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Abstract—Cell densification is a key driver to increase area
spectral efficiencies in multi-antenna cellular systems. As increas-
ing the densities of base stations (BSs) and users that share the
same spectrum, however, both inter-user-interference (IUI) and
inter-cell interference (ICI) problems give rise to a significant
loss in spectral efficiencies in such systems. To resolve this
problem under the constraint of local channel state information
per BS, in this paper, we present a novel noncooperative multi-
user multiple-input multiple-output (MIMO) precoding tech-
nique, called signal-to-interference-pulse-leakage-pulse-noise-ratio
(SILNR) maximization precoding. The key innovation of our
distributed precoding method is to maximize the product of
SILNRs of users per cell using local channel state information at
the transmitter (CSIT). We show that our precoding technique
only using local CSIT can asymptotically achieve the multi-cell
cooperative bound attained by cooperative precoding using global
CSIT in some cases. We also present a precoding algorithm that
is robust to CSIT errors in multi-cell scenarios. By multi-cell
system-level simulations, we demonstrate that our distributed
precoding technique outperforms all existing noncooperative
precoding methods considerably and can also achieve the multi-
cell bound very tightly even with not-so-many antennas at BSs.

I. INTRODUCTION

Heterogeneous cellular networks (HetNets) are promising
solutions for achieving high data rates ubiquitously [1]–[5].
HetNets are comprised of distinct network tiers, each with
different transmission power and number of antennas. By
deploying low power base stations (BSs) (e.g., pico and
femto BSs) overlaid onto macrocells, HetNets considerably
increase area spectral efficiencies by cell-splitting gains. When
operating these small BSs using the same frequency/time
resources with macro-cells, significant intra-tier and inter-tier
interference problems take place. This interference problem
makes the area spectral efficiency gains dwindle. As a result,
an effective interference mitigation technique is indispensable
to obtain the area spectral efficiency gains in HetNets [6]–[8].

Massive multiple-input multiple-output (MIMO) is an effec-
tive solution to resolve this interference problem by exploiting
a large degree of freedom in the spatial domain [9]–[11]. With
time-division-duplexing (TDD) operation, it has shown in [12]
that simple precoding techniques with perfect channel state
information at the transmitter (CSIT) are sufficient to eliminate
both inter-user-interference (IUI) and inter-cell-interference
(ICI) when using an infinite number of antennas. This result
implies that noncooperative precoding with perfect CSIT of
the associated users in a cell can be asymptotically optimal
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when the number of antennas is sufficiently larger than that of
active downlink users per cell [13]. In HetNets, however, the
number of antennas of BSs in small-cells cannot be many by
the cost and hardware limitations [1]–[3]. Besides, the density
of active users in the hotspots is relatively high. In this case,
the channel hardening effects are not sufficiently pronounced
except for the ray-based channel model cases [14]. In general,
the simple precoding methods fail to successfully eliminate
both ICI and IUI in massive MIMO networks [12], [13].

This paper focuses on a multi-user MIMO (MU-MIMO)
HetNet where the macro-cell tier is overlaid with small-cells,
each small-cell BS is equipped with a few antennas. The user
density of the small-cell areas is higher than that of the other
areas. With a limited number of antennas at the BSs, most
prior works have focused on cooperative precoding strategies
to eliminate both IUI and ICI, which provides considerable
gains in the sum-spectral efficiency. In practice, however,
these cooperative precoding strategies are undesirable when
considering the overheads for the CSI exchange among BSs
via backhaul signaling; the gains by the cooperation can
disappear [15], [16]. Instead, the precoding strategies using
local CSIT have significant merit to simultaneously reduce IUI
and interference leakage to other cells’ users without causing
any signaling overheads.

One of the challenges in designing noncooperative precod-
ing strategies is that the ICI leakage mitigation using local
CSIT does not necessarily maximize the sum-spectral effi-
ciency; thereby, the performance gap between the cooperative
and noncooperative methods can be consequential. Therefore,
finding a noncooperative precoding strategy that can closely
attain the performance gain of the cooperative precoding is
a significant yet challenging problem. This paper tackles this
problem and shows finding such a noncooperative precoding
strategy is affirmative in some instances.

A. Prior Works

There are extensive prior studies for multi-cell linear pre-
coding methods using local CSIT. The simplest method is
maximum ratio transmission (MRT) [17], which is also known
as matched filtering (MF) precoding. To employ MRT, each
BS only requires to have the local CSIT of its cell. In a
multi-cell massive MIMO setting, where the number of BS
antennas is much larger than that of users, it has shown in
[12] that this simple precoding can asymptotically eliminate
both IUI and ICI under perfect local CSIT assumption. Thanks
to its simple precoding structure, the analytical expressions
for achievable rates have been derived in closed-forms as
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a function of relevant system parameters in massive MIMO
settings [18], [19].

Zero-forcing (ZF) [20] is another popular precoding method
to eliminate IUI using local CSIT. Unlike MRT precoding,
it can entirely remove IUI regardless of the number of BS
antennas by selecting the number of users that is not larger
than that of BS. Particularly, when the number of users is
sufficiently larger than that of BS antennas, ZF precoding with
semi-orthogonal user selection [21] has shown to asymptot-
ically achieve the optimal capacity scaling law attained by
[22] (DPC). In a massive MIMO setup, in which a BS has
an infinite number of antennas, ZF precoding can maximize
the sum-spectral efficiency under the perfect CSIT assumption
[12]. When the BS has a not-so-large number of antennas
compared to the number of users such as HetNets [1], [2],
[23], ZF precoding is not effective to mitigate both IUI and
ICI simultaneously because of the inefficient utilization of the
spatial degrees of freedom.

Signal-to-leakage-plus-noise-ratio (SLNR) precoding [24]
is an effective method to suppress both IUI and ICI using
local CSIT in multi-cell MIMO networks. It turns out that
this precoding is equivalent to the minimum mean square
error (MMSE) precoding (or regularized ZF precoding) under
uniform power allocation. In a multi-cell massive MIMO
setting, the multi-cell MMSE precoding method has been
proposed in [25] by taking into account pilot contamination
effects. Particularly, in cell-free massive MIMO setting [26],
SLNR precoding is an attractive precoding method using local
CSIT because of its scalability and ICI mitigation capability.
The major limitation is that SLNR maximization precoding
does not necessarily maximize sum-spectral efficiency.

Several linear precoding algorithms have been proposed to
maximize the sum-spectral efficiency in single-cell and multi-
cell multi-user MIMO systems [25], [27]–[29]. Finding the
global optimal linear precoder that maximizes the sum-spectral
efficiency is NP-hard. The weighted-MMSE (WMMSE) pre-
coding is the most popular sub-optimal precoding technique
in the sum-spectral efficiency maximization problem [27].
Thanks to the equivalence between the sum-spectral efficiency
maximization problem and the WMMSE minimization, an
alternating minimization algorithm has been proposed, which
converges to a local-optimal solution. However, this precoding
cannot be applicable when the number of antennas is massive
at the BS because it requires very high computational com-
plexity. Recently, inspired by principal component analysis
(PCA), a novel low-complexity algorithm called generalized
power iteration precoding (GPIP) has been presented, which
guarantees the first-order optimality for the sum-spectral effi-
ciency maximization problem under perfect and noisy CSIT
[28]. This precoding method has also been extended to a multi-
cell scenario with pilot contamination effects [29]. This multi-
cell precoding method, however, requires to exchange the CSI
among BSs, which causes a significant signaling overhead.

B. Contributions

The main contributions of this paper is summarized as
follows:

• We introduce a new performance metric to effectively
mitigate both IUI and ICI in a distributed manner using
local CSIT for MU-MIMO HetNets. The new perfor-
mance metric is the ratio of signal-to-interference-pulse-
leakage-pulse-noise-ratio (SILNR). Intuitively, SILNR
measures the ratio between the desired signal power and
the sum of IUI, the interference leakage, and the noise
power. However, this new metric significantly differs from
the conventional SLNR [24], [25] in two aspects. First,
while the IUI in the definition of the existing SLNR
is treated as the intra-cell leakage interference (i.e., the
uplink IUI), the IUI in the SILNR is the exact downlink
IUI. Second, the interference leakage term in the SLNR is
the sum of interference leakage signals to the individual
users in the other cells. In contrast, the interference
leakage term in our SILNR is the geometric mean of the
interference leakage signals to the other cell users. We
show that maximizing the product of SILNRs of users
per cell using local CSIT can achieve the identical sum
spectral efficiency with the cooperative precoding method
using global CSIT in a two-cell MU-MIMO system under
certain cases.

