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Abstract—In this paper, we study the problem of latency and
reliability trade-off in ultra-reliable low-latency communication
(URLLC) in the presence of decoding complexity constraints.
We consider linear block encoded codewords transmitted over
a binary-input AWGN channel and decoded with order-statistic
(OS) decoder. We first investigate the performance of OS decoders
as a function of decoding complexity and propose an empirical
model that accurately quantifies the corresponding trade-off.
Next, a consistent way to compute the aggregate latency for
complexity constrained receivers is presented, where the latency
due to decoding is also included. It is shown that, with strict
latency requirements, decoding latency cannot be neglected in
complexity constrained receivers. Next, based on the proposed
model, several optimization problems, relevant to the design
of URLLC systems, are introduced and solved. It is shown
that the decoding time has a drastic effect on the design of
URLLC systems when constraints on decoding complexity are
considered. Finally, it is also illustrated that the proposed model
can closely describe the performance versus complexity trade-off
for other candidate coding solutions for URLLC such as tail-
biting convolutional codes, polar codes, and low-density parity-
check codes.

Index Terms—5G mobile communication, URLLC, internet-
of-things, low-latency communication, ultra-reliable communi-
cation, low-complexity receivers, channel coding, order-statistic
decoder.

I. INTRODUCTION

Ultra-reliable low-latency communication (URLLC) is one

of the three main service categories that have been defined

in 5G, with the other two being enhanced mobile broadband

and massive machine-type communication [1]. URLLC pro-

vides communication support with stringent constraints on

reliability and end-to-end latency and has attracted extensive

attention and significant research interest, since information

transmission with low-latency and high reliability is crucial for

enabling various mission-critical services, such as machine-to-

machine communication, remote surgery, augmented reality,

vehicle automation, industrial robotics, factory automation,

and smart-grid [2].

Reliable communication is often characterized by channel

capacity [3]. Since capacity is the ultimate error-free trans-

mission rate as the codeword length becomes arbitrary large,

it is mostly appropriate for latency-tolerant communication

systems. In the existing literature, the performance of a
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latency-constrained communication system is often evaluated

on the basis of the outage capacity [4], which is the maximal

transmission rate such that the probability of the instantaneous

mutual information falling below this rate does not exceed a

desired outage threshold. Similar to channel capacity, outage

capacity is also most appropriate for arbitrarily large code-

words [5]. However, with the stringent latency constraints of

URLLC systems, the assumption on arbitrarily large codeword

blocklength cannot be justified [6]. Although research on

maximal achievable transmission rates for finite blocklengths

has a history going back to the 1960s [7], a significant amount

of progress has been achieved in the context of non-asymptotic

information theory in the recent years (see [8] and references

therein). Non-asymptotic achievability and converse bounds

for the finite blocklength regime are derived in [9]. It is

shown that, compared to the asymptotic limits, a rate penalty

needs to be paid when transmitting in the finite blocklength

regime. This study attracted significant interest from the re-

search community and several studies on the non-asymptotic

achievable bounds for various channels with different fading

environments have been published [10]–[12].

Although the non-asymptotic achievable bounds reveal the

theoretical limits, achieving them is still an open problem.

Therefore, the selection of a channel encoding and decoding

scheme that can perform close to the limit is significant in

terms of increasing the transmission efficiency of the com-

munication system. Several coding schemes that are suitable

for URLLC are introduced in [13]–[19]. Their performances

in the finite blocklength regime are also shown therein where

performance of a decoder, in general, is identified according

to its gap to the non-asymptotic limits. However, although it

is observed that some channel coding schemes can perform

very close to the limits, computational complexity is neither

taken into account in the comparisons of the coding schemes

nor in the derivation of the theoretical limits.

There exists no generally accepted measure for the com-

putational complexity of a typical channel decoder. Never-

theless, the total number of operations per-information-bit is

often selected as a metric for the computational complexity

[20], [21]. In [22], the computational complexity of several

decoding algorithms, suitable for URLLC, is presented. Based

on these results, it is shown in [23] that complexity of the

coding schemes exponentially increases as they approach to

the theoretical limits. It is also further shown that an excess
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power with respect to the theoretical limits must be spent to

achieve a fixed allowed error rate at a fixed transmission rate,

when a particular code is chosen. As discussed in [24] and

[25], latency due to the computational complexity of a decoder

is inversely proportional to the average computational power

of a processor, in terms of speed. Therefore, a computationally

intensive decoding process takes relatively longer duration

in a complexity constrained receiver, such as low-budget

IoT receiver. [26], [27]. In such applications, latency due to

decoding is a significant determinant of decoder cost [28].

Latency due to the decoding of a packet is neglected

in several studies as it is assumed that decoding happens

instantaneously [29]–[32]. In [30], [31] and [32], even though

the decoding latency is assumed to be negligible, the inevitable

delays due to structural properties of low-density parity-

check (LDPC) and convolutional codes are investigated and

performance comparisons in case of equal structural delays are

presented. A similar analysis on structural delay for learning-

based coding schemes is recently presented in [33]. Decoding

latency for the state-of-the-art codes such as LDPC and polar

codes is investigated in [34]–[36], in which low-complexity

decoding schemes have been proposed. Recently, extended

Bose, Ray-Chaudhuri, Hocquenghem (eBCH) codes [37] with

order-statistic (OS) decoders [38] have gained interest of the

research community due to their good performance in finite

blocklength regime [39], [40]. It is shown that OS decoder

performs close to the maximum likelihood (ML) decoder for

linear block codes with substantially lower decoding com-

plexity. To further reduce decoding latency, a low complexity

decoding algorithm is proposed in [41].

This work differs substantially from the listed references

as we consider the decoding latency as a performance metric

for the system design for OS decoders. The goal of this

paper is to investigate the maximal performance limits of

short packet communications when the decoding complexity

of OS decoders is taken into account. For this purpose,

several significant design problems for URLLC applications

are investigated. For instance, in order to decrease the aggre-

gate latency, one may select an OS decoder with relatively

lower complexity, which in turn may compromise the error

probability of the decoder. This, therefore, reveals trade-offs

among latency, computational complexity, and reliability. This

implies that a refined modelling of these parameters must

be considered. In this study, analyses on decoding latency

and reliability are presented which are based on the per-

information-bit computational complexity of OS decoders.

Although the main focus is on OS decoders, we also discuss

on the applicability of the proposed model to the other families

of codes.

