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Hybrid Beamforming for Massive MIMO

Over-the-Air Computation

Xiongfei Zhai, Xihan Chen, Jie Xu, and Derrick Wing Kwan Ng

Abstract

Over-the-air computation (AirComp) has been recognized as a promising technique in Internet-of-Things (IoT)

networks for fast data aggregation from a large number of wireless devices. However, as the number of devices

becomes large, the computational accuracy of AirComp would seriously degrade due to the vanishing signal-

to-noise ratio (SNR). To address this issue, we exploit the massive multiple-input multiple-output (MIMO) with

hybrid beamforming, in order to enhance the computational accuracy of AirComp in a cost-effective manner. In

particular, we consider the scenario with a large number of multi-antenna devices simultaneously sending data to

an access point (AP) equipped with massive antennas for functional computation over the air. Under this setup,

we jointly optimize the transmit digital beamforming at the wireless devices and the receive hybrid beamforming

at the AP, with the objective of minimizing the computational mean-squared error (MSE) subject to the individual

transmit power constraints at the wireless devices. To solve the non-convex hybrid beamforming design optimization

problem, we propose an alternating-optimization-based approach, in which the transmit digital beamforming and

the receive analog and digital beamforming are optimized in an alternating manner. In particular, we propose two

computationally efficient algorithms to handle the challenging receive analog beamforming problem, by exploiting

the techniques of successive convex approximation (SCA) and block coordinate descent (BCD), respectively. It

is shown that for the special case with a fully-digital receiver at the AP, the achieved MSE of the massive

MIMO AirComp system is inversely proportional to the number of receive antennas. Furthermore, numerical results
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show that the proposed hybrid beamforming design substantially enhances the computation MSE performance as

compared to other benchmark schemes, while the SCA-based algorithm performs closely to the performance upper

bound achieved by the fully-digital beamforming.

Index Terms

Over-the-air computation (AirComp), Internet-of-Things (IoT) networks, massive multiple-input multiple-output

(MIMO), hybrid beamforming, optimization.

I. INTRODUCTION

Future Internet-of-Things (IoT) networks need to support an enormous number of wireless devices for

sensing the environment, aggregate massive sensing data for analysis, and accordingly take physical actions

[1], [2]. Conventionally, such data aggregation is implemented via wireless devices individually sending

their data to an access point (AP) or a fusion center over wireless multiple access channels, in which the

AP may need to decode the individual messages from each device by treating messages from others as

harmful interference. Nevertheless, for practical IoT applications, the AP may be interested in computing

a certain function value (e.g., the sum value) of the aggregated data rather than the individual messages

(e.g., in federated learning setups [3]). In this case, the above conventional multiple access scheme may not

be energy- or spectral-efficient and may also lead to excessively long network latency, especially when the

number of devices becomes significantly large. To overcome the drawback, the over-the-air computation

(AirComp) technique has been proposed recently, which utilizes the co-channel interference among devices

as a beneficial factor for functional computation [4], [5]. By exploiting the signal superposition property

of multiple access channels, the AirComp technique is able to directly compute a class of nomographic

functions (e.g., arithmetic mean, weighted sum, geometric mean, polynomial, and Euclidean norm) of

distributed sensing data from the concurrent transmission of distributed wireless devices [6].

In general, AirComp can be implemented in both analog and digital modes. While the simple uncoded

analog transmission was shown to achieve the minimum functional distortion when the data sources

follow the independent and identically distributed (i.i.d.) Gaussian distribution [7], coding was shown to

be necessary for improving the computation performance under the bivariate Gaussian [8] and correlated

Gaussian [9] distributed data sources. Besides, for analog AirComp, the computation mean-squared error

(MSE) is normally adopted as the performance metric. In the single-antenna setup, a proper power control
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is essential for minimizing the computation MSE [10]–[12]. For instance, under the coherent multiple

access channel, the optimal power control strategy for minimizing the computation MSE was proposed

in [10] by using convex optimization, and optimal power allocation strategies were proposed in [11]

for minimizing the distortion outage probability (defined as the probability that the computation MSE

exceeds a given threshold). Furthermore, under fading channels, the optimal power allocation strategy for

minimizing the average computation MSE was studied [12]. In particular, multi-antenna beamforming is

an efficient technique to further enhance the computation MSE performance. For instance, the authors in

[5] investigated the multiple-input multiple-output (MIMO) AirComp for computing multiple functions

simultaneously, in which a closed-form equalization at the AP was proposed to minimize the computation

MSE under the zero-forcing (ZF) transmit beamforming at wireless devices. Notice that the implementation

of AirComp requires the synchronization among all devices; towards this end, the so-called AirShare design

was developed in [13], where a shared clock was broadcast to all devices to facilitate synchronization.

On the other hand, digital AirComp was proposed to enhance computational accuracy via proper coding

methods [14]–[19]. The idea of digital AirComp first appeared for functional computation in wireless

sensor networks (see, e.g., [14]) and physical-layer network coding in a two-way relay channel (see, e.g.,

[15]). For AirComp, the achievable computation rate under different system setups was characterized

in [18] and [19], which is defined as the number of functional values computed per unit time under

a predefined computational accuracy. Furthermore, to enable multi-function computation with enhanced

computation rate, the authors in [20] integrated the idea of non-orthogonal multiple access (NOMA) [21]

in AirComp, in which multiple functions from different wireless devices are superposed in each resource

block.

