀k. An

information theoretic analysis of LDS-NOMA with fading also appears in [23], wherein the

ergodic sum-rate of random spreading has been evaluated numerically. The application of large

system analysis for studying the SE limits of spread spectrum system has been motivated in

the pioneer works such as [19], [24]–[29]. These works characterize the spectral efficiency of

random dense-spreading (dk = F, ∀k) CDMA with linear [25], [26] and/or optimal [19], [24],

[27]–[29] receivers. A common conclusion in a number of the aforementioned works is that the

random dense-spreading CDMA incurs negligible spectral efficiency loss relative to the optimum

if an optimal receiver is used and the number of UEs per chip is sufficiently large [19], [27].

B. Contributions

In this paper, a multi-carrier LDS-NOMA scheme with spreading in frequency domain [8],

[12] is considered. Different from the aforementioned works, the UEs are allowed to have distinct

pathloss values, and frequency and time selective fading is assumed on the sub-carriers. Also,

instead of assuming a particular sparse mapping, we consider dk, ∀k as design parameters, and

identify the LDS-code allocation policies that closely attain the maximum of the ergodic mutual

information (EMI). A key feature of these policies is that they assign the codes only based on the

pathloss values. Conducting analysis in the large system limits where F , K, and dk,∀k converge

to +∞ at the same rate, we present EMI as a deterministic equivalent plus a residual term. The

deterministic equivalent is given as a function of pathloss values and LDS-codes, and the small

residual term is shown to quickly vanish inversely proportional to d2 where d = min{dk,∀k}.
First, we formulate an optimization problem to get the set of all spreading codes, irrespective

of the sparsity constraints, which maximize the deterministic equivalent of EMI. This yields a

simple resource allocation rule that facilitates the construction of the desired sparse spreading

codes via an efficient partitioning algorithm. The analysis in the finite regime shows that the

acquired sparse solutions additionally harness the small incremental gain inherent in the residual

term, and thus, attain near-optimal values of the EMI in the finite regime. It is observed that the

regular spreading matrices are asymptotically optimal for the symmetric scenarios with the same

pathlosses and power constraints for all UEs. However, in the generic asymmetric scenarios, an

irregular structure might arise. Numerical simulations validate the attainable spectral efficiency

enhancement as compared to the random and the regular spreading schemes.
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Parts of this paper have been published in the conference publication [30]. Specifically, the

large system analysis and the optimization approach are sketched therein, while the precise proofs

along with the derivation details are presented in the current work. In addition, the numerical

analysis is extended to visualize the resource allocation policy proposed herein.

The remainder of this work is organized as follows. In Section II, the network model and

the problem formulation are given. The proposed optimization approach based on large system

analysis is presented in Section III. The maximization of the deterministic EMI is considered

in Section IV-A, and the gap to the optimum is characterized in Section IV-B. The algorithmic

solution for the LDS codes assignment is presented in Section V. The numerical results are

given in Section VI. Conclusions are drawn in Section VII while all the proofs are presented in

the Appendices.

II. PROBLEM STATEMENT

A. General Notations

The following notations are used throughout the manuscript. All boldface letters indicate

vectors (lower case) or matrices (upper case). Superscripts (·)T, (·)H,(·)∗ ,(·)−1, (·)1/2 stand for

transpose, Hermitian transpose, conjugate operator, matrix inversion and positive semidefinite

square root, respectively. We use Cm×n and Rm×n to denote the set of m × n complex and

the real valued matrices, respectively. diag(· · · ) denotes a diagonal matrix with elements (· · · )
on the main diagonal. The (i, j)th element of a matrix A is denoted by [A]i,j or ai,j . The sets

are indicated by calligraphic letters. The cardinality of a set A is denoted by |A|, and A\k is

used to exclude the index k from the set. E{·}, Tr{·} denote statistical expectation and trace

operator, respectively. Euclidean (spectral) norm for vectors (matrices) are denoted by ‖ · ‖. The

notation |.| is used to denote both the absolute value for a complex scalar, and the determinant

for a square matrix. Notation xF = O(αF ) represents inequality |xF | ≤ CαF as F → ∞ with

C being a generic constant independent of system size F .

B. System Model

Consider an uplink multi-carrier system with K single-antenna UEs transmitting to a base

station (BS) on a common frequency band. The set of UEs’ indices is denoted by K hereafter.

Exploiting the OFDM technique, the total frequency band is divided into a set of narrow band

sub-channels F = {1, ..., F}. Then, each UE k spreads its data symbol in frequency direction

using a low density spreading code wk ∈ RF . The code is a sparse vector consisting of F chips
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Fig. 1: The system model illustration.

with dk, a small number, of non-zero values. The UEs’ codes are not restricted to be orthogonal,

and thus, the signals of UEs transmitting on the same sub-channel will be superimposed. The

received signal vector r ∈ CF is given as

r =
∑
k∈K

1√
dk

diag{wk}akgksk + n (1)

where the f th element of the vector r corresponds to the signal received within f th sub-channel.

The noise vector is given by n ∼ CN (0, σ2IF ). The unit variance symbol of kth UE is denoted

by sk. The channel vector for UE k is denoted by akgk ∈ CF , defined in more detail in the

sequel. The vector wk ∈ RF denotes the UE k’s spreading code, and is assumed to satisfy the

transmit power condition
1

dk

∑
f∈F

|wf,k|2 ≤ Pk,∀ k ∈ K (2)

where Pk is the total power available at UE k. The normalization by dk values in (1) and (2) is

considered to make the sparsity assumption in the system model explicit.

C. Channel Model

The channel matrix entries are generated based on the uncorrelated fading channel model

utilized in the context of multi-carrier systems [31, Chapter 1]. This channel model is based

on the assumption that the fading on the adjacent data symbols after inverse OFDM and de-

interleaving can be considered as uncorrelated [31]. This assumption holds when, for example,

time and frequency interleavers with sufficient interleaving depth are applied. Thus, the resulting

complex-valued channel fading coefficient is generated independently for each sub-carrier and
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OFDM symbol. For a propagation scenario without line of sight, the fading amplitude is generated

by a Rayleigh distribution and the channel model is referred to as uncorrelated Rayleigh fading

channel [31]. In particular, we present the channel vector for UE k as akgk where a2
k includes

the pathloss due to large scale fading, and the matrix G = [g1, ...gK ] represents the small-scale

fading. The entries of G are independent complex Gaussian random variables. Each entry has

zero-mean independent real and imaginary parts with variance of 1
2
. In the following, we use

hk = ak√
dk

diag{wk}gk and H = [h1, ...hK ] to denote the equivalent channel vectors and matrix,

respectively, including the spreading vectors.