Contributions: This work extends the authors’ previous

work on analyses of low-latency communication with com-

putational complexity constrained OS decoders [42]. In this

paper the following contributions are presented.

• First, a consistent way to compute the aggregate latency

due to the OS decoding process for complexity con-

strained receivers is presented.

• A mathematically tractable model that can accurately

show the trade-off between the computational complexity

of the OS decoder, in number of binary operations per-

information-bit, versus the excess power to the non-

asymptotic achievability bound is introduced.

• With the help of this model, we address non-trivial

optimization problems that are related to URLLC sys-

tems with OS decoders and computational complexity

constraints. The following optimization problems are in-

vestigated:

– Given that a fixed number of information bits are

intended to be transmitted under reliability and power

constraints, what is the optimum selection of trans-

mission parameters that leads to the minimum aggre-

gate latency?

– Given that a fixed number of information bits are in-

tended to be transmitted under reliability, power, and

latency constraints, what is the optimum selection of

transmission parameters that leads to the minimum

energy-per-bit?

– Under reliability, power, and latency constraints,

what is the optimum selection of transmission pa-

rameters that leads to the maximum number of

information bits to be transmitted?

• It is also illustrated that other families of codes, such as

tail-biting convolutional codes (TBCCs), LDPC, and po-

lar codes, follow similar trends on the trade-off between

computational complexity versus excess power, which

implies that the proposed model can be adapted to be

suitable for these families of codes as well.

Solutions to the optimization problems reveal that the

optimal parameter choices are directly associated with the

constraints. Thus, the optimal design of a URLLC system is

substantially influenced when decoding latency is taken into

consideration.

Notation: Vectors and matrices are denoted by bold face

lower and upper case letters, respectively. We use N(-,�) to

denote independent real Gaussian random variables with mean

- and covariance matrix �. All logarithms in this paper are

with base 2 and ⊕ represents the binary addition.

II. SYSTEM MODEL

We consider communication over a discrete-time, binary-

input AWGN (BI-AWGN) channel. A sequence of = symbols

x = [G1, G2, . . . , G=], G8 ∈ {−1, +1}, which is termed as

codeword, is transmitted over the channel. The observed

sequence at the receiver is

y =
√
dx + z, (1)

where z ∼ N(0, O=) and d denotes the signal-to-noise ratio

(SNR).

Without latency constraints, it is known that there exists

a codebook, i.e., collection of codewords, with size 2=A

codewords, given that A < �, where A is the transmission

rate and � is called the channel capacity [3], such that the

codeword error probability (CEP)1 vanishes as = → ∞. The

1That is the probability that the receiver decides in favor of a codeword
that is different from the one actually sent.
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capacity � of the channel in (1) is given, as a function of d,

by [43]

� =
1

√
2c

∫
4−

I2

2

(
1 − log

(
1 + 4−2d+2I

√
d
))

dI. (2)

With strict latency constraints, however, i.e., when = is not

allowed to take arbitrarily large values, the CEP is strictly

positive and � overestimates the rate of reliable information

transmission through a BI-AWGN channel. Recently, more

refined upper and lower bounds on the maximal codebook size

have been proposed for finite = and a non-zero CEP, n > 0

[9]. Denote the maximal codebook size with codewords of

length = and CEP n by 2='
∗
, where '∗ denotes the maximal

transmission rate. Based on the bounds in [9], it is shown that

the maximal codebook size can be well approximated for a

wide range of = and n by 2='
∗ ≈ 2=' (=,d,n ) , where

'(=, d, n) = � −
√
+

=
&−1(n) log 4 + O

(
log =

=

)
. (3)

The quantity + is the channel dispersion, and for the channel

in (1) is

+ =
1

√
2c

∫
4−

I2

2

(
1 − log

(
1 + 4−2d+2I

√
d
)
− �

)2

dI, (4)

and &−1(·) is the inverse of the Gaussian &−function &(G) =∫ ∞
G

1√
2c
4−

C2

2 dC , and finally the big O(·) notation describes the

limiting behavior of the third term as = → ∞. The expression

in (3) is termed as the normal approximation to the maximal

coding rate. In our analysis, we take the first two terms of (3)

into account and treat it as if it were exact, with the implicit

understanding that the terms of order O(·) and smaller are

omitted.

From a communication point of view the aggregate latency

of transmission of a codeword is the difference in time between

the entry of a given bit to the communication interface at the

transmitter and the time it exits the communication interface at

the receiver. Therefore, it can be divided into three main parts:

i) latency at the transmitter, ii) transmission and propagation

latencies, and iii) latency at the receiver. Latency at the trans-

mitter and receiver can be separated into many sub-parts such

as latency due to the encoding, buffering, signal processing,

interleaving and decoding. The transmission latency is the time

required so that all the symbols of a codeword are sent into

the channel, hence it is proportional to the codeword length.

Latency due to signal propagation is inevitable due to physical

constraints, it is a constant with respect to the choice of

encoding/decoding scheme. Buffering, filtering, interleaving,

etc. can also be sources of latency, however, latency incurred

by all these operations is not related to the choice of the

encoding/decoding scheme. Hence, they simply add a small

constant to the aggregate latency and therefore we neglect this

constant in our further analysis. The main focus of this paper

is to investigate the effect of decoding latency for complexity

constrained receivers. Thus, we only focus on transmission

and decoding latencies.

It is assumed that the transmission latency of a codeword

is =)B seconds, where )B is the symbol duration. Thus, the

aggregate latency !� is considered as

!� = =)B + !� , (5)

with !� denoting the decoding latency.2 It is one of the

aims of this work to propose a model that describes in a

general, accurate, and tractable way the latency introduced due

to decoding based on the OS decoding algorithm given in [38].

III. MODELING THE DECODING COMPLEXITY

The decoding complexity model that is proposed in the

present paper is based on linear block codes with OS decoders,

originally presented in [38]. The three most important reasons

of this selection can be listed as follows. i) In prior works,

[13], [39], it has been shown that there exist linear block

codes with OS decoders that can perform very close to the

information-theoretic bounds for finite =. ii) The decoding

performance of OS decoders can be easily parameterized by

a single parameter, i.e., the order, B ∈ Q [38]. iii) Finally, the

operations that are executed during decoding can be accurately

tracked and the decoding complexity can be efficiently and

intuitively described.