In this paper, we particularly focus our study on the analog AirComp, in which wireless devices send

uncoded data to a single AP for functional computation. In practice, the implementation of AirComp over

large-scale wireless networks faces several technical challenges. For instance, as the number of wireless

devices increases, the computation performance in AirComp systems may seriously degrade, due to the

vanishing of the received signal-to-noise ratio (SNR) at the AP. As a remedy, massive MIMO [22] is

considered as a promising viable solution to improve the computational accuracy of AirComp systems by

exploiting its rich spatial degrees of freedom and tremendous array gain. To the best of our knowledge,

the exploitation of massive MIMO for AirComp has not been reported in the literature yet. Hence, it
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motivates us to consider the combination of massive MIMO and AirComp to improve the computation

accuracy.

Despite the potential benefits, the amalgamation of massive MIMO and AirComp would incur high

fabrication cost and energy consumption due to the conditional large numbers of radio frequency (RF)

chains as well as analog-to-digital converters (ADCs) associated with antennas. To address these issues,

the hybrid beamforming structure has emerged as a promising solution, which allows the AP to em-

ploy a smaller number of RF chains than that of antenna elements [23]–[33]. Considering the tradeoff

between performance versus complexity, different types of hybrid beamforming (e.g., fully-connected

[24], [25], [27]–[29], [31], [32] and partially-connected [23], [26], [30], [33]) with different kinds of RF

electronic modules (e.g., analog switches [23], [26] and analog phase shifters [24], [25], [27]–[33]) have

been investigated. In particular, the fully-connected hybrid beamforming is appealing as it can achieve

better performance with each RF chain connected to all antennas, while the partially-connected hybrid

beamforming shows a lower complexity but compromised performance, since it allows every RF chain to

connect to only part of antennas.

Although there have been a handful of prior works investigating hybrid beamforming for massive MIMO

communication systems [23]–[33], these designs cannot be directly applied to massive MIMO AirComp

systems, due to the following reasons. First, the design objectives are fundamentally different. In massive

MIMO communication systems, the hybrid beamforming design aims to maximize the communication

rate by eliminating the interference, while in massive MIMO AirComp systems, the hybrid beamforming

design targets for minimizing the computation error by harnessing the “interference”. Second, inspired

by the low-latency requirement of data-intensive IoT applications, the hybrid beamforming in massive

MIMO AirComp systems should achieve good computational accuracy with a less computational com-

plexity/latency. Motivated by the above observations, in this paper, we investigate the hybrid beamforming

design for massive MIMO AirComp systems. As an initial attempt, we adopt the fully-connected hybrid

beamforming with analog phase shifters to achieve full spatial degrees of freedom of massive MIMO for

AirComp.

The main results of this paper are summarized as follows.

• We consider a massive MIMO AirComp system with a massive-antenna AP and a massive number

of wireless devices, which aims to compute multiple arithmetic sum functions of the recorded signals
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from all the devices. Our objective is to jointly optimize the transmit digital beamforming, the receive

analog beamforming, and the receive digital beamforming to minimize the computation MSE. The

formulated problem is generally intractable due to the highly coupled variables in the objective

function and the constant modulus constraints for the receive analog beamforming.

• To address the non-convex hybrid beamforming optimization problem, we propose an alternating-

optimization-based approach to alternately optimize the transmit beamforming and the receive analog

and digital beamforming. In particular, we optimize the receive analog beamforming by applying two

methods, namely the successive convex approximation (SCA) and block coordinate descent (BCD),

respectively. While the SCA-based method leads to a better performance, the BCD-based method

enjoys a lower computational complexity at the expense of a compromised performance.

• To gain more insights, we analyze the MSE performance for a special case with a fully-digital receiver

at the AP. In this case, we show that the optimal (digital) receive beamforming follows the sum-

minimization-MSE (sum-MMSE) structure. With the help of the sum-MMSE receive beamforming,

we prove that the computation MSE is inversely proportional to the number of receive antennas when

the AP adopts the techniques of massive MIMO.

• Furthermore, numerical results show that the proposed hybrid beamforming design substantially

improves the computation MSE performance of multi-function/multi-modal massive MIMO AirComp

systems as compared to other benchmark scheme inspired by the ZF-based fully-digital beamforming

design in [5]. The SCA-based algorithm is shown to perform closely to the performance upper bound

achieved by the fully-digital beamforming.

The remainder of this paper is organized as follows. Section II introduces the system model and

formulates the computational MSE minimization problem. Section III presents the alternating-optimization-

based approaches to address the formulated problem, where two algorithms are proposed to optimize

the receive analog beamforming based on SCA and BCD, respectively. Section IV analyzes the MSE

performance for the special case with fully-digital beamforming design. Section V presents the numerical

results. Finally, Section VI draws the conclusion.