D. Ergodic Capacity of the Channel

Let W ∈ RF×K to be the spreading matrix that contains all the spreading vectors {wk}
in its columns. We define the set of feasible sparse spreading matrices as C1 = {W|wf,k ∈
R, 1

dk

∑
f |wf,k|2 ≤ Pk, ‖wk‖0 = dk, ∀k ∈ K} where ‖wk‖0 = dk restricts the number of non-

zero elements in wk to be equal to dk. Our interest is in the scenario where the BS assigns the

spreading codes based on the UEs’ pathlosses, and the assigned spreading codes are known to

the UEs. Implicit in this model is the assumption that the channel statistics vary much more

slowly than the small-scale fading coefficients, so that the statistical properties of the channel

can be assumed constant for a long period of communication [32]. Given a perfect knowledge of

fading coefficients at the BS side, the ergodic mutual information (EMI) between the transmitters

and the receiver, for a spreading matrix W ∈ C1, is

J(W, σ2) =
1

F
E log

∣∣IF +
1

σ2

∑
k∈K

a2
k

dk
diag{wk}gkgH

k diag{wk}
∣∣ (3)

where the expectation is over the small-scale fading only. We are particularly interested in the

ergodic capacity of the channel, which is equal to the maximum of J(W, σ2) over the set of all

the sparse spreading matrices in C1, i.e.,

CE(σ2) = max
W∈C1

J(W, σ2). (4)

The corresponding conventional problem without sparsity constraints is considered in [33] for

symmetric additive white Gaussian noise (AWGN) channel model. It is shown in [33] that Welch-

Bound-Equality (WBE) signature sequences achieve the sum-capacity of symmetric AWGN

channel. The optimal spreading codes in asymmetric AWGN model is studied in [34] via the

concept of Majorization and Schur-concavity [35] of the sum-capacity with respect to eigenvalues
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of HHH. While AWGN channel capacity depends on the spreading codes through their cross-

correlations [33], [34], the transmission of the signal over the i.i.d Rayleigh fading channel

destroys the orthogonality of the spreading codes [36]. This, together with the hypotheses on

the availability of only channel statistics, allow the spreading codes to be taken from the set of

vectors {wk} with positive values and independent of the small-scale fading gains, as stated in

the following proposition,

Proposition 1. The expectation in (3) is invariant with respect to the signs of the entries in real

valued spreading vectors wk, ∀k ∈ K.

Proof. The proof follows by showing that a column of H, given as hk = ak√
dk

diag{wk}gk, has the

same distribution as ak√
dk

diag{|w1,k|, ..., |wF,k|}gk. The claim follows directly from the invariance

of i.i.d complex Gaussian vectors in distribution under unitary transformation [37].

Even though the cross-correlation properties of the spreading codes is not a determining

parameter in (4), the optimal pairing of UEs and the power loading on each sub-channel need

to be studied. The sparsity requirement for spreading codes impose binary constraints in (4) that

makes the problem non-convex. Also, the convexity of the objective function in (4) cannot be

verified due to the expectation operator. However, the objective function without the expectation

operator can be shown to be non-convex. Moreover, the expectation in (4) needs to be evaluated

in a concise form and in terms of the spreading codes and the pathloss values.

III. AN OPTIMIZATION APPROACH BASED ON ASYMPTOTIC ANALYSIS

In the following, we use theory of large random matrices [20] to characterize the EMI in terms

of the spreading codes and the pathloss values. The large system analysis of the problem is carried

out in the asymptotic regime where F →∞ with KF−1 ∈ (0,∞) and dkF−1 ∈ (0, 1], ∀k. The

limiting results yield rather accurate approximations for the finite-size scenarios [20]. In deriving

the large system analysis, we use subscript F to denote the dependency of the entities on the

system size.

Theorem 1. Consider the channel matrices HF = [h1, ...,hK ] with hk = ak√
dk

diag{wk}gk,∀k ∈
K. The entries of GF = [g1, ...,gK ] are i.i.d standard complex Gaussian random variables. The

deterministic vectors wk, ∀k ∈ K are the columns of WF ∈ C1, each with dk non-zero values.
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The scalars {ak}1≤k≤K are bounded real values. Then, as F → ∞ with KF−1 ∈ (0,∞) and

dkF
−1 ∈ (0, 1],∀k, the EMI converges to a deterministic equivalent such that

JF (WF , σ
2) = J̄F (WF , σ

2) + εF (5)

where εF = O( 1
d2

), d = min{dk}1≤k≤K , and

J̄F (WF , σ
2) =

1

F

∑
k∈K

log(1 +
a2
k

σ2dk

∑
f∈F

w2
f,krf )

+
1

F

∑
f∈F

log(1 +
1

σ2

∑
k∈K

1

dk
w2
f,ka

2
kr̃k)−

1

σ2F

∑
f∈F

∑
k∈K

w2
f,k

dk
a2
krf r̃k

(6)

where rf (WF , σ
2) and r̃k(WF , σ

2) are the solutions of

rf = (1 +
1

σ2

∑
k∈K

1

dk
w2
f,ka

2
kr̃k)

−1,∀f ∈ F ,

r̃k = (1 +
a2
k

σ2dk

∑
f∈F

w2
f,krf )

−1,∀k ∈ K.
(7)

Proof. The proof of the theorem is given in Appendix I wherein we use an Integration by parts

formula [38] to derive an expression for the expectation of the mutual information as in (5). Then,

we derive an upper-bound for εF using Nash-Poincaré inequality [38] where the convergence

rate of O( 1
d2

) is claimed accordingly. The convergence JF (WF , σ
2) − J̄F (WF , σ

2) → 0 can

be also claimed relying on Girko’s law [39, Section 3.2.3] [20, Theorem 6.10]. An alternative

proof based on Replica method is also given in [40]. Regarding the convergence rate, it is shown

in [41] that in the case where hk,∀k ∈ K are Gaussian vectors with given variance profiles, the

convergence rate is O( 1
F 2 ). One might be able to obtain the convergence rate declared in the

theorem by properly scaling the variances in [41] while ensuring that the assumptions therein

remain valid. However, for convenience of the reader and to avoid ambiguity, a straightforward

proof of the theorem is presented in Appendix I based on an alternative technique, known as

the Gaussian method [20], [38], which is particularly suited to random matrix models with

Gaussian entries.

According to Theorem 1, the EMI JF (WF , σ
2) converges asymptotically to the deterministic

equivalent J̄F (WF , σ
2) with a convergence rate of O( 1

d2
). In the finite scenarios of interest with

a moderate number of sub-channels, dk values can be small relative to F .1 In such finite cases,

1Note that while the limiting results are obtained in the asymptotic regime, those can be applied as approximations for the

finite scenarios with dimensions as small as 8 and even 4 or 2 [20, Section 2.2.1].
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the analysis in Section IV-B shows that the residual term εF appears as a small incremental gain

in the EMI of the sparse spreading scheme, which is dictated mainly by the number of non-zero

elements in the codes. Keeping this in mind, we propose an optimization approach as in the

following. In Section IV-A, we first formulate an optimization problem to get the set C̄∗ of all

power constrained spreading codes, irrespective of the sparsity constraints, which maximize the

deterministic EMI J̄F (WF , σ
2). This yields a simple resource allocation rule that facilitates the

construction of the desired sparse spreading codes via an efficient partitioning algorithm. The

details about the partitioning algorithms is delegated to Section V. In Section IV-B, we show that

the sparse solutions in C̄∗ additionally harness the small incremental gain inherent in the residual

term εF in the finite regime. The analysis in Section IV eventually yields an upper-bound on the

gap to the optimum, which is shown to be close to zero for the sparse solutions in C̄∗.