An uncoded binary information sequence

u = [D1, D2, . . . , D:], D8 ∈ {0, 1}, of : ≤ = bits is

mapped to an encoded binary sequence b = uM, where

M ∈ {0, 1}:×= is the generator matrix, of = bits which

are then mapped to the transmitted codeword x using the

rule G8 = 218 − 1. At the decoder, we consider the use of

an OS decoder with order−B. The components {H8}=8=1
of

the observed sequence y are sorted in order of descending

amplitudes and the hard-decoded : most-reliable bit sequence,

r, is obtained. We denote the resulting permutation by ^(·).
The columns of M are reordered by the same permutation,

^(·), and Gauss-Jordan elimination is applied to form the

corresponding systematic generator matrix M ^ .3 Associated

with B, a list, LTEP, of

|LTEP | =
⌊B⌋∑
8=0

(
:

8

)
+

⌊
(B − ⌊B⌋)

(
:

⌊B⌋ + 1

)⌋
(6)

test error patterns (TEPs), i.e., bit sequences of length :,

denoted as e8 , is formed. This list includes all the TEPs with

Hamming weight ≤ ⌊B⌋ and the most probable TEPs with

Hamming weight ⌊B⌋ + 1, which can be computed based on

the probability of having ⌊B⌋ + 1 number of errors at different

locations in the first : bits of the hard decoded ^(y) [40,

Lemma 1]. The set of test codewords is then formed by

mapping

(r ⊕ e8)M^ , e8 ∈ LTEP. (7)

2It is assumed that the decoding starts right after the whole codeword is
received. A more indepth investigation is presented in [30].

3It is possible that the first : columns of the permuted M matrix can
be linearly dependent. In this case, reaching to a new systematic generator
matrix M^ is not possible. Therefore, a second permutation is needed that
will guarantee the first : columns to be independent and |H′

1
| ≥ · · · ≥ |H′

:
|

and |H′
:+1

| ≥ · · · ≥ |H′= |, where H′
8

represents the 8th element of the sorted
y. Of course this may add some additional complexity terms. However, for
the purpose of this paper, we neglect these additional terms.
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The test codeword that minimizes the Euclidean distance

between the permuted sequence ^(y) is selected as the most

probable test codeword. The decoded information sequence is

then produced by performing the inverse permutation, ^−1 (·),
and selecting the first : bits.

For notational consistency, given a fixed codebook C con-

taining 2: codewords of length =, we denote an OS decoder as

d(C, B, d), where it is meant that the OS decoder of order−B
operates on the given codebook C at SNR d, and n (C, B, d)
denotes the achieved CEP with the codebook C at SNR d with

order−B. Focusing on the computation intensive operations,

the total number of binary operations per-information-bit of

an observed sequence, y, when the decoder d(C, B, d) is used,

can be calculated by [44, Ch. 7.1], [45]4

 (C, B) = =: + |LTEP |
2

(
= − @ + @=

:

)
, (8)

where @ represents the number of quantization bits. The first

term in (8) is due to the Gauss-Jordan elimination of the

permuted M matrix and the second term is due to the mapping

of the set of test codewords and comparisons with ^(y). When

B < 2, (8) is dominated by the Gauss-Jordan elimination and

for B ≥ 2, the second part dominates the complexity. To

address the limiting behavior of  (C, B), one can use Stirling’s

approximation, given as G! = Γ(G + 1) ≈
√

2cGG+
1
2 4−G , where

Γ(·) is the Gamma function, Γ(I) =
∫ ∞
0
GI−14GdG. Implement-

ing Stirling’s approximation into binomial coefficient we have(
:

B

)
≈

(
1 − B

:

)B− 1
2 4−:(

1 − B
:

) : :B

Γ(B + 1) = O (:B) (9)

since as : → ∞ the first term, the denominator in the middle

term, and 4−: tend to 1. Then, we are only left with :B

Γ(B+1) .

Thus, the complexity order of OS decoder can be expressed

as  (C, B) = O(=:B).
The choice of the order, B, limits the search space for

the most probable test codeword by limiting the size of the

list, LTEP. In comparison to the ML decoder, that performs

in general an exhaustive search over the codebook, which

entails exponential complexity in :, a choice of a moderate

B leads to substantial reduction in decoding complexity. As

a side comment, it is shown in [38] that the required order,

BA , to achieve the ML decoder performance is approximately

BA = min
{
3min

4
− 1, :

}
, where 3min denotes the minimum

Hamming distance.

Some easily verifiable properties hold for the relative per-

formance of two decoders operating on the same codebook

follows:

Property 1. Let two decoders, d1(C, B1, d) and d2(C, B2, d),
operate on the same codebook C with B1 ≤ B2 at the same

SNR. It follows immediately by the selection of the TEP lists

that LTEP,1 ⊆ LTEP,2, which implies  1 (C, B1) ≤  2 (C, B2)
and n1 (C, B1, d) ≥ n2 (C, B2, d) for every d. Intuitively, more

complex decoder leads to lower CEP.

4One can add additional complexity terms due to the sorting and inverse
permutation processes. However, since their total complexities are relatively
smaller compared to the terms in (8) for short blocklengths, we skip them
and adopt (8) in further analysis.

-1 0 1 2 3 4 5 6 7 8
10-6

10-4

10-2

100

Fig. 1: CEP performace of eBCH code with OS decoder at

different orders compared to the the normal approximation

error rate bound for BI-AWGN channel where = = 128 and

: = 64.

Property 2. In addition, let two decoders d1(C, B, d1) and

d2(C, B, d2), operate on the same codebook C with different

SNR levels given that d1 ≤ d2. Then, it must be true that

n1 (C, B, d1) ≥ n2 (C, B, d2) where complexities of two decoders

are the same. Intuitively, higher operating SNR leads to lower

CEP.

Numerical performance results for OS decoders with orders

B = {0, 1, 2, 3, 4, 5} for = = 128 and : = 64 are shown in Fig.

1, where eBCH code with 3min = 22 is used for the encoding

at the transmitter and the error bound is derived from (3).

Fig. 1 shows that as the order−B increases, the performance

of the decoder improves and it is near-optimal for B = BA = 5.

However, as shown in (10) and (11), the increase in the order

of the decoder leads to an exponential increase in the decoding

complexity.

IV. LATENCY WITH DECODING COMPLEXITY

CONSTRAINTS

The transmission latency, !) , is proportional to the block-

length, =, however, the decoding latency depends on multiple

parameters, i.e., (=, :, B), in a more complicated way. With

stringent aggregate latency and reliability requirements, the

optimal selection of the various parameters becomes a non-

trivial task.

