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Abstract— Physical-layer security (PLS) has the potential to1

strongly enhance the overall system security as an alternative2

to or in combination with conventional cryptographic primitives3

usually implemented at higher network layers. Secret-key gener-4

ation relying on wireless channel reciprocity is an interesting5

solution as it can be efficiently implemented at the physical6

layer of emerging wireless communication networks, while pro-7

viding information-theoretic security guarantees. In this article,8

we investigate and compare the secret-key capacity based on the9

sampling of the entire complex channel state information (CSI) or10

only its envelope, the received signal strength (RSS). Moreover,11

as opposed to previous works, we take into account the fact12

that the eavesdropper’s observations might be correlated and13

we consider the high signal-to-noise ratio (SNR) regime where14

we can find simple analytical expressions for the secret-key15

capacity. As already found in previous works, we find that16

RSS-based secret-key generation is heavily penalized as compared17

to CSI-based systems. At high SNR, we are able to precisely18

and simply quantify this penalty: a halved pre-log factor and19

a constant penalty of about 0.69 bit, which disappears as Eve’s20

channel gets highly correlated.21

Index Terms— Secret-key generation, RSS, CSI, physical-layer22

security.23

I. INTRODUCTION24

A. Problem Statement25

WE CONSIDER in this article the problem of generating26

secret keys between two legitimate users (Alice and27

Bob), subject to an illegitimate user (Eve) trying to recover the28

key. Maurer [2] and Ahlswede and Csiszár [3] were the first to29

analyze the problem of generating a secret key from correlated30

observations. In the source model (see Fig. 1), Alice, Bob31

and Eve observe the realizations of a discrete memoryless32
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Fig. 1. Source model for secret-key agreement.

source. From their sequence of observations, Alice and Bob 33

have to distill an identical key that remains secret from Eve. 34

Moreover, Alice and Bob have access to a public error-free 35

authenticated channel with unlimited capacity. This helps them 36

to perform information reconciliation, i.e., exchanging a few 37

parity bits so as to agree on a common sequence of symbols. 38

However, since the channel is public, Eve can gain information 39

about the secret key from these parity bits, on top of her own 40

channel observations that can also be correlated with Alice and 41

Bob observations. This is why privacy amplification is usually 42

implemented after information reconciliation, which consists 43

in reducing the size of the key, so that Eve information about 44

the key is completely eliminated. Upper and lower bounds 45

for the secret-key capacity, defined as the number of secret 46

bits that can be generated per observation of the source, were 47

derived in [2], [3]. In this work, we are interested in computing 48

the secret-key capacity. Thus, we do not consider information 49

reconciliation and privacy amplification. In practice they can 50

be implemented through the use of, e.g., low parity density 51

check codes and universal hashing respectively. The interested 52

reader is referred to [4] for more information on the subject.

AQ:5

53

A practical source of common randomness at Alice and Bob 54

consists of the wireless channel reciprocity, which implies that 55

the propagation channel from Alice to Bob and from Bob to 56

Alice is identical if both are measured within the same channel 57

coherence time and at the same frequency. At successive 58

coherence times, Alice and Bob can repeatedly sample the 59

channel by sending each other a pilot symbol so as to obtain 60

a set of highly correlated observations and finally start a 61

key-distillation procedure. In this article, we investigate the 62

secret-key capacity relying on the entire complex channel state 63

information (CSI) or only on the channel envelope, sometimes 64
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also referred to as received signal strength (RSS).1 We also65

consider the case where Eve’s observations are correlated with66

the ones of Alice and Bob, which can occur in many practical67

situations. Related works are detailed in the next subsection68

while our contributions are presented in the subsequent sub-69

section.70

B. State of the Art71

This study falls into the broad field of physical-layer secu-72

rity (PLS), which has attracted much interest in the recent73

decade as a competitive candidate to provide authentication,74

integrity and confidentiality in future communication networks75

[5]–[7]. We refer to [4] for an overview on the area. In the76

context of secret-key generation based on wireless reciprocity,77

there has been a large amount of related works, both from78

theoretical and experimental aspects [8]–[10]. In several recent79

approaches, more general models than the source model have80

been considered for secret-key generation, taking advantage of81

the channel to transmit part of the key [11], [12].82

Many works have considered using RSS as a source83

of randomness for secret-key generation [13]–[19]. In [20],84

the authors show how to exploit the channel diversity com-85

ing from the multipath nature of the channel. The work86

of [21] leverages the use of multiple-antenna systems. In [22],87

the authors incorporate the orthogonal frequency division88

multiplexing (OFDM) modulation and carrier frequency offset89

as a way to increase bit generation in static environments with90

limited mobility. The choice of using RSS over full CSI is91

mainly due to its practical convenience. As opposed to CSI,92

RSS indicators are usually available at the higher layers of93

the communication layers, allowing for simple implementa-94

tion of the key distillation procedure, relying on the legacy95

network infrastructure (no need to change the physical layer).96

Moreover, RSS is intrinsically more robust to phase offsets97

between Alice and Bob, relaxing constraints on the hardware,98

the synchronization and the reciprocity calibration. On the99

other hand, in the full CSI approaches, the reconciliation of100

phase information between legitimate users requires tightly101

synchronized nodes. A key selling point of PLS versus its102

cryptographic counterparts is its low implementation com-103

plexity, which is particularly suited in applications such as104

the Internet-of-Things or sensor networks where low power105

devices are used. In this context, the RSS approach can be106

more suited than the full CSI one.107

The main disadvantage of RSS-based secret-key generation108

is that it does not use the full channel information and109

thus achieves a lower secret-key capacity than its CSI-based110

counterpart. In certain PLS applications, larger data rates and111

thus key sizes are targeted, using more powerful devices. For112

these use cases, using the full CSI approach can be more suited113

than the RSS one. CSI-based secret-key capacity is generally114

easier to characterize analytically, which has been done in a115

large number of works [23], [24], relying on multi-antenna116

systems [25]–[29], ultrawideband channels [30], and on the117

OFDM [31]–[34]. The authors in [20] analytically compare118

1We focus the whole study in this article on the envelope of the channel,
not its power. However, the final results in terms of capacity are equivalent
given the one-to-one relationship between envelope and power.

RSS and CSI approaches. The work of [35] also compares 119

the two approaches relying on a thorough experimental study 120

in various propagation environments, with different degrees of 121

mobility. 122

The majority of works in the literature considers that Eve 123

gets no side information about the key from her observations, 124

which consist of the pilots transmitted by Alice and Bob 125

[13], [24], [25], [27], [28]. Often, this assumption is justified 126

by the fact that the channel environment is supposed to be 127

rich enough in scattering implying that the fading process of 128

the channels decorrelates quickly as a function of distance. 129

Then, the observations of Eve have negligible correlation 130

if she is assumed to be separated from Bob and Alice by 131

more than one wavelength (otherwise she could be easily 132

detected). The assumption of rapid decorrelation in space 133

has been validated through measurements in rich scattering 134

environments [13], [24], [35]–[37]. Moreover, this assumption 135

simplifies the expression of the secret-key capacity, which 136

simply becomes equal to the mutual information between 137

Alice and Bob. However, it also occurs in practical scenarios, 138

such as outdoor environments, that scatterers are clustered with 139

small angular spread rather than being uniformly distributed, 140

which leads to much longer spatial decorrelation length. The 141

work of [1], relying on practical 3GPP channel models has 142

shown that the assumption of full decorrelation of Eve’s 143

observations with respect to Alice and Bob is not always 144

verified and critically depends on the propagation environment. 145

At a cellular carrier frequency of 1 GHz, λ = 30 cm and 146

Eve could be placed at 10λ = 3 m while still having a 147

significant correlation. The experimental work of [17] has 148

also shown that there remains a strong correlation of the 149

eavesdropper’s channel even at distances much larger than 150

half a wavelength. In [38], the authors studied the impact of 151

channel sparsity, inducing correlated eavesdropping, on the 152

secret-key capacity. In [39], the impact of the number of 153

paths and the eavesdropper separation is analytically studied. 154

In [40], spatial and time correlation of the channel is taken 155

into account using a Jakes Doppler model. In [41], [42], 156

experiments are conducted indoor to evaluate the correlation 157

of the eavesdropper’s observations and its impact on the 158

secret-key capacity. A similar study is conducted for a MIMO 159

indoor measurement campaign in [26]. The work of [19] also 160

uses an indoor experimental approach and proposes results 161

of cross-correlation, mutual information and secret-key rates, 162

which depend on the eavesdropper’s position. 163

C. Contributions 164

Our main contribution is to propose a novel analytical com- 165

parison of the secret-key capacity based on RSS and CSI for 166

a narrowband channel. As opposed to similar previous works 167

such as [20], we do not assume that Eve’s observations are 168

uncorrelated. This more general case adds to the complexity of 169

the study while remaining of practical importance. Moreover, 170

the authors in [20] could characterize the secret-key capacity 171

for envelope sampling with a simple analytical expression. 172

However, their simplification relied on the approximation of 173

a sum of envelope components as Gaussian, which is not 174
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applicable for our channel model. Furthermore, other works175

have already compared RSS and CSI-based approaches taking176

into account correlated eavesdropping, such as [35]. However,177

the studies were mostly conducted experimentally and not178

analytically.179

More specifically, our contributions can be summarized180

as follows: 1) We evaluate lower and upper bounds on the181

secret-key capacity for both the complex (full CSI) and182

the envelope (RSS) cases. In the complex case, we obtain183

simple closed-form expressions, while, in the envelope case,184

the bounds must be evaluated numerically. Some of the expres-185

sions in the complex case were already obtained in previous186

works. We chose to present them again in this work to provide187

a systematic framework and useful comparison benchmarks188

for the envelope case. 2) We show that, in a number of189

particular cases, the lower and upper bounds become tight:190

low correlation of the eavesdropper, relatively smaller noise191

variance at Bob than Alice (and vice versa) and specific192

high signal-to-noise ratio (SNR) regimes. 3) We show that,193

as soon as Alice (or Bob since everything is symmetrical)194

samples the envelope of her channel estimate, the other parties195

do not lose information by taking the envelopes of their196

own channel estimates. 4) We show that, in the high SNR197

regime, the bounds can be evaluated in closed-form and result198

in simple expressions. The penalty of envelope-based versus199

complex-based secret-key generation is: i) a pre-log factor of200

1/2 instead of 1, implying a slower slope of the secret-key201

capacity as a function of SNR and ii) a constant penalty of 0.69202

bit, which disappears as Eve’s channel gets highly correlated.203

The rest of this article is structured as follows. Section II204

describes the transmission model used in this work.205

Sections III and IV study the secret-key capacity based on206

complex and envelope sampling, respectively. Section V207

numerically analyzes the obtained results. Finally, Section VI208

concludes the paper.209

Notations210

Matrices are denoted by bold uppercase letters. Non bold211

upper case letter refers to a random variable. Superscript ∗
212

stands for conjugate operator. The symbol !(.) denotes the213

real part.  is the imaginary unit. |A| is the determinant of214

matrix A. The letters e and γ refer to the Euler number and215

the Euler-Mascheroni constant respectively. h(.) and I(.; .)216

refer to the differential entropy and the mutual information217

respectively. We use the notation f(x) = O(g(x)), as x → a,218

if there exist positive numbers δ and λ such that |f(x)| ≤219

λg(x) when 0 < |x − a| < δ.220

II. TRANSMISSION MODEL221

Alice and Bob extract a common key from observations of222

their shared channel H , assumed to be reciprocal. The channel223

H is repeatedly sampled in time based on the transmission224

of a priori known pilots by Alice and Bob. We assume225

that the successive observations of H are distant enough in226

time so that they can be considered independent. Note that227

this is a conventional assumption in the literature [24], [27].228

In practice, the sampling between successive samples can be229

related to the richness of scattering and the degree of mobility 230

of the environment and the legitimate parties. During these 231

successive observations, the environment remains stationary 232

so that they can be considered as identically distributed. 233

Considering a narrowband channel, the estimates of H at 234

Alice’s and Bob’s sides, respectively denoted by ĤA and ĤB , 235

are given by 236

ĤA = H + WA, ĤB = H + WB, 237

where the additive noise samples WA and WB are mod- 238

eled as independent zero mean circularly-symmetric complex 239

Gaussian (ZMCSCG) random variables with variances σ2
A and 240

σ2
B respectively. 241

The strategy of Eve consists in going as close as possible 242

from Bob’s antenna to try to maximize the correlation of 243

its channel.2 Then, Eve estimates her channel HE between 244

Alice’s antenna and hers by intercepting the pilots sent 245

from Alice to Bob. Since Eve is close to Bob, the channel 246

from Alice to Eve will be spatially correlated with H while 247

the channel between Bob and Eve will experience a negligible 248

correlation with H . Therefore, we neglect the pilot sent by 249

Bob and received by Eve in the following as she cannot get 250

any useful information from it [39]. The channel estimate of 251

Eve is given by 252

ĤE = HE + WE , 253

where WE is modeled as ZMCSCG with variance σ2
E . If Alice 254

and Bob transmit a pilot of equal power and Alice, Bob and 255

Eve use a similar receiver, one could expect a situation of equal 256

noise variance σ2
A = σ2

B = σ2
E . On the other hand, Eve could 257

use a more powerful receiver than Alice and/or Bob by having, 258

e.g., a larger antenna size, a multi-antenna receiver or an 259

amplifier with lower noise figure. This would result in a lower 260

noise variance σ2
E . Moreover, a different pilot power transmit- 261

ted by Alice and Bob will induce variations in their noise vari- 262

ances σ2
A and σ2

B . Indeed, in practice, the channel estimates 263

ĤA, ĤB and ĤE are obtained by dividing the received signal, 264

which includes the additive noise, by an a priori known pilot. 265

For instance, if the pilot transmitted by Bob has a stronger 266

power, the noise power at Alice σ2
A will be relatively weaker. 267

This scenario corresponds to the memoryless source model 268

for secret-key agreement [3], [4] represented in Fig. 1: Alice, 269

Bob and Eve observe a set of independent and identically 270

distributed (i.i.d.) repetitions of the random variables ĤA, 271

ĤB and ĤE . Moreover, an error-free authenticated public 272

channel of unlimited capacity is available for communication. 273

All parties have access to the public channel. 274

In the following section, we will study the secret-key 275

capacity of this model. To do this, we need to know the 276

probability distributions of the random variables ĤA, ĤB and 277

ĤE , which directly depend on the probability distributions of 278

WA, WB , WE , H and HE . The distributions of WA, WB and 279

WE were already detailed. Moreover, measurement campaigns 280

have shown that the channels H and HE can be accurately 281

2Note that all of the following derivations are symmetrical if Eve gets close
to Alice instead of Bob.
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modeled with a ZMCSCG distribution, especially in non-282

line-of-sight situations and rich scattering environments [43].283

This model is commonly referred to as Rayleigh fading [44].284

Therefore, we assume that (H, HE) follows a ZMCSCG with285

covariance matrix given by286

CHHE = p

(
1 ρ
ρ∗ 1

)
,287

where p is the channel variance, such that 0 < p < ∞.288

We assume that H and HE have the same variance p, which289

makes sense in practice if Bob and Eve are close enough290

so as to belong to the same local area [43]. The coefficient291

ρ = E(HH∗
E)/p is the spatial correlation coefficient, such that292

0 ≤ |ρ| ≤ 1. We refer to [1], [43] for more information on293

the definition of this coefficient. In the following, we use the294

fact the differential entropy of a circularly symmetric Gaussian295

with covariance C is given by log2(|πeC|), where e is the296

Euler number.297

In the sequel, at different places, we will consider the high298

SNR regime. When this regime is considered, we will always299

assume, implicitly or explicitly, that, as σ2
A → 0, σ2

B → 0 and300

σ2
E → 0,301

(As1): the ratio σ2
A

σ2
B

remains fixed and 0 < σ2
A

σ2
B

< ∞,302

(As2): the ratio σ2
A

σ2
E

remains fixed and 0 < σ2
A

σ2
E

< ∞,303

(As3): the ratio σ2
B

σ2
E

remains fixed and 0 < σ2
B

σ2
E

< ∞.304

III. SECRET-KEY CAPACITY BASED ON COMPLEX305

CHANNEL SAMPLING306

In this section, we analyze the secret-key capacity associated307

with complex channel sampling, that we denote by CCplex
s .308

Most of the results come from a direct evaluation of standard309

formulas for the differential entropy of Gaussian random310

variables. The result on the mutual information between Alice311

and Bob was already presented in [23]. We still present them312

as they provide accurate benchmarks as a comparison with313

the novel results that we derive for the envelope case in314

Section IV.315

The secret-key capacity is defined as the maximal rate316

at which Alice and Bob can agree on a secret-key while317

keeping the rate at which Eve obtains information about318

the key arbitrarily small for a sufficiently large number of319

observations. Moreover, Alice and Bob should agree on a com-320

mon key with high probability and the key should approach321

the uniform distribution. We refer to [2]–[4] for a formal322

definition. As explained in Section II, we consider that Eve323

gets useful information from her observation ĤE over H .324

This implies that the secret-key capacity is not simply equal325

to I(ĤA; ĤB), as was considered in many previous works326

[13], [23], [24], [27], [28]. Finding the general expression327

of the secret-key capacity for a given probability distribution328

of ĤA, ĤB, ĤE is still an open problem. From [2], [3] [4,329

Prop. 5.4], the secret-key capacity, expressed in the number330

of generated secret bits per channel observation, can be lower331

and upper bounded as follows332

CCplex
s ≥ I(ĤA; ĤB) − min

[
I(ĤA; ĤE), I(ĤB; ĤE)