Notations: Throughout this paper, we adopt bold upper-case letters for matrices and bold lower-case

letters for vectors. For a matrix A, A(i, j) represents the entry on the ith row and the jth column, while

A†, A∗, AT , and AH denote its Moore-Penrose pseudo inverse, conjugate, transpose, and Hermitian
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transpose, respectively. Furthermore, I denotes the identity matrix whose dimension will be clear from

the context, and C
m×n denotes the m-by-n dimensional complex space. The notations E(·), Tr(·), det(·),

vec(·), R(·), and ‖ · ‖ represent the expectation, trace, determinant, vectorization, real part, and Frobenius

norm of an input variable, respectively. ▽xf(x) denotes the gradient of f(x) with respect to x. ◦ is the

Hadamard product between two matrices. The circularly symmetric complex Gaussian (CSCG) distribution

with mean Υ and covariance matrix Φ is denoted by CN (Υ,Φ). mod(a, b) is the modulus operation of

a with respect to b.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Digital 

receiver

RF chain

RF chain

LNA

AP

LNA

LNA

Wireless device 1

Wireless device 2

Wireless device K

Fig. 1: A massive MIMO AirComp system with hybrid beamforming.

We consider a massive MIMO AirComp system as shown in Fig. 1, where the AP simultaneously serves

K wireless devices. Suppose each device is equipped with Nt transmit antennas and the AP is equipped

with Nr receive antenna elements, each of which is connected to a low-noise amplifier (LNA). With

massive MIMO, it is assumed that Nr ≫ Nt. Besides, fully-digital beamforming is adopted at the wireless

devices while hybrid beamforming with only Nrf RF chains is implemented at the AP, with Nrf ≤ Nr, to

reduce the hardware cost and implementation complexity [27], [28]. For the purpose of initial investigation,

we consider the fully-connected hybrid beamforming with phase shifters to achieve full spatial degrees

of freedom of massive MIMO. For the convenience of expression, we denote Nr , {1, 2, . . . , Nr} and

Nrf , {1, 2, . . . , Nrf} as the antenna and RF chain sets, respectively.



7

In this massive MIMO AirComp system, every device records L heterogeneous time-varying parameters

(e.g., humidity, temperature, noise) of the environment with L ≤ min(Nrf , Nt). In particular, since we

focus on studying multi-function/multi-modal massive MIMO AirComp systems, we have L > 1. The

devices simultaneously transmit the recorded data to the AP for computation. At a particular time slot,

we denote skl as the recorded data of the lth parameter at device k, k ∈ K , {1, 2, . . . , K}, l ∈ L ,

{1, 2, . . . , L}, and sk = [sk1, · · · , sKL]
T ∈ CL×1 as the composite record vector at that device. Without

loss of generality, the collected data vector is assumed to be normalized and independent form each other,

i.e., E(sks
H
k ) = I,E(sks

H
j ) = 0, ∀k, j ∈ K, k 6= j, where the normalization factor for each data type is

uniform for all devices and can be inverted at the AP for recovering the original data.

In order to support ultrafast data computation, the AP exploits the superposition property of the

multiple access channel to directly compute the target nomographic function with reduced communication

overheads. In this paper, we are interested in the sum operation, while the design is also extendable for

other nomographic functions [6]. Towards this end, each device transmits a vector sk and the AP is

interested in estimating s =
K
∑

k=1

sk, which is referred to as the target-function vector [5].

Referring to the proposed system model, the transmitted signal by device k is denoted by

xk = Vksk, (1)

where Vk ∈ CNt×L denotes the transmit beamforming matrix. Let P denote the maximum transmit power

at each device. Accordingly, we have E(‖xk‖2) = Tr(VkV
H
k ) ≤ P, ∀k ∈ K.

It is assumed that the channel state information (CSI) is perfectly known at both the AP and the

devices1. Then the received signal vector at the AP is given by

y =
K
∑

k=1

HkVksk + n, (2)

where Hk ∈ C
Nr×Nt denotes the channel matrix from device k to the AP and n ∈ C

Nr×1 is the AWGN

vector with n ∼ CN (0, σ2I).

Next, the AP adopts the hybrid beamforming for AirComp. Here, the hybrid beamforming needs

to be properly designed for not only harnessing part of the inter-device interference to facilitate the

computation, but also eliminating the inter-function interference. Let Urf ∈ CNr×Nrf denote the receive

1Practical channel estimation methods, such as random vector quantization codebook training, limited feedback, and over-the-air signaling

procedure, have been proposed in [34]–[37]. Assuming time division duplexing protocol, both the devices and the AP can obtain the channel

by applying the above channel estimation methods and exploiting the uplink-downlink channel reciprocity.
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analog beamforming, whose entries have constant modulus, i.e., |Urf(i, j)| = 1, ∀i ∈ Nr, j ∈ Nrf , and

Ubb ∈ C
Nrf×L denote the low-dimension receive digital beamforming. Therefore, the processed signal

after the adopted hybrid beamforming can be expressed as

ŝ = UH
bbU

H
rfy. (3)

Consequently, the computational accuracy is measured by the MSE between ŝ and s, which is given by

[5]

MSE({Vk},Urf ,Ubb)

= E[‖s− ŝ‖2]

=
K
∑

k=1

Tr
[

(UH
bbU

H
rfHkVk − I)(UH

bbU
H
rfHkVk − I)H

]

+ σ2Tr(UH
bbU

H
rfUrfUbb).

(4)

B. Problem Formulation

In this work, we are interested in minimizing the MSE defined in (4) by jointly optimizing the transmit

beamforming {Vk} at the devices and the receive hybrid beamforming Urf and Ubb at the AP, subject

to the constant modulus constraints on Urf and the maximum power budget constraints on {Vk}. In

particular, the MSE minimization problem can be formulated as

P1: minimize
Vk,Urf ,Ubb

MSE({Vk},Urf ,Ubb)

subject to Tr(VkV
H
k ) ≤ P, ∀k ∈ K

|Urf(i, j)| = 1, ∀i ∈ Nr, j ∈ Nrf .