A. Decoding Latency

The decoding time of an OS decoder is influenced by a

series of factors such as the particular hardware platform. For

simplicity and generality, we assume that the binary operations

are handled sequentially by the processor which leads to a

linear relation between the total decoding duration and the

time required for a binary operation on the hardware platform,

denoted as )1 [46]. Thus, the total transmission and decoding
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latency for the transmission of a codeword of blocklength =

can be written as

!� = =)B + : (C, B))1 , (10)

where : (C, B) is the total number of binary computations

required for decoding. A more accurate estimation on the

decoding time can be done by investigating the algorithmic

efficiency [24] and specific hardware specifications such as,

memory timings, buffer management, etc. [47]. Even though

such an investigation is out of the scope of this paper, a

discussion on the availability of parallel processing and its

effect on (10) is included in Section VI.

Suppose the latency constraint is

!� ≤ !" , (11)

where !" represents the maximum allowed latency. In gen-

eral, two different communication strategies can be con-

sidered in URLLC applications: i) continuous-mode, ii)

sporadic/bursty-mode [2], [28]. A typical assumption for

continuous-mode transmission is that decoding resources are

chosen so that !� is upper-bounded by =)B. On the other

hand, as discussed in [28] and [48], URLLC traffic can be

event-driven, therefore, sporadic. The focus in this paper is on

sporadic/bursty-mode communication, where a single packet is

transmitted with a latency constraint on !�. Thus, depending

on !�, !� can be longer that =)B .

The constraint in (11) imposes an upper bound on the per-

information-bit decoder complexity such that

 (C, B) ≤ !" − =)B
:)1

, (12)

as long as !" ≥ =)B . For fixed = and :, the constraint in (11)

restricts the order−B as follows

B ≤ B< = arg max
{B |B∈Q+ , !�≤!" }

 (C, B), (13)

where B< denotes the maximum allowed order. Due to the

sum of binomial coefficients, used while calculating |LTEP |,
a closed-form expression on B< does not appear to be ob-

tainable. However, an upper bound on the per-information-bit

complexity that gets tighter with larger B can be derived by

using [49, Lemma 3.6]

 (C, B) ≤ =: + 2:ℎ( B<
: )−1

(
= − @ + @=

:

)
, (14)

where ℎ(I) = −I log(I)−(1−I) log(1−I) is the binary entropy

function. From (14) we get

ℎ
( B<
:

)
≥ 1

:
(1 + log g) , (15)

where g = 1
=(:+@)−@:

(
!"−=)B

)1
−=:2

)
. A lower bound on B< can

be numerically evaluated from (15) since the binary entropy

function is monotonically increasing for
B<
:

≤ 1
2
. Finally, using

the tight approximation for binary entropy function, ℎ(I) ≈
(4I(1 − I))3/4, we obtain

B< ≈ :

2

©­«
1 −

√
1 −

(
1 + log g

:

)4/3ª®
¬
. (16)

However, we note that a constraint on order−B may lead to

a degradation in the CEP performance of the OS decoder. In

particular, if B< < BA , the CEP of the most complex allowable

decoder will be appreciably higher in comparison to the ML

CEP bound.

B. Power Penalty

It is shown in (13) that the selection of an order−B for a

particular code of fixed =, : and d can be used to control

the aggregate latency !� of the communication, albeit at the

expense of reduced reliability. In Fig. 1 for a fixed SNR the

lowest CEP is given by the n< curve. Constraining the order−B
of the decoder, though, incurs a CEP degradation that is a

vertical upwards step to the curve with corresponding B. In

order to satisfy a desired target reliability, a power penalty,

i.e., an amount of excess power, has to be paid. Visually, this

can be represented as a horizontal rightward step in Fig. 1.

Hence, an interesting, yet complex, relation between power,

aggregate latency, decoding complexity arises.

Definition (Power penalty). Fix a codebook C of 2: code-

words of blocklength =. For a reference SNR, dA , consider

the CEP, n , given by the normal approximation in (3) and the

suboptimal decoder d(C, B, d) that achieves n at SNR d. The

quantity

Δd = d − dA (17)

is the power penalty required, such that the suboptimal de-

coder can achieve the same CEP as (3).

For a fixed rate A =
:
=

the reference SNR dA can be

computed by taking the inverse of (3),

dA = '−1(=, A, n). (18)

Notice that '(=, d, n) is strictly increasing in d and therefore

invertible. Although there is no closed form expression of dA
for BI-AWGN channels, it can be numerically evaluated.

Since the ML decoder minimizes CEP, it holds that Δd ≥ 0.

For a family of codes that does not achieve the bound even

with ML decoding, it holds Δd ≥ ΔdML > 0, where ΔdML

is the power gap of the best code within that family of codes

from the normal approximation. Theoretically, it is possible

to operate at rate A with SNR dA (or dA + ΔdML for codes

not achieving the bound), however, a possibly prohibitively

complex decoder is required for such a power-rate selection.

Similar empirical results are also presented in [23] and [42].

Extensive studies on OS decoders reveal that this exponential

increase is similar at all rates for fixed = [42].

It is clear from the above that a model is required to

quantify the power penalty. Bounds on the performance of OS

decoders are available [38], [50], however, these bounds are

mathematically intractable for further analytical analysis. In

Fig 2.a we plot the required SNR values so that an OS decoder

of order B achieves CEP n (C, B, d) = 10−5 for a codebook

of blocklength = = 128 and various rates. These values

were computed via extensive simulations of the respective

codes. For the purpose of comparison, we also show the

capacity of the BI-AWGN channel with the dashed line and the

normal approximation with the solid line. Fig. 2.a illustrates
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Fig. 2: (a). Power requirements of OS decoders with different

orders at different rates for n = 10−5 when = = 128. (b). Power

penalty values of OS decoders at different orders versus their

complexities for = = 128, : = 64, and = = 64, : = 36 where

n = 10−5.

the following: i) The performance of OS decoders closely

approaches '(=, d, n) if B is sufficiently high. ii) As the

decoding complexity increases with increasing B, the power

penalty required for the desired CEP decreases. iii) Conversely,

an aggregate latency constraint, which implies a decoding

complexity constraint, i.e., an upper bound on the order B,

leads to a corresponding power penalty, if a desired CEP is to

be guaranteed.