]
(1)333

CCplex
s ≤ min

[
I(ĤA; ĤB), I(ĤA; ĤB|ĤE)

]
. (2)334

The lower bound (1) implies that, if Eve has less information 335

about ĤB than Alice or respectively about ĤA than Bob, such 336

a difference can be leveraged for secrecy [2]. Moreover, this 337

rate can be achieved with one-way communication. On the 338

other hand, the upper bound (2) implies that the secret-key 339

rate cannot exceed the mutual information between Alice and 340

Bob. Moreover, the secret-key rate cannot be higher than the 341

mutual information between Alice and Bob if they happened to 342

learn Eve’s observation ĤE . In particular cases, the lower and 343

upper bounds can become tight. In our context, three particular 344

cases can be distinguished: 345

1) ρ = 0: Eve does not learn anything about H from ĤE , 346

which becomes independent from ĤA and ĤB . This 347

leads to the trivial result CCplex
s = I(ĤA; ĤB). 348

2) σ2
B = 0: this implies that ĤA → ĤB → ĤE forms a 349

Markov chain, which leads to [4, Corol. 4.1] 350

CCplex
s = I(ĤA; ĤB|ĤE) = I(ĤA; ĤB) − I(ĤA; ĤE). 351

3) σ2
A = 0: symmetrically as in 2), CCplex

s = 352

I(ĤA; ĤB|ĤE) = I(ĤA; ĤB) − I(ĤB; ĤE). 353

Cases 2) and 3) are only met when σ2
B or σ2

A are exactly zero, 354

which never occurs in practice since all electronic devices 355

suffer from, e.g., thermal noise. However, cases 2) and 3) can 356

be approached in particular situations in practice where 357

σ2
A ' σ2

B or σ2
B ' σ2

A. This could happen for instance if 358

Alice sends a pilot with much stronger power than the one 359

of Bob or if Alice uses an amplifier with much larger noise 360

figure. Then, the SNR of the channel estimate of Bob will be 361

significantly higher so that σ2
B ' σ2

A. 362

In the next subsections, we evaluate the different expres- 363

sions of the mutual information required to compute the 364

lower and upper bounds of (1) and (2): i) the mutual infor- 365

mation between Alice and Bob I(ĤA; ĤB); ii) the mutual 366

information between Alice and Eve I(ĤA; ĤE), and sim- 367

ilarly for Bob I(ĤB; ĤE); and iii) the conditional mutual 368

information between Alice and Bob given Eve’s observations 369

I(ĤA; ĤB|ĤE). 370

A. Mutual Information Between Alice and Bob 371

Using previously introduced transmission and channel mod- 372

els, we can find that the random variables ĤA and ĤB are 373

jointly Gaussian distributed with covariance 374

CĤAĤB
=
(

p + σ2
A p

p p + σ2
B

)
. 375

From this distribution, we find back the result of [23] 376

I(ĤA; ĤB) = h(ĤA) + h(ĤB) − h(ĤA, ĤB) 377

= log2

(
(p + σ2

A)(p + σ2
B)

|CĤAĤB
|

)
378

= log2



1 +
p

σ2
A + σ2

B + σ2
Aσ2

B
p



 . (5) 379

This rate corresponds to the secret-key capacity in case of 380

uncorrelated observations at Eve (ρ = 0). At high SNR, 381
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as σ2
A → 0 and σ2

B → 0, the expressions becomes382

I(ĤA; ĤB) = log2

(
p

σ2
A + σ2

B

)
+ O

(
σ2

A

)
, (6)383

which is characterized by a pre-log factor of one.384

B. Mutual Information Between Alice/Bob and Eve385

We can observe that ĤA and ĤE are jointly Gaussian386

distributed with covariance387

CĤAĤE
=
(

p + σ2
A ρp

ρ∗p p + σ2
E

)
.388

This leads to the mutual information389

I(ĤA; ĤE) = log2

(
(p + σ2

A)(p + σ2
E)

|CĤAĤE
|

)
390

= log2



1 +
p|ρ|2

p(1 − |ρ|2) + σ2
A + σ2

E + σ2
Aσ2

E
p



 .391

The mutual information I(ĤB; ĤE) can be similarly obtained,392

simply replacing subscript A by B. Using the previ-393

ously derived expressions of I(ĤA; ĤB), I(ĤA; ĤE) and394

I(ĤB; ĤE), we find that the lower bound in (1) evaluates395

to (3), as shown at the bottom of the page. Note that the lower396

bound is not restricted to be positive (as will also be shown397

numerically in Section V), in which case it becomes useless398

since, by definition, CCplex
s ≥ 0. Nonetheless, it does not399

necessarily imply that CCplex
s = 0. We can find the condition400

on the minimum noise variance at Eve σ2
E for having a larger-401

than-zero lower bound402

σ2
E > p(|ρ|2 − 1) + |ρ|2 min(σ2

A, σ2
B). (7)403

In the worst-case, |ρ| = 1 and σ2
E has to be larger than the404

minimum of the noise variances of Alice and Bob. We can405

invert (7) to find the maximal correlation coefficient |ρ|2 to406

have a larger-than-zero lower bound407

|ρ|2 < p+σ2
E

p+min(σ2
A,σ2

B)
.408

In the high SNR regime, as σ2
A → 0, σ2

B → 0 and σ2
E → 0,409

equation (3) becomes410

CCplex
s ≥ log2

(
p

σ2
A + σ2

B

)
411

− log2

(
p

p(1 − |ρ|2) + max(σ2
A, σ2

B) + σ2
E

)
412

+O
(
σ2

A

)
. (8)413

As soon as |ρ| < 1, CCplex
s is unbounded and goes to infinity414

as the SNR grows large. Indeed, I(ĤA; ĤB) is unbounded,415

while I(ĤA; ĤE) and I(ĤB ; ĤE) converge to log2

(
1

1−|ρ|2

)
, 416

which is bounded away from zero for |ρ| < 1. 417

C. Conditional Mutual Information Between Alice and Bob 418

We can note that ĤA, ĤB and ĤE are jointly Gaussian 419

distributed with covariance matrix 420

CĤAĤBĤE
=




p + σ2

A p ρp
p p + σ2

B ρp
ρ∗p ρ∗p p + σ2

E



 , 421

which gives 422

I(ĤA; ĤB|ĤE) = h(ĤA, ĤE) − h(ĤE) 423

+h(ĤB, ĤE) − h(ĤA, ĤB, ĤE) 424

= log2

(
|CĤAĤE

||CĤBĤE
|

(p + σ2
E)|CĤAĤBĤE

|

)
. (9) 425

The upper bound in (2) is then given by the minimum 426

of I(ĤA; ĤB|ĤE) and I(ĤA; ĤB). In Appendix VII-A, 427

we prove that the condition I(ĤA; ĤB|ĤE) ≤ I(ĤA; ĤB) 428

is always verified under the jointly Gaussian channel model 429

considered in this work. The upper bound is thus given by (4), 430

as shown at the bottom of the page. 431

Based on the analytical expressions of the upper and lower 432

bounds, we can find a novel condition for tightness of the 433

bounds at high SNR. 434

Proposition 1: Under (As1)−(As3), as σ2
A → 0, σ2

B → 0 435

and σ2
E → 0, if |ρ| < 1, the upper and lower bounds of (3) 436

and (4) become tight and the secret-key capacity is given by 437

CCplex
s = log2

(
p(1 − |ρ|2)
σ2

A + σ2
B

)
+ O

(
σ2

A

)
. (10) 438

Proof: The proof is easily obtained by taking the limits 439

in (3) and (4) and seeing that they both converge towards (10), 440

provided that |ρ| < 1. ! 441

IV. SECRET-KEY CAPACITY BASED ON 442

CHANNEL ENVELOPE SAMPLING 443

The goal of this section is to evaluate the impact on the 444

secret-key capacity if Alice and Bob rely on the envelopes of 445

their observations rather than the complex values to generate a 446

secret key. We denote by CEvlpe
s the secret-key capacity based 447

on envelope sampling. We also introduce the notations 448

ĤA = R̂AeΦ̂A , ĤB = R̂BeΦ̂B , ĤE = R̂EeΦ̂E , 449

where R̂A, R̂B and R̂E are the random modules of ĤA, ĤB 450

and ĤE respectively. Similarly, Φ̂A, Φ̂B and Φ̂E are their 451

random phases. Note that ĤA is equivalently represented by 452

CCplex
s ≥ log2



1 +
p

σ2
A + σ2

B + σ2
Aσ2

B
p



− log2



1 +
p|ρ|2

p(1 − |ρ|2) + max(σ2
A, σ2

B) + σ2
E + max(σ2

A,σ2
B)σ2

E
p



 . (3)

CCplex
s ≤ log2

( [
(p + σ2

A)(p + σ2
E) − |ρp|2

] [
(p + σ2

B)(p + σ2
E) − |ρp|2

]

(p + σ2
E) [(p(σ2

A + σ2
B) + σ2

Aσ2
B)(p + σ2

E) − |ρp|2(σ2
A + σ2

B)]

)
(4)
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R̂A and Φ̂A or !(ĤA) and ((ĤA). We start by stating an453

insightful result from [20, Th. 2], that we generalize for Eve’s454

observations.455

Proposition 2: The mutual information I(ĤA; ĤE) satisfies456

I(ĤA; ĤE) = I(!(ĤA);!(ĤE)) + I(((ĤA);((ĤE))457

≥ I(R̂A; R̂E) + I(Φ̂A; Φ̂E).458

Similarly, the mutual information I(ĤA; ĤB) satisfies459

I(ĤA; ĤB) = I(!(ĤA);!(ĤB)) + I(((ĤA);((ĤB))460

≥ I(R̂A; R̂B) + I(Φ̂A; Φ̂B).461

Proof: We conduct the proof for the more general case462

I(ĤA; ĤE). Indeed, the mutual information I(ĤA; ĤB) can463

be seen as a particular case for ρ = 1 and replacing subscripts464

E by B. On the one hand, we have465

I(ĤA; ĤE) = I(R̂A, Φ̂A; R̂E , Φ̂E)466

= h(R̂A, Φ̂A) − h(R̂A, Φ̂A|R̂E , Φ̂E)467

(∗)
= h(R̂A) − h(R̂A|R̂E , Φ̂E) + h(Φ̂A)468

−h(Φ̂A|R̂A, R̂E , Φ̂E)469

(∗∗)
≥ I(R̂A; R̂E) + I(Φ̂A; Φ̂E),470

where (∗) follows from the chain rule for entropy and the471

fact that R̂A and Φ̂A are independent since the envelope472

and the phase of a ZMCSG are independent. (∗∗) follows473

from the fact that: i) h(R̂A|R̂E , Φ̂E) = h(R̂A|R̂E) since474

(R̂A, R̂E) and Φ̂E are independent; ii) h(Φ̂A|R̂A, R̂E , Φ̂E) ≥475

h(Φ̂A|Φ̂E) by the general properties of differential entropy476

and since (Φ̂A, Φ̂E) is not independent from (R̂A, R̂E). The477

proofs for the (in)dependence of random variables are given478

in Appendix VII-B.479

On the other hand, a similar derivation can be made480

for I(!(ĤA),((ĤA);!(ĤE),((ĤE)), noticing that ĤA and481

ĤE are two ZMCSG, implying that their real and imag-482

inary parts are independent, resulting in an equality with483

I(ĤA; ĤE). !484

Intuitively, this result can be explained by the fact485

that the random vectors (Φ̂A, Φ̂E) and (R̂A, R̂E) are not486

independent from one another while (!(ĤA),!(ĤE)) and487

(((ĤA),((ĤE)) are. There is thus a loss of information488

by treating phase and envelope separately as opposed to489

real and imaginary parts. This loss (or in other words the490

tightness of the inequality) is evaluated in [20, Fig. 2],491

where it is shown that the gap is significant and depends on492

the SNR. Interestingly, the mutual information between the493

phases I(Φ̂A; Φ̂E) contains relatively more information than494

the mutual information between the envelopes I(R̂A; R̂E).495

One could wonder what is the best strategy of Bob and Eve496

if Alice uses R̂A to generate a key. Imagine Bob and Eve497

have a more advanced receiver so that they can sample their498

observations in the complex domain, would it be beneficial for499

them? The answer is no, as shown in the following proposition.500

Proposition 3: If Alice uses the envelope of her observa-501

tions R̂A, then Eve does not lose information by taking the502

envelope of ĤE503

I(R̂A; ĤE) = I(R̂A; R̂E).504

Similarly, Bob does not lose information by taking the envelope 505

of ĤB 506

I(R̂A; ĤB) = I(R̂A; R̂B). 507

The same result holds if Alice and Bob’s roles are inter- 508

changed. 509

Proof: We conduct the proof for the more general case 510

I(R̂A; ĤE). Indeed, the mutual information I(R̂A; ĤB) can 511

be seen as a particular case for ρ = 1 and replacing subscripts 512

E by B. By definition, we have 513

I(R̂A; R̂E , Φ̂E) = h(R̂E , Φ̂E) − h(R̂E , Φ̂E |R̂A) 514

(∗)
= h(R̂E) − h(R̂E |R̂A) + h(Φ̂E) 515

−h(Φ̂E|R̂A, R̂E) 516

(∗∗)
= I(R̂A; R̂E), 517

where (∗) relies on the chain rule for entropy and the fact 518

that R̂E and Φ̂E are independent since the envelope and the 519

phase of a ZMCSG are independent. (∗∗) relies on the fact 520

that h(Φ̂E |R̂A, R̂E) = h(Φ̂E) since (R̂A, R̂E) and Φ̂E are 521

independent. We refer to Appendix VII-B for the proofs on 522

(in)dependence of random variables. ! 523

Intuitively, the proposition can be explained by the fact that 524

Φ̂B and Φ̂E are independent from (R̂A, R̂B) and (R̂A, R̂E) 525

respectively. The propositions provide practical insight in the 526

sense that, as soon as Alice (or Bob since everything is 527

symmetrical) samples the envelope of her channel estimate, 528

the other parties do not lose information by taking the 529

envelopes of their own channel estimates. The other way 530

around, Bob or Eve would not gain information to work on 531

their complex channel estimate. In the light of this result, 532

the definitions of the bounds of the secret-key capacity defined 533

in (1) and (2) also hold here by replacing the complex values 534

by their envelopes, i.e., R̂A, R̂B and R̂E instead of ĤA, ĤB 535

and ĤE respectively: 536

CEvlpe
s ≥ I(R̂A; R̂B) − min

[
I(R̂A; R̂E), I(R̂B ; R̂E)

]
(11) 537

CEvlpe
s ≤ min

[
I(R̂A; R̂B), I(R̂A; R̂B|R̂E)