• We generalize this precoding method for a multi-cell
setting under noisy CSIT assumption. Unfortunately, the
product of SILNRs maximization is a non-convex (and
even NP-hard) optimization problem similar to the sum-
spectral efficiency maximization problem. To design the
precoding method, we first derive the first- and second-
order necessary conditions for this non-convex optimiza-
tion problem. Using the derived conditions, we present
a low-complexity iterative algorithm that guarantees to
converge a locally-optimal solution. The key innovation
of the proposed precoding is to identify the joint solutions
for the scheduled users per cell, the beamforming vectors
of them, and the power allocated to each beam using local
and noisy CSIT.

• Using both link-level and system-level simulations, we
exhibit that the proposed precoding method significantly
outperforms the existing distributed precoding techniques,
including MRT, ZF, SLNR, and the sum-spectral effi-
ciency maximization precoding per cell in both perfect
and imperfect CSIT scenarios. One remarkable observa-
tion is that the proposed method asymptotically achieves
the upper bound performance attained by the multi-
cell cooperative precoding method when increasing the
number of macro BS antennas. This result confirms that
our noncooperative precoding technique using local CSIT
can be a pragmatic solution to resolving dense cellular
networks’ interference problems.

C. Notations

Throughout this paper, we use the following notations. The
C denotes a set of a complex number; R denotes the set of a
real number. The ⊗ is the Kronecker product operation. We
use Ex [x] to denote the expectation of a random vector x. The
Re {𝑥} means the real part of a complex scalar 𝑥. In addition,
we use 𝜆min (A) and 𝜆max (A) to denote the minimum and
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Fig. 1. An illustration of MU-MIMO HetNets.

maximum eigenvalue of matrix A, respectively. A matrix I𝑁
denote an 𝑁 × 𝑁 identity matrix. Also, x ∼ CN (m,R)
indicates that the random vector x is distributed by complex
Gaussian distribution with mean vector m and covariance
matrix R.

II. SYSTEM MODEL

We consider a heterogeneous cellular network, which com-
prises of 𝐿 BSs each equipped with 𝑁ℓ antennas for ℓ ∈ L ,
{1, . . . , 𝐿}. The ℓth BS serves 𝐾ℓ users with single antenna.

A. Downlink Channel Model

As illustrated in Fig. 1, we denote the downlink channel
vector from the ℓth BS to the 𝑘th user in the 𝑗 th cell by
hℓ, 𝑗,𝑘 ∈ C𝑁ℓ×1. This downlink channel is modeled as

hℓ, 𝑗,𝑘 = 𝛽
1
2
ℓ, 𝑗,𝑘

gℓ, 𝑗,𝑘 , (1)

where 𝛽ℓ, 𝑗,𝑘 ∈ R is a large scale fading coefficient and
gℓ, 𝑗,𝑘 ∈ C𝑁ℓ×1 is a small scale fading, which is distributed
as hℓ, 𝑗,𝑘 ∼ CN(0, 𝛽ℓ, 𝑗,𝑘Rℓ, 𝑗,𝑘 ) with Rℓ, 𝑗,𝑘 = E

[
gℓ, 𝑗,𝑘gH

ℓ, 𝑗,𝑘

]
for ∀ℓ, 𝑗 ∈ L and ∀𝑘 ∈ K 𝑗 , {1, . . . , 𝐾 𝑗 }. This matrix
captures the spatial correlation information on the channel.
Under a stationary process assumption, it is typically obtained
by using both angle-of-arrival (AoA) vectors of multipaths and
the corresponding angular autocorrelation function.

B. Local and Noisy CSIT Acquisition

We present a process of acquiring local CSIT at each BS.
For ease of exposition, we focus on the ℓth BS. We define
a subset Cℓ ⊂ L as the collection of BSs that use mutually
orthogonal uplink pilot sequences with those of the ℓth BS
for uplink channel training. This BS subset is assumed to be
predetermined with a proper cell planning method; thereby,
no dynamic BS cooperation is required. Under the premise
that ℓth BS has full knowledge of the orthogonal pilots, it can
estimate the channel from the users associated with the 𝑗 th BS
where 𝑗 ∈ Cℓ . For example, let assume that the uplink users
served by BS 1, BS 2, BS 3, and BS 4 use mutually orthogonal
pilot sequences, then C1 = C2 = C3 = C4 = {1, 2, 3, 4}. To
guarantee the orthogonality, the uplink pilot length satisfies
the condition of 𝜏u ≥

∑4
𝑗=1 𝐾 𝑗 . Then, BS ℓ can estimate

the channels from the users associated with BS 𝑗 where
𝑗 ∈ {1, 2, 3, 4}. Thanks to the channel reciprocity in TDD
mode, each BS obtains the downlink channel vectors from the
uplink channel estimates with a proper RF circuit calibration
process.

Applying the MMSE estimator, the estimated downlink
channel vector from the ℓth BS to the 𝑘th user in the cell
is

ĥℓ,ℓ,𝑘 = hℓ,ℓ,𝑘 − eℓ,ℓ,𝑘 , (2)

where eℓ,ℓ,𝑘 is the estimation error vector and it is distributed
as complex Gaussian with zero-mean and covariance matrix
𝚽ℓ,ℓ,𝑘 = E

[
eℓ,ℓ,𝑘eH

ℓ,ℓ,𝑘

]
∈ C𝑁ℓ×𝑁ℓ , i.e., CN

(
0,𝚽ℓ,ℓ,𝑘

)
. The

error covariance matrix is [30], [31]:

𝚽ℓ,ℓ,𝑘 = 𝛽ℓ,ℓ,𝑘Rℓ,ℓ,𝑘

− 𝛽2
ℓ,ℓ,𝑘Rℓ,ℓ,𝑘

©­«
∑︁
( 𝑗 ,𝑖) ∈C̄ℓ

𝛽ℓ, 𝑗,𝑖Rℓ, 𝑗,𝑖 +
𝜎2

𝜏u𝑝ul
I𝑁

ª®¬
−1

Rℓ,ℓ,𝑘 , (3)

where 𝑝ul is the pilot transmission power and C̄ℓ is the
collection of users who use the non-orthogonal uplink pi-
lots with that of the 𝑘th user in the ℓth cell, i.e., C̄ℓ ={
( 𝑗 , 𝑖) | ∀ 𝑗 ∈ L \ Cℓ ,∀𝑖 ∈ K 𝑗

}
.

C. Ergodic Downlink Spectral Efficiency with Noisy CSIT

Suppose 𝜏c be a channel coherence time interval. We also
let xℓ [𝑡] ∈ C𝑁ℓ×1 be the transmit signal of the ℓth BS using
the 𝑡th time slot where 𝑡 ∈ [1, 𝜏c]. The ℓth BS transmits
𝐾ℓ independent data symbols

{
𝑠ℓ,1 [𝑡], . . . , 𝑠ℓ,𝐾ℓ [𝑡]

}
using

time slot 𝑡 along with precoding vectors {fℓ,1, . . . , fℓ,𝐾ℓ }. The
precoding vectors are constructed using noisy and local CSIT
at the ℓth BS, i.e.,

{
ĥℓ,ℓ,1, ĥℓ,ℓ,2, . . . , ĥℓ,ℓ,𝐾ℓ

}
and

{
ĥℓ, 𝑗,𝑖

}
where 𝑗 ∈ Cℓ and 𝑖 ∈ K 𝑗 . We assume that each data symbol
𝑠ℓ,𝑘 [𝑡] is drawn from a Gaussian codebook with transmit
power 𝑃ℓ , i.e., 𝑠ℓ,𝑘 [𝑡] ∼ CN(0, 𝑃ℓ). In addition, the linear
precoding vectors satisfy the condition of

∑𝐾ℓ
𝑘=1 ‖fℓ,𝑘 ‖

2
2 ≤ 1 to

meet the power constraint per BS. Then, the transmit signal
of the ℓth BS at the 𝑡th time slot is

xℓ [𝑡] =
𝐾ℓ∑︁
𝑘=1

fℓ,𝑘 𝑠ℓ,𝑘 [𝑡] . (4)

Then, the received signal of the 𝑘th user in the ℓth cell is
given by

𝑦ℓ,𝑘 [𝑡]=
𝐿∑︁
𝑗=1

hH
𝑗 ,ℓ,𝑘x 𝑗 [𝑡] + 𝑛ℓ,𝑘 [𝑡], (5)

where 𝑛ℓ,𝑘 [𝑡] is the additive complex Gaussian noise with
zero-mean and variance 𝜎2, i.e., CN

(
0, 𝜎2) . Then, the signal-

to-interference-plus-noise ratio (SINR) of the 𝑘th user in the
ℓth cell is given by

SINRℓ,𝑘 =

���hH
ℓ,ℓ,𝑘

fℓ,𝑘
���2∑𝐾ℓ

𝑖≠𝑘

���hH
ℓ,ℓ,𝑘

fℓ,𝑖
���2 +∑𝐿

𝑗≠ℓ

∑𝐾 𝑗

𝑖=1
𝑃𝑗

𝑃ℓ

���hH
𝑗 ,ℓ,𝑘

f 𝑗 ,𝑖
���2 + 𝜎2

𝑃ℓ

.