In Fig. 2.b the total number of binary operations per-

information-bit is plotted as a function of the power penalty

for order−B = {0, 1, 2, 3, 4, 5} where = = 128, : = 64 and

= = 64, : = 36 codes. Similar numerical results have also

been produced for various = and : values for fixed n and it

has been observed that for all cases, the relation between the

logarithm of the computational complexity, log (C, B), and

power penalty can be modeled by a law of the type

� (Δd) Δ
=

1

0
√
Δd + 1

, (19)

with appropriate choices of the constants 0 > 0 and 1 > 0.

This model describes in an accurate and tractable way the

trade-off between decoding complexity and power penalty for

practical finite-length codes. The coefficients 0 and 1 can

be found with an iterative approach that searches the values

which minimize the mean square error between the logarithmic

computational complexity of decoders at the specified power

gap and the model � (Δd).
Based on extensive numerical simulations, it is observed that

for fixed =, the values of 0 and 1 do not appreciably change

as : varies. Therefore, for simplicity, we assume that 0 and

1 are functions of = only. As Δd → 0, � (Δd) = 1/1 and the

ultimate complexity of an OS decoder that can achieve the

benchmark is ≈ 21/1. Given that 0 and 1 are strictly positive,

� (Δd) is a monotonically decreasing function in Δd, since

� ′
= − 0

2
√
Δd

(
0
√
Δd + 1

)2
< 0. (20)

The monotonicity of � (Δd), which follows from (20) is not

imposed by the authors, but is a consequence of the behaviour

based on Fig. 2.b and is a direct consequence of the decoder’s

operation as given in Properties 1 and 2. Further, (20) reveals

that a desired CEP can be achieved with a lower complexity

decoder as long as sufficient excess power is available, and

vice-versa.

Lemma 1. Consider the system model described in Sec. II

and let a constraint !� ≤ !" with !" > =)B imposed on

a complexity constrained OS decoder, where the aggregate

latency is expressed as (10). Based on the proposed model in

(19), the minimum amount of power penalty that is required

to guarantee a desired CEP is

Δd< =

(
1

0
max

{(
log

!" − =)B
:)1

)−1

− 1, 0
})2

. (21)

Remark 1. Lemma 1 shows the minimum amount of excess

power that is needed in order to fulfill the latency and reliabil-

ity requirements for a complexity constrained OS decoder with

BI-AWGN channel. From (21), it is clear that for fixed = and

)B , as )1 decreases, i.e., the receiver is equipped with a more

powerful processor, Δd< decreases and hence the gap to the

normal approximation shrinks and vanishes if )1 ≤ !"−=)B
:

1
√

2
.

On the other hand, for fixed =, if the transmission rate, A,

increases, Δd< also increases and the gap to the normal

approximation widens.

The latest argument expressed in Remark 1 can be ex-

plained as follows. Recall that selecting the maximum allowed

 (C, d, B) leads to the minimum amount of power penalty

and, based on the upper bound on per-information-bit decoder

complexity given in (12), for fixed =, as : increases, i.e., when

transmitting at higher rates, (12) decreases. Thus, in order to

assure this inequality, as : increases, a simpler decoder, with

smaller B, is required, which eventually leads to higher power

penalty.
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Fig. 3: Maximum achievable rates under latency and complex-

ity constraints for = = 128, n = 10−5, )B = 1 `s, and )1 = 1 ns.

C. Maximal Information Rate with Latency Constraints

Here, an approximation on the maximal information rate

that can be achievable under latency, reliability, and complex-

ity constraints is presented.

Lemma 2. For a complexity constrained receiver with ag-

gregate latency expressed in (10), the maximal achievable

information rate subject to latency, !� < !" with !" > =)B ,

and reliability constraints, denoted as "∗, can be closely

approximated as "∗ ≈ " (=, d, n) where

" (=, d, n) = '(=, d − Δd<, n). (22)

Proof. For fixed rate and blocklength = the maximum allow-

able decoding time can be calculated using (10). This in turn

yields the required power penalty Δd via (19) which eventually

leads to Δd<. Finally, according to (21), " (=, d, n) can be

determined by shifting the normal approximation by Δd< to

the right. �

Lemma 3. " (=, d, n) is monotonically increasing in d.

Proof. Let us introduce the following two maximal rates:

'(=, d1, n) and '(=, d2, n). Suppose that d2 ≥ d1, then

using the monotonic structure of the channel capacity [51],

'(=, d2, n) ≥ '(=, d1, n), and therefore, using Remark 2,

Δd2
< ≥ Δd1

< ≥ 0. Hence, " (=, d2, n) ≥ " (=, d1, n). �

In Fig. 3 the information rate is plotted as a function of

the SNR in dB. The dashed line corresponds to the capacity

of the BI-AWGN channel and the solid line to the normal

approximation for = = 128 and n = 10−5. The remaining three

plots in the figure correspond to maximal information rate

when latency constraints !" = {10, 1, 0.3} ms are imposed.

It is assumed that the symbol interval is )B = 1 `s and the

time required for a binary operation is )1 = 1 ns. One can

see that the achievability bound shifts to the right more as the

constraint on time shrinks. It can be also observed that the

gap between normal approximation and " (=, d, n) widens as

A increases as it is mentioned in Remark 2.

Lemma 1 and Lemma 2 reveal that constraints on ag-

gregate latency and decoding complexity limit the maximal

information rate. These results are crucial to understand the

capabilities of the communication system and to increase the

efficiency. Next, we will discuss some non-trivial optimization

problems which affect the efficiency of the communication

systems.

V. OPTIMAL COMMUNICATION WITH LATENCY AND

DECODING CONSTRAINTS

A. Minimization of Aggregate Latency

We consider the transmission of a packet that contains a

fixed number of information bits, :, and we are interested in

minimizing the aggregate latency, !�, subject to reliability and

transmit power constraints. Such an optimization problem can

be encountered in scenarios of industrial control, where, e.g.,

a sensor transmits a fixed-precision measurement or a control

message out of a list of 2: possible messages. The formulation

of the problem follows

minimize
=,n ,dA ,Δd,B

!� (23a)

s.t. n ≤ n<, (23b)

dA + Δd ≤ d<, (23c)

:/= ≤ '(=, dA , n), (23d)

dA ≥ 0, Δd ≥ 0, 0 ≤ B ≤ :, : ≤ =. (23e)

Here, it is assumed that )1 and )B are fixed. The optimization

variables are =, n, dA , Δd, and B. (23b) and (23c) represent

error rate and power budget constraints, respectively. Lastly,

(23d) indicates the maximal achievable rate without decoding

complexity constraints, as given by (3).