]
. (12) 538

Tight bounds can be found in the same cases and for the 539

same reasons as in the complex case: 1) ρ = 0, 2) σ2
B = 0 540

and 3) σ2
A = 0. 541

Similarly as in Section III, we evaluate in the fol- 542

lowing subsections the quantities required to compute the 543

lower and upper bounds (11) and (12): in Section IV-A, 544

the mutual information between Alice and Bob I(R̂A; R̂B); in 545

Section IV-B, the mutual information between Alice and 546

Eve I(R̂A; R̂E), and similarly for Bob I(R̂B ; R̂E); and in 547

Section IV-C, the conditional mutual information between 548

Alice and Bob given Eve’s observations I(R̂A; R̂B|R̂E). Since 549

I(R̂A; R̂B) can be seen as a particularization of I(R̂A; R̂E) 550

for ρ = 1 and replacing subscript B by E, we will refer to 551

Section IV-B for the proofs of the results in Section IV-A. 552

A. Mutual Information Between Alice and Bob 553

The mutual information between Alice and Bob is given by 554

I(R̂A; R̂B) = h(R̂A) + h(R̂B) − h(R̂A, R̂B). (16) 555
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The envelope of a ZMCSG random variable is well known556

to be Rayleigh distributed, i.e., R̂A ∼ Rayleigh(
√

p+σ2
A

2 )557

and R̂B ∼ Rayleigh(
√

p+σ2
B

2 ). The differential entropy of a558

Rayleigh distribution is also well known and is equal to [45]559

h(R̂A) =
1
2

log2

(
p + σ2

A

4

)
+

1
2

log2(e
2+γ) (17)560

h(R̂B) =
1
2

log2

(
p + σ2

B

4

)
+

1
2

log2(e
2+γ), (18)561

where γ is the Euler-Mascheroni constant and e is the Euler562

number. On the other hand, the joint differential entropy563

of (R̂A, R̂B) is more difficult to compute. The following564

lemma gives the joint probability density function (PDF) of565

(R̂A, R̂B).566

Lemma 1: The joint PDF of (R̂A, R̂B) is given by (13), as567

shown at the bottom of the page, where I0(.) is the zero order568

modified Bessel function of the first kind.569

Proof: The proof is obtained as a particular case of570

Lemma 3 for ρ = 1 and replacing subscripts E by B. !571

Unfortunately, finding a closed-form expression for the572

joint differential entropy h(R̂A, R̂B) is non-trivial given the573

presence of the Bessel function [45]. Still, h(R̂A, R̂B) and574

thus I(R̂A; R̂B), can be evaluated by numerical integration,575

relying on the PDF obtained in Lemma 1.576

In the high SNR regime, the following lemma shows the577

limiting behavior of the PDF fR̂A,R̂B
(r̂A, r̂B), which can be578

used to obtain a simple closed-form expression of I(R̂A; R̂B),579

as shown in the subsequent theorem.580

Lemma 2: Under (As1), as σ2
A → 0 and σ2

B → 0, the PDF581

fR̂A,R̂B
(r̂A, r̂B) asymptotically converges to582

fR̂A,R̂B
(r̂A, r̂B) = 2r̂Ae

−
r̂2

A
p

p
e
− (r̂B−r̂A)2

σ2
A+σ2

B√
π(σ2

A+σ2
B)

+ O (σA) ,583

which corresponds to the product of a Rayleigh distribution of584

parameter p
2 and a conditional normal distribution centered585

in R̂A and of variance σ2
A+σ2

B
2 .586

Proof: The proof is obtained as a particular case of587

Lemma 4 for ρ = 1 and replacing subscripts E by B. Since588

ρ = 1, the limit |ρ| → 1 can be omitted. !589

Theorem 1: Under (As1), as σ2
A → 0 and σ2

B → 0,590

the mutual information I(R̂A; R̂B) converges to591

I(R̂A; R̂B) → 1
2 log2

(
p

σ2
A+σ2

B

)
− χ,592

where χ = 1
2 log2

(
4π

e1+γ

)
is a constant penalty, given by 0.69 593

(up to the two first decimals). 594

Proof: The proof is obtained as a particular case of 595

Theorem 2 for ρ = 1 and replacing subscripts E by B. Since 596

ρ = 1, the limit |ρ| → 1 can be omitted. ! 597

The expression obtained in Theorem 1 gives a lot of insight 598

on the high SNR secret-key capacity that can be obtained 599

with envelope sampling, when there is no correlation (ρ = 0). 600

As shown in the left column of Table I, two penalties can 601

be observed as compared to complex sampling: i) a pre-log 602

factor of 1/2 instead of 1, implying a curve with smaller slope 603

and ii) an additional penalty of a constant χ equivalent to 604

about 0.69 bit. One should note that halved slope could be 605

intuitively expected. Indeed, the full CSI approach samples 606

two independent real-valued random variables while the RSS 607

approach, only one. 608

B. Mutual Information Between Alice/Bob and Eve 609

We now analyze the mutual information between Alice and 610

Eve and between Bob and Eve, which are given by 611

I(R̂A; R̂E) = h(R̂A) + h(R̂E) − h(R̂A, R̂E) 612

I(R̂B; R̂E) = h(R̂B) + h(R̂E) − h(R̂B, R̂E). (19) 613

We already computed the values of h(R̂A) and h(R̂B). Simi- 614

larly as for R̂A and R̂B , we find that R̂E ∼ Rayleigh(
√

p+σ2
E

2 ) 615

and [45] 616

h(R̂E) =
1
2

log2

(
p + σ2

E

4

)
+

1
2

log2(e
2+γ). (20) 617

The following lemma gives the joint PDFs of (R̂A, R̂E) and 618

(R̂B, R̂E). 619

Lemma 3: The joint PDF of (R̂A, R̂E) is given by (14), 620

as shown at the bottom of the page. The joint PDF 621

fR̂B ,R̂E
(r̂B, r̂E) is similarly obtained, replacing subscripts A 622

by B. 623

Proof: The proof is given in Appendix VII-C. ! 624

As for h(R̂A, R̂B), it is difficult to find a closed-form 625

expression of h(R̂A, R̂E) and h(R̂B, R̂E) due to the presence 626

of the Bessel function. However, they can be evaluated numer- 627

ically using the PDFs obtained in Lemma 3 so that I(R̂A; R̂E) 628

and I(R̂B ; R̂E) can be evaluated. Still, in specific regimes, 629

closed-form solutions can be found. 630

fR̂A,R̂B
(r̂A, r̂B) =

4r̂Ar̂B

|CĤAĤE
|I0

(
2pr̂Ar̂B

|CĤAĤE
|

)
exp

(
− r̂2

A(p + σ2
B) + r̂2

B(p + σ2
A)

|CĤAĤE
|

)
(13)

fR̂A,R̂E
(r̂A, r̂E) =

4r̂Ar̂E

|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
exp

(
− r̂2

A(p + σ2
E) + r̂2

E(p + σ2
A)

|CĤAĤE
|

)
(14)

fR̂A,R̂B ,R̂E
(r̂A, r̂B, r̂E) =

8r̂Ar̂B r̂E

|CĤAĤBĤE
|G
(

2p(p(1 − |ρ|2) + σ2
E)r̂Ar̂B

|CĤAĤBĤE
| ,

2|ρ|pσ2
B r̂Ar̂E

|CĤAĤBĤE
| ,

2|ρ|pσ2
Ar̂B r̂E

|CĤAĤBĤE
|

)

exp

(
−

r̂2
A|CĤBĤE

| + r̂2
B |CĤAĤE

| + r̂2
E |CĤAĤB

|
|CĤAĤBĤE

|

)
(15)
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TABLE I

HIGH SNR SECRET-KEY CAPACITY OF COMPLEX (CSI) VERSUS ENVELOPE (RSS) SAMPLING IN BOTH UNCORRELATED AND CORRELATED CASES,
UNDER (As1)-(As3). χ = 0.69 . . ., σ2

∗ = max(σ2
A, σ2

B), εuncrl → 0, εcrl → 0 ASYMPTOTICALLY

In the low correlation regime, when |ρ| → 0, it is easy631

to see that fR̂A,R̂E
(r̂A, r̂E) converges to the product of632

two independent Rayleigh PDFs fR̂A
(r̂A)fR̂E

(r̂E) and thus633

h(R̂A, R̂E) = h(R̂A)+h(R̂E). As could be expected, we find634

that I(R̂A; R̂E) = I(R̂B; R̂E) = 0 and the secret-key capacity635

is given by Theorem 1.636

In the high SNR and correlation regime, the following637

lemma shows the limiting behavior of the PDFs of (R̂A, R̂E)638

and (R̂B, R̂E), which can be used to obtain a simple639

closed-form expression of I(R̂A; R̂E) and I(R̂B ; R̂E).640

Lemma 4: Under (As2), as |ρ| → 1, σ2
A → 0 and σ2

E → 0,641

the PDF fR̂A,R̂E
(r̂A, r̂E) asymptotically converges to642

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

643

+O

(√
1 − |ρ|2 + σ2

A

)
,644

which corresponds to the product of a Rayleigh and a nor-645

mal distribution. The same results holds for fR̂B ,R̂E
(r̂B , r̂E),646

replacing subscripts A by B, under (As3).647

Proof: The proof is given in Appendix VII-D. !648

Theorem 2: Under (As2), as |ρ| → 1, σ2
A → 0 and649

σ2
E → 0, the mutual information I(R̂A; R̂E) converges to650

I(R̂A; R̂E) → 1
2 log2

(
p

p(1−|ρ|2)+σ2
A+σ2

E

)
− χ,651

where the constant penalty χ is defined in Theorem 1. The652

mutual information I(R̂B; R̂E) can be similarly approximated653

by replacing subscripts A by B, under (As3).654

Proof: The proof is given in Appendix VII-E. !655

Using the result of Theorem 2, we can evaluate the lower656

bound on the secret-key capacity (11) in the high SNR,657

high correlation regime, which is given in the right column658

of Table I. As compared with the complex case, the only659

difference is the pre-log factor of 1/2 for envelope sampling.660

Note that the constant penalty χ has canceled since it is also661

present in I(R̂A; R̂B). As for the complex case, the lower662

bound is not restricted to be positive, in which case it is663

useless. The condition (7) for having a larger-than-zero lower664

bound, which was derived in the complex case, also applies665

here.666

C. Conditional Mutual Information Between Alice and Bob667

As shown in (9) in the complex case, to compute the668

conditional mutual information I(R̂A; R̂B|R̂E), we need to669

evaluate the joint different entropy h(R̂A, R̂B, R̂E). The fol-670

lowing lemma gives the joint PDF of (R̂A, R̂B , R̂E).671

Lemma 5: The joint PDF of (R̂A, R̂B, R̂E) is given by (15), 672

as shown at the bottom of the previous page, with the definition 673

of the function G(α1, α2, α3) 674

G(.) =
∫ 2π

0

∫ 2π

0

eα1 cos(φ1)+α2 cos(φ2)+α3 cos(φ2−φ1)

(2π)2
dφ1dφ2. 675

Proof: The proof is given in Appendix VII-F. ! 676

Here again, computing an analytical expression of the joint 677

differential entropy of (R̂A, R̂B, R̂E) is intricate. However, 678

it can be evaluated numerically,3 so that I(R̂A; R̂B|R̂E) and 679

thus (12) can be computed. 680

V. NUMERICAL ANALYSIS 681

This section aims at numerically analyzing the analytical 682

results presented in previous sections. The following fig- 683

ures plot the lower bound (LB) and the upper bound (UB) on 684

CCplex
s and CEvlpe

s . For the envelope case, most of the infor- 685

mation theoretic quantities could not be evaluated analytically. 686

We evaluate them by numerical integration instead. We also 687

compare some of them to the high SNR approximations that 688

we derived and where simple analytical expressions were 689

obtained. We will show many cases where the bounds become 690

tight, as foreseen by the results of Sections III and IV. The 691

mutual information quantities I(ĤA; ĤB) and I(R̂A; R̂B) 692

are also plotted for comparison, as they correspond to the 693

secret-key capacity in the case of uncorrelated observations 694

at Eve, i.e., CCplex
s = I(ĤA; ĤB) and CEvlpe

s = I(R̂A; R̂B) 695

for ρ = 0. They can also be seen as another UB, looser than 696

I(ĤA; ĤB|ĤE) and I(R̂A; R̂B|R̂E). 697

A. Impact of SNR 698

In Fig. 2, the impact of the SNR on CCplex
s and CEvlpe

s 699

is studied. The SNR is defined as SNR = p/σ2
A = p/σ2

B = 700

p/σ2
E . A first observation is the large performance gain of 701

complex sampling versus envelope sampling. This graph gives 702

a quantitative criterion to better assess the trade-off full CSI 703

versus RSS. The full CSI approach achieves higher secret-key 704

rates at the price of stringent practical requirements. On the 705

other hand, the RSS approach achieves lower key rates but is 706

much more practical to implement. 707

Focusing first on the uncorrelated case (I(ĤA; ĤB) and 708

I(R̂A; R̂B)), two penalties of envelope sampling in the high 709

SNR regime were identified in Table I: i) a pre-log factor of 710

1/2 inducing a smaller slope as a function of SNR and ii) a 711

3For instance, by discretization and truncation of fR̂A,R̂B ,R̂E
(r̂A, r̂B , r̂E)

and replacing the integral by a Riemann sum.



IEE
E P

ro
of

ROTTENBERG et al.: CSI-BASED VERSUS RSS-BASED SECRET-KEY GENERATION UNDER CORRELATED EAVESDROPPING 9

Fig. 2. Secret-key capacity for complex channel sampling versus envelope
sampling as a function of SNR.

constant penalty of χ bit, inducing a translation of the curve712

downwards of about 0.69 bit.713

In the correlated case (ρ = 0.9), CCplex
s and CEvlpe

s are714

reduced given the knowledge Eve has gained from her channel715

observations. As foreseen by Prop. 1, the bounds on CCplex
s716

become tight as the SNR grows large and a constant penalty717

of log2(1 − |ρ|2) ≈ −2.4 bits is observed as compared to the718

uncorrelated case. Interestingly, the bounds become tight for719

CEvlpe
s , even for smaller values of SNR. The gap as compared720

to the uncorrelated case can be approximated from Table I as721

1
2 log2(1 − |ρ|2) + χ ≈ −0.51 bits. The inaccuracy with the722

simulated gap of −0.67 bit comes from the fact that the LB723

on CEvlpe
s in Table I only asymptotically holds for |ρ| → 1.724

B. Impact of Correlation725

In Fig. 3, the impact of the correlation coefficient magnitude726

|ρ| is studied,4 for two SNR regimes. We here consider an727

identical noise variance at Alice and Bob, while Eve uses a728

more powerful receiver so that σ2
A = σ2

B and σ2
E = σ2

A/10.729

One can see that, as |ρ| → 0, the LB and UB become tight730

and converge to the mutual information between Alice’s and731

Bob’s observations. For larger values of |ρ|, bounds are less732

tight, especially in the complex case. As foreseen by Prop. 1,733

for a same value of |ρ| < 1, the LB and UB become tight734

for large SNR values. As already discussed in the context735

of equation (7), the LBs on the secret-key capacity are not736

restricted to be positive. This case is observed in Fig. 3 for737

large values of |ρ|. Note that this case arises here given738

the reduced noise power at Eve σ2
E = σ2

A/10. In practice,739

the secret-key capacity cannot be lower than zero. We chose740

not to put negative values of the LB to zero, as it provides741

some physical insights on the problem.742

4From previous analytical studies, it was shown that CCplex
s and CEvlpe

s
only depend on the magnitude of the correlation coefficient and not on its
phase.

Fig. 3. Secret-key capacity for complex channel sampling versus envelope
sampling as a function of correlation coefficient magnitude |ρ|.

Fig. 4. Impact of a different noise variance at Alice and Bob.

C. Impact of Different Noise Variances at Alice and Bob 743

In Fig. 4, the impact of a different noise variance at Alice 744

and Bob is studied. More specifically, the SNRs at Bob and 745

Eve are kept identical, i.e., p/σ2
B = p/σ2

E , for two SNR 746

regimes (5 dB and 20 dB). On the other hand, the SNR at Alice 747

p/σ2
A is varied from 0 to 30 dB. The correlation coefficient is 748

set to ρ = 0.6. 749

As foreseen in Sections III and IV, the LB and UB bounds 750

become tight as σ2
A → 0 for a fixed value of σ2

B . Moreover, 751

as p/σ2
A grows large, CCplex

s and CEvlpe
s saturate at a plateau. 752

This can be explained by the fact that they enter a regime 753

limited by the fixed noise variance at Bob σ2
B . 754

D. Impact of Different Noise Variance at Eve 755

In Fig. 5, the impact of a different noise variance at Eve is 756

studied. More specifically, the SNRs at Alice and Bob are kept 757
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Fig. 5. Impact of a different noise variance at Eve.

identical, i.e., p/σ2
A = p/σ2

B , for two SNR regimes (5 dB and758

20 dB). On the other hand, the SNR at Eve p/σ2
E is varied759

from 0 to 30 dB. The correlation coefficient is set to ρ = 0.8.760

According to Prop. 1, the LB and UB are tight in the high761

SNR regime. Moreover, as p/σ2
E grows large, CCplex

s and762

CEvlpe
s decrease up to a certain floor. This can be explained763

by the fact that Eve performance is not limited by σ2
E but by764

the fixed value of the correlation coefficient ρ.765

VI. CONCLUSION766

In this article, we have compared the secret-key capacity767

based on the sampling process of the entire CSI or only its768

envelope or RSS, taking into account correlation of Eve’s769

observations. We have evaluated lower and upper bounds on770

the secret-key capacity. In the complex case, we obtain simple771

closed-form expressions. In the envelope case, the bounds772

must be evaluated numerically. In a number of particular cases,773

the lower and upper bounds become tight: low correlation of774

the eavesdropper, relatively smaller noise variance at Bob than775

Alice (or vice versa) and specific high SNR regimes. Finally,776

we have shown that, in the high SNR regime, the bounds can777

be evaluated in closed-form and result in simple expressions,778

which highlight the gain of CSI-based systems. The penalty779

of envelope-based versus complex-based secret-key generation780

is: i) a pre-log factor of 1/2 instead of 1, implying a lower781

slope of the secret-key capacity as a function of SNR and ii) a782

constant penalty of about 0.69 bit, which disappears as Eve’s783

channel gets highly correlated.784

VII. APPENDIX785

A. Upper Bound of Complex Sampling-Based Secret-Key786

Capacity787

We need to show that I(ĤA; ĤB|ĤE) ≤ I(ĤA; ĤB),788

which is equivalent to showing that789

0 ≥ I(ĤA; ĤB|ĤE) − I(ĤA; ĤB),790

or 791

1 ≥
|CĤAĤE

||CĤBĤE
||CĤAĤB

|
(p + σ2

A)(p + σ2
B)(p + σ2

E)|CĤAĤBĤE
| 792

0 ≥
|CĤAĤE

||CĤBĤE
||CĤAĤB

|
(p + σ2

A)(p + σ2
B)(p + σ2

E)
− |CĤAĤBĤE

|. 793

After computing the expression of each determinant and 794

several simplifications, we obtain 795

|CĤAĤE
||CĤBĤE

||CĤAĤB
|

(p + σ2
A)(p + σ2

B)(p + σ2
E)