IV. MAXIMIZING THE ERGODIC MUTUAL INFORMATION

In the sequel, we omit the subscript F denoting the dependency on system size. Also, observe

that J̄(W, σ2) in (6) depends only on squares of wf,k values. Therefore, with a change of

variable vf,k = 1
dk
w2
f,k, hereafter, we express the EMI and the related entities as a function of

matrix V = [vf,k]f∈F ,k∈K. Given a matrix V, the corresponding spreading vectors {wk} can be

obtained up to an uncertainty in the signs of the entries in the spreading vectors. It is shown in

Proposition 1 that the objective function under the considered i.i.d channel model is indifferent

to the signs of the spreading code entries. Thus, hereafter, we refer to V and W interchangeably

as the spreading matrix.

A. The optimal spreading in the asymptotic regime

We first neglect the sparsity constraints, and define C2 , {V|vf,k ∈ R+,
∑

f∈F vf,k ≤ Pk, ∀k ∈
K} to be the set of all the power constrained spreading matrices V. Then, we formulate the

problem of maximizing the deterministic EMI J̄(V, σ2) as follows

max
V∈C2

J̄(V, σ2) (8a)

s.t.
∑
f∈F

vf,k ≤ Pk,∀k ∈ K, (8b)

vf,k ≥ 0, ∀k ∈ K, f ∈ F . (8c)

This optimization problem yields the set of all spreading codes that maximize the deterministic

EMI J̄(V, σ2) subject to the power constraints and irrespective of the sparsity constraints.
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The Karush-Kuhn-Tucker (KKT) conditions [42] are necessary conditions for a matrix V

to be a local optimal solution of the problem in (8). However, the KKT conditions are not

necessarily the sufficient conditions. The sufficiency and the globally optimality of the solutions

are discussed later. The Lagrangian associated with (8) is given as

L(vi,j, λi,j, δj) = −J̄(V, σ2)−
∑
i∈F

∑
j∈K

λi,jvi,j +
∑
j∈K

δj
(∑
i∈F

vi,j − Pj
)

(9)

where the Lagrangian variables δj and λi,j are associated with constraints (8b) and (8c), respec-

tively. The gradient of the Lagrangian can then be evaluated as

∇
f,k
L(vi,j, λi,j, δj) = −∂J̄(V, σ2)

vf,k
− λf,k + δk, ∀f ∈ F , k ∈ K. (10)

Note that J̄(V, σ2) depends on the entries of V via rf (V, σ2) and r̃k(V, σ
2) as in (7) and (6).

Since those are the solutions to the saddle point equations, the partial derivatives ∂J̄(V,σ2)
∂rf

and
∂J̄(V,σ2)
∂r̃k

are zero at any point given by (V, rf (V, σ
2), r̃k(V, σ

2)).2 Therefore, the chain rules of

derivatives [43] allow the partial derivative ∂J̄(V,σ2)
vf,k

to be evaluated by assuming rf and r̃k as

constants. This, in particular, gives ∂J̄(V,σ2)
vf,k

= 1
σ2F

a2
kr̃krf , which yields the KKT conditions as

λ∗f,k ≥ 0, λ∗f,kvf,k = 0, δ∗k ≥ 0, δ∗k
(∑
i∈F

vi,k − Pk
)

= 0, ∀f ∈ F , k ∈ K,

− 1

σ2F
a2
kr̃krf − λ∗f,k + δ∗k = 0, ∀f ∈ F , k ∈ K

(11)

where λ∗f,k and δ∗k denote the optimal values of the Lagrangian variables. Since λf,k can be

solved from the last equation, the KKT conditions can be simplified as

δ∗k
(∑
i∈F

vi,k − Pk
)

= 0, ∀k ∈ K, (12a)

(δ∗k −
1

σ2F
a2
kr̃krf )vf,k = 0, ∀f ∈ F , k ∈ K, (12b)

δ∗k ≥
1

σ2F
a2
kr̃krf , ∀f ∈ F , k ∈ K. (12c)

According to the KKT conditions, some properties for the optimal solutions to (8) can be

summarized as in the following proposition.

Proposition 2. The spreading matrices that maximize the ergodic mutual information in (8) have

the following properties:

• The power constraints in (8b) are satisfied with equality for all UEs, i.e., all UEs are active,

and transmit with full power.

2One can verity this by evaluating the partial derivatives using (7) and (6).
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• The parameters rf are equal to r∗, ∀f ∈ F where r∗ is the solution of the following fixed

point iterations

r∗ =
(
1 +

1

F

∑
k∈K

Pka
2
k

σ2 + Pka2
kr
∗

)−1
. (13)

• The parameters r̃k,∀k are equal to r̃∗k,∀k where

r̃∗k =
σ2

σ2 + Pka2
kr
∗ ,∀k ∈ K. (14)

Proof. The proof is given in Appendix II.

As a result of Proposition 2, the solutions satisfying the KKT conditions must give rf =

r∗,∀f ∈ F and r̃k = r̃∗k,∀k ∈ K. Observe that the values of r∗ and r̃∗k are given independently

from the values of vf,k. Let J̄(V, r̃∗k, r
∗, σ2) denotes a function obtained by plugging the r∗ and

r̃∗k values into (6), i.e.,

J̄(V, r̃∗k, r
∗, σ2) = − 1

F

∑
k∈K

log(r̃∗k)− log(r∗)− r∗

σ2F

∑
k∈K

a2
kr̃
∗
k

∑
f∈F

vf,k,

= − 1

F

∑
k∈K

log(r̃∗k)− log(r∗)− r∗

σ2F

∑
k∈K

Pka
2
kr̃
∗
k

(15)

where the arguments of the logarithms are replaced with their equivalents from (7), and in the last

equality we used the first property from Proposition 2. Observe that the values of J̄(V, r̃∗k, r
∗, σ2)

depend only on r̃∗k and r∗ values. Thus, all the solutions of (8), satisfying the KKT conditions,

attain the same value of the objective function, i.e., its global maximum value. This proves the

sufficiency of the KKT conditions for a spreading matrix V to be the optimal solution of (8).

As a result of the KKT conditions, the spreading codes vk, which maximize J̄(V, σ2) in (8),

can be evaluated as the positive solutions of the following indeterminate system of equations∑
f∈F

vf,k = Pk, ∀k ∈ K, (16a)

∑
k∈K

βkvf,k =
1

r∗
− 1, ∀f ∈ F (16b)

where βk =
a2k

σ2+Pka
2
kr

∗ . In these equations, r∗ is a fixed scalar, which is evaluated from (13).