(6)
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Let 𝜏d be the downlink channel training length. Using the
orthogonal downlink channel training sequence with length
𝜏d ≥

∑
𝑗∈Cℓ 𝐾 𝑗 , i.e., demodulation reference signals in Long-

Term Evolution (LTE) systems, the 𝑘th downlink user asso-
ciated with the ℓth BS can estimate the precoded downlink
channel state information at receiver (CSIR), i.e., hH

ℓ,ℓ,𝑘
fℓ,𝑘 .

For simplicity, we assume that each downlink user has perfect
CSIR for the precoded channel for the ease of exposition.
To incorporate the effect of imperfect CSIR, one can use the
notion of generalized mutual information introduced in [32],
[33] to redefine SINR per user with the channel estimation
error variance.

With noisy and local CSIT at the ℓth BS, i.e.,
Ĥℓ =

{
ĥℓ, 𝑗,𝑖 | 𝑗 ∈ Cℓ , 𝑖 ∈ K 𝑗

}
corresponding to the Hℓ ={

hℓ, 𝑗,𝑖 | 𝑗 ∈ Cℓ , 𝑖 ∈ K 𝑗
}
, it can estimate the instantaneous

spectral efficiency of the 𝑘th downlink user [28], [29]:

𝑅ℓ,𝑘

(
Ĥℓ

)
= EHℓ | Ĥℓ

[
log2

(
1 + SINRℓ,𝑘

)
| Ĥℓ

]
, (7)

where the expectation is taken over the CSIT error distribution,
i.e., eℓ,ℓ,𝑘 ∼ CN

(
0,𝚽ℓ,ℓ,𝑘

)
and eℓ, 𝑗,𝑖 ∼ CN

(
0,𝚽ℓ, 𝑗,𝑖

)
.

This quantity measures the average spectral efficiency over
the CSIT error distribution for a given estimates of CSIT.
Therefore, by taking the expectations over every fading state,
the effective ergodic spectral efficiency is given by

𝑅̄ℓ,𝑘 =

(
1 − 𝜏u + 𝜏d

𝜏c

)
EĤℓ

[
𝑅ℓ,𝑘

(
Ĥℓ

)]
=

(
1 − 𝜏u + 𝜏d

𝜏c

)
E

[
log2

(
1 + SINRℓ,𝑘

) ]
, (8)

where the pre-log term is a normalization factor by the uplink
and downlink channel training overhead. To maximize the
ergodic spectral efficiency, we need to optimize the precoding
vectors that maximize the instantaneous spectral efficiency
using noisy CSIT knowledge in every fading state.

III. NONCOOPERATIVE MULTI-CELL PRECODING

In this section, we present a novel noncooperative precoding
method using local CSIT. To highlight the idea, we focus
on a two-cell MU-MIMO system when each BS has perfect
knowledge of local CSIT.

A. From Centralized to Distributed Precoding
We commence by reviewing the multi-cell cooperative

precoding method using global CSIT [29]. We then explain
when the proposed SILNR maximization precoding using local
CSIT can achieve the identical performance to the multi-cell
cooperative one.

Cooperative precoding using global CSIT: Let fℓ =[
fH
ℓ,1, f

H
ℓ,2, . . . , f

H
ℓ,𝐾

]H
∈ C𝑁ℓ𝐾ℓ×1 be the concatenated precod-

ing vector used at the ℓth BS where ℓ ∈ {1, 2}. We also let
e𝑘 = [0, . . . , 1, . . . , 0]T ∈ R𝐾ℓ×1 be a unit vector with the
nonzero value in the 𝑘th element. Using this stacked precoding
vector, we rewrite the SINR of the 𝑘th user in cell ℓ ∈ {1, 2}
in (6) as

SINRℓ,𝑘 (f1, f2) =
fH
ℓ

Sℓ,ℓ,𝑘 fℓ
fH
ℓ

Uℓ,ℓ,𝑘 fℓ + fH
ℓ̄

Cℓ̄ ,ℓ,𝑘 fℓ̄
, (9)

where ℓ̄ = 3− ℓ ∈ {1, 2}, Sℓ,ℓ,𝑘 , Uℓ,ℓ,𝑘 , and Cℓ̄ ,ℓ,𝑘 are defined
as

Sℓ,ℓ,𝑘 = e𝑘eT
𝑘 ⊗ hℓ,ℓ,𝑘hH

ℓ,ℓ,𝑘 ∈ C
𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ , (10)

Uℓ,ℓ,𝑘 = I𝐾ℓ ⊗ hℓ,ℓ,𝑘hH
ℓ,ℓ,𝑘 − Sℓ,ℓ,𝑘 +

𝜎2

𝑃ℓ
I𝑁ℓ𝐾ℓ ∈ C𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ ,

(11)

Cℓ̄ ,ℓ,𝑘 = I𝐾ℓ ⊗
𝑃ℓ

𝑃ℓ̄
hℓ̄ ,ℓ,𝑘h

H
ℓ̄ ,ℓ,𝑘

∈ C𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ . (12)

Then, the sum-spectral efficiency is

𝑅sum (f1, f2) = 𝑅sum
1 (f1, f2) + 𝑅sum

2 (f1, f2), (13)

where

𝑅sum
ℓ (f1, f2) =

𝐾ℓ∑︁
𝑘=1

log2

(
fH
ℓ

(
Sℓ,ℓ,𝑘 + Uℓ,ℓ,𝑘

)
fℓ + fH

ℓ̄
Cℓ̄ ,ℓ,𝑘 fℓ̄

fH
ℓ

Uℓ,ℓ,𝑘 fℓ + fH
ℓ̄

Cℓ̄ ,ℓ,𝑘 fℓ̄

)
(14)

for ℓ ∈ {1, 2}. Consequently, the sum-spectral efficiency
maximization problem is a form:

arg max
fℓ ∈C𝑁ℓ𝐾ℓ

𝑅sum (f1, f2), (15a)

subject to ‖fℓ ‖22 = 1, ∀ℓ ∈ {1, 2}. (15b)

This optimization problem finds a joint solution for a set of
scheduled users per cell, the precoding vector, and the power
allocation per stream for both BSs to maximize the sum-
spectral efficiency. Unfortunately, finding a global optimal
solution is infeasible in practice. Besides, global CSIT knowl-
edge is required to obtain a local-optimal solution, as shown in
[29]. This global CSIT knowledge requirement underrates the
cooperative transmission gains because of the CSIT sharing
overheads. This is especially pronounced when the number of
cooperative BS increases [15], [16], [34].

Distributed precoding using local CSIT: We propose
a novel distributed precoding strategy that harnesses local
CSIT only. The central idea is to maximize the sum-spectral
efficiency under the local CSIT constraint. To accomplish this,
we introduce a new metric named SILNR. The SILNR of the
𝑘th user of BS ℓ is defined as

SILNRℓ,𝑘 (fℓ) =
fH
ℓ

Sℓ,ℓ,𝑘 fℓ

fH
ℓ

Uℓ,ℓ,𝑘 fℓ + Lℓ,ℓ̄ (fℓ)
𝐾
ℓ̄
𝐾ℓ

, (16)

where Lℓ,ℓ̄ (fℓ) is the geometric mean of the interference
leakage to users in the other cells by the transmission of BS
ℓ, i.e.,

Lℓ,ℓ̄ (fℓ) =
©­«
𝐾ℓ̄∏
𝑗=1

fH
ℓ Cℓ,ℓ̄ , 𝑗 fℓ

ª®¬
1
𝐾
ℓ̄

. (17)

We provide some remarks on this SILNR value.
• SILNRℓ,𝑘 (fℓ) is a function of only fℓ for ℓ ∈ {1, 2}; this

implies that each BS constructs the aggregated multi-user
precoding vector fℓ ∈ C𝑁ℓ𝐾ℓ without sharing CSIT.