(5)

Problem P1 is difficult to solve, as the optimization variables {Vk}, Urf , and Ubb are highly coupled

in the objective function while the unit modulus constraints of Urf are highly non-convex. Furthermore,

problem P1 aims to minimize the computation MSE for recovering s =
K
∑

k=1

sk by exploiting the interfer-

ence from various wireless devices. Note that this is significantly different from the conventional hybrid

beamforming design problems in massive MIMO systems which mainly maximize the communication rate

(for decoding sk’s individually) by eliminating the inter-device interference. Hence, the conventional de-

signs are not directly applicable to the considered problem P1. Besides, due to the requirement of ultrafast

computation for data aggregation, attaining an efficient solution to problem P1 with low computational

complexity is also desirable. To the best of our knowledge, however, there lacks computationally efficient

and systematic algorithms to solve such non-convex problems optimally. As a compromise approach, in
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the next section, by exploiting the structure of problem, we propose an alternating-optimization-based

method to iteratively optimize {Vk}, Urf , and Ubb.

III. HYBRID BEAMFORMING DESIGNS

In this section, a novel hybrid beamforming approach is proposed to handle problem P1, by updating

{Vk}, Urf , and Ubb in an alternating manner. In the following, we first optimize the transmit beamforming

{Vk} by using the Lagrange duality method, then we update the receive analog beamforming Urf by using

the techniques of SCA or BCD, and finally optimize Ubb by exploiting the first order optimality condition.

A. Optimization of Transmit Beamforming {Vk}

First, we focus on the optimization of {Vk} under given Urf and Ubb. In this case, problem P1 can

be equivalently decomposed into the following K subproblems each for one device k ∈ K, by ignoring

the constant term σ2Tr(UrfUbbU
H
bbU

H
rf ):

P2: minimize
Vk

Tr
[

(UH
bbU

H
rfHkVk − I)(UH

bbU
H
rfHkVk − I)H

]

subject to Tr(VkV
H
k ) ≤ P, ∀k ∈ K.

(6)

Problem P2 is a convex quadratic optimization problem that satisfies the Slater’s constraint condition,

and therefore, this problem can be optimally solved by using standard convex optimization techniques

[38]. To gain more insights, we apply the Lagrange duality method to find a semi-closed-form optimal

solution, which is summarized in the following lemma.

Lemma 1: The optimal transmit beamforming solution to problem P2 for device k is given by:

V
opt
k = (HH

k UrfUbbU
H
bbU

H
rfHk + µ

opt
k I)−1HH

k UrfUbb, (7)

where µ
opt
k ≥ 0, k ∈ K, denotes the optimal Lagrange multiplier associated with the power constraint for

device k in problem P2. Here, if HH
k UrfUbbU

H
bbU

H
rfHk is invertible and

Tr((HH
k UrfUbbU

H
bbU

H
rfHk)

−2HH
k UrfUbbU

H
bbU

H
rfHk) < P (8)

holds, we have µ
opt
k = 0; otherwise, µ

opt
k is chosen such that the equality in (9) holds.

Tr((HH
k UrfUbbU

H
bbU

H
rfHk + µ

opt
k I)−2HH

k UrfUbbU
H
bbU

H
rfHk) = P. (9)

Proof: See Appendix A.
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From Lemma 1, we can see that {Vk} is optimized by considering the following two cases. If the

transmit power budget P is sufficiently large, then we choose µ
opt
k = 0 such that the objective function

value of problem P2 is forced to be zero; otherwise, if the transmit power budget P is limited, then we

choose µ
opt
k such that the transmit power is fully used to minimize the computation MSE.

B. Optimization of Receive Analog Beamforming Urf

In this subsection, we optimize Urf under given {Vk} and Ubb, for which the problem is given by

P3: minimize
Urf

MSE({Vk},Urf ,Ubb)

subject to |Urf(i, j)| = 1, ∀i ∈ Nr, j ∈ Nrf .

(10)

Problem P3 is still challenging to solve mainly due to the constant modulus constraints which are

intrinsically non-convex. To address this issue, we propose two algorithms by using SCA and BCD,

respectively.

1) SCA: To gain more insights, motivated by [32], we transform problem P3 into a more tractable

form by exploiting the SCA method. To start with, we first rewrite the constant modulus constraints in its

exponential form. Let urf = vec(Urf) ∈ CNrNrf×1 and θ , [θ1, θ2, . . . , θNrNrf
]T denote the vectorization

of Urf and the corresponding phase vector of urf , respectively. Then problem P3 is transformed to the

following equivalent problem:

P4: minimize
θ

f(θ)

subject to − π ≤ θ(i) ≤ π, ∀i ∈ Y ,

(11)

where

f(θ) = MSE({Vk},Urf(θ),Ubb), (12)

Y , {1, 2, . . . , NrNrf}. (13)

Note that Urf(θ) in (12) means that Urf is a function of θ, which can be written element-wisely as:

Urf(i, j) = e
√
−1θ((j−1)Nr+i), ∀i ∈ Nr, j ∈ Nrf , (14)

where
√
−1 denotes the imaginary unit.