The equalities in (16b) are obtained by setting rf = r∗,∀f in (7). These equalities follow

since any spreading matrix that gives rf = r∗, ∀f , equivalently, satisfies the second and third

KKT conditions in (12) as well. The equalities in (16a) are given as a result of the first KKT

condition in (12).
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The system of equations in (16) has a simple implication. The first line of equalities in (16a)

indicates that the UEs need to transmit with full power. The second line implies that the entries

vf,k should be assigned such that rf values become the same across all sub-channels. One

can verify that the dense spreading, i.e., vf,k = Pk

F
,∀f, k is a solution of (16). This has been

also observed in [24] where the authors show that in a scenario with randomly assigned dense

spreading sequences, the frequency-dependency of rf values vanishes asymptotically. Aside from

the dense spreading matrix, sparse spreading matrices can be also designed to satisfy (16).

To this end, the non-zero elements vf,k should be assigned to the sub-channels such that the

weighted sum
∑

k∈K βkvf,k becomes the same, i.e., equal to 1
r∗
− 1, across all sub-channels. In

the symmetric case with ak = a, Pk = P and dk = d,∀k, the second line of equalites in (16b)

becomes a2

σ2+Pa2r∗

∑
k∈K vf,k = 1

r∗
− 1,∀f ∈ F . Given dK/F to be integer, one can verity that

any regular spreading matrix with non-zero elements being P
d

is a solution to (16). However,

in the generic non-symmetric case, an irregular assignment of the non-zero values might arise

to ensure the conditions in (16) to hold. Such an assignment for the generic case is done in

Section V via a simple partitioning algorithm.

B. On the optimality of the asymptotic sparse spreading codes

Based on the analysis in Section IV-A, we know that the power-constrained spreading codes

in C2 that maximize the deterministic equivalent J̄(V, σ2) in (8) are given as the solutions of

the system of equations in (16). This set of solutions has been defined as C̄∗. Hereafter, we use

V̄∗ to refer to a member of the set C̄∗. The analysis in Theorem 1 shows that the residual term

ε vanishes with a rate inversely proportional to the square of the number of non-zero elements

in the codes. Thus, the solutions in C̄∗ attain the maximum of EMI J(V, σ2) in the asymptotic

regime. However, in the finite regime, ε term appears as a small incremental gain in the EMI

formulation, which needs to be considered. Let V∗d to be the unknown optimal spreading matrix

that maximizes J(V, σ2) subject to the sparsity constraints. Also, let J∗d , J(V∗d, σ
2) to be

the maximum of J(V, σ2) attained by V∗d. Now, the penalty when using any spreading matrix

V̄∗ ∈ C̄∗, given as a solution of the system of equations in (16), instead of the optimal one V∗d

can be written as

∆d = J(V∗d, σ
2)︸ ︷︷ ︸

J∗
d

−J(V̄∗, σ2). (17)
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Writing J(V∗d, σ
2) and J(V̄∗, σ2) as the deterministic equivalents plus the residual terms, we get

J(V∗d, σ
2)− J̄(V∗d, σ

2) = ε(1) (18a)

J(V̄∗, σ2)− J̄(V̄∗, σ2) = ε(2) (18b)

where the additional index i in ε(i) is added to distinguish the above differences. Subtracting the

sides of the above equalities, and rearranging the terms, we get

(J(V∗d, σ
2)− J(V̄∗, σ2))︸ ︷︷ ︸

∆d

+(J̄(V̄∗, σ2)− J̄(V∗d, σ
2)) = ∆ε

where ∆ε = ε(1)−ε(2). Since the subtraction (J̄(V̄∗, σ2)− J̄(V∗d, σ
2)) in the left-hand is positive3,

it can be claimed that the gap to the optimum ∆d is bounded as

0 ≤ ∆d ≤ ∆+
ε

(19)

where ∆+
ε denotes the positive values of ∆ε. In general, ∆d may attain negative values. However,

J∗d < J(V̄∗, σ2) can happen only when V̄∗ violates the sparsity constraints, which is not the case

of interest. Therefore, ∆d is lower bounded by zero. Next, we look into the properties of the

residual terms in the finite regime to characterize the gap to the optimum as given in (19).

Generally speaking, the residual term can be roughly associated with the concentration of UEs’

powers in a fewer number of the elements in the spreading codes. This gives rise to the variance

of the random channel entries, which eventually appears as ε in the EMI formulation. In order to

get further insight into the structure of ε term, a numerical example is illustrated in Fig. 2. The

results are generated based on the simulation assumptions given in Section VI-A with F = 50,

K = 100, and dK = d,∀k. For generating the results in Fig. 2, a randomly selected drop of

UEs is taken, and the mean and the variance of the residual term ε = J(Vd, σ
2)− J̄(Vd, σ

2) are

evaluated over 1000 randomly selected spreading matrices Vd ∈ C1. The subscript d is used to

emphasize that the spreading codes in the columns of Vd have d non-zero values. Fig. 2 shows

the mean and the variance of ε values along with J(Vd, σ
2) and J̄(Vd, σ

2) versus the number of

non-zero elements in the codes. The variance of ε, depicted by the bars in the figure, is magnified

20 times for better illustration. The first observation is that the mean values of the ε term are

distinct for different d values. Moreover, the small variance of the residual term indicates that

the values of ε do not vary abruptly among the power constrained spreading vectors with the

3Note that J̄(V̄∗, σ2) is the maximum of the objective function in (8).
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Fig. 2: Mean&Var of ε (left axis), and ergodic sum-rate (right axis) vs. d for random spreading.

same number of non-zero elements. Thus, one might infer that the values of the residual term

is dictated mainly by the number of non-zero elements in the spreading codes, which implies

a decline in ε values as d increases. The other observation is that the residual term is small

as compared to J̄(Vd, σ
2). Generally speaking, in the scenarios with a moderate number of

sub-channels F as in Fig. 2 , the residual term is larger for the sparse spreading schemes with

d << F . While it almost disappears in the dense spreading case with d = F . This motivates the

small incremental gain in ε for sparse spreading to be interpreted as sparsity gain. Note that there

is a small loss associated with spreading in the considered system model.4 Thus, the sparsity

gain is coined here to reflect the increment in EMI due to sparse spreading as compared to dense

spreading. Recall the symmetric scenario mentioned in Section IV-A wherein both the sparse-

regular and the dense spreading matrices were among the solutions maximizing the deterministic

J̄(V, σ2) in (8). According to the above discussion, we expect that the exact EMI J(V, σ2) for

the sparse-regular codes to be better of that in the dense spreading scheme by an amount of ε.

Note that ε for the dense spreading scheme is negligible. This has been also observed in [13]

under the symmetric AWGN channel model. It is shown in [13] that the sparse-regular spreading

codes yield slightly higher spectral efficiency as compared to the dense spreading scheme in the

symmetric scenario considered therein.

To conclude this section, let us recall the ∆d formulation in (19), which gives the gap to the

optimum J∗d when using a solution V̄∗ ∈ C̄∗ in the finite regime. Relying on the above analysis,

we expect the ε(i), i = 1, 2 terms to be small as compared to the corresponding deterministic parts.