• When 𝐾ℓ̄ = 𝐾ℓ , the SILNR takes into account the effec-
tive interference leakage power as the geometric mean
of

{
fH
ℓ

Cℓ,ℓ̄ ,1fℓ , . . . , fH
ℓ

Cℓ,ℓ̄ ,𝐾ℓ̄ fℓ
}
. This geometric mean
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structure plays a key role in maximizing the sum-spectral
efficiency using local CSIT, which will be explained in
the sequel. In addition, when 𝐾ℓ̄ ≠ 𝐾ℓ , the exponent
of Lℓ,ℓ̄ (fℓ),

𝐾ℓ̄
𝐾ℓ

, controls the IUI and the interference
leakage toward other cells. For example, in the case when
𝐾ℓ � 𝐾ℓ̄ , this exponent 𝐾ℓ̄

𝐾ℓ
diminishes the interference

leakage power. This implies that the precoder devotes to
reduce the IUI power more than the leakage interference
power.

• SILNRℓ,𝑘 (fℓ) is always smaller than 𝜌ℓ,𝑘 (fℓ) =
fH
ℓ

Sℓ,ℓ,𝑘 fℓ
fH
ℓ

Uℓ,ℓ,𝑘 fℓ
, because the leakage power term Lℓ,ℓ̄ (fℓ)

𝐾
ℓ̄
𝐾ℓ

is positive. Therefore, one can interpret a function
log2

(
1 + SILNRℓ,𝑘

)
as a lower bound of the spectral

efficiency of log2
(
1 + 𝜌ℓ,𝑘

)
by penalizing the interference

leakage generated by BS ℓ.

Using this new metric, we define a sum-rate function of BS
ℓ as

𝑅̂sum
ℓ (fℓ) =

𝐾ℓ∑︁
𝑘=1

log2
(
1 + SILNRℓ,𝑘 (fℓ)

)
= log2

©­­«
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Sℓ,ℓ,𝑘 + Uℓ,ℓ,𝑘

)
fℓ + Lℓ,ℓ̄ (fℓ)

𝐾
ℓ̄
𝐾ℓ

fH
ℓ

Uℓ,ℓ,𝑘 fℓ + Lℓ,ℓ̄ (fℓ)
𝐾
ℓ̄
𝐾ℓ

ª®®¬ . (18)

Consequently, each BS independently identifies a joint so-
lution for the user-selection, precoding, and power allocation
by exploiting local CSIT. The optimization problem is the
following form:

arg max
fℓ ∈C𝑁ℓ𝐾ℓ×1

𝐾ℓ∑︁
𝑘=1

log2
(
1 + SILNRℓ,𝑘 (fℓ)

)
, (19a)

subject to ‖fℓ ‖22 = 1, ∀𝑘 ∈ Kℓ . (19b)

B. Quasi-Optimal Cases

To shed light on the idea, it is instructive to consider two
cases in which the proposed distributed precoding method
achieves the cooperative precoding bound very closely.

Case 1 (Zero-IUI condition): Let us consider a multi-cell
cooperative precoding strategy that maximizes the tight lower
bound under zero-IUI constraint. From (15), the sum-spectral
efficiency maximization problem under the zero-IUI constraint
becomes

arg max
fℓ ∈C𝑁ℓ𝐾ℓ

2∑︁
ℓ=1

𝐾ℓ∑︁
𝑘=1

log2
(
1 + SINRℓ,𝑘 (f1, f2)

)
, (20a)

subject to fH
ℓ Uℓ,𝑘 fℓ = 0, ∀ℓ ∈ {1, 2},∀𝑘 ∈ Kℓ , (20b)

‖fℓ ‖22 = 1, ∀ℓ ∈ {1, 2}. (20c)

This optimization finds a joint solution for a set of scheduled
users per cell, the precoding vector, and the power allocation
per stream for both BSs. Since log2

(
1 + SINRℓ,𝑘 (f1, f2)

)
'

log2
(
SINRℓ,𝑘 (f1, f2)

)
for a high SINR regime, when

fH
ℓ

Uℓ,𝑘 fℓ = 0, we approximate the sum-spectral efficiency as

𝑅sum (f1, f2) '
2∑︁
ℓ=1

𝐾ℓ∑︁
𝑘=1

log2
(
SINRℓ,𝑘 (f1, f2)

)
= log2

(
𝐾1∏
𝑘=1

fH
1 S1,1,𝑘 f1

fH
2 C2,1,𝑘 f2

𝐾2∏
𝑘=1

fH
2 S2,2,𝑘 f2

fH
1 C1,2,𝑘 f1

)
= log2

( ∏𝐾1
𝑘=1 fH

1 S1,1,𝑘 f1∏𝐾2
𝑘=1 fH

1 C1,2,𝑘 f1

)
+ log2

( ∏𝐾2
𝑘=1 fH

2 S2,2,𝑘 f2∏𝐾1
𝑘=1 fH

2 C2,1,𝑘 f2

)
. (21)

Thanks to the zero-IUI condition, the sum-spectral efficiency
maximization problem becomes separable with respect to
each optimization vector. Therefore, the solution for the joint
optimization problem for the aggregated precoding vectors fℓ
is obtained by solving two separate optimization problems
independently:

arg max
fℓ ∈C𝑁ℓ𝐾ℓ×1

log2

( ∏𝐾ℓ
𝑘=1 fH

ℓ
Sℓ,ℓ,𝑘 fℓ∏𝐾ℓ̄

𝑘=1 fH
ℓ

Cℓ,ℓ̄ ,𝑘 fℓ

)
, (22a)

subject to fH
ℓ Uℓ,ℓ,𝑘 fℓ = 0, ∀𝑘 ∈ Kℓ , (22b)

‖fℓ ‖22 = 1. (22c)

Now we turn our attention to the sum-rate function defined
in (18). When fH

ℓ
Uℓ,ℓ,𝑘 fℓ = 0, we approximate the sum-rate

function as

𝑅̂sum
ℓ (fℓ) '

𝐾ℓ∑︁
𝑘=1

log2
(
SILNRℓ,𝑘 (fℓ)

)
= log2

©­­«
∏𝐾ℓ
𝑘=1 fH

ℓ
Sℓ,ℓ,𝑘 fℓ∏𝐾ℓ

𝑘=1 Lℓ,ℓ̄ (fℓ)
𝐾
ℓ̄
𝐾ℓ

ª®®¬ = log2
©­«
∏𝐾ℓ
𝑘=1 fH

ℓ
Sℓ,ℓ,𝑘 fℓ∏𝐾ℓ̄

𝑗=1 fH
ℓ

Cℓ,ℓ̄ , 𝑗 fℓ

ª®¬ . (23)

It is remarkable that (22a) and (23) are identical. We conclude
that the proposed distributed precoding using local CSIT
asymptotically achieves the cooperative bound in the high
SINR regime under the zero-IUI condition. This equivalence
comes from our SILNR definition using the geometric mean
of the interference leakage terms.

Case 2 (Zero-ICI condition): Let us consider the zero-
ICI constraint in both sum-spectral efficiency maximization
problems in (15) and (18). When 𝑁ℓ > 𝐾ℓ̄ , it is possible
to meet the zero-ICI condition by constructing precoding
vectors on the nullspace of the column space spanned by the
ICI channels. In this manner, we begin by reformulating the
problem in (15) under zero-ICI constraint as

arg max
fℓ ∈C𝑁ℓ𝐾ℓ

2∑︁
ℓ=1

𝐾ℓ∑︁
𝑘=1

log2
(
1 + SINRℓ,𝑘 (f1, f2)

)
, (24a)

subject to fH
ℓ Cℓ,ℓ̄ ,𝑘 fℓ = 0, ∀ℓ ∈ {1, 2},∀𝑘 ∈ Kℓ , (24b)

‖fℓ ‖22 = 1, ∀ℓ ∈ {1, 2}. (24c)

Under the zero-ICI constraint, the sum-spectral efficiency
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simplifies
2∑︁
ℓ=1

𝐾ℓ∑︁
𝑘=1

log2
(
1 + SINRℓ,𝑘 (f1, f2)