With the above derivation, we transform the intractable constant modulus constraints into linear con-

straints equivalently. From problem P4, we can see that the objective function is non-convex. To address

this issue, according to the technique of SCA, we need to find a surrogate function of f(θ) first. Let r
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and θr denote the iteration number and the current point in the rth iteration. Under the given local point

θr, we can obtain one of the corresponding surrogate functions denoted by f̂(θ, θr) via exploiting the

first-order Taylor approximation, which is given by

f̂(θ, θr) = f(θr) + γH
θr
(θ − θr) + τ‖θ − θr‖2, (15)

γθr = ▽θf(θ)|θ=θr = −vec{2R[
√
−1U∗

rf,r ◦ Fr]}, (16)

Fr =

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)

Urf,rUbbU
H
bb −

K
∑

k=1

HkVkU
H
bb, (17)

Urf,r(i, j) = e
√
−1θr((j−1)Nr+i), ∀i ∈ Nr, j ∈ Nrf . (18)

Note that the third term in (15) is a proximal regularization term with τ > 0 being a small positive number

to guarantee the strong convexity and to control the convergence rate [32]. γθr is the gradient of f(θ)

with respect to θ at point θr, which is calculated by the chain rule. With the above derivation, we can see

that f̂(θ, θr) is the upper bound of f(θr). Besides, f̂(θ, θr) and f(θr) have the same values and gradient

at point θr. Thus, f̂(θ, θr) is a valid surrogate function at point θr [38] and the issue of non-convexity

of f(θ) is addressed.

According to the procedure of SCA, we can update θ and Urf by solving the following approximated

problem of P4:

P5: minimize
θ

f̂(θ, θr)

subject to − π ≤ θ(i) ≤ π, ∀i ∈ Y .

(19)

Since problem P5 is convex with respect to θ, we can optimize θ by checking the first-order optimality

condition, for which the optimal solution is given by

θr+1(i) = mod

(

θr(i)−
γθr(i)

2τ
, 2π

)

, ∀i ∈ Y . (20)

Finally, the updated variable Urf,r+1 can be obtained by

Urf,r+1(i, j) = e
√
−1θr+1((j−1)Nr+i), ∀i ∈ Nr, j ∈ Nrf . (21)

The SCA-based algorithm to address problem P3 is summarized in Algorithm 1. According to the

analysis in [32] and [39], the proposed SCA-based algorithm can guarantee the convergence of a local

optimum theoretically when τ is chosen properly. However, since the surrogate function is chosen based

on the Taylor expansion which does not fully exploit the special structure of problem P3. Hence, it
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Algorithm 1 The SCA-based Algorithm for Solving Problem P3

Set r = 0, τ > 0, and ǫ > 0

Repeat

Step 1: Calculate γθr according to (16), (17), and (18);

Step 2: Updata θr+1 according to (20);

Step 3: Update Urf,r+1 according to (21);

Step 4: r = r + 1;

until the decrease of the objective function in problem P3 is less than ǫ.

may lead to high computational complexity and slow convergence rate. In the following, we propose an

alternative effective approach with lower complexity in handling (10).

2) Low-complexity Design via BCD: Considering the tradeoff between the performance and complexity,

we develop an alternative low-complexity algorithm to address problem P3 by exploiting BCD. Based

on further manipulation, problem P3 can be equivalently converted as:

P6: minimize
Urf

Tr(UH
rfAUrfC)− 2R{Tr(UH

rfB)}

subject to |Urf(i, j)| = 1, ∀i ∈ Nr, j ∈ Nrf ,

(22)

where A ,
K
∑

k=1

HkVkV
H
k H

H
k + σ2I, B ,

K
∑

k=1

HkVkU
H
bb, and C , UbbU

H
bb. Since the unit modulus

constraints are separable, inspired by [40], we can update Urf by applying the BCD type algorithm, i.e.,

in each step we only update one entry of Urf by fixing others. Without loss of generality, by defining

φ(Urf) = Tr(UH
rfAUrfC)− 2R{Tr(UH

rfB)}, (23)

we investigate the problem of minimizing φ(Urf) with respect to Urf(i, j) for a particular i ∈ Nr and

j ∈ Nrf subject to the unit modulus constraint |Urf(i, j)| = 1, i.e.,

P7: minimize
|Urf(i,j)|=1

φ(Urf). (24)

It can be observed that the objective function φ(Urf) can be re-expressed as a quadratic function with

respect to Urf(i, j), i.e., φ̃(Urf(i, j)) , a|Urf(i, j)|2 − 2R{b∗ · Urf(i, j)} for some real number a and

some complex number b that will be explained later. Due to the unit modulus constraint, the first term of

φ̃(Urf(i, j)) is a constant. Then problem P7 can be simplified as

P8: maximize
|Urf(i,j)|=1

R{b∗ ·Urf(i, j)}. (25)
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It is clear that the optimal solution of Urf(i, j) to problem P8 is equal to b
|b| . Hence, we only need to

obtain b for the update of Urf(i, j).