− |CĤAĤBĤE
| 796

= −|ρ|22p3 +
|ρp|4

p + σ2
E

+ |ρ|2p4

(
1

p + σ2
A

+
1

p + σ2
B

)
797

− |ρ|4 p6

(p + σ2
A)(p + σ2

B)(p + σ2
E)

. 798

We still need to prove that this quantity is smaller or equal 799

to zero. We can first simplify the inequality by dividing by 800

|ρ|2p3. We then need to show that 801

0 ≥ −2 +
1

1 + σ2
A/p

+
1

1 + σ2
B/p

802

+|ρ|2 1
1 + σ2

E/p

(
1 − 1

(1 + σ2
A/p)(1 + σ2

B/p)

)
. 803

It is easy to see that the term on the right is maximized for 804

σ2
E = 0 and |ρ| = 1 (|ρ| ≤ 1 by definition). It is then sufficient 805

to focus on that critical case and in particular to show that 806

1 ≥ 1
1 + σ2

A/p
+

1
1 + σ2

B/p
− 1

(1 + σ2
A/p)(1 + σ2

B/p)
807

=
1 + σ2

A/p + σ2
B/p

1 + σ2
A/p + σ2

B/p + σ2
Aσ2

B/p2
, 808

which is always smaller or equal to one given that σ2
A, σ2

B 809

and σ2
E and p are positive by definition. 810

B. Proof of (In)Dependence of Random Variables in 811

Propositions 2 and 3 812

This section derives a set of results on the dependence of 813

random variables, required in the proofs of Propositions 2 814

and 3. Note that, in the following sections, we conduct all the 815

proofs considering Alice case. However, they can be straight- 816

forwardly extended to Bob’s case by replacing subscript A by 817

B in all of the following expressions. 818

A starting point is to write the PDF of the channel obser- 819

vations at Alice and Eve. We know that ĤA and ĤE follow 820

a ZMCSG with covariance matrix CĤAĤE
, which gives 821

fĤA,ĤE
(ĥA, ĥE) = e

−
|ĥA|2(p+σ2

E)+|ĥE |2(p+σ2
A)−2p"(ρ∗ ĥAĥ∗

E)
|C

ĤAĤE
|

π2|CĤAĤE
| . 822

We can express this PDF in polar coordinates using the change 823

of variables ĤA = R̂A exp(Φ̂A), ĤE = R̂E exp(Φ̂E). 824

Doing this, we obtain the joint PDF 825

fR̂A,Φ̂A,R̂E,Φ̂E
(r̂A, φ̂A, r̂E , φ̂E) 826

=
r̂Ar̂Ee

− r̂2
A(p+σ2

E)+r̂2
E(p+σ2

A)−2pr̂Ar̂E |ρ| cos(φ̂A−φ̂E−∠ρ)
|C

ĤAĤE
|

π2|CĤAĤE
| . (21) 827



IEE
E P

ro
of

ROTTENBERG et al.: CSI-BASED VERSUS RSS-BASED SECRET-KEY GENERATION UNDER CORRELATED EAVESDROPPING 11

We now prove each of the results, relying on (21).828

Firstly, the random vector (Φ̂A, Φ̂E) is not independent829

from (R̂A, R̂E), if |ρ| > 0. Indeed, by simple inspection830

of (21), we can see that fR̂A,Φ̂A,R̂E ,Φ̂E
(r̂A, φ̂A, r̂E , φ̂E) -=831

fR̂A,R̂E
(r̂A, r̂E)fΦ̂A,Φ̂E

(φ̂A, φ̂E). The same result holds for832

(Φ̂A, Φ̂B) and (R̂A, R̂B), as a particularization to the case833

ρ = 1 and replacing subscripts E by B.834

Secondly, Φ̂E and (R̂A, R̂E) are independent. This can be835

shown by integrating (21) over φ̂A giving836

fR̂A,R̂E ,Φ̂E
(r̂A, r̂E , φ̂E)837

=
∫ 2π

0
fR̂A,Φ̂A,R̂E ,Φ̂E

(. . .)dφ̂A838

=
2r̂Ar̂E

π|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
e
− r̂2

A(p+σ2
E)+r̂2

E(p+σ2
A)

|C
ĤAĤE

|
, (22)839

where I0(.) is the zero order modified Bessel function of the840

first kind. Since the phase φ̂E does not appear, it implies that841

it is uniformly distributed and thus fR̂A,R̂E ,Φ̂E
(r̂A, r̂E , φ̂E) =842

fR̂A,R̂E
(r̂A, r̂E)fΦ̂E

(φ̂E). The same result holds for Φ̂B and843

(R̂A, R̂B), as a particularization to the case ρ = 1 and844

replacing subscripts E by B.845

Thirdly, the envelope and the phase of a ZMCSG are846

independent. Take for instance the PDF of ĤE , which can847

be written in polar coordinates, using a change of variable848

ĤE = R̂E exp(Φ̂E), as849

fR̂E ,Φ̂E
(r̂E , φ̂E) =

r̂E

π(p + σ2
E)

e
− r̂2

E
p+σ2

E ,850

which shows that fR̂E ,Φ̂E
(r̂E , φ̂E) = fR̂E

(r̂E)fΦ̂E
(φ̂E), with851

Φ̂E uniformly distributed, implying independence. The same852

result holds for ĤA and ĤB .853

C. Proof of Lemma 3854

The joint PDF fR̂A,R̂E
(r̂A, r̂E) can be obtained by integrat-855

ing (22) over φ̂E , which gives856

fR̂A,R̂E
(r̂A, r̂E)857

=
∫ 2π

0
fR̂A,R̂E ,Φ̂E

(r̂A, r̂E , φ̂E)dφ̂E858

=
4r̂Ar̂E

|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
e
− r̂2

A(p+σ2
E)+r̂2

E(p+σ2
A)

|C
ĤAĤE

|
, (23)859

and leads to the result of Lemma 3.860

D. Proof of Lemma 4861

From Bessel function theory [46, Eq. 10.40.1], we know862

that, as r → +∞,863

I0(r) =
er

√
2πr

+ ε0, |ε0| = O

(
er

r3/2

)
. (24)864

In our case, we have865

r =
2p|ρ|r̂Ar̂E

|CĤAĤE
| =

2p|ρ|r̂Ar̂E

(1 − |ρ|2)p2 + p(σ2
E + σ2

A) + σ2
Eσ2

A

.866

(25)867

The Bessel asymptotic expansion is thus accurate when r 868

becomes large. This is precisely the case as σ2
A → 0, σ2

E → 0 869

and |ρ| → 1, for r̂A > 0 and r̂E > 0. Using the Bessel 870

asymptotic expansion of I0(.) in (23), we get 871

fR̂A,R̂E
(r̂A, r̂E) =

2
p

√
r̂Ar̂E

|ρ| e
− r̂2

Aσ2
E+r̂2

E(σ2
A+p(1−|ρ|2))

|C
ĤAĤE

|
872

1√
π|CĤAĤE

|/p
e
− (r̂A−|ρ|r̂E)2

|C
ĤAĤE

|/p + ε1, (26) 873

where ε1 is the approximation error 874

ε1 =
4r̂Ar̂E

|CĤAĤE
| exp

(
− r̂2

A(p + σ2
E) + r̂2

E(p + σ2
A)

|CĤAĤE
|

)
ε0. 875

Note that, in the particular cases r̂A = 0 or r̂E = 0, ε1 = 0 876

since (26) = (23) = 0. Using (24) and the definition of r 877

in (25), we can bound the error ε1 as follows 878

|ε1| = O





(
|CĤAĤE

|
)1/2

e
−

r̂2
A(p+σ2

E)+r̂2
E(p+σ2

A)−2p|ρ|r̂Ar̂E

|C
ĤAĤE

|

(p|ρ|)3/2 (r̂Ar̂E)1/2




879

= O

(√
1 − |ρ|2 + σ2

A + σ2
E

)
, 880

where we used the fact that the exponential can be bounded in 881

the asymptotic regime by an independent constant. The second 882

exponential term of (26) suggests the following approximation 883

r̂A ≈ |ρ|r̂E . We thus obtain 884

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

|
e
− (r̂A−|ρ|r̂E)2

|C
ĤAĤE

|/p

p
√

π|CĤAĤE
|/p

885

+ε1 + ε2, (27) 886

where ε2 is the approximation error related to this second 887

approximation 888

ε2 =
2
p

e
− (r̂A−|ρ|r̂E )2

|C
ĤAĤE

|/p

√
π|CĤAĤE

|/p

(√
r̂Ar̂E

|ρ| e
− r̂2

Aσ2
E+r̂2

E(σ2
A+p(1−|ρ|2))

|C
ĤAĤE

|
889

−r̂Ee
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

|

)
. 890

When r̂A = |ρ|r̂E , the term in parenthesis is exactly zero and 891

so ε2 = 0. In other cases, it can be bounded by an independent 892

constant as σ2
A → 0, σ2

E → 0 and |ρ| → 1, giving 893

|ε2| = O



 e
− β

(1−|ρ|2)+σ2
A+σ2

E

√
1 − |ρ|2 + σ2

A + σ2
E



 , 894

where β is some real strictly positive constant. Moreover, 895

we can still simplify (27) by performing the two following 896

approximations |CĤAĤE
|/p ≈ p(1 − |ρ|2) + σ2

A + σ2
E and 897



IEE
E P

ro
of

12 IEEE TRANSACTIONS ON COMMUNICATIONS

p(1−|ρ|2)+|ρ|2σ2
E+σ2

A
|CĤAĤE

| ≈ 1/p so that we get898

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A

+σ2
E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

899

+ε1 + ε2 + ε3 + ε4,900

which gives the asymptotic distribution of Lemma 4 and901

where ε3 and ε4 are the approximation errors related to the902

approximations903

ε3 =
2r̂E

p
√

π|CĤAĤE
|/p

(
e
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

| − p(r̂A−|ρ|r̂E)2

|C
ĤAĤE

|
904

−e−
r̂2

E
p e

− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

)
905

ε4 =
2r̂Ee−

r̂2
E
p e

− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

p
√

π



 1√
|CĤAĤE

|/p
906

− 1√
p(1 − |ρ|2) + σ2

A + σ2
E

)
.907

To bound ε3 and ε4, we can use a first order Taylor expansion908

of the exponential and the inverse of a square root respectively.909

We find910

|ε3| = O

(
(1 − |ρ|2)σ2

E + σ2
Aσ2

E

(1 − |ρ|2 + σ2
A + σ2

E)3/2

)
911

|ε4| = O

(
σ2

A + σ2
E√

1 − |ρ|2 + σ2
A + σ2

E

)
.912

Finally, combining the bounds on the approximation errors913

ε1, ε2, ε3 and ε4, we find that the total approximation error914

can be bounded as915

|ε1 + ε2 + ε3 + ε4| = O

(√
1 − |ρ|2 + σ2

A

)
,916

where we used (As2). This completes the proof.917

E. Proof of Theorem 2918

Let us define the asymptotic PDF of fR̂A,R̂E
(r̂A, r̂E) as919

fHigh

R̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E )2

p(1−|ρ|2)+σ2
A+σ2

E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

.920

We can see that the PDF factorizes as fHigh

R̂A,R̂E
(r̂A, r̂E) =921

f1(r̂E)f2(r̂A|r̂E). We can identify f1(r̂E) to be a Rayleigh922

distribution with parameter p
2 , while the conditional PDF923

f2(r̂A|r̂E) is a normal centered in |ρ|r̂E and of variance924

(p(1 − |ρ|2) + σ2
A + σ2

E)/2.925

Results such as [47, Th. 1] can be used to prove that,926

for a sequence of PDFs such that fR̂A,R̂E
(r̂A, r̂E) →927

fHigh

R̂A,R̂E
(r̂A, r̂E) pointwise, their differential entropy also928

converges provided that: i) their second order moments are929

bounded from above and ii) their PDF is bounded from above.930

These two conditions are satisfied in our case as long as p,931

σ2
A and σ2

E are bounded from above, which makes practical932

sense. In the pathological case σ2
A = 0, σ2

E = 0 or |ρ| = 1, 933

|CĤAĤE
| = 0 and the PDFs are unbounded, which makes 934

practical sense since h(R̂A, R̂E) → −∞. Unfortunately, 935

finding the analytical rate of convergence of the differential 936

entropy is intricate. 937

All of the following expressions should be understood in the 938

asymptotic sense as σ2
A → 0 and σ2

E → 0 and |ρ| → 1. Using 939

the chain rule for the differential entropy h(X, Y ) = h(X) + 940

h(Y |X), the general expression of the differential entropies 941

of Rayleigh and normal distributions, the joint differential 942

entropy of the distribution fHigh

R̂A,R̂E
(r̂A, r̂E) can be easily 943

computed and we find 944

h(R̂A, R̂E) → 1
2

log2

(
p2(1 − |ρ|2) + p(σ2

A + σ2
E)
)

945

+
1
2

log2

(
πe3+γ

4

)
. 946

Inserting this expression in (19), together with the expressions 947

of h(R̂A) and h(R̂E) given in (17) and (20) respectively, 948

we finally obtain 949

I(R̂A; R̂E) → 1
2

log2

(
(p + σ2

A)(p + σ2
E)

p2(1 − |ρ|2) + p(σ2
A + σ2

E)

)
+ χ 950

→ 1
2

log2

(
p

p(1 − |ρ|2) + σ2
A + σ2

E

)
+ χ, 951

with the definition of χ introduced in Theorem 1, which 952

concludes the proof. 953

F. Proof of Lemma 5 954

We know that ĤA, ĤB and ĤE follow a ZMCSG with 955

covariance matrix CĤAĤBĤE
, which gives 956

fĤA,ĤB ,ĤE
(ĥA, ĥB, ĥE) 957

=
e

2p(p(1−|ρ|2)+σ2
E)ĥAĥ∗

B+2 pσ2
B"(ĥAρ∗ĥ∗

E )+2 pσ2
A"(ĥB ρ∗ĥ∗

E)
|C

ĤAĤBĤE
|

π3|CĤAĤBĤE
| 958

e
−

|ĥA|2|C
ĤB ĤE

|+|ĥB |2|C
ĤAĤE

|+|ĥE |2|C
ĤAĤB

|

|C
ĤAĤBĤE

|
. 959

This PDF can be expressed in polar coordinates as 960

fR̂A,R̂B ,R̂E,Φ̂A,Φ̂B ,Φ̂E
(r̂A, r̂B , r̂E , φ̂A, φ̂B, φ̂E) 961

=
r̂Ar̂B r̂E

π3|CĤAĤBĤE
|e

−
r̂2

A|C
ĤBĤE

|+r̂2
B|C

ĤAĤE
|+r̂2

E|C
ĤAĤB

|

|C
ĤAĤB ĤE

|
962

e
2p(p(1−|ρ|2)+σ2

E )r̂Ar̂B cos(φ̂A−φ̂B)
|C

ĤAĤBĤE
|

e
2pσ2

Br̂Ar̂E |ρ| cos(φ̂A−φ̂E−∠ρ)
|C

ĤAĤBĤE
|

963

e
2pσ2

Ar̂Br̂E |ρ| cos(φ̂B−φ̂E−∠ρ)
|C

ĤAĤBĤE
|

. (28) 964

The joint PDF fR̂A,R̂B ,R̂E
(r̂A, r̂B , r̂E) can be obtained by 965

integrating (28) over the phases φ̂A, φ̂B and φ̂E , which leads 966

to the result of Lemma 5. Indeed the first two terms do not 967

depend on the phases, so that they can be put out of the 968

integrals. The third term however does. One can easily see 969

that the phase of ρ does not impact the result, so that it can be 970

removed. One can further notice that the cosines do not depend 971

on the absolute phases φ̂A, φ̂B , φ̂E but on their differences. 972
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Making a change of variable φ1 = φ̂A − φ̂B , φ2 = φ̂A − φ̂E ,973

we see that the last difference is φ̂B − φ̂E = φ2 − φ1. Hence,974

one integral simplifies.975
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CSI-Based Versus RSS-Based Secret-Key
Generation Under Correlated Eavesdropping
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Abstract— Physical-layer security (PLS) has the potential to1

strongly enhance the overall system security as an alternative2

to or in combination with conventional cryptographic primitives3

usually implemented at higher network layers. Secret-key gener-4

ation relying on wireless channel reciprocity is an interesting5

solution as it can be efficiently implemented at the physical6

layer of emerging wireless communication networks, while pro-7

viding information-theoretic security guarantees. In this article,8

we investigate and compare the secret-key capacity based on the9

sampling of the entire complex channel state information (CSI) or10

only its envelope, the received signal strength (RSS). Moreover,11

as opposed to previous works, we take into account the fact12

that the eavesdropper’s observations might be correlated and13

we consider the high signal-to-noise ratio (SNR) regime where14

we can find simple analytical expressions for the secret-key15

capacity. As already found in previous works, we find that16

RSS-based secret-key generation is heavily penalized as compared17

to CSI-based systems. At high SNR, we are able to precisely18

and simply quantify this penalty: a halved pre-log factor and19

a constant penalty of about 0.69 bit, which disappears as Eve’s20

channel gets highly correlated.21

Index Terms— Secret-key generation, RSS, CSI, physical-layer22

security.23

I. INTRODUCTION24

A. Problem Statement25

WE CONSIDER in this article the problem of generating26

secret keys between two legitimate users (Alice and27

Bob), subject to an illegitimate user (Eve) trying to recover the28

key. Maurer [2] and Ahlswede and Csiszár [3] were the first to29

analyze the problem of generating a secret key from correlated30

observations. In the source model (see Fig. 1), Alice, Bob31

and Eve observe the realizations of a discrete memoryless32
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Fig. 1. Source model for secret-key agreement.