)
= log2

(
𝐾1∏
𝑘=1

fH
1

(
S1,1,𝑘 + U1,1,𝑘

)
f1

fH
1 U1,1,𝑘 f1

)
+ log2

(
𝐾2∏
𝑘=1

fH
2

(
S2,2,𝑘 + U2,2,𝑘

)
f2

fH
2 U2,2,𝑘 f2

)
. (25)

This zero-ICI condition also makes the joint precoding design
problem separable as

arg max
fℓ ∈C𝑁ℓ𝐾ℓ

log2

(
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Sℓ,ℓ,𝑘 + Uℓ,ℓ,𝑘

)
fℓ

fH
ℓ

Uℓ,ℓ,𝑘 fℓ

)
, (26a)

subject to fH
ℓ Cℓ,ℓ̄ ,𝑘 fℓ = 0, ∀𝑘 ∈ Kℓ , (26b)

‖fℓ ‖22 = 1. (26c)

From (18), when Lℓ,ℓ̄ (fℓ) = 0, our objective function
becomes

𝑅̂sum
ℓ (fℓ) = log2

(
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Sℓ,ℓ,𝑘 + Uℓ,ℓ,𝑘

)
fℓ

fH
ℓ

Uℓ,ℓ,𝑘 fℓ

)
. (27)

This result implies that our precoding strategy exploiting local
CSIT is sufficient to achieve the multi-cell cooperation bound
very closely under either zero-IUI or zero-ICI constraints.
This result, however, holds for the two-cell scenario only.
In the sequel, we generalize this idea in a general multi-
cell scenario and noisy CSIT assumption, which are more
practically relevant.

IV. MULTI-CELL SILNR MAXIMIZATION PRECODING
WITH NOISY CSIT

This section generalizes the idea of SILNR maximization
precoding introduced in the previous section to a multi-cell
noisy CSIT scenario. We start with formulating the SILNR
maximization problem under noisy CSIT setting. Then, we
establish the first- and second-order optimality condition for
the problem. Then, a computationally-efficient algorithm to
find a local-optimal solution to the problem is presented.

A. Problem Formulation

Using noisy and local CSIT at the ℓth BS, the received
signal of the 𝑘th user in the ℓth cell is rewritten as

𝑦ℓ,𝑘 [𝑡] = ĥH
ℓ,ℓ,𝑘 fℓ,𝑘 𝑠ℓ,𝑘 [𝑡] +

𝐾ℓ∑︁
𝑖≠𝑘

ĥH
ℓ,ℓ,𝑘 fℓ,𝑖𝑠ℓ,𝑖 [𝑡]

+
𝐾ℓ∑︁
𝑖=1

eH
ℓ,ℓ,𝑘 fℓ,𝑖𝑠ℓ,𝑖 [𝑡] + 𝑛̃ℓ,𝑘 [𝑡], (28)

where 𝑛̃ℓ,𝑘 [𝑡] =
∑
𝑗≠ℓ

∑𝐾 𝑗

𝑘=1 hH
𝑗 ,ℓ,𝑘

f 𝑗 ,𝑘 𝑠 𝑗 ,𝑘 [𝑡] + 𝑛ℓ,𝑘 [𝑡] is the
effective noise when treating all aggregated ICI as additional
noise and distributed by 𝑛̃ℓ,𝑘 [𝑡] ∼ CN

(
0, 𝜎̃2

ℓ,𝑘

)
, where

𝜎̃2
ℓ,𝑘

= E[∑ 𝑗≠ℓ

∑𝐾 𝑗

𝑘=1 |h
H
𝑗 ,ℓ,𝑘

f 𝑗 ,𝑘 𝑠 𝑗 ,𝑘 [𝑡] |2] + 𝜎2. We define the

geometric mean of the interference leakage in (16) for a multi-
cell scenario. Let Uℓ be the collection of the other cell’s
users who use the orthogonal pilots with the users in the ℓth
cell, i.e., Uℓ =

{
(ℓ̄, 𝑗) | ∀ℓ̄ ∈ Cℓ \ {ℓ} ,∀ 𝑗 ∈ Kℓ̄

}
. Then, the

leakage interference L̂ℓ (fℓ) becomes

L̂ℓ (fℓ) =
©­«

∏
(ℓ̄ , 𝑗) ∈Uℓ

fH
ℓ Ĉℓ,ℓ̄ , 𝑗 fℓ

ª®¬
1
|Uℓ |

, (29)

where Ĉℓ,ℓ̄ , 𝑗 = I𝐾ℓ ⊗
𝑃ℓ̄
𝑃ℓ

(
ĥℓ,ℓ̄ , 𝑗 ĥH

ℓ,ℓ̄ , 𝑗
+𝚽ℓ,ℓ̄ , 𝑗

)
∈ C𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ .

Incorporating (28) and (29), we define SILNR of the 𝑘th user
in the ℓth cell as

SILNRℓ,𝑘 (fℓ)

=

���ĥH
ℓ,ℓ,𝑘

fℓ,𝑘
���2∑𝐾ℓ

𝑖≠𝑘

���ĥH
ℓ,ℓ,𝑘

fℓ,𝑖
���2 +∑𝐾ℓ

𝑖=1 fH
ℓ,𝑖
𝚽ℓ,ℓ,𝑘 fℓ,𝑖 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ + 𝜎̃2

ℓ,𝑘

𝑃ℓ

=
fH
ℓ

Ŝℓ,ℓ,𝑘 fℓ

fH
ℓ

Ûℓ,ℓ,𝑘 fℓ + fH
ℓ

Eℓ,ℓ,𝑘 fℓ + L̂ℓ (fℓ)
|Uℓ |
𝐾ℓ

, (30)

where

Ŝℓ,ℓ,𝑘 = e𝑘eT
𝑘 ⊗ ĥℓ,ℓ,𝑘 ĥH

ℓ,ℓ,𝑘 ∈ C
𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ ,

Ûℓ,ℓ,𝑘 = I𝐾ℓ ⊗ ĥℓ,ℓ,𝑘 ĥH
ℓ,ℓ,𝑘−Ŝℓ,ℓ,𝑘+

𝜎̃2
ℓ,𝑘

𝑃ℓ
I𝑁ℓ𝐾ℓ ∈ C𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ ,

Eℓ,ℓ,𝑘 = I𝐾ℓ ⊗ 𝚽ℓ,ℓ,𝑘 ∈ C𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ . (31)

Accordingly, our precoding strategy using noisy and local
CSIT is to solve the following optimization problem:

arg max
fℓ ∈C𝑁ℓ𝐾ℓ

𝐾ℓ∏
𝑘=1

fH
ℓ

(
Ŝℓ,ℓ,𝑘+Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

fH
ℓ

(
Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

, (32a)

subject to ‖fℓ ‖22 = 1, ∀ℓ ∈ L. (32b)

Since the objective function (32) is highly non-convex, finding
even local-optimal solution for fℓ is a very challenging task.
In the sequel, we derive the first- and second-order optimality
conditions for this non-convex optimization problem.

B. Local Optimality Conditions

The following theorems establish the first- and the second-
order necessary conditions for the local optimality of the non-
convex optimization problem in (32).

Theorem 1. (The first-order necessary condition) If f★
ℓ
∈

C𝑁ℓ𝐾ℓ×1 is a stationary point of the non-convex optimization
problem (32), it satisfies

Āℓ
(
f★ℓ

)
f★ℓ = 𝛾

(
f★ℓ

)
B̄ℓ

(
f★ℓ , 𝜆

)
f★ℓ , (33)

where the functional matrices Āℓ
(
f★
ℓ

)
and B̄ℓ

(
f★
ℓ
, 𝜆

)
are

Ãℓ,ℓ,𝑘 = Ŝℓ,ℓ,𝑘+Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘 ,
B̃ℓ,ℓ,𝑘 = Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘 ,
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Āℓ (fℓ) =
𝐾ℓ∑︁
𝑖=1

(
𝐾ℓ∏
𝑘≠𝑖

(fℓ)H
(
Ãℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)
×

(
Ãℓ,ℓ,𝑖 + C̃ℓ,ℓ,𝑘

)
fℓ ,

B̄ℓ (fℓ , 𝜆) =
[
𝐾ℓ∑︁
𝑖=1

(
𝐾ℓ∏
𝑘≠𝑖

(fℓ)H
(
B̃ℓ,ℓ,𝑘+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)
×

(
B̃ℓ,ℓ,i + C̃ℓ,ℓ,𝑘

)
+ 𝜆

𝛾(fℓ)
I𝑁ℓ𝐾ℓ

]
fℓ ,

C̃ℓ,ℓ,𝑘 =
∑︁

(ℓ̄ , 𝑗) ∈Uℓ

L̂ℓ (fℓ)
|Uℓ |
𝐾ℓ Ĉℓ,ℓ̄ , 𝑗

𝐾ℓ (fℓ)HĈℓ,ℓ̄ , 𝑗 fℓ
,

𝛾(fℓ) =
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Ŝℓ,ℓ,𝑘+Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

fH
ℓ

(
Ûℓ,ℓ,𝑘+Eℓ,ℓ,𝑘+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

. (34)

In addition, the Lagrange multiplier 𝜆 is chosen so that f
satisfies ‖fℓ ‖22 = 1.