Now we propose a handy method to update the complex number b. First, the following equality holds

[41]:

▽U∗

rf
(i,j)φ̃(Urf(i, j))

∣

∣

∣

Urf (i,j)=Ũrf(i,j)
=

1

2

(

aŨrf(i, j)− b
)

. (26)

Besides, we have [41]

▽U∗

rf
φ̃(Urf)

∣

∣

∣

Urf=Ũrf

=
1

2

(

AŨrfC−B
)

. (27)

Combining (26) and (27), we have [AŨrfC−B]ij = aŨrf(i, j)−b. By expanding [AŨrfC]ij and checking

the coefficient of Ũrf(i, j), we have

aŨrf(i, j) = A(i, i)Ũrf(i, j)C(j, j). (28)

Hence, b can be updated according to the following equation:

b = A(i, i)Ũrf(i, j)C(j, j)− [AŨrfC]ij +B(i, j). (29)

Considering the above analysis, we can update the entries of Urf iteratively. The corresponding algorithm

for solving problem P6 is summarized in Algorithm 2, where we need to accordingly update Q in Step

3 once Urf(i, j) is updated (which is done in Step 4). As we can see, Step 3 is the most costly step

requiring complexity O(NrNrf). Hence, it can be shown that the algorithm has complexity of O(N2
rN

2
rf).

From the above derivation, it is shown that we can obtain the optimal solution of each subproblem

for one element of the receive analog beamforming while fixing the others. Considering the concept of

the BCD algorithm [42], the proposed algorithm in Algorithm 2 can converge to a stationary point of

problem P6. Furthermore, as compared with the SCA-based algorithm, this element-wise update in the

BCD method can reduce the computational complexity by exploiting the special structures of the constant

modulus constraints at the expense of certain performance degradation, which will be discussed in Section

III-D.

C. Optimization of Receive Digital Beamforming Ubb

Then, we optimize Ubb under fixed Urf and {Vk}, for which we need to solve an unconstrained convex

optimization problem given as:

P9: minimize
Ubb

MSE({Vk},Urf ,Ubb). (30)
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Algorithm 2 BCD-type Algorithm for Solving Problem P6

Set r = 0, Qr = AUrf,rC, and ǫ > 0

Repeat

For i ∈ Nr and j ∈ Nrf

Step 1: Calculate b = A(i, i)Urf,r(i, j)C(j, j)−Qr(i, j) +B(i, j);

Step 2: Calculate x = b
|b| ;

Step 3: Update Qr+1 = Qr + (x−Urf,r(i, j))A(:, i)C(j, :);

Step 4: Update Urf,r+1(i, j) = x;

end

r = r + 1;

until the decrease of the objective function in problem P6 is less than ǫ.

The receive digital beamforming to problem P9 can be updated by applying the first-order optimality

condition, which is given by

U
opt
bb =

(

UH
rf

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)

Urf

)−1

UH
rf

(

K
∑

k=1

HkVk

)

. (31)

From (31), it can be observed that the expression of Ubb has a sum-MMSE structure, which is different

form the convectional MMSE receiver for multiuser massive MIMO communication systems in the form of
(

UH
rf

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)

Urf

)−1

UH
rfHkVk for estimating the individual message sk from device

k [43]. More specifically, for the term outside the matrix inversion, we have UH
rf

(

K
∑

k=1

HkVk

)

in (31) for

estimating s in AirComp but UH
rfHkVk in conventional MMSE receiver for individually detecting sk’s

in communications. This is due to the fact that the signals from all the devices are exploited concurrently

and beneficially to assist functional computation in massive MIMO AirComp systems, which is in shape

contrast to the conventional multi-user massive MIMO communication systems by treating signals from

different devices as harmful inter-device interference.

D. Overall Algorithms

According to the aforementioned results, the proposed hybrid beamforming designs for massive MIMO

AirComp systems, named Lagrange-SCA and Lagrange-BCD, are summarized in Algorithm 3.

Now, we investigate the complexity of Algorithm 3 for designing the hybrid beamforming in the

massive MIMO AirComp system, where only the dominant computational complexity with respect to
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Algorithm 3 Pseudo-code of Proposed Hybrid Beamforming with SCA/BCD

Initialize Vk, Urf , and Ubb, such that they meet all the constraints;

Repeat

Step 1: Optimize Vk, ∀k ∈ K, using the Lagrange duality method;

Step 2: Optimize Urf using SCA or BCD;

Step 3: Optimize Ubb according to (31);

until a stopping criterion is satisfied.

Nr is considered. In Step 1 of Algorithm 3, the bisection method for solving µk requires a complexity

independent of Nr. Then, the complexity in calculating the matrix inverse in (7) of Step 1 is O(KNtNrfNr).

Similarly, the dominant computational complexity of the SCA-based algorithm is caused by the calculation

of the gradient of the objective function, which can be expressed by O(N2
rK(L + Nrf)). Also, the

complexity of the BCD-based algorithm is O(N2
rN

2
rf) [40]. Since the number of wireless devices can

be large, the complexity of the Lagrange-SCA algorithm is generally higher than that of the Lagrange-

BCD algorithm. Finally, the complexity of optimization of Ubb is O(N2
r (Nt +Nrf)).

Furthermore, the convergence of the proposed algorithms in Algorithm 3 is obtained in the following

theorem.

Theorem 1: Any limiting point of the sequence generated by the Lagrange-SCA algorithm or the

Lagrange-BCD algorithm in Algorithm 3 is a stationary point of problem P1.

Proof: See Appendix B.