Lemma 4. The optimum point of (23) is achieved with

equality in (23b).

Proof. We prove the lemma by contradiction. First of all, for

fixed dA and given that '(=, dA , n) ≤ '(=, dA , n<), the feasible

set for = becomes the largest for n = n<. Then assume that

the optimal decoder is d(C∗, B∗, d∗A + Δd∗) with n (C∗, B∗, d∗A +
Δd∗) < n<. For some f > 0 small enough we can find a

decoder d(C∗, B∗ − f, d∗A + Δd∗) that can achieve n (C∗, B∗ −
f, d∗A + Δd∗) = n<. However, the complexity of this decoder

is smaller than the optimal one and hence achieves a smaller

aggregate latency without violating the CEP constraint. �

The problem now can be further split into a countable

sequence of problems, one for every feasible =. Fixing =

implies that the rate is also fixed, i.e., A = :/=. Hence, the

reference SNR, dA , follows by solving A = '(=, dA , n<). It

must be noted that a solution to the problem for fixed = can

be found only if

dA ≤ d<, (24)

otherwise the problem is infeasible for the particular =. Finally,

the problem for fixed =, when feasible, can be written as

minimize
Δd,B

 (C, B) (25a)

s.t. 0 ≤ Δd ≤ d< − dA , 0 ≤ B ≤ :. (25b)



8

or equivalently the objective function is the maximization of

0
√
Δd+1, which is achieved when Δd = d<−dA . The optimal

B is given by the following theorem.

Theorem 5. For a given =, such that the problem is feasible,

the corresponding order−B that minimizes ;C can be closely

approximated to

B ≈ 1

2

(
: −

√
:2 + 3

√
:2[4

)
, (26)

where [ = � (d< − dA ) + 1 − log = .

Proof. � (Δd) is a monotonic decreasing function in Δd. The

complexity of the simplest decoder that meets the constraints

can be found while selecting the highest power that is dA+Δd =

d< and the complexity of this decoder is ≈ 2� (d<−dA ) . Finally,

(26) can be obtained by using the same analogy in (16). �

The optimum selection can be found with exhaustive search

over all = values. A numerical example of the feasible region,

denoted as (, for various = with respect to d is illustrated in

Fig. 4.a where : = 64, d< = 5 dB, n< = 10−5, )B = 1 `s,

and )1 = 1 ns. Note that no decoder can be identified until

the feasibility condition is met. The optimum, that is shown

with a circle, can be found by searching along d = d<. A

computationally efficient algorithm, linear in =, is proposed in

Algorithm 1.

Algorithm 1 Minimization of !�

1: for = = =min, =min+1, · · · , =max do

2: compute: dA from (18)

3: compute: � (Δd) from (19)

4: if d< ≥ dA then

5:  (C, B) = 2� (d<−dA )

6: else

7:  (C, B) = ∅
8: end if

9: compute: !�(=) = =)B + : (C, B))1
10: end for

In Fig. 4.b the aggregate latency is plotted as a function of

the codeword length, =. It can be seen that for small = the

code rate of the selected codebook must be very high. Hence,

either the transmission is not possible when the required code

rate exceeds (3) or the required decoder must operate close

to the normal approximation, which yields high decoding

complexity. This translates to very high aggregate latency. As

= increases, the required rate is decreasing, hence it is more

likely that it can be supported by the power budget or a rate

sufficiently far from the normal approximation can be selected.

In this case, a decoder with low complexity can be selected

and the aggregate latency is dominated by the codeword

transmission latency. For power constraints d< ∈ {5, 7, 10} dB,

the optimal codeword lengths are =opt = {212, 142, 91}, re-

spectively. Infinite d< implies that the symbols are transmitted

error free and =opt = : since from (19), :)1 ≈ 0 s and hence

!� = =)B and linearly increases in =.

(a)

100 150 200 250 300 350 400 450 500

0.1

1

10

(b)

Fig. 4: (a). Realization of the feasible set ( where : = 64,

d< = 5 dB, n< = 10−5, )B = 1 `s, and )1 = 1 ns. (b).

Minimum !� with respect to = for several d< where : = 64,

n< = 10−5, )B = 1 `s, and )1 = 1 ns.

B. Minimization of per-Information-Bit Energy

Here, we consider minimizing the per-information-bit en-

ergy consumption, where the transmission contains a fixed

number of information bits, subject to reliability, transmit

power, and latency constraints. This optimization problem is

significant for communication scenarios where power effi-

ciency is crucial, such as battery powered URLLC systems. A

rough analysis may yield the following; minimization of per-

information-bit energy is proportional to SNR minimization.

However, given that a fixed number of : information bits must

be transmitted, low SNR values may either lead to theoretically

unachievable transmission rates or rates that are very close

to the limits and require very complex decoders which may

eventually violate the latency constraint.

The optimization problem can be formulated as

minimize
=,n ,dA ,Δd,B

41 (27a)
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Fig. 5: (a). Realization of the feasible sets for various = where

: = 64, d< = 5 dB, n< = 10−5, !" = 1 ms, )B = 1 `s, and

)1 = 0.1 ns. (b). Minimum 41 values for :∗ = 64 for several

different complexity constrained receivers where !" = 1 ms,

d< = 5 dB, and n< = 10−5.

s.t. n ≤ n<, (27b)

!� ≤ !" (27c)

dA + Δd ≤ d<, (27d)

:/= ≤ '(=, dA , n), (27e)

dA ≥ 0, Δd ≥ 0, 0 ≤ B ≤ :, : ≤ =. (27f)

where 41 = (dA + Δd)/A represents the per-information-

bit energy. Similar to (23), it is assumed that the hardware

platform is fixed and variables are same. In comparison, an

additional aggregate latency constraint is imposed via (27c).

Lemma 6. The optimum point of (27) is achieved with

equality in (27b).

Proof. Assume that the optimal decoder is d(C∗, B∗, d∗A +Δd∗)
with n (C∗, B∗, d∗A +Δd∗) < n<. However, for some Δd∗ ≥ f >

0 small enough, one can find a decoder d(C∗, B∗, d∗A +Δd∗−f)

that can achieve n (C∗, B∗, d∗A + Δd∗ − f) = n<, which requires

lower SNR than the optimal one and hence achieves a smaller

per-information-bit energy consumption without violating the

CEP constraint. �

The power constraint in (27d) is directly proportional to

41 and limits it such that 41 ≤ d</A. Further, we fix = and

split the problem into countable sequence of problems. Now,

the rate, A, and the reference SNR, dA , are also fixed. For a

feasible =, that meets (27e) with dA ≥ 0, the problem (27)

now reduces to

minimize
Δd,B

Δd (28a)

s.t. !� ≤ !" (28b)

0 ≤ Δd ≤ d< − dA , (28c)

0 ≤ B ≤ :. (28d)

Without the latency constraint, given in (28b), (24) gives

the feasibility condition. However, selecting Δd closer to 0

corresponds to a decoder with high complexity, which may

require longer !� for complexity constrained receivers and

may violate the latency constraint.