Proof: See Appendix A.

Theorem 1 implies that any stationary point of the non-
convex problem in (32) is one of the eigenvectors of the
functional matrix [B̄ℓ (fℓ , 𝜆)]−1Āℓ , i.e.,

[B̄ℓ (fℓ , 𝜆)]−1Āℓ (fℓ) fℓ = 𝛾 (fℓ) fℓ . (35)

As can be seen, the objective function 𝛾 (fℓ) can be interpreted
as the eigenvalue of the functional matrix [B̄ℓ (fℓ , 𝜆)]−1Āℓ .
Since we are interested in maximizing the objective function
𝛾 (fℓ), we need to identify the eigenvector corresponding to the
maximum eigenvalue, which can be a global optimal solution.
Unfortunately, finding such eigenvector is highly non-trivial,
because [B̄ℓ (fℓ , 𝜆)]−1Āℓ is a function of fℓ and Lagrange
multiplier 𝜆. Nevertheless, this principal component analysis
helps to understand the global landscape of the non-convex
optimization problem; and leads to an algorithm to find a local-
optimal solution in a numerically efficient manner.

Although f★
ℓ

satisfies the first-order necessary condition
derived in Theorem 1, we need to check the curvature of
the objective function around the stationary point to verify
the local optimality. The following theorem gives a testing
condition of the negative definiteness of the extended Hessian
matrix evaluated at f★

ℓ
in a closed-form, i.e., ∇2

fH
ℓ

𝛾(f★
ℓ
) ≺ 0.

Theorem 2. (The second-order necessary condition) The
stationary point f★

ℓ
is a local-optimal solution, provided that

(36), where the functional matrices are defined as Zℓ,ℓ,𝑖 =∑
(𝑚,𝑛) ∈Uℓ

L̂ℓ (fℓ )
|Uℓ |
𝐾ℓ Ĉℓ,𝑚,𝑛fℓ fH

ℓ
Ĉℓ,𝑚,𝑛

𝐾ℓ (fH
ℓ

Ĉℓ,𝑚,𝑛fℓ)2
, X𝐴

ℓ,ℓ,𝑖
=

(
Ãℓ,ℓ,𝑖 + C̃ℓ,ℓ,𝑖

)
,

X𝐵
ℓ,ℓ,𝑖

=

(
B̃ℓ,ℓ,𝑖 + C̃ℓ,ℓ,𝑖

)
, Y𝐴

ℓ,ℓ,𝑖
= Ãℓ,ℓ,𝑖+L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ and Y𝐵 =

B̃ℓ,ℓ,𝑖 + L̂ℓ (fℓ)
|Uℓ |
𝐾ℓ .

Proof: See Appendix B.

Theorem 2 is useful when evaluating the second-order
optimality condition, because the direct computation of Hes-

Algorithm 1: SILNR Maximization Precoding
Initialization:
𝑡 = 𝑛 = 0, f (0)

ℓ
= ZF, f (−1)

ℓ
= 0, 𝜆 (0) , and 𝜖

while ‖fℓ ‖22 > 1 do
𝑛← 𝑛 + 1
𝜆 (𝑛) ← 𝜆 (𝑛−1) + Δ𝜆 (𝑛)
while ‖f (𝑡−1)

ℓ
− f (𝑡)

ℓ
‖2 ≥ 𝜖 do

𝑡 ← 𝑡 + 1

f (𝑡)
ℓ
← f (𝑡 )

ℓ

‖f (𝑡 )
ℓ
‖2

f (𝑡)
ℓ
←

[
B̄ℓ

(
f (𝑡−1)
ℓ

, 𝜆 (𝑛)
)]−1

Āℓ
(
f (𝑡−1)
ℓ

)
f (𝑡−1)
ℓ

end
end

sian matrix ∇2
fH
ℓ

𝛾(f★
ℓ
) is unnecessary. Although Theorem 1

and Theorem 2 provide a guidance for the local optimality
conditions for problem (32), finding such a precoding vector
is still challenging. To resolve this issue, we propose a
computationally-efficient algorithm in the sequel.

C. Algorithm

The proposed algorithm takes two steps: 1) the identification
of a stationary point using the generalized power iteration
(GPI) technique in [29] for a given Lagrange multiplier
𝜆 (𝑛) and 2) the Lagrangian multiplier adjustment to be a
feasible solution for a given f (𝑡)

ℓ
. The algorithm starts with

an initial precoding solution f (0)
ℓ

, which is typically chosen
as the ZF beamforming method. In the 𝑡th iteration, the
algorithm evaluates the functional matrices Āℓ

(
f (𝑡−1)
ℓ

)
and

B̄ℓ
(
f (𝑡−1)
ℓ

, 𝜆 (𝑛)
)

defined in (34) using the identified precoding

vector in the previous iteration, i.e., f (𝑡−1)
ℓ

. Then, it is mul-

tiplied with
[
B̄ℓ

(
f (𝑡−1)
ℓ

, 𝜆 (𝑛)
)]−1

Āℓ
(
f (𝑡−1)
ℓ

)
to obtain f (𝑡)

ℓ
=[

B̄ℓ
(
f (𝑡−1)
ℓ

, 𝜆 (𝑛)
)]−1

Āℓ
(
f (𝑡−1)
ℓ

)
f (𝑡−1)
ℓ

. The iteration continues

until a stopping condition ‖f (𝑡−1)
ℓ

− f (𝑡)
ℓ
‖2 ≤ 𝜖 holds, where 𝜖

is selected as a small positive number. Once the eigenvector
fℓ that satisfies Theorem 1 is identified, i.e., the inner loop
of Algorithm 1 is converged, Algorithm 1 checks whether the
obtained solution is a feasible point or not. If the obtained
solution exceeds the power constraint, Algorithm 1 updates
the Lagrange multiplier to meet the constraint. The algorithm
proceeds until it finds the feasible solution that satisfies the
first-order optimality condition.

Remark 1 (The computational complexity of the algo-
rithm): The computational complexity order of the proposed
SILNR maximization precoding algorithm is O

(
𝐽𝑁2

ℓ
𝐾ℓ

)
,

where 𝐽 is the number of iterations of Algorithm 1. We refer
the details of the computational complexity analysis in [29],
in which the matrix inverse and the multiplication operations
have shown to be performed in a divide and conquer manner
by exploiting the block diagonal structure in Āℓ (fℓ) and
B̄ℓ (fℓ , 𝜆). For the convergence, the number of iterations for
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𝜆max
©­­«
[
𝐾ℓ∑︁
𝑖=1

X𝐴
ℓ,ℓ,𝑖

fℓ
fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
−

X𝐵
ℓ,ℓ,𝑖

fℓ
fH
ℓ

Y𝐵fℓ

] [
𝐾ℓ∑︁
𝑖=1

X𝐴
ℓ,ℓ,𝑖

fℓ
fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
−

X𝐵
ℓ,ℓ,𝑖

fℓ
fH
ℓ

Y𝐵fℓ

]H

+ 𝛾(fℓ)

𝐾ℓ∑︁
𝑖=1

X𝐴
ℓ,ℓ,𝑖

fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
+

Zℓ,ℓ,𝑖
fH
ℓ

Y𝐵
ℓ,ℓ,𝑖

fℓ
+

X𝐵
ℓ,ℓ,𝑖

fℓfH
ℓ

X𝐵
ℓ,ℓ,𝑖(

fH
ℓ

Y𝐵
ℓ,ℓ,𝑖

fℓ
)2


ª®®¬

< 𝜆min
©­­«𝛾(fℓ)


𝐾ℓ∑︁
𝑖=1

X𝐵
ℓ,ℓ,𝑖

fH
ℓ

Y𝐵
ℓ,ℓ,𝑖

fℓ
+

Zℓ,ℓ,𝑖
fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
+

X𝐴
ℓ,ℓ,𝑖

fℓfH
ℓ

X𝐴
ℓ,ℓ,𝑖(

fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
)2

 + 𝜆I
ª®®¬ . (36)

the inner loop is five at most in an average sense regarding
random channels.