Considering Theorem 1, the objective function values of P1 generated by the Lagrange-SCA and the

Lagrange-BCD algorithms both decrease monotonically with respect to the number of iterations, for which

the convergence speed will be validated in Section V.

IV. ANALYSIS OF MASSIVE MIMO AIRCOMP SYSTEMS

In this section, we consider the special case with a fully-digital receiver (i.e., Nrf = Nr and Urf = I)

to gain more design insights. This generally serves as an performance upper bound for other cases with

Nrf < Nr. For ease of analysis, we first focus on the case with a fixed transmit beamforming given by

VH
k Vk =

P

L
I. (32)

Moreover, since we consider massive MIMO AirComp systems, we impose the following assumption.
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Assumption 1: When Nr is sufficiently large, the channel matrices between different wireless devices

and the AP is asymptotically orthogonal, i.e.,

HH
k Hk

′ ≈ 0, ∀k, k′ ∈ K, k 6= k
′

, (33)

HH
k Hk ≈ βNrI, ∀k ∈ K, (34)

where β denotes the path loss from device to the AP.

This assumption is reasonable due to the properties of the massive MIMO technologies [22]. In

the following, we analyze the computation MSE performance and the corresponding receive digital

beamforming design for the case with Nr being sufficiently large. First, we derive the optimal fully-

digital sum-MMSE receiver by setting Urf = I in (31), which is given by

Usmmse =

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)−1( K
∑

k=1

HkVk

)

. (35)

With the help of (35) and the aforementioned assumptions, then we demonstrate how massive MIMO

technologies affect the performance of the AirComp systems and how the receiver in (35) can be simplified

via the following theorem and lemma.

Theorem 2: When Nr is sufficiently large, the computation MSE of massive MIMO AirComp systems,

given by

MSE({Vk},Ubb) =
K
∑

k=1

Tr[(UH
bbHkVk − I)(UH

bbHkVk − I)H ] + σ2Tr(UH
bbUbb), (36)

is inversely proportional to Nr and can be written as follows:

MSE({Vk},Ubb) ≈
KL2σ2

βNrP
. (37)

In particular, as Nr → ∞, we have MSE({Vk},Ubb) → 0.

Proof: See Appendix C.

Lemma 2: When Nr is sufficiently large, the optimal sum-MMSE receiver in (35) can be approximated

as

Ũsmmse =

K
∑

k=1

HkVk(σ
2I+ βNrV

H
k Vk)

−1. (38)

Under the transmit beamforming {Vk} with VH
k Vk =

P
L

in (32), Ũsmmse in (38) is rewritten as

Ũsmmse =
K
∑

k=1

L

βNrP
HkVk. (39)

Proof: See Appendix D.
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From Theorem 2, we know that MSE({Vk},Ubb) increases with K, which indicates that the computa-

tion MSE performance is seriously degraded as the number of devices increases. To combat the vanishing

computation MSE performance due to large K, we have two options: increasing the transmit power at

the wireless devices or increasing the number of receive antennas at the AP. As such, the exploitation

of massive MIMO techniques in AirComp systems is a practical solution since the former option is not

energy-efficient. It is also observed from Theorem 2 that the computation MSE is not sensitive to L due

to our presumption that L ≤ min(Nrf , Nt) ≪ Nr. Besides, exploiting Lemma 2, the sum-MMSE receiver

can be significantly simplified under the considered special case with large Nr

64 320 576 832 1088 1344 1600 1856 2048

10-2

10-1

100

M
SE

MSE based on (39)
Asymptotic MSE in (40)

Fig. 2: The computation MSE performance of (36) and (37) versus Nr when Nt = 2, K = 20, L = 2, and SNR = 10 dB.

For illustration, in Fig. 2, we verify the accuracy of the derived asymptotic MSE in (37) by comparing

with the practical one obtained based on (36), where we set SNR = βP

σ2 = 10 dB, σ = 1, Nt = 2, K = 20,

and L = 2. It can be seen in Fig. 2 that the gap between the asymptotic MSE and the practical one

decreases as Nr increases. Specifically, the gap becomes negligible when Nr ≥ 512.

V. SIMULATION RESULTS

In this section, we evaluate the computation MSE performance of the proposed hybrid beamforming

design approaches for massive MIMO AirComp systems, as compared with following benchmark schemes.
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• FD-ZF: For this scheme, inspired by [5], a fully-digital orthogonal receive beamforming is adopted

at the AP. Then, we alternately optimize the transmit beamforming and the receive beamforming.

Specifically, the transmit beamforming is updated by the ZF method, i.e., forcing the first term of (4)

to be zero. Second, by tightening the power constraints, an approximated problem of the fully-digital

receive beamforming is formulated and solved by exploiting differential geometry [44];

• FD: For this scheme, we alternately optimize the transmit beamforming and the fully-digital receive

beamforming by exploiting the Lagrange duality method and the sum-MMSE receiver in (35),

respectively.

Among the simulation experiments, each channel is assumed to be normalized i.i.d. Rayleigh fading.

The initial phases of the receive analog beamforming, Urf , follow an uniform distribution over [−π, π].

Also, we set Nt = L, τ = 0.2, and ǫ = 10−3. Besides, all simulation results are averaged over 500 channel

realizations.

10 20 30 40 50 60 70 80 90 100
Iteration index
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M
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Fig. 3: The convergence performance of the Lagrange-SCA algorithm with Nrf = 16 and SNR = 10 dB.