source. From their sequence of observations, Alice and Bob 33

have to distill an identical key that remains secret from Eve. 34

Moreover, Alice and Bob have access to a public error-free 35

authenticated channel with unlimited capacity. This helps them 36

to perform information reconciliation, i.e., exchanging a few 37

parity bits so as to agree on a common sequence of symbols. 38

However, since the channel is public, Eve can gain information 39

about the secret key from these parity bits, on top of her own 40

channel observations that can also be correlated with Alice and 41

Bob observations. This is why privacy amplification is usually 42

implemented after information reconciliation, which consists 43

in reducing the size of the key, so that Eve information about 44

the key is completely eliminated. Upper and lower bounds 45

for the secret-key capacity, defined as the number of secret 46

bits that can be generated per observation of the source, were 47

derived in [2], [3]. In this work, we are interested in computing 48

the secret-key capacity. Thus, we do not consider information 49

reconciliation and privacy amplification. In practice they can 50

be implemented through the use of, e.g., low parity density 51

check codes and universal hashing respectively. The interested 52

reader is referred to [4] for more information on the subject.

AQ:5

53

A practical source of common randomness at Alice and Bob 54

consists of the wireless channel reciprocity, which implies that 55

the propagation channel from Alice to Bob and from Bob to 56

Alice is identical if both are measured within the same channel 57

coherence time and at the same frequency. At successive 58

coherence times, Alice and Bob can repeatedly sample the 59

channel by sending each other a pilot symbol so as to obtain 60

a set of highly correlated observations and finally start a 61

key-distillation procedure. In this article, we investigate the 62

secret-key capacity relying on the entire complex channel state 63

information (CSI) or only on the channel envelope, sometimes 64

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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also referred to as received signal strength (RSS).1 We also65

consider the case where Eve’s observations are correlated with66

the ones of Alice and Bob, which can occur in many practical67

situations. Related works are detailed in the next subsection68

while our contributions are presented in the subsequent sub-69

section.70

B. State of the Art71

This study falls into the broad field of physical-layer secu-72

rity (PLS), which has attracted much interest in the recent73

decade as a competitive candidate to provide authentication,74

integrity and confidentiality in future communication networks75

[5]–[7]. We refer to [4] for an overview on the area. In the76

context of secret-key generation based on wireless reciprocity,77

there has been a large amount of related works, both from78

theoretical and experimental aspects [8]–[10]. In several recent79

approaches, more general models than the source model have80

been considered for secret-key generation, taking advantage of81

the channel to transmit part of the key [11], [12].82

Many works have considered using RSS as a source83

of randomness for secret-key generation [13]–[19]. In [20],84

the authors show how to exploit the channel diversity com-85

ing from the multipath nature of the channel. The work86

of [21] leverages the use of multiple-antenna systems. In [22],87

the authors incorporate the orthogonal frequency division88

multiplexing (OFDM) modulation and carrier frequency offset89

as a way to increase bit generation in static environments with90

limited mobility. The choice of using RSS over full CSI is91

mainly due to its practical convenience. As opposed to CSI,92

RSS indicators are usually available at the higher layers of93

the communication layers, allowing for simple implementa-94

tion of the key distillation procedure, relying on the legacy95

network infrastructure (no need to change the physical layer).96

Moreover, RSS is intrinsically more robust to phase offsets97

between Alice and Bob, relaxing constraints on the hardware,98

the synchronization and the reciprocity calibration. On the99

other hand, in the full CSI approaches, the reconciliation of100

phase information between legitimate users requires tightly101

synchronized nodes. A key selling point of PLS versus its102

cryptographic counterparts is its low implementation com-103

plexity, which is particularly suited in applications such as104

the Internet-of-Things or sensor networks where low power105

devices are used. In this context, the RSS approach can be106

more suited than the full CSI one.107

The main disadvantage of RSS-based secret-key generation108

is that it does not use the full channel information and109

thus achieves a lower secret-key capacity than its CSI-based110

counterpart. In certain PLS applications, larger data rates and111

thus key sizes are targeted, using more powerful devices. For112

these use cases, using the full CSI approach can be more suited113

than the RSS one. CSI-based secret-key capacity is generally114

easier to characterize analytically, which has been done in a115

large number of works [23], [24], relying on multi-antenna116

systems [25]–[29], ultrawideband channels [30], and on the117

OFDM [31]–[34]. The authors in [20] analytically compare118

1We focus the whole study in this article on the envelope of the channel,
not its power. However, the final results in terms of capacity are equivalent
given the one-to-one relationship between envelope and power.

RSS and CSI approaches. The work of [35] also compares 119

the two approaches relying on a thorough experimental study 120

in various propagation environments, with different degrees of 121

mobility. 122

The majority of works in the literature considers that Eve 123

gets no side information about the key from her observations, 124

which consist of the pilots transmitted by Alice and Bob 125

[13], [24], [25], [27], [28]. Often, this assumption is justified 126

by the fact that the channel environment is supposed to be 127

rich enough in scattering implying that the fading process of 128

the channels decorrelates quickly as a function of distance. 129

Then, the observations of Eve have negligible correlation 130

if she is assumed to be separated from Bob and Alice by 131

more than one wavelength (otherwise she could be easily 132

detected). The assumption of rapid decorrelation in space 133

has been validated through measurements in rich scattering 134

environments [13], [24], [35]–[37]. Moreover, this assumption 135

simplifies the expression of the secret-key capacity, which 136

simply becomes equal to the mutual information between 137

Alice and Bob. However, it also occurs in practical scenarios, 138

such as outdoor environments, that scatterers are clustered with 139

small angular spread rather than being uniformly distributed, 140

which leads to much longer spatial decorrelation length. The 141

work of [1], relying on practical 3GPP channel models has 142

shown that the assumption of full decorrelation of Eve’s 143

observations with respect to Alice and Bob is not always 144

verified and critically depends on the propagation environment. 145

At a cellular carrier frequency of 1 GHz, λ = 30 cm and 146

Eve could be placed at 10λ = 3 m while still having a 147

significant correlation. The experimental work of [17] has 148

also shown that there remains a strong correlation of the 149

eavesdropper’s channel even at distances much larger than 150

half a wavelength. In [38], the authors studied the impact of 151

channel sparsity, inducing correlated eavesdropping, on the 152

secret-key capacity. In [39], the impact of the number of 153

paths and the eavesdropper separation is analytically studied. 154

In [40], spatial and time correlation of the channel is taken 155

into account using a Jakes Doppler model. In [41], [42], 156

experiments are conducted indoor to evaluate the correlation 157

of the eavesdropper’s observations and its impact on the 158

secret-key capacity. A similar study is conducted for a MIMO 159

indoor measurement campaign in [26]. The work of [19] also 160

uses an indoor experimental approach and proposes results 161

of cross-correlation, mutual information and secret-key rates, 162

which depend on the eavesdropper’s position. 163

C. Contributions 164

Our main contribution is to propose a novel analytical com- 165

parison of the secret-key capacity based on RSS and CSI for 166

a narrowband channel. As opposed to similar previous works 167

such as [20], we do not assume that Eve’s observations are 168

uncorrelated. This more general case adds to the complexity of 169

the study while remaining of practical importance. Moreover, 170

the authors in [20] could characterize the secret-key capacity 171

for envelope sampling with a simple analytical expression. 172

However, their simplification relied on the approximation of 173

a sum of envelope components as Gaussian, which is not 174
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applicable for our channel model. Furthermore, other works175

have already compared RSS and CSI-based approaches taking176

into account correlated eavesdropping, such as [35]. However,177

the studies were mostly conducted experimentally and not178

analytically.179

More specifically, our contributions can be summarized180

as follows: 1) We evaluate lower and upper bounds on the181

secret-key capacity for both the complex (full CSI) and182

the envelope (RSS) cases. In the complex case, we obtain183

simple closed-form expressions, while, in the envelope case,184

the bounds must be evaluated numerically. Some of the expres-185

sions in the complex case were already obtained in previous186

works. We chose to present them again in this work to provide187

a systematic framework and useful comparison benchmarks188

for the envelope case. 2) We show that, in a number of189

particular cases, the lower and upper bounds become tight:190

low correlation of the eavesdropper, relatively smaller noise191

variance at Bob than Alice (and vice versa) and specific192

high signal-to-noise ratio (SNR) regimes. 3) We show that,193

as soon as Alice (or Bob since everything is symmetrical)194

samples the envelope of her channel estimate, the other parties195

do not lose information by taking the envelopes of their196

own channel estimates. 4) We show that, in the high SNR197

regime, the bounds can be evaluated in closed-form and result198

in simple expressions. The penalty of envelope-based versus199

complex-based secret-key generation is: i) a pre-log factor of200

1/2 instead of 1, implying a slower slope of the secret-key201

capacity as a function of SNR and ii) a constant penalty of 0.69202

bit, which disappears as Eve’s channel gets highly correlated.203

The rest of this article is structured as follows. Section II204

describes the transmission model used in this work.205

Sections III and IV study the secret-key capacity based on206

complex and envelope sampling, respectively. Section V207

numerically analyzes the obtained results. Finally, Section VI208

concludes the paper.209

Notations210

Matrices are denoted by bold uppercase letters. Non bold211

upper case letter refers to a random variable. Superscript ∗
212

stands for conjugate operator. The symbol !(.) denotes the213

real part.  is the imaginary unit. |A| is the determinant of214

matrix A. The letters e and γ refer to the Euler number and215

the Euler-Mascheroni constant respectively. h(.) and I(.; .)216

refer to the differential entropy and the mutual information217

respectively. We use the notation f(x) = O(g(x)), as x → a,218

if there exist positive numbers δ and λ such that |f(x)| ≤219

λg(x) when 0 < |x − a| < δ.220

II. TRANSMISSION MODEL221

Alice and Bob extract a common key from observations of222

their shared channel H , assumed to be reciprocal. The channel223

H is repeatedly sampled in time based on the transmission224

of a priori known pilots by Alice and Bob. We assume225

that the successive observations of H are distant enough in226

time so that they can be considered independent. Note that227

this is a conventional assumption in the literature [24], [27].228

In practice, the sampling between successive samples can be229

related to the richness of scattering and the degree of mobility 230

of the environment and the legitimate parties. During these 231

successive observations, the environment remains stationary 232

so that they can be considered as identically distributed. 233

Considering a narrowband channel, the estimates of H at 234

Alice’s and Bob’s sides, respectively denoted by ĤA and ĤB , 235

are given by 236

ĤA = H + WA, ĤB = H + WB, 237

where the additive noise samples WA and WB are mod- 238

eled as independent zero mean circularly-symmetric complex 239

Gaussian (ZMCSCG) random variables with variances σ2
A and 240

σ2
B respectively. 241

The strategy of Eve consists in going as close as possible 242

from Bob’s antenna to try to maximize the correlation of 243

its channel.2 Then, Eve estimates her channel HE between 244

Alice’s antenna and hers by intercepting the pilots sent 245

from Alice to Bob. Since Eve is close to Bob, the channel 246

from Alice to Eve will be spatially correlated with H while 247

the channel between Bob and Eve will experience a negligible 248

correlation with H . Therefore, we neglect the pilot sent by 249

Bob and received by Eve in the following as she cannot get 250

any useful information from it [39]. The channel estimate of 251

Eve is given by 252

ĤE = HE + WE , 253

where WE is modeled as ZMCSCG with variance σ2
E . If Alice 254

and Bob transmit a pilot of equal power and Alice, Bob and 255

Eve use a similar receiver, one could expect a situation of equal 256

noise variance σ2
A = σ2

B = σ2
E . On the other hand, Eve could 257

use a more powerful receiver than Alice and/or Bob by having, 258

e.g., a larger antenna size, a multi-antenna receiver or an 259

amplifier with lower noise figure. This would result in a lower 260

noise variance σ2
E . Moreover, a different pilot power transmit- 261

ted by Alice and Bob will induce variations in their noise vari- 262

ances σ2
A and σ2

B . Indeed, in practice, the channel estimates 263

ĤA, ĤB and ĤE are obtained by dividing the received signal, 264

which includes the additive noise, by an a priori known pilot. 265

For instance, if the pilot transmitted by Bob has a stronger 266

power, the noise power at Alice σ2
A will be relatively weaker. 267

This scenario corresponds to the memoryless source model 268

for secret-key agreement [3], [4] represented in Fig. 1: Alice, 269

Bob and Eve observe a set of independent and identically 270

distributed (i.i.d.) repetitions of the random variables ĤA, 271

ĤB and ĤE . Moreover, an error-free authenticated public 272

channel of unlimited capacity is available for communication. 273

All parties have access to the public channel. 274

In the following section, we will study the secret-key 275

capacity of this model. To do this, we need to know the 276

probability distributions of the random variables ĤA, ĤB and 277

ĤE , which directly depend on the probability distributions of 278

WA, WB , WE , H and HE . The distributions of WA, WB and 279

WE were already detailed. Moreover, measurement campaigns 280

have shown that the channels H and HE can be accurately 281

2Note that all of the following derivations are symmetrical if Eve gets close
to Alice instead of Bob.
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modeled with a ZMCSCG distribution, especially in non-282

line-of-sight situations and rich scattering environments [43].283

This model is commonly referred to as Rayleigh fading [44].284

Therefore, we assume that (H, HE) follows a ZMCSCG with285

covariance matrix given by286

CHHE = p

(
1 ρ
ρ∗ 1

)
,287

where p is the channel variance, such that 0 < p < ∞.288

We assume that H and HE have the same variance p, which289

makes sense in practice if Bob and Eve are close enough290

so as to belong to the same local area [43]. The coefficient291

ρ = E(HH∗
E)/p is the spatial correlation coefficient, such that292

0 ≤ |ρ| ≤ 1. We refer to [1], [43] for more information on293

the definition of this coefficient. In the following, we use the294

fact the differential entropy of a circularly symmetric Gaussian295

with covariance C is given by log2(|πeC|), where e is the296

Euler number.297

In the sequel, at different places, we will consider the high298

SNR regime. When this regime is considered, we will always299

assume, implicitly or explicitly, that, as σ2
A → 0, σ2

B → 0 and300

σ2
E → 0,301

(As1): the ratio σ2
A

σ2
B

remains fixed and 0 < σ2
A

σ2
B

< ∞,302

(As2): the ratio σ2
A

σ2
E

remains fixed and 0 < σ2
A

σ2
E

< ∞,303

(As3): the ratio σ2
B

σ2
E

remains fixed and 0 < σ2
B

σ2
E

< ∞.304

III. SECRET-KEY CAPACITY BASED ON COMPLEX305

CHANNEL SAMPLING306

In this section, we analyze the secret-key capacity associated307

with complex channel sampling, that we denote by CCplex
s .308

Most of the results come from a direct evaluation of standard309

formulas for the differential entropy of Gaussian random310

variables. The result on the mutual information between Alice311

and Bob was already presented in [23]. We still present them312

as they provide accurate benchmarks as a comparison with313

the novel results that we derive for the envelope case in314

Section IV.315

The secret-key capacity is defined as the maximal rate316

at which Alice and Bob can agree on a secret-key while317

keeping the rate at which Eve obtains information about318

the key arbitrarily small for a sufficiently large number of319

observations. Moreover, Alice and Bob should agree on a com-320

mon key with high probability and the key should approach321

the uniform distribution. We refer to [2]–[4] for a formal322

definition. As explained in Section II, we consider that Eve323

gets useful information from her observation ĤE over H .324

This implies that the secret-key capacity is not simply equal325

to I(ĤA; ĤB), as was considered in many previous works326

[13], [23], [24], [27], [28]. Finding the general expression327

of the secret-key capacity for a given probability distribution328

of ĤA, ĤB, ĤE is still an open problem. From [2], [3] [4,329

Prop. 5.4], the secret-key capacity, expressed in the number330

of generated secret bits per channel observation, can be lower331

and upper bounded as follows332

CCplex
s ≥ I(ĤA; ĤB) − min

[
I(ĤA; ĤE), I(ĤB; ĤE)