Remark 2 (The second-order optimality condition):
From numerical results, we observe that, in every case, the
solution obtained from the proposed algorithm satisfies the
second-order optimality condition derived in Theorem 2. We
conjecture that the proposed algorithm ensures converging to
a local-optimal solution.

V. SIMULATION RESULTS

This section provides both the link-level and system-level
simulation results to gauge the ergodic sum-spectral efficiency
gains of the proposed SILNR maximization precoding com-
pared to the existing precoding schemes.

A. Link-Level Simulations

We consider a two-cell scenario in which each BS equipped
with 𝑁ℓ (=16) antennas serves single antenna eight users
[35]. For link-level simulations, we assume that all channel
vectors are drawn from h 𝑗 ,ℓ,𝑘 ∼ CN(0, I𝑁ℓ ), and each BS has
perfect knowledge of local CSIT. In this setting, we compare
the ergodic sum-spectral efficiency for different precoding
strategies:
• Multi-Cell Coop [28], [29]: This scheme is a cooperative

precoding technique that maximizes the sum-spectral
efficiency of users in the cooperative area. We use this
precoding method as a benchmark for an upper bound of
our proposed noncooperative precoding technique.

• Multi-Cell MMSE (or Multi-Cell SLNR) [24]:

arg max
fℓ,𝑘 ∈C𝑁ℓ

���ĥH
ℓ,ℓ,𝑘

fℓ,𝑘
���2

fH
ℓ,𝑘

(∑
( 𝑗 ,𝑖) ∈Uℓ ĥℓ, 𝑗,𝑖ĥH

ℓ, 𝑗,𝑖
+ 𝜎̃2

ℓ,𝑘

𝑃ℓ
I𝑁ℓ𝐾ℓ

)
fℓ,𝑘

.

(37)

This scheme uses the downlink precoding solution in (37)
by the uplink-downlink duality [25], [36], [37].

• Multi-Cell ZF [20]: This scheme eliminates both IUI and
ICI.

Validation of quasi-optimality: As shown in Fig. 2-(b),
the proposed algorithm tightly achieves the performance of
the multi-cell cooperative precoding scheme. Our simulation
result implies that our precoding solution makes the zero-IUI
phenomenon occur, even if 𝑁ℓ/𝐾ℓ is not-so-large.

Ergodic sum-spectral efficiency performance: Fig. 2-(a)
shows how the ergodic sum-spectral efficiency changes with
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Fig. 2. (a) The ergodic sum-spectral efficiencies for different precoding
strategies and (b) the ergodic sum-spectral efficiencies when increasing the
ratio of the number of antennas to the number of users without considering
the zero-IUI condition.

increasing SNRs. The proposed precoding yields considerable
gains compared to the existing precoding methods in all SNRs.
This performance improvement comes from better utilization
of spatial degrees of freedom (DoF) to mitigate both IUI and
ICI. Specifically, the proposed SILNR jointly finds a set of
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TABLE I
COMPLEXITY ORDER ANALYSIS.

List Computation complexity order

Multi-Cell MMSE
O

(
( |Uℓ | + |Kℓ |)2𝑁ℓ
+( |Uℓ | + |Kℓ |)3

)
Computation of Āℓ (f★ℓ ) O

(
𝑁 2
ℓ
𝐾ℓ

)
Computation of B̄ℓ (f★ℓ , 𝜆) O

(
𝑁 2
ℓ
𝐾ℓ

)
Computation of

[
B̄ℓ (f★ℓ , 𝜆)

]−1 O
(
𝑁 2
ℓ
𝐾ℓ

)
Computation of

[
B̄ℓ (f★ℓ , 𝜆)

]−1 Āℓ (f★ℓ )f
★
ℓ

O
(
𝑁 2
ℓ
𝐾ℓ

)
Proposed algorithm O

(
𝐽𝑁 2

ℓ
𝐾ℓ

)
TABLE II

PARAMETERS FOR SYSTEM-LEVEL SIMULATIONS.

Parameters Value
Topology of BS 28 BSs over 7 hexagonal coverages
# of BSs; (MBS, PBS) (7,21)
Topology of user Uniformly distributed per cell
# of UEs per (MBS, PBS) (16,4)
Bandwidth 20 MHz
Carrier frequency 2 GHz
MBS transmission power 46 dBm
PBS transmission power 23 dBm
Noise power -113 dB
Spatial channel model Spatially correlated model
Path-loss model Okumaura-Hata urban model
BS and user height 32 m/1.5 m
Channel estimation MMSE estimator in (3)
Channel coherence time slot 𝜏c = 200
Uplink training slot 𝜏u = 28 and 𝜏d = 0
Stopping condition 𝜖 = 0.1

served users, precoding vectors, and power allocation by op-
timally balancing IUI and the geometric mean of interference
leakage signals. Therefore, it allows each BS to exploit the
spatial DoF in a more efficient way to increase the sum-
spectral efficiency of the desired cell, while simultaneously
reducing leakage interference power towards the other cells.

Complexity order analysis: We provided the computa-
tional complexity analysis of the proposed precoding method,
which is summarized in Table I. The computational com-
plexity of the proposed precoding method increases in the
order of O

(
𝑁2
ℓ
𝐾ℓ

)
. To accomplish this analysis, we need

to calculate the complexity order for computing functional
matrices Āℓ (f★ℓ ) ∈ C

𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ and B̄ℓ (f★ℓ , 𝜆) ∈ C
𝑁ℓ𝐾ℓ×𝑁ℓ𝐾ℓ .

Exploiting the block diagonal structure of them, one can
readily show that the complexity order becomes O

(
𝑁2
ℓ
𝐾ℓ

)
. In

addition, using the fact that B̄ℓ (f★ℓ , 𝜆) is the sum of rank-one
matrices, one can compute the inverse matrix of it successively
using Sherman-Morrison Lemma (or also known as Wood-
bury inverse) [38]. Thanks to the block diagonal structure,
computing the inverse of B̄ℓ (f★ℓ , 𝜆) requires the computational
complexity order of O

(
𝑁2
ℓ
𝐾ℓ

)
. By embracing the number of

iterations to converge, 𝐽, the total computational complexity
of the proposed precoding algorithm is O

(
𝐽𝑁2

ℓ
𝐾ℓ

)
.

B. System-Level Simulations

Fig. 3 depicts the network topology for system-level simu-
lations, which consists of seven hexagonal cells, each macro
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Fig. 3. A snapshots of the network topologies used in system-level simula-
tions.

BS (MBS) coverage area contains three pico BSs (PBSs). See
Table II for the details of simulation parameters [39].

For a fair comparison, we also consider the Single-Cell
WMMSE [27] precoding method with a leakage level con-
straint. For this, we consider the following precoding opti-
mization problem:

arg min
{fℓ,𝑘 ,𝑤𝑘 ,𝑢𝑘 |𝑘∈Kℓ}

𝐾ℓ∑︁
𝑘=1
(𝑤𝑘𝑒𝑘 − log𝑤𝑘 ) , (38a)

subject to
𝐾ℓ∑︁
𝑘=1
‖fℓ,𝑘 ‖22 ≤ 1, (38b)

fH
ℓ,𝑘

©­«
∑︁

(𝑚,𝑛) ∈Uℓ

hℓ,𝑚,𝑛hH
ℓ,𝑚,𝑛

ª®¬ fℓ,𝑘 ≤ 𝑟𝑘 , (38c)

where

𝑒𝑘 = 𝑢
H
𝑘

(
𝐾ℓ∑︁
𝑖=1

���hH
ℓ,𝑘 fℓ,𝑖

���2 + 𝜎2

)
𝑢𝑘 − 2Re

{
𝑢H
𝑘 hH

ℓ,𝑘 fℓ,𝑘
}
+ 1,

𝑤𝑘 = 𝑒
−1
𝑘 ,

𝑢𝑘 =

(
𝐾ℓ∑︁
𝑖=1

���hH
ℓ,𝑘 fℓ,𝑖

���2 + 𝜎2

)−1

hH
ℓ,𝑘 fℓ,𝑘 , (39)

denote MSE, MSE weight, and the optimal receiver, respec-
tively. Also, 𝑟𝑘 dentoes a target leakage power level. The
problem (38) is a combination of the conventional WMMSE
optimization (38a), (38b) and leakage power constraints (38c).