Lemma 7. For a feasible =, there is a set of feasible solutions

if

Δd< ≤ Δd ≤ d< − dA (29)

for Δd ≥ 0. Thus, the feasibility condition is dA +Δd< ≤ d< .

Proof. It is shown in (21) that Δd< gives the minimum amount

of power penalty that needs to be paid due to the latency

constraint for a fixed CEP. Therefore, selecting the minimum

excess power as Δd<, guaranties (29). �

Finally, the optimization problem reduces to

minimize
Δd,B

Δd (30a)

s.t. Δd< ≤ Δd ≤ d< − dA , (30b)

0 ≤ B ≤ :. (30c)

Hence, the objective function is minimized when Δd = Δd<.

It is worth noting that this operating point lies on " (=, d, n<).
The corresponding order−B is given in (16). An efficient

algorithm that solves (27) is shown in Algorithm 2.

Numerical realizations of the feasible set, (, for various =

are demonstrated in Fig. 5.a for : = 64, d< = 5 dB. As

seen, no feasible point can be identified unless (29) is satisfied.

Algorithm 2 Minimization of 41

1: for = = =min, =min+1, · · · , =max do

2: compute: dA from (18)

3: compute: Δd< from (21)

4: if Δd< + dA ≤ d< then

5: 41 (=) = (Δd< + dA )/A
6: else

7: 41 (=) = ∅
8: end if

9: end for
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Notice that the optimum point, depicted with a circle, lies on

the dA + Δd< line.

Minimum 41 values for different )1 are depicted in Fig.

5.b where !" = 1 ms, )B = 1 `s, d< = 5 dB, and n< =

10−5. The red dotted line represents the power constraint and

a selection above that line is infeasible. Minimum 41 values at

each = value are depicted for four different receivers such that

)1 ∈ {0, 0.001, 0.1, 1} ns, where )1 = 0 ns represents infinite

computation power. Notice that, due to the power constraint,

for the receiver with )1 = 1 ns, feasible selections exist only

in a small portion of = and the minimum is located where

dA+Δd< = d<. For the rest, one can claim that as the hardware

capability gets better, i.e. )1 decreases, the optimum selection

of = increases whereas optimum 41 decreases.

C. Maximization of Total Transmitted Information Bits

Next, we investigate the following optimization problem:

What is the maximum : that can be transmitted subject to

latency, CEP, and power constraints? This problem is crucial

in terms of increasing the efficiency of the communication

system and can be formulated as

maximize
=,:,n ,dA ,Δd,B

: (31a)

s.t. n ≤ n<, (31b)

!� ≤ !" (31c)

dA + Δd ≤ d<, (31d)

:/= ≤ '(=, dA , n), (31e)

dA ≥ 0, Δd ≥ 0, 0 ≤ B ≤ :, : ≤ =. (31f)

Similar to the previous optimization problems, here we

show that optimum solution is achieved with equality in (31b).

The proof is straightforward by using similar analogy that is

shown in Lemma 4 and Lemma 6.

Next, let us first explain the solution to this problem

where unlimited computational power is assumed. In this case,

a codeword can be decoded instantaneously and therefore

!� = 0 and all the latency budget can be used for transmission

of the codeword, i.e. =inf = !" /)B symbols can be transmitted

at a rate that is determined by (3), which yields

: inf =
⌊
=inf' (=inf, d<, n<)

⌋
. (32)

Notice that SNR is chosen to be d< due to the monotonic

structure of the channel [51].

However, with decoding complexity constraints, the fol-

lowing trade-off arises. If = is selected small, the available

duration for decoding can be sufficient so that a high rate

code can be used. As = increases, the available duration for

decoding shrinks and a code with decreasing code rate must

be selected so that the aggregate latency constraint is satisfied.

The solution of such a problem for complexity constrained

receivers is not trivial and may need a comprehensive search

with various parameters.

Without loss of generality, let us first set n = n< and

fix = and split the problem into a countable sequence of

subproblems. It should be noted that !"/)B is an upper bound

of =. It is shown in Lemma 7 that the latency constraint in

(a)
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Fig. 6: (a). Realization of the feasible set ((= = 128) where

d< = 7 dB, n< = 10−5, !" = 1 ms, )B = 1 `s, and )1 = 1 ns.

(b). Maximum : for several complexity constrained receivers

where !" = 1 ms, d< = 7 dB, and n< = 10−5. Optimums are

shown with circles.

(31c) can be converted to a power penalty constraint. There, it

is also shown that the feasibility constraint is dA +Δd< ≤ d<.

Here, we further extend and instead of converting the latency

constraint into a power constraint, using Lemma 1, we convert

it to a rate constraint. Thus, the problem reduces to

maximize
:,dA ,Δd,B

: (33a)

s.t. Δd ≤ d< − dA , (33b)

:/= ≤ " (=, dA , n<), (33c)

dA ≥ 0, Δd ≥ 0, 0 ≤ B ≤ :, : ≤ =. (33d)

Numerical realization of such a problem is demonstrated in

Fig. 6.a where = is fixed to 128 and n< = 10−5, d< = 7 dB,

!" = 1 ms, )B = 1 `s, and )1 = 1 ns. The feasible set is shown

with ((=). Notice that, due to Lemma 3, the sub-optimum rate-

power selection is the topmost point of the set ((=), which
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is also the junction point of " (=, d, n<) and d = d<, that is

" (=, d<, n<). Hence, the solution to the optimization problem

in (31) follows

:opt
=

⌊
=opt" (=opt, d<, n<)

⌋
. (34)

where =opt, the optimum = that maximizes :, follows =opt
=

arg max
{= |=∈N+ }

=" (=, d<, n<). A computationally efficient algo-

rithm, linear in =, is proposed in Algorithm 3.