]
(1)333

CCplex
s ≤ min

[
I(ĤA; ĤB), I(ĤA; ĤB|ĤE)

]
. (2)334

The lower bound (1) implies that, if Eve has less information 335

about ĤB than Alice or respectively about ĤA than Bob, such 336

a difference can be leveraged for secrecy [2]. Moreover, this 337

rate can be achieved with one-way communication. On the 338

other hand, the upper bound (2) implies that the secret-key 339

rate cannot exceed the mutual information between Alice and 340

Bob. Moreover, the secret-key rate cannot be higher than the 341

mutual information between Alice and Bob if they happened to 342

learn Eve’s observation ĤE . In particular cases, the lower and 343

upper bounds can become tight. In our context, three particular 344

cases can be distinguished: 345

1) ρ = 0: Eve does not learn anything about H from ĤE , 346

which becomes independent from ĤA and ĤB . This 347

leads to the trivial result CCplex
s = I(ĤA; ĤB). 348

2) σ2
B = 0: this implies that ĤA → ĤB → ĤE forms a 349

Markov chain, which leads to [4, Corol. 4.1] 350

CCplex
s = I(ĤA; ĤB|ĤE) = I(ĤA; ĤB) − I(ĤA; ĤE). 351

3) σ2
A = 0: symmetrically as in 2), CCplex

s = 352

I(ĤA; ĤB|ĤE) = I(ĤA; ĤB) − I(ĤB; ĤE). 353

Cases 2) and 3) are only met when σ2
B or σ2

A are exactly zero, 354

which never occurs in practice since all electronic devices 355

suffer from, e.g., thermal noise. However, cases 2) and 3) can 356

be approached in particular situations in practice where 357

σ2
A ' σ2

B or σ2
B ' σ2

A. This could happen for instance if 358

Alice sends a pilot with much stronger power than the one 359

of Bob or if Alice uses an amplifier with much larger noise 360

figure. Then, the SNR of the channel estimate of Bob will be 361

significantly higher so that σ2
B ' σ2

A. 362

In the next subsections, we evaluate the different expres- 363

sions of the mutual information required to compute the 364

lower and upper bounds of (1) and (2): i) the mutual infor- 365

mation between Alice and Bob I(ĤA; ĤB); ii) the mutual 366

information between Alice and Eve I(ĤA; ĤE), and sim- 367

ilarly for Bob I(ĤB; ĤE); and iii) the conditional mutual 368

information between Alice and Bob given Eve’s observations 369

I(ĤA; ĤB|ĤE). 370

A. Mutual Information Between Alice and Bob 371

Using previously introduced transmission and channel mod- 372

els, we can find that the random variables ĤA and ĤB are 373

jointly Gaussian distributed with covariance 374

CĤAĤB
=
(

p + σ2
A p

p p + σ2
B

)
. 375

From this distribution, we find back the result of [23] 376

I(ĤA; ĤB) = h(ĤA) + h(ĤB) − h(ĤA, ĤB) 377

= log2

(
(p + σ2

A)(p + σ2
B)

|CĤAĤB
|

)
378

= log2



1 +
p

σ2
A + σ2

B + σ2
Aσ2

B
p



 . (5) 379

This rate corresponds to the secret-key capacity in case of 380

uncorrelated observations at Eve (ρ = 0). At high SNR, 381
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as σ2
A → 0 and σ2

B → 0, the expressions becomes382

I(ĤA; ĤB) = log2

(
p

σ2
A + σ2

B

)
+ O

(
σ2

A

)
, (6)383

which is characterized by a pre-log factor of one.384

B. Mutual Information Between Alice/Bob and Eve385

We can observe that ĤA and ĤE are jointly Gaussian386

distributed with covariance387

CĤAĤE
=
(

p + σ2
A ρp

ρ∗p p + σ2
E

)
.388

This leads to the mutual information389

I(ĤA; ĤE) = log2

(
(p + σ2

A)(p + σ2
E)

|CĤAĤE
|

)
390

= log2



1 +
p|ρ|2

p(1 − |ρ|2) + σ2
A + σ2

E + σ2
Aσ2

E
p



 .391

The mutual information I(ĤB; ĤE) can be similarly obtained,392

simply replacing subscript A by B. Using the previ-393

ously derived expressions of I(ĤA; ĤB), I(ĤA; ĤE) and394

I(ĤB; ĤE), we find that the lower bound in (1) evaluates395

to (3), as shown at the bottom of the page. Note that the lower396

bound is not restricted to be positive (as will also be shown397

numerically in Section V), in which case it becomes useless398

since, by definition, CCplex
s ≥ 0. Nonetheless, it does not399

necessarily imply that CCplex
s = 0. We can find the condition400

on the minimum noise variance at Eve σ2
E for having a larger-401

than-zero lower bound402

σ2
E > p(|ρ|2 − 1) + |ρ|2 min(σ2

A, σ2
B). (7)403

In the worst-case, |ρ| = 1 and σ2
E has to be larger than the404

minimum of the noise variances of Alice and Bob. We can405

invert (7) to find the maximal correlation coefficient |ρ|2 to406

have a larger-than-zero lower bound407

|ρ|2 < p+σ2
E

p+min(σ2
A,σ2

B)
.408

In the high SNR regime, as σ2
A → 0, σ2

B → 0 and σ2
E → 0,409

equation (3) becomes410

CCplex
s ≥ log2

(
p

σ2
A + σ2

B

)
411

− log2

(
p

p(1 − |ρ|2) + max(σ2
A, σ2

B) + σ2
E

)
412

+O
(
σ2

A

)
. (8)413

As soon as |ρ| < 1, CCplex
s is unbounded and goes to infinity414

as the SNR grows large. Indeed, I(ĤA; ĤB) is unbounded,415

while I(ĤA; ĤE) and I(ĤB ; ĤE) converge to log2

(
1

1−|ρ|2

)
, 416

which is bounded away from zero for |ρ| < 1. 417

C. Conditional Mutual Information Between Alice and Bob 418

We can note that ĤA, ĤB and ĤE are jointly Gaussian 419

distributed with covariance matrix 420

CĤAĤBĤE
=




p + σ2

A p ρp
p p + σ2

B ρp
ρ∗p ρ∗p p + σ2

E



 , 421

which gives 422

I(ĤA; ĤB|ĤE) = h(ĤA, ĤE) − h(ĤE) 423

+h(ĤB, ĤE) − h(ĤA, ĤB, ĤE) 424

= log2

(
|CĤAĤE

||CĤBĤE
|

(p + σ2
E)|CĤAĤBĤE

|

)
. (9) 425

The upper bound in (2) is then given by the minimum 426

of I(ĤA; ĤB|ĤE) and I(ĤA; ĤB). In Appendix VII-A, 427

we prove that the condition I(ĤA; ĤB|ĤE) ≤ I(ĤA; ĤB) 428

is always verified under the jointly Gaussian channel model 429

considered in this work. The upper bound is thus given by (4), 430

as shown at the bottom of the page. 431

Based on the analytical expressions of the upper and lower 432

bounds, we can find a novel condition for tightness of the 433

bounds at high SNR. 434

Proposition 1: Under (As1)−(As3), as σ2
A → 0, σ2

B → 0 435

and σ2
E → 0, if |ρ| < 1, the upper and lower bounds of (3) 436

and (4) become tight and the secret-key capacity is given by 437

CCplex
s = log2

(
p(1 − |ρ|2)
σ2

A + σ2
B

)
+ O

(
σ2

A

)
. (10) 438

Proof: The proof is easily obtained by taking the limits 439

in (3) and (4) and seeing that they both converge towards (10), 440

provided that |ρ| < 1. ! 441

IV. SECRET-KEY CAPACITY BASED ON 442

CHANNEL ENVELOPE SAMPLING 443

The goal of this section is to evaluate the impact on the 444

secret-key capacity if Alice and Bob rely on the envelopes of 445

their observations rather than the complex values to generate a 446

secret key. We denote by CEvlpe
s the secret-key capacity based 447

on envelope sampling. We also introduce the notations 448

ĤA = R̂AeΦ̂A , ĤB = R̂BeΦ̂B , ĤE = R̂EeΦ̂E , 449

where R̂A, R̂B and R̂E are the random modules of ĤA, ĤB 450

and ĤE respectively. Similarly, Φ̂A, Φ̂B and Φ̂E are their 451

random phases. Note that ĤA is equivalently represented by 452

CCplex
s ≥ log2



1 +
p

σ2
A + σ2

B + σ2
Aσ2

B
p



− log2



1 +
p|ρ|2

p(1 − |ρ|2) + max(σ2
A, σ2

B) + σ2
E + max(σ2

A,σ2
B)σ2

E
p



 . (3)

CCplex
s ≤ log2

( [
(p + σ2

A)(p + σ2
E) − |ρp|2

] [
(p + σ2

B)(p + σ2
E) − |ρp|2

]

(p + σ2
E) [(p(σ2

A + σ2
B) + σ2

Aσ2
B)(p + σ2

E) − |ρp|2(σ2
A + σ2

B)]

)
(4)
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R̂A and Φ̂A or !(ĤA) and ((ĤA). We start by stating an453

insightful result from [20, Th. 2], that we generalize for Eve’s454

observations.455

Proposition 2: The mutual information I(ĤA; ĤE) satisfies456

I(ĤA; ĤE) = I(!(ĤA);!(ĤE)) + I(((ĤA);((ĤE))457

≥ I(R̂A; R̂E) + I(Φ̂A; Φ̂E).458

Similarly, the mutual information I(ĤA; ĤB) satisfies459

I(ĤA; ĤB) = I(!(ĤA);!(ĤB)) + I(((ĤA);((ĤB))460

≥ I(R̂A; R̂B) + I(Φ̂A; Φ̂B).461

Proof: We conduct the proof for the more general case462

I(ĤA; ĤE). Indeed, the mutual information I(ĤA; ĤB) can463

be seen as a particular case for ρ = 1 and replacing subscripts464

E by B. On the one hand, we have465

I(ĤA; ĤE) = I(R̂A, Φ̂A; R̂E , Φ̂E)466

= h(R̂A, Φ̂A) − h(R̂A, Φ̂A|R̂E , Φ̂E)467

(∗)
= h(R̂A) − h(R̂A|R̂E , Φ̂E) + h(Φ̂A)468

−h(Φ̂A|R̂A, R̂E , Φ̂E)469

(∗∗)
≥ I(R̂A; R̂E) + I(Φ̂A; Φ̂E),470

where (∗) follows from the chain rule for entropy and the471

fact that R̂A and Φ̂A are independent since the envelope472

and the phase of a ZMCSG are independent. (∗∗) follows473

from the fact that: i) h(R̂A|R̂E , Φ̂E) = h(R̂A|R̂E) since474

(R̂A, R̂E) and Φ̂E are independent; ii) h(Φ̂A|R̂A, R̂E , Φ̂E) ≥475

h(Φ̂A|Φ̂E) by the general properties of differential entropy476

and since (Φ̂A, Φ̂E) is not independent from (R̂A, R̂E). The477

proofs for the (in)dependence of random variables are given478

in Appendix VII-B.479

On the other hand, a similar derivation can be made480

for I(!(ĤA),((ĤA);!(ĤE),((ĤE)), noticing that ĤA and481

ĤE are two ZMCSG, implying that their real and imag-482

inary parts are independent, resulting in an equality with483

I(ĤA; ĤE). !484

Intuitively, this result can be explained by the fact485

that the random vectors (Φ̂A, Φ̂E) and (R̂A, R̂E) are not486

independent from one another while (!(ĤA),!(ĤE)) and487

(((ĤA),((ĤE)) are. There is thus a loss of information488

by treating phase and envelope separately as opposed to489

real and imaginary parts. This loss (or in other words the490

tightness of the inequality) is evaluated in [20, Fig. 2],491

where it is shown that the gap is significant and depends on492

the SNR. Interestingly, the mutual information between the493

phases I(Φ̂A; Φ̂E) contains relatively more information than494

the mutual information between the envelopes I(R̂A; R̂E).495

One could wonder what is the best strategy of Bob and Eve496

if Alice uses R̂A to generate a key. Imagine Bob and Eve497

have a more advanced receiver so that they can sample their498

observations in the complex domain, would it be beneficial for499

them? The answer is no, as shown in the following proposition.500

Proposition 3: If Alice uses the envelope of her observa-501

tions R̂A, then Eve does not lose information by taking the502

envelope of ĤE503

I(R̂A; ĤE) = I(R̂A; R̂E).504

Similarly, Bob does not lose information by taking the envelope 505

of ĤB 506

I(R̂A; ĤB) = I(R̂A; R̂B). 507

The same result holds if Alice and Bob’s roles are inter- 508

changed. 509

Proof: We conduct the proof for the more general case 510

I(R̂A; ĤE). Indeed, the mutual information I(R̂A; ĤB) can 511

be seen as a particular case for ρ = 1 and replacing subscripts 512

E by B. By definition, we have 513

I(R̂A; R̂E , Φ̂E) = h(R̂E , Φ̂E) − h(R̂E , Φ̂E |R̂A) 514

(∗)
= h(R̂E) − h(R̂E |R̂A) + h(Φ̂E) 515

−h(Φ̂E|R̂A, R̂E) 516

(∗∗)
= I(R̂A; R̂E), 517

where (∗) relies on the chain rule for entropy and the fact 518

that R̂E and Φ̂E are independent since the envelope and the 519

phase of a ZMCSG are independent. (∗∗) relies on the fact 520

that h(Φ̂E |R̂A, R̂E) = h(Φ̂E) since (R̂A, R̂E) and Φ̂E are 521

independent. We refer to Appendix VII-B for the proofs on 522

(in)dependence of random variables. ! 523

Intuitively, the proposition can be explained by the fact that 524

Φ̂B and Φ̂E are independent from (R̂A, R̂B) and (R̂A, R̂E) 525

respectively. The propositions provide practical insight in the 526

sense that, as soon as Alice (or Bob since everything is 527

symmetrical) samples the envelope of her channel estimate, 528

the other parties do not lose information by taking the 529

envelopes of their own channel estimates. The other way 530

around, Bob or Eve would not gain information to work on 531

their complex channel estimate. In the light of this result, 532

the definitions of the bounds of the secret-key capacity defined 533

in (1) and (2) also hold here by replacing the complex values 534

by their envelopes, i.e., R̂A, R̂B and R̂E instead of ĤA, ĤB 535

and ĤE respectively: 536

CEvlpe
s ≥ I(R̂A; R̂B) − min

[
I(R̂A; R̂E), I(R̂B ; R̂E)

]
(11) 537

CEvlpe
s ≤ min

[
I(R̂A; R̂B), I(R̂A; R̂B|R̂E)