4 See [44] for the spreading coding trade-off.
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Also, a solution V̄∗ that satisfies the sparsity constraints is expected to harness an incremental

ε(2) value close to the ε(1) value. Therefore, the anticipated performance gap ∆d is close to zero.

Next, we find the desired sparse solutions in C̄∗ via an algorithmic solution.

V. AN ALGORITHM FOR CONSTRUCTING THE SPARSE SPREADING MATRICES

The problem of finding the subset of solutions in C̄∗ with the desired sparsity includes a

zero-norm. The discrete and discontinuous nature of the zero-norm impedes the application of

standard convex analysis [45]. Fortunately, the system of equations in (16) unveils a simple rule

for the allocation of the spreading codes. This allows the desired sparse codes to be obtained

using an alternative algorithmic solution. We are interested in determining the sparse spreading

codes that satisfy (16). Let the elements vf,k for each UE k to be taken from {0, Pk

dk
} and

subject to the power constraint enforced by equalities in (16a). Based on (16b), the problem is

to allocate Pk

dk
βk values to sub-channels such that the sums of Pk

dk
βk values on each sub-channel

become the same, i.e., equal to ( 1
r∗
− 1), across all the sub-channels. This problem falls within a

class of partitioning problems that arises in number theory and computer science [46]. Although

the partitioning problem is NP-complete, there are heuristics that solve the problem in many

instances, either optimally or approximately [47]. One such approach is the greedy algorithm,

which iterates through Pk

dk
βk values in descending order, assigning each of them to whichever

sub-channel has the smallest sum [48]. These steps are summarized in Alg. 1.
Algorithm 1 Partitioning solution

1: Divide the total power of each UE k into dk power fragments.

2: Set vf,k = 0, ∀f, k, and J = {1, ..., K}.
3: while J is non-empty do

4: Set k = arg max
j∈J

Pj

dj
βj .

5: Set f = arg min
i∈F

ηi with ηi =
∑

j∈K βjvi,j .

6: Set vf,k = Pk/dk

7: if
∑

i∈F vi,k = Pk, i.e., UE k has assigned all of its power-fragments then

8: Remove index k from J .

9: end if

10: end while

In Alg. 1, we try to make the sum terms ηf across the sub-channels as equal as possible.

Let η∗max denotes the maximum of ηf ,∀f ∈ F in an optimal partitioning solution. Alg. 1 yields

ηf values such that max(ηf)
η∗max

≤ 4
3
− 1

3F
[48]. One can always improve the homogeneity of ηf
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values by offloading the power from the sub-channels with largest ηf values into those with

corresponding smallest values until (16b) holds up to the desired accuracy. However, numerical

analysis shows that Alg. 1 yields satisfactory results in most cases, and thus, further fine-tuning

steps are redundant. Alg. 1 has a running time of O(2F (dmaxK)2) [48].

VI. NUMERICAL RESULTS

A. Simulation assumptions

The simulation results are generated in a scenario where a single-antenna BS serves single-

antenna UEs in uplink. Transmit power of each UE is 1 Watt, and the noise power is set to

−120dB. The pathloss values are taken randomly and uniformly from the range of −150dB to

−60dB to account for diverse received SNRs at the BS. The final channel gains are given by

the product of the pathlosses and the small-scale fading entries as in (1). To keep the results

comparable, the numbers of non-zero elements in the spreading codes are assumed to be the same

for all UEs, i.e., dk = d,∀k. The number of sub-channels is F = 50 unless mentioned otherwise.

In addition to the method proposed in Section V, two alternative spreading schemes from

the literature are considered. The first one is the random spreading method that allocates the

power constrained sparse spreading codes to UEs randomly. A practically useful property of

the random spreading scheme is that no coordination overhead is imposed. The other scheme is

the coordinated regular spreading, which assigns the non-zero elements in the codes in a way

that each UE occupies a number of d resources and each resource is used by a number of K
F
d

UEs. The ratio K
F

is chosen such that K
F
d be an integer. In evaluating the performance of the

considered methods, we average the corresponding attainable rates over 1000 UE drops, where, in

each drop, the expectation involved in EMI J(V, σ2) is evaluated over 1000 random realizations

of small-scale fading. The deterministic equivalent values J̄(V, σ2) are evaluated from (6).

B. Evaluation of the performance of the proposed method

The assessment of an optimal solution to the problem in (4) requires exhaustive search over all

the power constrained spreading matrices with the desired sparsity. This impedes the comparison

of the results to the optimum. However, still we can evaluate and compare the performance in

Alg. 1 and in the aforementioned uncoordinated random and the coordinated regular spreading

schemes. Note that while the uncoordinated assignment of the spreading codes is a useful

property, the random spreading causes a significant performance degradation. On the other

hand, the coordinated allocation of spreading codes in the regular scheme does not consider the
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Fig. 3: The spectral efficiency J(V, σ2) vs. the number of UEs, d = 1, F = 50.

asymmetry in the system model due to the diverse pathloss values and power constraints at the

UEs. On the contrary, the spreading codes in Alg. 1 are allocated according to the UEs’ pathloss

values. This results in the minimal coordination requirement since the statistical properties of the

channel matrix can be assumed to remain constant for a sufficiently large number of reception

phases [32].

Figures 3 and 4 show the attainable rates (bits/s/Hz) for the aforementioned methods as a

function of the number of UEs. In Fig. 3, we apply Alg.1 to the special non-spreading case with

d = 1 as well. Note that Alg.1 allocates the sparse codes to UEs such that the deterministic

equivalent of EMI is maximized. The motivation therein is that the residual term is small relative

to the deterministic equivalent part, and the small gain in ε is harnessed inherently due to the

sparsity of the allocated codes. While we expect ε to be relatively small for the cases with d > 1,

due to the fast convergence rate of O( 1
d2

), the analysis in the non-spreading case with d = 1 may

be considered as a heuristic attempt. Interestingly, the difference between J(V, σ2) and J̄(V, σ2)

is relatively small even in such a case, and the coordinated allocation of resources gives 20% and

35% enhancement in the spectral efficiency at 100% and 300% system load, respectively. The

system load is defined as the ratio of K
F

in percentage. Fig. 4 shows the rates for the case with

LDS codes having d = 2 non-zero values. In this case, the gain in the coordinated assignment of

spreading codes is about 6.5% and 11% at 100% and 300% load, respectively, which is less than
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Fig. 4: The spectral efficiency J(V, σ2) vs. the number of UEs, d = 2, F = 50.

that in Fig. 3. The other observation is that the regular spreading method in both of Figs. 3 and 4

gives slightly better spectral efficiency as compared to the random spreading scheme, however,

its performance is inferior to that of Alg. 1.

In Fig. 5, the attainable SEs are presented versus the number of non-zero elements d, for

a system load of 300%. It can be seen that the performance of the random spreading method

improves as d grows larger. Spreading on more sub-channels allows UEs to attain interference

diversity. This, in general, reduces the loss imposed by the uncoordinated resource allocation.