Ergodic sum-spectral efficiency performance: We eval-
uate how the ergodic sum-spectral efficiency behaves when
increasing the number of antennas of MBSs. Fig. 4 shows
the ergodic sum-spectral efficiency performance under perfect
local CSIT. As. can be seen, the proposed precoding method
outperforms the existing precoding methods regardless of the
number of antennas per MBS. We capitalize that the existing
noncooperative precoding can achieve the upper bound when
the number of antennas is larger than 50.

Fig. 5 demonstrates the ergodic sum-spectral efficiency per-
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Fig. 4. The ergodic sum-spectral efficiencies for different precoding strategies
with local and perfect CSIT.

formance under the noisy CSIT setting. For a fair comparison,
we compare the performance of the proposed algorithm with
multi-cell MMSE exploiting the covariance matrix 𝚽ℓ,ℓ,𝑘

[40] (denoted by Muti-Cell MMSE (with Cov.)). As can be
seen, the proposed algorithm obtains a substantial ergodic
sum-spectral efficiency gain compared with other precoding
methods in all antenna scales. This result implies that our
proposed framework is robust to pilot contamination effects,
a remarkable aspect of practical cellular systems.

Convergence speed of the proposed SILNR maximiza-
tion precoding: Fig. 6 illustrates the convergence speed of the
proposed algorithm for the SILNR maximization precoding.
We consider the cases of 𝐾 = {20, 40, 60} and 𝑁 = 64. We
measure the mean square of the difference for the objective
functions evaluated at two consecutive precoding solutions
during iterations, i.e., E

[
‖f (𝑚)
ℓ
− f (𝑚−1)

ℓ
‖22

]
where the average

is taken over both the fading channel realizations and the
user locations. As depicted in Fig. 6, the number of required
iterations to find the solution is at most five in an average
sense, when we set the solution accuracy parameter to 𝜖 = 0.1.
As improving the solution accuracy level to 𝜖 = 0.01, ten itera-
tions are sufficient to end the algorithm for all 𝐾 = {20, 40, 60}
and 𝑁 = 64. In addition, when the algorithm starts with the ZF
precoding solution as an initial point, we empirically observe
that the initially identified solution f★ of Algorithm 1 has local
optimality in the most of our simulations.

VI. CONCLUSION

In this paper, we presented a novel distributed precoding
technique using local CSIT for MU-MIMO HetNets. The
central idea of the proposed precoding method was to max-
imize the downlink sum-spectral efficiency per cell while
mitigating the other cell interference leakage using local CSIT.
We introduced a new metric called SILNR that measures the
ratio between the desired signal power and the superposition
of IUI and interference leakage powers towards the other cells.
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Fig. 5. The ergodic sum-spectral efficiencies for different precoding strategies
with local and noisy CSIT when the number of UEs per (MBS,PBS) = (a)
(16,4) and (b) (8,4).

Using this metric, we formulated a maximization problem of
the product of SILNRs, which is a non-convex optimization
problem. We derived the first- and the second-order neces-
sary conditions for the local-optimal solution of this non-
convex optimization problem. Leveraging these conditions,
we presented a computationally efficient algorithm that en-
sures finding the local-optimal solution iteratively. Using both
link-level and system-level simulations, we demonstrated our
precoding method using local CSIT achieves the same sum-
spectral efficiency of the cooperative precoding method that
requires global CSIT when increasing the number of antennas
BS, confirming that a synergetic gain is possible when massive
MIMO meets HetNets.
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Fig. 6. Convergence speed illustration with 𝜖 = 0.1 and 𝜖 = 0.01.

APPENDIX

A. Proof for Theorem 1

We commence by defining the Lagrange function:

L (fℓ , 𝜆) =
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Ãℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

fH
ℓ

(
B̃ℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ
− 𝜆

(
‖fℓ ‖22 − 1

)
.

(40)

To find a stationary point, we take the partial derivatives of
L(fℓ , 𝜆) with respective to fH

ℓ
and 𝜆, and set to them zero.

When taking the derivative with respective to fH
ℓ

, we obtain

∇fH {L(fℓ , 𝜆)} = 0

⇔
𝐾ℓ∑︁
𝑖=1

(∏
𝑘≠𝑖

fH
ℓ

(
Ãℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)(
Ãℓ,ℓ,𝑖 + ∇fH

ℓ
L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
·
𝐾ℓ∏
𝑘=1

fH
ℓ

(
B̃ℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ · fℓ

=

𝐾ℓ∑︁
𝑖=1

(∏
𝑘≠𝑖

fH
ℓ

(
B̃ℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)(
B̃ℓ,ℓ,𝑖 + ∇fH

ℓ
L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
·
𝐾ℓ∏
𝑘=1

fH
ℓ

(
Ãℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ · fℓ − 𝜆fℓ . (41)

By rearranging (41), we obtain:
𝐾ℓ∑︁
𝑖=1

(∏
𝑘≠𝑖

fH
ℓ

(
Ãℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)(
Ãℓ,ℓ,𝑖 + C̃ℓ,ℓ,𝑖

)
fℓ

= 𝛾(fℓ)
[
𝐾ℓ∑︁
𝑖=1

(∏
𝑘≠𝑖

fH
ℓ

(
B̃ℓ,ℓ,𝑘 + L̂ℓ (fℓ)

|Uℓ |
𝐾ℓ

)
fℓ

)(
B̃ℓ,ℓ,𝑖 + C̃ℓ,ℓ,𝑖

)
− 𝜆

𝛾(fℓ)

]
fℓ . (42)

The condition (42) simplifies to

Āℓ (fℓ) fℓ = 𝛾 (fℓ) B̄ℓ (fℓ , 𝜆) fℓ . (43)

We also take the partial derivatives of L(f, 𝜆) with respective
to Lagrange multiplier 𝜆 and set to them zero, which yields
the condition:

‖fℓ ‖22 − 1 = 0⇔ ‖fℓ ‖22 = 1. (44)

This completes the proof.

B. Proof for Theorem 2
To prove the local optimality claim, it is sufficient to show

that the extended Hessian matrix considering constraint sets
at a stationary point is negative definite. To accomplish this,
we derive the Hessian matrix evaluated at an arbitrary point
fℓ ∈ C𝑁ℓ𝐾ℓ×1. For ease of exposition, we invoke the objective
function 𝛾(f) to the gradient of the Lagrange function as

∇fH
ℓ
{L (fℓ , 𝜆)} = 2𝛾(f)𝜂(fℓ) − 2𝜆fℓ , (46)

where

𝜂(fℓ) =
[
𝐾ℓ∑︁
𝑖=1

X𝐴
ℓ,ℓ,𝑖

fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
−

X𝐵
ℓ,ℓ,𝑖

fH
ℓ

Y𝐵
ℓ,ℓ,𝑖

fℓ

]
fℓ . (47)

The extended Hessian matrix is obtained by directly calculat-
ing the gradient of (46) again, which is given by

∇2
fH
ℓ

L (fℓ , 𝜆) = ∇fH
ℓ

{
∇fH
ℓ
{L (fℓ , 𝜆)}

}
= 2∇fH

ℓ
{𝛾(fℓ)} 𝜂(fℓ)H + 2𝛾(fℓ)∇fH

ℓ
{𝜂(fℓ)} − 2𝜆I.

(48)

We compute ∇2
fH {L (fℓ , 𝜆)} and ∇fH

ℓ
{𝜂(fℓ)} in terms of

the functional matrices defined as the Hermitian and positive
definite matrices X𝐴

ℓ,ℓ,𝑖
, X𝐵

ℓ,ℓ,𝑖
, Y𝐴

ℓ,ℓ,𝑖
, Y𝐵

ℓ,ℓ,𝑖
, and Zℓ,ℓ,𝑖 in

Theorem 2. Since the sum of positive definite (PSD) matrices
is also a PSD matrix, the extended Hessian matrix becomes
a negative definite matrix, provided that the the minimum
eigenvalue of the third term in (45) is greater than the
maximum eigenvalue of the sum of the first and second terms
in (45). This is a sufficient condition for the local optimality.
This ends the proof.
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∇2
fHL (fℓ , 𝜆) =

[
𝐾ℓ∑︁
𝑖=1

X𝐴
ℓ,ℓ,𝑖

fℓ
fH
ℓ

Y𝐴
ℓ,ℓ,𝑖

fℓ
−

X𝐵
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