]
. (12) 538

Tight bounds can be found in the same cases and for the 539

same reasons as in the complex case: 1) ρ = 0, 2) σ2
B = 0 540

and 3) σ2
A = 0. 541

Similarly as in Section III, we evaluate in the fol- 542

lowing subsections the quantities required to compute the 543

lower and upper bounds (11) and (12): in Section IV-A, 544

the mutual information between Alice and Bob I(R̂A; R̂B); in 545

Section IV-B, the mutual information between Alice and 546

Eve I(R̂A; R̂E), and similarly for Bob I(R̂B ; R̂E); and in 547

Section IV-C, the conditional mutual information between 548

Alice and Bob given Eve’s observations I(R̂A; R̂B|R̂E). Since 549

I(R̂A; R̂B) can be seen as a particularization of I(R̂A; R̂E) 550

for ρ = 1 and replacing subscript B by E, we will refer to 551

Section IV-B for the proofs of the results in Section IV-A. 552

A. Mutual Information Between Alice and Bob 553

The mutual information between Alice and Bob is given by 554

I(R̂A; R̂B) = h(R̂A) + h(R̂B) − h(R̂A, R̂B). (16) 555
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The envelope of a ZMCSG random variable is well known556

to be Rayleigh distributed, i.e., R̂A ∼ Rayleigh(
√

p+σ2
A

2 )557

and R̂B ∼ Rayleigh(
√

p+σ2
B

2 ). The differential entropy of a558

Rayleigh distribution is also well known and is equal to [45]559

h(R̂A) =
1
2

log2

(
p + σ2

A

4

)
+

1
2

log2(e
2+γ) (17)560

h(R̂B) =
1
2

log2

(
p + σ2

B

4

)
+

1
2

log2(e
2+γ), (18)561

where γ is the Euler-Mascheroni constant and e is the Euler562

number. On the other hand, the joint differential entropy563

of (R̂A, R̂B) is more difficult to compute. The following564

lemma gives the joint probability density function (PDF) of565

(R̂A, R̂B).566

Lemma 1: The joint PDF of (R̂A, R̂B) is given by (13), as567

shown at the bottom of the page, where I0(.) is the zero order568

modified Bessel function of the first kind.569

Proof: The proof is obtained as a particular case of570

Lemma 3 for ρ = 1 and replacing subscripts E by B. !571

Unfortunately, finding a closed-form expression for the572

joint differential entropy h(R̂A, R̂B) is non-trivial given the573

presence of the Bessel function [45]. Still, h(R̂A, R̂B) and574

thus I(R̂A; R̂B), can be evaluated by numerical integration,575

relying on the PDF obtained in Lemma 1.576

In the high SNR regime, the following lemma shows the577

limiting behavior of the PDF fR̂A,R̂B
(r̂A, r̂B), which can be578

used to obtain a simple closed-form expression of I(R̂A; R̂B),579

as shown in the subsequent theorem.580

Lemma 2: Under (As1), as σ2
A → 0 and σ2

B → 0, the PDF581

fR̂A,R̂B
(r̂A, r̂B) asymptotically converges to582

fR̂A,R̂B
(r̂A, r̂B) = 2r̂Ae

−
r̂2

A
p

p
e
− (r̂B−r̂A)2

σ2
A+σ2

B√
π(σ2

A+σ2
B)

+ O (σA) ,583

which corresponds to the product of a Rayleigh distribution of584

parameter p
2 and a conditional normal distribution centered585

in R̂A and of variance σ2
A+σ2

B
2 .586

Proof: The proof is obtained as a particular case of587

Lemma 4 for ρ = 1 and replacing subscripts E by B. Since588

ρ = 1, the limit |ρ| → 1 can be omitted. !589

Theorem 1: Under (As1), as σ2
A → 0 and σ2

B → 0,590

the mutual information I(R̂A; R̂B) converges to591

I(R̂A; R̂B) → 1
2 log2

(
p

σ2
A+σ2

B

)
− χ,592

where χ = 1
2 log2

(
4π

e1+γ

)
is a constant penalty, given by 0.69 593

(up to the two first decimals). 594

Proof: The proof is obtained as a particular case of 595

Theorem 2 for ρ = 1 and replacing subscripts E by B. Since 596

ρ = 1, the limit |ρ| → 1 can be omitted. ! 597

The expression obtained in Theorem 1 gives a lot of insight 598

on the high SNR secret-key capacity that can be obtained 599

with envelope sampling, when there is no correlation (ρ = 0). 600

As shown in the left column of Table I, two penalties can 601

be observed as compared to complex sampling: i) a pre-log 602

factor of 1/2 instead of 1, implying a curve with smaller slope 603

and ii) an additional penalty of a constant χ equivalent to 604

about 0.69 bit. One should note that halved slope could be 605

intuitively expected. Indeed, the full CSI approach samples 606

two independent real-valued random variables while the RSS 607

approach, only one. 608

B. Mutual Information Between Alice/Bob and Eve 609

We now analyze the mutual information between Alice and 610

Eve and between Bob and Eve, which are given by 611

I(R̂A; R̂E) = h(R̂A) + h(R̂E) − h(R̂A, R̂E) 612

I(R̂B; R̂E) = h(R̂B) + h(R̂E) − h(R̂B, R̂E). (19) 613

We already computed the values of h(R̂A) and h(R̂B). Simi- 614

larly as for R̂A and R̂B , we find that R̂E ∼ Rayleigh(
√

p+σ2
E

2 ) 615

and [45] 616

h(R̂E) =
1
2

log2

(
p + σ2

E

4

)
+

1
2

log2(e
2+γ). (20) 617

The following lemma gives the joint PDFs of (R̂A, R̂E) and 618

(R̂B, R̂E). 619

Lemma 3: The joint PDF of (R̂A, R̂E) is given by (14), 620

as shown at the bottom of the page. The joint PDF 621

fR̂B ,R̂E
(r̂B, r̂E) is similarly obtained, replacing subscripts A 622

by B. 623

Proof: The proof is given in Appendix VII-C. ! 624

As for h(R̂A, R̂B), it is difficult to find a closed-form 625

expression of h(R̂A, R̂E) and h(R̂B, R̂E) due to the presence 626

of the Bessel function. However, they can be evaluated numer- 627

ically using the PDFs obtained in Lemma 3 so that I(R̂A; R̂E) 628

and I(R̂B ; R̂E) can be evaluated. Still, in specific regimes, 629

closed-form solutions can be found. 630

fR̂A,R̂B
(r̂A, r̂B) =

4r̂Ar̂B

|CĤAĤE
|I0

(
2pr̂Ar̂B

|CĤAĤE
|

)
exp

(
− r̂2

A(p + σ2
B) + r̂2

B(p + σ2
A)

|CĤAĤE
|

)
(13)

fR̂A,R̂E
(r̂A, r̂E) =

4r̂Ar̂E

|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
exp

(
− r̂2

A(p + σ2
E) + r̂2

E(p + σ2
A)

|CĤAĤE
|

)
(14)

fR̂A,R̂B ,R̂E
(r̂A, r̂B, r̂E) =

8r̂Ar̂B r̂E

|CĤAĤBĤE
|G
(

2p(p(1 − |ρ|2) + σ2
E)r̂Ar̂B

|CĤAĤBĤE
| ,

2|ρ|pσ2
B r̂Ar̂E

|CĤAĤBĤE
| ,

2|ρ|pσ2
Ar̂B r̂E

|CĤAĤBĤE
|

)

exp

(
−

r̂2
A|CĤBĤE

| + r̂2
B |CĤAĤE

| + r̂2
E |CĤAĤB

|
|CĤAĤBĤE

|

)
(15)
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TABLE I

HIGH SNR SECRET-KEY CAPACITY OF COMPLEX (CSI) VERSUS ENVELOPE (RSS) SAMPLING IN BOTH UNCORRELATED AND CORRELATED CASES,
UNDER (As1)-(As3). χ = 0.69 . . ., σ2

∗ = max(σ2
A, σ2

B), εuncrl → 0, εcrl → 0 ASYMPTOTICALLY

In the low correlation regime, when |ρ| → 0, it is easy631

to see that fR̂A,R̂E
(r̂A, r̂E) converges to the product of632

two independent Rayleigh PDFs fR̂A
(r̂A)fR̂E

(r̂E) and thus633

h(R̂A, R̂E) = h(R̂A)+h(R̂E). As could be expected, we find634

that I(R̂A; R̂E) = I(R̂B; R̂E) = 0 and the secret-key capacity635

is given by Theorem 1.636

In the high SNR and correlation regime, the following637

lemma shows the limiting behavior of the PDFs of (R̂A, R̂E)638

and (R̂B, R̂E), which can be used to obtain a simple639

closed-form expression of I(R̂A; R̂E) and I(R̂B ; R̂E).640

Lemma 4: Under (As2), as |ρ| → 1, σ2
A → 0 and σ2

E → 0,641

the PDF fR̂A,R̂E
(r̂A, r̂E) asymptotically converges to642

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

643

+O

(√
1 − |ρ|2 + σ2

A

)
,644

which corresponds to the product of a Rayleigh and a nor-645

mal distribution. The same results holds for fR̂B ,R̂E
(r̂B , r̂E),646

replacing subscripts A by B, under (As3).647

Proof: The proof is given in Appendix VII-D. !648

Theorem 2: Under (As2), as |ρ| → 1, σ2
A → 0 and649

σ2
E → 0, the mutual information I(R̂A; R̂E) converges to650

I(R̂A; R̂E) → 1
2 log2

(
p

p(1−|ρ|2)+σ2
A+σ2

E

)
− χ,651

where the constant penalty χ is defined in Theorem 1. The652

mutual information I(R̂B; R̂E) can be similarly approximated653

by replacing subscripts A by B, under (As3).654

Proof: The proof is given in Appendix VII-E. !655

Using the result of Theorem 2, we can evaluate the lower656

bound on the secret-key capacity (11) in the high SNR,657

high correlation regime, which is given in the right column658

of Table I. As compared with the complex case, the only659

difference is the pre-log factor of 1/2 for envelope sampling.660

Note that the constant penalty χ has canceled since it is also661

present in I(R̂A; R̂B). As for the complex case, the lower662

bound is not restricted to be positive, in which case it is663

useless. The condition (7) for having a larger-than-zero lower664

bound, which was derived in the complex case, also applies665

here.666

C. Conditional Mutual Information Between Alice and Bob667

As shown in (9) in the complex case, to compute the668

conditional mutual information I(R̂A; R̂B|R̂E), we need to669

evaluate the joint different entropy h(R̂A, R̂B, R̂E). The fol-670

lowing lemma gives the joint PDF of (R̂A, R̂B , R̂E).671

Lemma 5: The joint PDF of (R̂A, R̂B, R̂E) is given by (15), 672

as shown at the bottom of the previous page, with the definition 673

of the function G(α1, α2, α3) 674

G(.) =
∫ 2π

0

∫ 2π

0

eα1 cos(φ1)+α2 cos(φ2)+α3 cos(φ2−φ1)

(2π)2
dφ1dφ2. 675

Proof: The proof is given in Appendix VII-F. ! 676

Here again, computing an analytical expression of the joint 677

differential entropy of (R̂A, R̂B, R̂E) is intricate. However, 678

it can be evaluated numerically,3 so that I(R̂A; R̂B|R̂E) and 679

thus (12) can be computed. 680

V. NUMERICAL ANALYSIS 681

This section aims at numerically analyzing the analytical 682

results presented in previous sections. The following fig- 683

ures plot the lower bound (LB) and the upper bound (UB) on 684

CCplex
s and CEvlpe

s . For the envelope case, most of the infor- 685

mation theoretic quantities could not be evaluated analytically. 686

We evaluate them by numerical integration instead. We also 687

compare some of them to the high SNR approximations that 688

we derived and where simple analytical expressions were 689

obtained. We will show many cases where the bounds become 690

tight, as foreseen by the results of Sections III and IV. The 691

mutual information quantities I(ĤA; ĤB) and I(R̂A; R̂B) 692

are also plotted for comparison, as they correspond to the 693

secret-key capacity in the case of uncorrelated observations 694

at Eve, i.e., CCplex
s = I(ĤA; ĤB) and CEvlpe

s = I(R̂A; R̂B) 695

for ρ = 0. They can also be seen as another UB, looser than 696

I(ĤA; ĤB|ĤE) and I(R̂A; R̂B|R̂E). 697

A. Impact of SNR 698

In Fig. 2, the impact of the SNR on CCplex
s and CEvlpe

s 699

is studied. The SNR is defined as SNR = p/σ2
A = p/σ2

B = 700

p/σ2
E . A first observation is the large performance gain of 701

complex sampling versus envelope sampling. This graph gives 702

a quantitative criterion to better assess the trade-off full CSI 703

versus RSS. The full CSI approach achieves higher secret-key 704

rates at the price of stringent practical requirements. On the 705

other hand, the RSS approach achieves lower key rates but is 706

much more practical to implement. 707

Focusing first on the uncorrelated case (I(ĤA; ĤB) and 708

I(R̂A; R̂B)), two penalties of envelope sampling in the high 709

SNR regime were identified in Table I: i) a pre-log factor of 710

1/2 inducing a smaller slope as a function of SNR and ii) a 711

3For instance, by discretization and truncation of fR̂A,R̂B ,R̂E
(r̂A, r̂B , r̂E)

and replacing the integral by a Riemann sum.
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Fig. 2. Secret-key capacity for complex channel sampling versus envelope
sampling as a function of SNR.

constant penalty of χ bit, inducing a translation of the curve712

downwards of about 0.69 bit.713

In the correlated case (ρ = 0.9), CCplex
s and CEvlpe

s are714

reduced given the knowledge Eve has gained from her channel715

observations. As foreseen by Prop. 1, the bounds on CCplex
s716

become tight as the SNR grows large and a constant penalty717

of log2(1 − |ρ|2) ≈ −2.4 bits is observed as compared to the718

uncorrelated case. Interestingly, the bounds become tight for719

CEvlpe
s , even for smaller values of SNR. The gap as compared720

to the uncorrelated case can be approximated from Table I as721

1
2 log2(1 − |ρ|2) + χ ≈ −0.51 bits. The inaccuracy with the722

simulated gap of −0.67 bit comes from the fact that the LB723

on CEvlpe
s in Table I only asymptotically holds for |ρ| → 1.724

B. Impact of Correlation725

In Fig. 3, the impact of the correlation coefficient magnitude726

|ρ| is studied,4 for two SNR regimes. We here consider an727

identical noise variance at Alice and Bob, while Eve uses a728

more powerful receiver so that σ2
A = σ2

B and σ2
E = σ2

A/10.729

One can see that, as |ρ| → 0, the LB and UB become tight730

and converge to the mutual information between Alice’s and731

Bob’s observations. For larger values of |ρ|, bounds are less732

tight, especially in the complex case. As foreseen by Prop. 1,733

for a same value of |ρ| < 1, the LB and UB become tight734

for large SNR values. As already discussed in the context735

of equation (7), the LBs on the secret-key capacity are not736

restricted to be positive. This case is observed in Fig. 3 for737

large values of |ρ|. Note that this case arises here given738

the reduced noise power at Eve σ2
E = σ2

A/10. In practice,739

the secret-key capacity cannot be lower than zero. We chose740

not to put negative values of the LB to zero, as it provides741

some physical insights on the problem.742

4From previous analytical studies, it was shown that CCplex
s and CEvlpe

s
only depend on the magnitude of the correlation coefficient and not on its
phase.

Fig. 3. Secret-key capacity for complex channel sampling versus envelope
sampling as a function of correlation coefficient magnitude |ρ|.

Fig. 4. Impact of a different noise variance at Alice and Bob.

C. Impact of Different Noise Variances at Alice and Bob 743

In Fig. 4, the impact of a different noise variance at Alice 744

and Bob is studied. More specifically, the SNRs at Bob and 745

Eve are kept identical, i.e., p/σ2
B = p/σ2

E , for two SNR 746

regimes (5 dB and 20 dB). On the other hand, the SNR at Alice 747

p/σ2
A is varied from 0 to 30 dB. The correlation coefficient is 748

set to ρ = 0.6. 749

As foreseen in Sections III and IV, the LB and UB bounds 750

become tight as σ2
A → 0 for a fixed value of σ2

B . Moreover, 751

as p/σ2
A grows large, CCplex

s and CEvlpe
s saturate at a plateau. 752

This can be explained by the fact that they enter a regime 753

limited by the fixed noise variance at Bob σ2
B . 754

D. Impact of Different Noise Variance at Eve 755

In Fig. 5, the impact of a different noise variance at Eve is 756

studied. More specifically, the SNRs at Alice and Bob are kept 757
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Fig. 5. Impact of a different noise variance at Eve.

identical, i.e., p/σ2
A = p/σ2

B , for two SNR regimes (5 dB and758

20 dB). On the other hand, the SNR at Eve p/σ2
E is varied759

from 0 to 30 dB. The correlation coefficient is set to ρ = 0.8.760

According to Prop. 1, the LB and UB are tight in the high761

SNR regime. Moreover, as p/σ2
E grows large, CCplex

s and762

CEvlpe
s decrease up to a certain floor. This can be explained763

by the fact that Eve performance is not limited by σ2
E but by764

the fixed value of the correlation coefficient ρ.765

VI. CONCLUSION766

In this article, we have compared the secret-key capacity767

based on the sampling process of the entire CSI or only its768

envelope or RSS, taking into account correlation of Eve’s769

observations. We have evaluated lower and upper bounds on770

the secret-key capacity. In the complex case, we obtain simple771

closed-form expressions. In the envelope case, the bounds772

must be evaluated numerically. In a number of particular cases,773

the lower and upper bounds become tight: low correlation of774

the eavesdropper, relatively smaller noise variance at Bob than775

Alice (or vice versa) and specific high SNR regimes. Finally,776

we have shown that, in the high SNR regime, the bounds can777

be evaluated in closed-form and result in simple expressions,778

which highlight the gain of CSI-based systems. The penalty779

of envelope-based versus complex-based secret-key generation780

is: i) a pre-log factor of 1/2 instead of 1, implying a lower781

slope of the secret-key capacity as a function of SNR and ii) a782

constant penalty of about 0.69 bit, which disappears as Eve’s783

channel gets highly correlated.784

VII. APPENDIX785

A. Upper Bound of Complex Sampling-Based Secret-Key786

Capacity787

We need to show that I(ĤA; ĤB|ĤE) ≤ I(ĤA; ĤB),788

which is equivalent to showing that789

0 ≥ I(ĤA; ĤB|ĤE) − I(ĤA; ĤB),790

or 791

1 ≥
|CĤAĤE

||CĤBĤE
||CĤAĤB

|
(p + σ2

A)(p + σ2
B)(p + σ2

E)|CĤAĤBĤE
| 792

0 ≥
|CĤAĤE

||CĤBĤE
||CĤAĤB

|
(p + σ2

A)(p + σ2
B)(p + σ2

E)
− |CĤAĤBĤE

|. 793

After computing the expression of each determinant and 794

several simplifications, we obtain 795

|CĤAĤE
||CĤBĤE

||CĤAĤB
|

(p + σ2
A)(p + σ2

B)(p + σ2
E)