Note that, even though one can enhance the spectral efficiency of the uncoordinated method

by spreading on further sub-channels, the number of UEs overlapping on the same sub-channel

increases correspondingly. In a system with 300% load, the average number of overlapping

UEs in the case with d = 2 and d = 6 is equal to 6 and 18, respectively. Thus, the detection

complexity is greatly increased with larger values of d. In Fig. 5, the spectral efficiency of the

dense spreading scheme is also depicted. As mentioned in Section IV-A, the dense spreading

matrix is a solution of the optimization problem in (8), and thus, the values of deterministic

J̄(V, σ2) for both the dense spreading scheme and the sparse spreading in Alg. 1 are the same.

However, the values of the exact EMI J(V, σ2) for the sparse spreading in Alg. 1 are better

of that in the dense spreading scheme by an amount of ε. This can be seen from Fig. 5 where

the curves of J̄(V, σ2) and J(V, σ2) are almost overlapping for the dense spreading case, while
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Fig. 5: The spectral efficiency J(V, σ2) vs. d, F = 50, K
F

= 3.

the value of J(V, σ2) for Alg. 1 at d = 2 is nearly 0.2 bits/s/Hz higher than the deterministic

EMI. This additional gain in J(V, σ2) for sparse spreading as compared to dense spreading

was referred to as sparsity gain in Section IV-B. Observe that the sparsity gain decreases as

the number of non-zero elements in the codes increases. Finally, we observe that, in contrast

to the symmetric model5, the regular spreading method is inferior to Alg.1 and even to the

dense spreading scheme in the considered asymmetric scenario. As mentioned in Section IV-B,

the regular spreading matrix is an optimal solution to the optimization problem in (8) in the

symmetric scenarios.

C. Visualization of the resource allocation strategy in the proposed method

In Fig. 6, the resource allocation strategy in Alg. 1 is visualized in a scenario with F = 30,

K = 90, and d = 2. This figure illustrates the allocation of the spreading codes in Alg. 1 for

a particular drop of UEs. The colorbar represents the unitless βk values, introduced in (16). It

can be seen that the power fragments are allocated to the sub-channels such that the sum terms

ηf =
∑

k∈K βkvf,k become equal. Observe also that the UEs with large βk values are distributed

across the sub-carriers. Then, those with smaller βk values are placed such that the sum terms

ηf =
∑

k∈K βkvf,k become equalized. It can be seen from Fig. 6 that the UEs overlapping on

each sub-carriers have diverse βk values.

5See Section IV-B for definition of symmetric system model
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Fig. 6: Visualization of the resource allocation strategy in Alg. 1, F = 30, K = 90, d = 2.

VII. CONCLUSIONS

In this paper, a simple and efficient rule for close-to-optimal allocation of sparse spreading

codes was derived based on rigorous analysis. The analysis reduced the dilemma of maximizing

the ergodic mutual information to a partitioning problem, which was solved via an efficient

algorithmic solution. The proposed algorithm allocates the spreading codes based on the system

load, the sparsity constraints and pathloss values. The simulation results showed that the pro-

posed algorithm with minimal coordination provides a superior performance as compared to the

uncoordinated random spreading and the coordinated regular spreading schemes. It was shown

that the regular spreading matrices are asymptotically optimal only in the symmetric system

model, while in the asymmetric case the performance of the regular spreading method is even

inferior to the dense spreading scheme. As the future work, we are interested in extending the

results to the multi-antenna BS scenario with correlation introduced among the antenna elements

and among the sub-carriers. Following the same optimization approach as in here, we expect the

optimal low density spreading policies to be characterized based on the spatial and the spectral

correlation properties of the channel matrix.

APPENDIX I

PROOF OF THEOREM 1

The ergodic mutual information JF (WF , σ
2) is related to 1

F
ETr( 1

σ2 HFHH
F + IF )

−1 as follows

∂JF (WF , σ
2)

∂σ2
=

1

σ2F
ETr(

1

σ2
HFHH

F + IF )−1 − 1

σ2
. (20)
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Denoting QF (σ2) = ( 1
σ2 HFHF

H + IF )−1, equivalently we have

JF (WF , σ
2) =

∫ +∞

σ2

(1

z
− 1

zF
ETrQF (z)

)
dz. (21)

Thus, given an expression for the trace term ETrQF (z),∀z ∈ R+, one can equivalently derive

an expression for EMI based on (21). In derivation of the results, we utilize so-called Gaussian

method [20], [38]. Let x ∼ CN (0,Θ) be a circularly symmetric Gaussian random vector with

covariance matrix Θ ∈ CN×N . Also, let the function f(x,x∗) ∈ C together with its derivatives

be polynomial bounded. The Gaussian method consists of two ingredients [38]:

• Integration by parts formula: Exjf(x) =
∑N

i=1[Θ]j,iE∂f(x)
∂x∗i

,

• Nash-Poincaré inequality: var(f(x)) ≤ E∇xf(x)TΘ
(
∇xf(x)

)∗
+E
(
∇x∗f(x)

)H
Θ∇x∗f(x).

In the sequel, we show that a diagonal element qp,p of matrix QF can be written as the sum

of hi,jqp,ih∗p,j terms. Defining the function f(HF ) , qp,ih
∗
p,j , then, we expand the terms of

type Ehi,jf(HF ) using the Gaussian integration by parts formula. This retrieves an implicit

but deterministic expression for ETr(QF ) up to a small residual term. Then, Nash-Poincaré

inequality allows us to derive an upper bound on the residual term and declares the convergence

of the trace term under the realms of Theorem 1 as

1

F
ETrQF (σ2) =

1

F
TrRF (WF , σ

2) + ζF (σ2) (22)

where RF (WF , σ
2) is as defined in the theorem, and ζF (σ2) = O( 1

d2
) is a fast diminishing

term. Given the deterministic equivalent for 1
F
ETrQF (σ2) as in (22), the convergence of EMI

JF (WF , σ
2) to the deterministic equivalent J̄F (WF , σ

2), as declared in Theorem 1, follows from

the relation in (21). In the following, we proof the convergence of the trace term in (22). The

proof of the convergence of EMI is straightforward, and thus, is omitted. We invite the reader

to refer to [38, Theorem 1] for the details. In the sequel, we frequently omit the subscript F

denoting the dependency of the entities on the system size. In proving the convergence of the

trace term, we frequently use the following elementary results,

∂qp,d
∂hi,j

= −[Q(
∂Q−1

∂hi,j
)Q]p,d = − 1

σ2
[Q(

∂HHH

∂hi,j
)Q]p,d (23)

= − 1

σ2
qp,i[h

H
j Q]d, (24)

and similarly,

∂qp,d
∂h∗i,j

= − 1

σ2
[Qhj]p qi,d. (25)
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We start by noticing that Q = IF − 1
σ2 QHHH, a relation often referred to as the resolvent

identity. This allows one to write Eqp,p as a function of E[QHHH]p,p, i.e.,

Eqp,p = 1− 1

σ2

K∑
j=1

E[Qhj]ph
∗
p,j, p ∈ F . (26)