Algorithm 3 Maximization of :

1: for = = =min, =min+1, · · · , =max do

2: compute: '(=, d, n<) using (3)

3: compute: Δd< using (22), ∀A ∈ (0, 1]
4: compute: " (=, d, n<) using (22)

5: compute: : (=) =
⌊
=" (=, d<, n<)

⌋
6: end for

In Fig. 6.b numerical results that correspond to the inves-

tigated scenario are plotted for !" = 1 ms, d< = 7 dB, and

n< = 10−5. Four different choices for execution times for a

binary operation are shown: )1 ∈ {0, 0.001, 0.1, 1} ns. The

previously introduced trade-off is clear here and the max-

imums appear at =opt
= {227, 381, 734, 1000}, respectively.

Corresponding :opt values are :opt
= {96, 169, 393, 901}.

Ratios of :opt values found for complexity constrained re-

ceivers to the :opt of infinite computation power receiver are

≈ 0.1, 0.18, 0.43, respectively. Thus, one can conclude that if

complexity constraints and decoding duration are taken into

account, depending on the receiver capabilities, the maximum

achievable values are much less than the theoretical limits.

VI. DISCUSSION

A. Other Families of Codes

Thus far we have reviewed and solved several optimiza-

tion problems for URLLC applications with complexity con-

strained OS decoders. Solutions to these problems depend on

the model that is introduced in Section IV where the trade-

off between computational complexity and power penalty for

a fixed reliability constraint is modeled in a simple way.

Although (19) was derived based on linear block encoder and

OS decoders, results in the literature, [23, Fig. 6], [17, Fig.

6.1 to Fig. 6.9], reveal that when it comes to the relation

between computational complexity and power penalty in the

short block-length regime, other families of codes follow a

similar pattern. Here, we further extend our conclusions to the

following coding schemes, which are considered as promising

solutions for URLLC applications: i) TBCCs with list Viterbi

decoding [52], ii) polar codes under 7-bit cyclic-redundancy-

check aided successive cancellation list (SCL) decoding [13],

[53], iii) binary LDPC codes with min-sum decoder [54], and

illustrate that their behaviour can be closely modelled by (19).5

5The field of practical codes is extensive and many tricks can be used to
reduce the complexity of a decoder. However, this is beyond the scope of
this study. Here, there is no intent to find the optimal decoder in terms of
computational complexity. Instead, we consider reasonably optimized off-the-
shelf codes which are also considered as promising solutions for URLLC
applications and illustrate that their computational complexity versus power
gap behavior follow similar trends to the OS decoder.
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Fig. 7: Power penalty values of TBCC, LDPC, and polar codes

versus their complexities for = = 128, : = 64 where n = 10−5.

Recall that the complexity-reliability trade-off in OS

decoders is controlled with the order−B, whereas this

parametrization in TBCCs, polar codes, and LDPC codes can

be controlled by the memory size, M, list size, L, and maximum

iteration number, I, respectively. Therefore, performance of

TBCC with M = {1, 2, 4, 6, 8, 10, 12, 14} [13], [30], SCL for

polar codes with L = {1, 2, 4, 8, 16}, and finally min-sum

decoding for LDPC with I = {1, 2, 5, 10, 20, 50, 100, 250} are

investigated.6 CEP results of these codes for = = 128, : = 64

are not shown due to page limitations, however it is seen

that performance of TBCC codes is approaching the normal

approximation as M increases. Performance of LDPC and polar

codes improves as I and L increase. However, although polar

codes are performing better than LDPC codes, in terms of CEP,

TBCC outperforms both of them, of course, at the expense of a

high decoding complexity, which are shown in the next figure.

In Fig. 7 the total number of binary operations per-

information-bit is plotted as a function of the power penalty for

TBCC, LDPC, and polar codes to achieve n = 10−5, where the

per-information-bit complexities of the decoders are obtained

from [22]. Although, values of M, L, and I are not depicted,

as one can predict, these values are increasing as the decoder

approaches the bound. One can see that the trade-off between

complexity vs. power penalty for TBCC, LDPC, and polar

codes can be closely pursued with the proposed model given

in (19). Hence, it can be advocated that (19) is a useful proxy

for a general study of URLLC systems with computational

complexity constraints.

B. Parallel Processing

An important feature that can significantly reduce the

decoding duration is the availability of parallel processing,

which is the possibility of executing multiple computational

6It is worth to note that although the parameter change at the decoder does
not effect the encoder structure and complexity in linear coding schemes, it
may change the convolutional encoder and increase or decrease its complexity.
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processes in multiple processors simultaneously. Implemen-

tation of parallel processing depends on the parallelizability

of the computational task. Suppose that a fraction U of a

computational task is parallelizable, meaning that only the

fraction U of the total task before parallelization can be

executed in parallel, whereas the fraction (1 − U) of the task

needs to be run sequentially. The theoretical upper bound on

the speed-up of the execution duration is addressed by the

Amdahl’s law [55], [56]

* =
!�

!%
�

=
1

U
%
+ (1 − U) , (35)

where *, !� , !%
�

, and % represent the speed-up in time of

the computational task, the total decoding duration on a single

processor, the total decoding duration with parallel processing,

and the number of parallel processors, respectively. Thus,

optimally, the execution time of a task with parallel processing

is * times faster than running the same task sequentially.

Using (10) and (35), one can relate the speed-up coefficient

* to )1 as the following

)%
1 =

1

*
)1 , (36)

where )%
1

can be named as the average time required for a

binary operation in parallel processing, in which all processors

in parallel are identical and the execution time of a binary

process is )1 for all. Hence, (36) shows that the effect of

parallel computation is linear in )1 and therefore does not

change the analysis in Section V but may change the numerical

results since although )1 is only related with the hardware

platform, )%
1

depends on the fraction U.

VII. CONCLUSIONS

The aggregate latency caused by codeword transmission and

decoding is the main focus in this study. The empirical model

we have presented in this paper can accurately show the trade-

off between complexity of OS decoders versus their power

gap to the normal approximation. Based on the insights from

the proposed model, maximal achievable transmission rates

with OS decoders under stringent latency and computational

complexity constraints are presented. In particular, our results

highlight the effects of these constraints on transmission pa-

rameters and hence show that decoding time has a considerable

effect on the bounds of the short block-length codes when

complexity constraints are taken into account. Next, several

optimization problems that aims to increase the transmission

efficiency of the URLLC system with OS decoder have been

formulated and solved. It is shown that when complexity

constraint and decoding duration are considered in a low-

latency communication scenario, the optimum selections of

the transmission parameters vary significantly compared to the

unconstrained decoder scenarios.
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