− |CĤAĤBĤE
| 796

= −|ρ|22p3 +
|ρp|4

p + σ2
E

+ |ρ|2p4

(
1

p + σ2
A

+
1

p + σ2
B

)
797

− |ρ|4 p6

(p + σ2
A)(p + σ2

B)(p + σ2
E)

. 798

We still need to prove that this quantity is smaller or equal 799

to zero. We can first simplify the inequality by dividing by 800

|ρ|2p3. We then need to show that 801

0 ≥ −2 +
1

1 + σ2
A/p

+
1

1 + σ2
B/p

802

+|ρ|2 1
1 + σ2

E/p

(
1 − 1

(1 + σ2
A/p)(1 + σ2

B/p)

)
. 803

It is easy to see that the term on the right is maximized for 804

σ2
E = 0 and |ρ| = 1 (|ρ| ≤ 1 by definition). It is then sufficient 805

to focus on that critical case and in particular to show that 806

1 ≥ 1
1 + σ2

A/p
+

1
1 + σ2

B/p
− 1

(1 + σ2
A/p)(1 + σ2

B/p)
807

=
1 + σ2

A/p + σ2
B/p

1 + σ2
A/p + σ2

B/p + σ2
Aσ2

B/p2
, 808

which is always smaller or equal to one given that σ2
A, σ2

B 809

and σ2
E and p are positive by definition. 810

B. Proof of (In)Dependence of Random Variables in 811

Propositions 2 and 3 812

This section derives a set of results on the dependence of 813

random variables, required in the proofs of Propositions 2 814

and 3. Note that, in the following sections, we conduct all the 815

proofs considering Alice case. However, they can be straight- 816

forwardly extended to Bob’s case by replacing subscript A by 817

B in all of the following expressions. 818

A starting point is to write the PDF of the channel obser- 819

vations at Alice and Eve. We know that ĤA and ĤE follow 820

a ZMCSG with covariance matrix CĤAĤE
, which gives 821

fĤA,ĤE
(ĥA, ĥE) = e

−
|ĥA|2(p+σ2

E)+|ĥE |2(p+σ2
A)−2p"(ρ∗ ĥAĥ∗

E)
|C

ĤAĤE
|

π2|CĤAĤE
| . 822

We can express this PDF in polar coordinates using the change 823

of variables ĤA = R̂A exp(Φ̂A), ĤE = R̂E exp(Φ̂E). 824

Doing this, we obtain the joint PDF 825

fR̂A,Φ̂A,R̂E,Φ̂E
(r̂A, φ̂A, r̂E , φ̂E) 826

=
r̂Ar̂Ee

− r̂2
A(p+σ2

E)+r̂2
E(p+σ2

A)−2pr̂Ar̂E |ρ| cos(φ̂A−φ̂E−∠ρ)
|C

ĤAĤE
|

π2|CĤAĤE
| . (21) 827
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We now prove each of the results, relying on (21).828

Firstly, the random vector (Φ̂A, Φ̂E) is not independent829

from (R̂A, R̂E), if |ρ| > 0. Indeed, by simple inspection830

of (21), we can see that fR̂A,Φ̂A,R̂E ,Φ̂E
(r̂A, φ̂A, r̂E , φ̂E) -=831

fR̂A,R̂E
(r̂A, r̂E)fΦ̂A,Φ̂E

(φ̂A, φ̂E). The same result holds for832

(Φ̂A, Φ̂B) and (R̂A, R̂B), as a particularization to the case833

ρ = 1 and replacing subscripts E by B.834

Secondly, Φ̂E and (R̂A, R̂E) are independent. This can be835

shown by integrating (21) over φ̂A giving836

fR̂A,R̂E ,Φ̂E
(r̂A, r̂E , φ̂E)837

=
∫ 2π

0
fR̂A,Φ̂A,R̂E ,Φ̂E

(. . .)dφ̂A838

=
2r̂Ar̂E

π|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
e
− r̂2

A(p+σ2
E)+r̂2

E(p+σ2
A)

|C
ĤAĤE

|
, (22)839

where I0(.) is the zero order modified Bessel function of the840

first kind. Since the phase φ̂E does not appear, it implies that841

it is uniformly distributed and thus fR̂A,R̂E ,Φ̂E
(r̂A, r̂E , φ̂E) =842

fR̂A,R̂E
(r̂A, r̂E)fΦ̂E

(φ̂E). The same result holds for Φ̂B and843

(R̂A, R̂B), as a particularization to the case ρ = 1 and844

replacing subscripts E by B.845

Thirdly, the envelope and the phase of a ZMCSG are846

independent. Take for instance the PDF of ĤE , which can847

be written in polar coordinates, using a change of variable848

ĤE = R̂E exp(Φ̂E), as849

fR̂E ,Φ̂E
(r̂E , φ̂E) =

r̂E

π(p + σ2
E)

e
− r̂2

E
p+σ2

E ,850

which shows that fR̂E ,Φ̂E
(r̂E , φ̂E) = fR̂E

(r̂E)fΦ̂E
(φ̂E), with851

Φ̂E uniformly distributed, implying independence. The same852

result holds for ĤA and ĤB .853

C. Proof of Lemma 3854

The joint PDF fR̂A,R̂E
(r̂A, r̂E) can be obtained by integrat-855

ing (22) over φ̂E , which gives856

fR̂A,R̂E
(r̂A, r̂E)857

=
∫ 2π

0
fR̂A,R̂E ,Φ̂E

(r̂A, r̂E , φ̂E)dφ̂E858

=
4r̂Ar̂E

|CĤAĤE
|I0

(
2p|ρ|r̂Ar̂E

|CĤAĤE
|

)
e
− r̂2

A(p+σ2
E)+r̂2

E(p+σ2
A)

|C
ĤAĤE

|
, (23)859

and leads to the result of Lemma 3.860

D. Proof of Lemma 4861

From Bessel function theory [46, Eq. 10.40.1], we know862

that, as r → +∞,863

I0(r) =
er

√
2πr

+ ε0, |ε0| = O

(
er

r3/2

)
. (24)864

In our case, we have865

r =
2p|ρ|r̂Ar̂E

|CĤAĤE
| =

2p|ρ|r̂Ar̂E

(1 − |ρ|2)p2 + p(σ2
E + σ2

A) + σ2
Eσ2

A

.866

(25)867

The Bessel asymptotic expansion is thus accurate when r 868

becomes large. This is precisely the case as σ2
A → 0, σ2

E → 0 869

and |ρ| → 1, for r̂A > 0 and r̂E > 0. Using the Bessel 870

asymptotic expansion of I0(.) in (23), we get 871

fR̂A,R̂E
(r̂A, r̂E) =

2
p

√
r̂Ar̂E

|ρ| e
− r̂2

Aσ2
E+r̂2

E(σ2
A+p(1−|ρ|2))

|C
ĤAĤE

|
872

1√
π|CĤAĤE

|/p
e
− (r̂A−|ρ|r̂E)2

|C
ĤAĤE

|/p + ε1, (26) 873

where ε1 is the approximation error 874

ε1 =
4r̂Ar̂E

|CĤAĤE
| exp

(
− r̂2

A(p + σ2
E) + r̂2

E(p + σ2
A)

|CĤAĤE
|

)
ε0. 875

Note that, in the particular cases r̂A = 0 or r̂E = 0, ε1 = 0 876

since (26) = (23) = 0. Using (24) and the definition of r 877

in (25), we can bound the error ε1 as follows 878

|ε1| = O





(
|CĤAĤE

|
)1/2

e
−

r̂2
A(p+σ2

E)+r̂2
E(p+σ2

A)−2p|ρ|r̂Ar̂E

|C
ĤAĤE

|

(p|ρ|)3/2 (r̂Ar̂E)1/2




879

= O

(√
1 − |ρ|2 + σ2

A + σ2
E

)
, 880

where we used the fact that the exponential can be bounded in 881

the asymptotic regime by an independent constant. The second 882

exponential term of (26) suggests the following approximation 883

r̂A ≈ |ρ|r̂E . We thus obtain 884

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

|
e
− (r̂A−|ρ|r̂E)2

|C
ĤAĤE

|/p

p
√

π|CĤAĤE
|/p

885

+ε1 + ε2, (27) 886

where ε2 is the approximation error related to this second 887

approximation 888

ε2 =
2
p

e
− (r̂A−|ρ|r̂E )2

|C
ĤAĤE

|/p

√
π|CĤAĤE

|/p

(√
r̂Ar̂E

|ρ| e
− r̂2

Aσ2
E+r̂2

E(σ2
A+p(1−|ρ|2))

|C
ĤAĤE

|
889

−r̂Ee
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

|

)
. 890

When r̂A = |ρ|r̂E , the term in parenthesis is exactly zero and 891

so ε2 = 0. In other cases, it can be bounded by an independent 892

constant as σ2
A → 0, σ2

E → 0 and |ρ| → 1, giving 893

|ε2| = O



 e
− β

(1−|ρ|2)+σ2
A+σ2

E

√
1 − |ρ|2 + σ2

A + σ2
E



 , 894

where β is some real strictly positive constant. Moreover, 895

we can still simplify (27) by performing the two following 896

approximations |CĤAĤE
|/p ≈ p(1 − |ρ|2) + σ2

A + σ2
E and 897
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p(1−|ρ|2)+|ρ|2σ2
E+σ2

A
|CĤAĤE

| ≈ 1/p so that we get898

fR̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A

+σ2
E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

899

+ε1 + ε2 + ε3 + ε4,900

which gives the asymptotic distribution of Lemma 4 and901

where ε3 and ε4 are the approximation errors related to the902

approximations903

ε3 =
2r̂E

p
√

π|CĤAĤE
|/p

(
e
−r̂2

E
p(1−|ρ|2)+|ρ|2σ2

E+σ2
A

|C
ĤAĤE

| − p(r̂A−|ρ|r̂E)2

|C
ĤAĤE

|
904

−e−
r̂2

E
p e

− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

)
905

ε4 =
2r̂Ee−

r̂2
E
p e

− (r̂A−|ρ|r̂E)2

p(1−|ρ|2)+σ2
A+σ2

E

p
√

π



 1√
|CĤAĤE

|/p
906

− 1√
p(1 − |ρ|2) + σ2

A + σ2
E

)
.907

To bound ε3 and ε4, we can use a first order Taylor expansion908

of the exponential and the inverse of a square root respectively.909

We find910

|ε3| = O

(
(1 − |ρ|2)σ2

E + σ2
Aσ2

E

(1 − |ρ|2 + σ2
A + σ2

E)3/2

)
911

|ε4| = O

(
σ2

A + σ2
E√

1 − |ρ|2 + σ2
A + σ2

E

)
.912

Finally, combining the bounds on the approximation errors913

ε1, ε2, ε3 and ε4, we find that the total approximation error914

can be bounded as915

|ε1 + ε2 + ε3 + ε4| = O

(√
1 − |ρ|2 + σ2

A

)
,916

where we used (As2). This completes the proof.917

E. Proof of Theorem 2918

Let us define the asymptotic PDF of fR̂A,R̂E
(r̂A, r̂E) as919

fHigh

R̂A,R̂E
(r̂A, r̂E) =

2r̂Ee−
r̂2

E
p

p

e
− (r̂A−|ρ|r̂E )2

p(1−|ρ|2)+σ2
A+σ2

E

√
π(p(1 − |ρ|2) + σ2

A + σ2
E)

.920

We can see that the PDF factorizes as fHigh

R̂A,R̂E
(r̂A, r̂E) =921

f1(r̂E)f2(r̂A|r̂E). We can identify f1(r̂E) to be a Rayleigh922

distribution with parameter p
2 , while the conditional PDF923

f2(r̂A|r̂E) is a normal centered in |ρ|r̂E and of variance924

(p(1 − |ρ|2) + σ2
A + σ2

E)/2.925

Results such as [47, Th. 1] can be used to prove that,926

for a sequence of PDFs such that fR̂A,R̂E
(r̂A, r̂E) →927

fHigh

R̂A,R̂E
(r̂A, r̂E) pointwise, their differential entropy also928

converges provided that: i) their second order moments are929

bounded from above and ii) their PDF is bounded from above.930

These two conditions are satisfied in our case as long as p,931

σ2
A and σ2

E are bounded from above, which makes practical932

sense. In the pathological case σ2
A = 0, σ2

E = 0 or |ρ| = 1, 933

|CĤAĤE
| = 0 and the PDFs are unbounded, which makes 934

practical sense since h(R̂A, R̂E) → −∞. Unfortunately, 935

finding the analytical rate of convergence of the differential 936

entropy is intricate. 937

All of the following expressions should be understood in the 938

asymptotic sense as σ2
A → 0 and σ2

E → 0 and |ρ| → 1. Using 939

the chain rule for the differential entropy h(X, Y ) = h(X) + 940

h(Y |X), the general expression of the differential entropies 941

of Rayleigh and normal distributions, the joint differential 942

entropy of the distribution fHigh

R̂A,R̂E
(r̂A, r̂E) can be easily 943

computed and we find 944

h(R̂A, R̂E) → 1
2

log2

(
p2(1 − |ρ|2) + p(σ2

A + σ2
E)
)

945

+
1
2

log2

(
πe3+γ

4

)
. 946

Inserting this expression in (19), together with the expressions 947

of h(R̂A) and h(R̂E) given in (17) and (20) respectively, 948

we finally obtain 949

I(R̂A; R̂E) → 1
2

log2

(
(p + σ2

A)(p + σ2
E)

p2(1 − |ρ|2) + p(σ2
A + σ2

E)

)
+ χ 950

→ 1
2

log2

(
p

p(1 − |ρ|2) + σ2
A + σ2

E

)
+ χ, 951

with the definition of χ introduced in Theorem 1, which 952

concludes the proof. 953

F. Proof of Lemma 5 954

We know that ĤA, ĤB and ĤE follow a ZMCSG with 955

covariance matrix CĤAĤBĤE
, which gives 956

fĤA,ĤB ,ĤE
(ĥA, ĥB, ĥE) 957

=
e

2p(p(1−|ρ|2)+σ2
E)ĥAĥ∗

B+2 pσ2
B"(ĥAρ∗ĥ∗

E )+2 pσ2
A"(ĥB ρ∗ĥ∗

E)
|C

ĤAĤBĤE
|

π3|CĤAĤBĤE
| 958

e
−

|ĥA|2|C
ĤB ĤE

|+|ĥB |2|C
ĤAĤE

|+|ĥE |2|C
ĤAĤB

|

|C
ĤAĤBĤE

|
. 959

This PDF can be expressed in polar coordinates as 960

fR̂A,R̂B ,R̂E,Φ̂A,Φ̂B ,Φ̂E
(r̂A, r̂B , r̂E , φ̂A, φ̂B, φ̂E) 961

=
r̂Ar̂B r̂E

π3|CĤAĤBĤE
|e

−
r̂2

A|C
ĤBĤE

|+r̂2
B|C

ĤAĤE
|+r̂2

E|C
ĤAĤB

|

|C
ĤAĤB ĤE

|
962

e
2p(p(1−|ρ|2)+σ2

E )r̂Ar̂B cos(φ̂A−φ̂B)
|C

ĤAĤBĤE
|

e
2pσ2

Br̂Ar̂E |ρ| cos(φ̂A−φ̂E−∠ρ)
|C

ĤAĤBĤE
|

963

e
2pσ2

Ar̂Br̂E |ρ| cos(φ̂B−φ̂E−∠ρ)
|C

ĤAĤBĤE
|

. (28) 964

The joint PDF fR̂A,R̂B ,R̂E
(r̂A, r̂B , r̂E) can be obtained by 965

integrating (28) over the phases φ̂A, φ̂B and φ̂E , which leads 966

to the result of Lemma 5. Indeed the first two terms do not 967

depend on the phases, so that they can be put out of the 968

integrals. The third term however does. One can easily see 969

that the phase of ρ does not impact the result, so that it can be 970

removed. One can further notice that the cosines do not depend 971

on the absolute phases φ̂A, φ̂B , φ̂E but on their differences. 972
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Making a change of variable φ1 = φ̂A − φ̂B , φ2 = φ̂A − φ̂E ,973

we see that the last difference is φ̂B − φ̂E = φ2 − φ1. Hence,974

one integral simplifies.975
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