Now, we work on term E[Qhj]ph
∗
p,j =

∑F
i=1E qp,ihi,jh

∗
p,j to expand it using the Gaussian

integration by parts formula. Let the function f(H) to be defined as f(H) , qp,ih
∗
p,j . Then from

the integration by parts formula, we get

Ehi,jqp,ih
∗
p,j = Ehi,jf(H) = a2

jvi,jE
∂f(H)

∂h∗i,j
(27a)

= a2
jvi,jE(

∂qp,i
∂h∗i,j

h∗p,j +
∂h∗p,j
∂h∗i,j

qp,i) (27b)

= − 1

σ2
a2
jvi,jE[Qhj]p qi,ih

∗
p,j + a2

jvi,jδ(i− p)Eqp,i (27c)

where vi,j , 1
dj
w2
i,j . Summing the sides of above equality over index i, we get

E[Qhj]ph
∗
p,j = − 1

σ2
E[Qhj]ph

∗
p,ja

2
jTr(QVj) + a2

jvp,jEqp,p (28)

where Vj = diag{vj} with vl defined as vl , [v1,l, ..., vF,l], ∀l. Let us define βj = a2
jTr(QVj),

αj = Eβj and
o

βj = βj − αj . Then, the terms in the above equation can be separated as

E[Qhj]ph
∗
p,j = − 1

σ2
αjE[Qhj]ph

∗
p,j + a2

jvp,jEqp,p −
1

σ2
E[Qhj]ph

∗
p,j

o

βj. (29)

Solving the above equality for E[Qhj]ph
∗
p,j , we get

E[Qhj]ph
∗
p,j = ẽja

2
jvp,jEqp,p − ẽj

1

σ2
E[Qhj]ph

∗
p,j

o

βj (30)

where ẽj , σ2

σ2+αj
. Summing the sides of above equality over index j, we get

E[QHHH]p,p = Tr(ΛpAẼ)Eqp,p −
1

σ2

K∑
j=1

ẽjE[Qhj]ph
∗
p,j

o

βj (31)

where Λp = diag{vp,1 , ..., vp,K}, A = diag{a2
1, ..., a

2
K}, Ẽ = diag{ẽ1, ..., ẽK}, and

o

β = diag{
o

β1, ...,
o

βK}.
Utilizing the resolvent identity, (26) and (31) yield

σ2 − σ2
Eqp,p = α̃pEqp,p −

1

σ2

K∑
j=1

ẽjE[Qhj]ph
∗
p,j

o

βj (32)
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where α̃p = Tr(ΛpAẼ). Now, one can solve (32) to obtain Eqp,p. Let T be a F × F diagonal

non-negative matrix with bounded spectral norm. Multiplying the acquired Eqp,p from (32) by

elements of T, and summing over p yields

1

F
Tr(TQ) =

1

F
Tr(TE) +

1

σ4F

K∑
j=1

ẽjEhH
j TEQhj

o

βj (33)

where E = diag{e1, ..., eK} with ep , σ2

σ2+α̃p
. Next in Appendix I-A, we prove that the last term

in the above equation, hereafter denoted by ζ(σ2), vanishes with O( 1
d2

) rate. As the result, we

get the convergence 1
F

Tr(TQ) − 1
F

Tr(TE) → 0. However, notice that the term Tr(TE) still

depends on the unknown parameters αj = a2
jETr(VjQ). Therefore, in the last step of the proof

given in Appendix I-B, we need to show that the matrix E can be replaced by the deterministic

matrix R, as defined in the theorem.

A. The upper-bound on ζ(σ2) term

In proving the convergence rate, we first derive an upper-bound for |ζ(σ2)| in terms of the

variance of Tr(Q). Then, we show that the upper-bound vanishes with O( 1
d2

) rate. observing

that βj = a2
jTr(VjQ), the ζ(σ2) term, given as the last term in (33), can be presented as in the

following

|ζ(σ2)| = 1

σ4F

∣∣∣∣ F∑
i=1

E
o
qi,i

K∑
j=1

vi,ja
4
j ẽjh

H
j TEQhj

∣∣∣∣ (34a)

≤ 1

σ4F

F∑
i=1

∣∣∣∣E o
qi,i

K∑
j=1

vi,ja
4
j ẽjh

H
j TEQhj

∣∣∣∣ (34b)

≤ 1

σ4dF

F∑
i=1

∣∣∣∣E‖Ẽ‖‖A‖2 oqi,i

K∑
j=1

hH
j TEQhj

∣∣∣∣ (34c)

where
o
qi,i = qi,i − Eqi,i, A = diag{a2

1, ..., a
2
K}, and (34b) is due to the triangle inequality. Let

φ , Tr(Q), then, using the resolvent identity we get

|ζ(σ2)| ≤ C

dF

F∑
i=1

∣∣∣∣E( oqi,iTr
(
TE(IF −Q)

))∣∣∣∣ (35a)

≤ C

dF
var(φ) (35b)

where C is a generic constant independent of the system size, and (35a) follows since the

matrices Ẽ,A,T,E have bounded spectral norms. In (35b) we used the fact that
o
qi,i terms are

zero mean, where then, the positive correlations among the entries yields the last inequality.
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Next, we use Nash-Poincaré inequality to find an upper-bound for the variance of φ = Tr(Q).

In particular, observing that | ∂φ
∂hi,j
| = | ∂φ

∂h∗i,j
|, Nash-Poincaré inequality yields,

var(φ) ≤ 2
F∑
i=1

K∑
j=1

a2
jvi,jE

∣∣∂Tr(Q)

∂hi,j

∣∣2 (36a)

= 2
F∑
i=1

K∑
j=1

a2
jvi,jE

∣∣∣∣ F∑
p=1

∂qp,p
∂hi,j

∣∣∣∣2 (36b)

= 2
F∑
i=1

K∑
j=1

a2
jvi,jE

∣∣ 1

σ2
[hH
j QQ]i

∣∣2 (36c)

=
2

σ4

K∑
j=1

a2
jEhH

j QQVjQQhj (36d)

≤ E
2‖A‖2‖Q‖4

σ4d
Tr(HHH) (36e)

≤ C
K

d
. (36f)

The inequality in (36f) follows since from the resolvent identity one can verify that ‖Q‖ ≤ 1.

Also, it is can be verified that Tr(HHH) ≤ K. Finally, putting the results from (35) and (36)

together, we get |ζ(σ2)| ≤ C
d2

.

B. Replacing the matrix EF by the deterministic matrix RF

In the last step of the proof, we need to show that the matrix EF (VF , σ
2) can be replaced by

the deterministic matrix RF (VF , σ
2) = diag{rp(VF , σ

2),∀p ∈ [1, ..., F ]} where the rp values

are given as the unique positive solution of the following system of equations

rp =
σ2

σ2 + δ̃p
, δ̃p = Tr(Λ(F )

p AF R̃F ), p = 1, ..., F, (37)

r̃j =
σ2

σ2 + δj
, δj = a2

jTr(V
(F )
j RF ), j = 1, ..., K (38)

where the matrices Λ(F )
p , AF , and V

(F )
j are as defined in (31). The superscript and subscript

F denote the dependency of the entities on the system size. The matrix R̃F is defined as

R̃F (VF , σ
2) = diag{r̃j(VF , σ

2), ∀j ∈ [1, ..., K]}. Let us define TF and BF to be F × F and

K ×K diagonal deterministic matrices with uniformly bounded spectral norm. Then, we show

that under the assumptions in the theorem, the following holds for every σ2 ∈ R+

1

F
Tr(TFEF (VF , σ

2)) =
1

F
Tr(TFRF (VF , σ

2)) +O(
1

d2
),

1

F
Tr(BF ẼF (VF , σ

2)) =
1

F
Tr(BF R̃F (VF , σ

2)) +O(
1

d2
).

(39)
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In the following, the dimension-superscript and subscript F are omitted. In proving the results

we need to develop a well-quantified bound on the difference of the trace term 1
F

Tr(T(E−R))

as the dimensions grow large. First, by a mere development, we have

1

F

∣∣Tr(T(E−R))
∣∣ =

1

F

∣∣Tr(TE(R−1 − E−1)R)
∣∣

=
1

σ2F

∣∣ F∑
p=1

tpeprp(δ̃p − α̃p)
∣∣

≤ ‖T‖
σ2F

F∑
p=1

∣∣δ̃p − α̃p∣∣
(40)

where the last equality follows from the upper bounds ‖R‖ ≤ 1 and ‖E‖ ≤ 1, implied by

the definitions of R and E in (37) and (33), respectively. Under the same arguments, the term

|δ̃p − α̃p| can be bounded as

|δ̃p − α̃p| =
1

σ2

∣∣∣∣ K∑
j=1

a2
jvp,j(αj − δj)ẽj r̃j

∣∣∣∣
≤ 1

σ2

K∑
j=1

a2
jvp,j|αj − δj|.

(41)

On the other hand, expanding |αj − δj|, we have

|αj − δj| = a2
j

∣∣ETr(VjQ)−
F∑
p=1

vp,j

1 + δ̃p/σ2

∣∣
(a)
= a2

j

∣∣ F∑
p=1

vp,j
( 1

1 + α̃p/σ2
− 1

1 + δ̃p/σ2

)∣∣+O(
1

d2
)

(b)

≤
a2
j

σ2

F∑
p=1

vp,j|δ̃p − α̃p|+O(
1

d2
)

(42)

where equality (a) follows from (33), and (b) is given due to the bounds on the spectral norm

of R and E. These inequalities together yield,

1

K

K∑
j=1

|αj − δj|
(42)
≤ ‖A‖

σ2d

F∑
p=1

|δ̃p − α̃p|+O(
1

d2
)

(41)
≤ ‖A‖

2

σ4d

F∑
p=1

K∑
j=1

vp,j|αj − δj|+O(
1

d2
)

=
P‖A‖2

σ4d

K∑
j=1

|αj − δj|+O(
1

d2
)

(43)
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where the last equality follows since
∑F

p=1 vp,j ≤ P where P = max{Pk,∀k ∈ K}. Let us do a

change of variable as z = 1/σ2 and express all the related functions in terms of z. Then, from

the inequality in (43), we get

(1− K

d
z2P‖A‖2)

1

K

K∑
j=1

|αj − δj| = O(
1

d2
). (44)

This inequality ensures that there exist a z0 value such that (1− K
d
z2P‖A‖2) > 0. This further

implies that 1
K

∑K
j=1 |αj − δj| = O( 1

d2
) holds for z ≤ z0. Thus, once we prove that the above

inequality holds for all z ∈ R+, the convergence of the trace term to the deterministic equivalent

can be claimed. To do so, we consider αj = a2
jETr(VjQ) as a function in z with extended

domain from z ∈ R+ to z ∈ C\R−. It can be shown that the following integral representation

for αj(z) holds (see [49, Appendix A]),

αj(z) =

∫ +∞

0

µj(dλ)

1 + zλ
(45)

where µj is a uniquely defined positive measure on R+ such that µj(R+) = a2
jTrVj . Based on

the properties of Stieltjes transform [20, Theorem 3.2], αj(z) can be upper-bounded as

αj(z) ≤ a2
jTrVj

1

|z|
1

dist(−1
z
,R+)

≤ ‖A‖ 1

|z|
1

dist(−1
z
,R+)

.

(46)

Similarly, a bound on δk(z) can be developed using integral representation. This analysis shows

that the functions δk(z) and αk(z) belongs to the class of Stieltjes transforms of finite positive

measures carried by R+. Thus, |αk(z)− δk(z)| belongs to a family of analytic functions, which

are bounded on any compact subset of C\R−. As the result, the Vitali’s convergence theorem [20]

ensures that 1
K

∑K
j=1 |αj − δj| goes to zero for any z ∈ R+ as F → ∞. What remains is to

show that the derived convergence rate O( 1
d2

) holds for all z ∈ R+, which completes the proof.

The results follows from straightforward calculus where the reader is invited to refer to [49,

Appendix C] for the details about the derivation steps.

APPENDIX II

PROOF OF PROPOSITION 2

The first property in the proposition follows directly since the mutual information is a strictly

increasing function of the UEs’ powers. One can also drive the same conclusion based on (12c)

and (12a). The former implies that δk ≥ 1
σ2F

a2
kr̃krf > 0, and thus, the latter gives

∑
i∈F vi,k = Pk
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for all UEs. The second property in the proposition can be justified by noticing that (12c) is

satisfied for a UE k only if we set δ∗k = 1
σ2F

a2
kr̃k max{rf}. Hence, from (12b), we observe that

UE k transmits only on the sub-channels with largest rf values. Since, all other UEs also have

the same preference, the condition in (12b) and (12c) are satisfied only if the UEs assign vf,k

values such that rf = r,∀f . The value r can be shown that is unique, i.e., r = r∗ for any solution

to (8). Assume the matrix V to be a solution to (8) that results in rf values to be equalized

across sub-channels, i.e., rf = r,∀f . Plugging the V entries into (7), we get

r̃k =
1

1 +
a2k
σ2

∑
f∈F v

2
f,kr

, ∀k ∈ K (47)

where, from the first property in the proposition, we have
∑

i∈F vi,k = Pk,∀k ∈ K, and thus,

r̃k =
σ2

σ2 + Pka2
kr
,∀k ∈ K. (48)

Given the values of r̃k, ∀k ∈ K as above, the value of r can be evaluated from the following

system of equations

r =
(
1 +

∑
k∈K

a2
kvf,k

σ2 + Pka2
kr

)−1
, ∀f ∈ F (49)

that holds for all f ∈ F . Inverting the sides of (49) and summing over all f ∈ F results in

F

r
= F +

∑
k∈K

a2
k

σ2 + Pka2
kr

∑
f∈F

vf,k (50)

where from the first property we have
∑

i∈F vi,k = Pk,∀k ∈ K, which gives r = r∗ as in (13).
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