Fig. 3 and Fig. 4 illustrate the convergence behavior for the Lagrange-SCA and the Lagrange-BCD

algorithms in Algorithm 3, where Nrf = 16 and SNR = 10 dB, respectively. From these figures, we

conclude that the proposed Lagrange-SCA algorithm and Lagrange-BCD algorithm both converge rapidly

in a few iterations. Besides, it can be observed that the Lagrange-BCD algorithm always converges faster,

while the Lagrange-SCA algorithm shows better performance. This unveils the tradeoff between the system
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Fig. 4: The convergence performance of the Lagrange-BCD algorithm with Nrf = 16 and SNR = 10 dB.

performance and the computational complexity.
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Fig. 5: The computation MSE performance versus Nr when Nt = 10, Nrf = 10, K = 50, L = 10, and SNR = 10 dB.

Fig. 5 shows the computation MSE performance of multi-function/multi-modal (L > 1) massive MIMO

AirComp systems versus Nr under different setups. From Fig. 5, we can see that the computation MSE

value of both proposed algorithms decreases considerably when the number of receive antennas increases,

showing the effectiveness of applying massive MIMO. In particular, the proposed Lagrange-SCA and
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Fig. 6: The computation MSE performance versus Nr when Nt = 1, Nrf = 1, K = 20, L = 1, and SNR = 10 dB.

Lagrange-BCD algorithms, where hybrid receivers are adopted, outperform the FD-ZF algorithm with

a fully-digital receiver. In fact, our proposed algorithms can exploit the structure of the beamforming

problem, offering a better solution for massive MIMO AirComp systems than the heuristic algorithm

based on the ZF method. It is also observed that the performance gaps between the FD-ZF algorithm and

our proposed algorithms become smaller as Nr increases. This is intuitive, as the FD-ZF can exploit the

increased spatial degrees of freedom for enhancing the performance due to its fully-digital beamforming

structure. Moreover, the computation MSE performance of the Lagrange-BCD algorithm and the FD-ZF

algorithm coincides when Nr = 256. It suggests that the diversity gain of the massive MIMO techniques

can compensate for the performance degradation due to the drawbacks of the FD-ZF algorithm, which

confirms the correctness of our analysis in Section IV. Combining Figs. 3, 4 and 5, it is clear that

the Lagrange-SCA algorithm outperforms the Lagrange-BCD algorithm, but at the cost of a slower

convergence and a high complexity. Besides, the computation MSE performance of the proposed Lagrange-

SCA algorithm is close to the performance upper bound achieved by the FD method, which verifies the

effectiveness of the proposed hybrid beamforming design.

To unveil more insights, Fig. 6 shows MSE performance for the special case with single-function/single-

modal with a single RF chain equipped at the AP (i.e., L = 1 and Nrf = 1). It can be seen that the

considered hybrid beamforming designs, including the Lagrange-SCA algorithm and the Lagrange-BCD
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algorithm, perform poorly in this case. It is mainly due to that the hybrid beamforming design reduces

to the simple analog beamforming design when Nrf = 1, which can not exploit the spatial degrees of

freedom and the array gain brought by massive MIMO.
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Fig. 7: The computation MSE performance versus Nrf when Nr = 64, Nt = 10, K = 50, L = 10, and SNR = 10 dB.

Fig. 7 shows the computation MSE performance versus Nrf when Nr = 64, Nt = 10, K = 50, L = 10,

and SNR = 10 dB. As a property of hybrid beamforming schemes, it can be observed that the MSE values

achieved by the Lagrange-SCA and Lagrange-BCD algorithms reduce with increasing Nrf . By adopting

the minimum number of RF chains (Nrf ≥ L and L = 10), the Lagrange-SCA algorithm shows only

slight performance degradation compared with the FD method while both algorithms achieve the same

MSE when Nrf ≥ 15. Besides, the Lagrange-SCA and the Lagrange-BCD algorithms both outperform

the FD-ZF algorithm even when Nrf = 10. This illustrates that our proposed algorithm can exploit the

spatial degrees of freedom efficiently with much less RF chains. In contrast, the FD-ZF algorithm shows

a constant computation MSE value when Nrf increases, as the performance of a fully-digital beamforming

design is independent of the number of RF chains.

The computation MSE performance versus K is shown in Fig. 8 under Nr = 64, Nt = 10, Nrf = 16,

L = 10, and SNR = 10 dB. One can see that the MSE performance of all the considered schemes

increases with K. This coincides with our discussion that supporting the connection of more wireless

devices is at the cost of degrading computational accuracy which makes it more challenging to design a
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Fig. 8: The computation MSE performance versus K when Nr = 64, Nt = 10, Nrf = 16, L = 10, and SNR = 10 dB.

common receive fully-digital/hybrid beamforming to equalize all the wireless devices’ channels. Besides,

the performance of the Lagrange-SCA algorithm still approaches that of the benchmark FD method. Also,

our proposed algorithms outperform the FD-ZF algorithm. Furthermore, the performance gap between our

proposed algorithms and the FD-ZF algorithm increases as K increases from 30 to 80. It is mainly due

to the fact that the FD-ZF algorithm adopts an orthogonal receive beamforming which becomes a highly

suboptimal solution jeopardizing the system performance when K is large.
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Fig. 9: The computation MSE performance versus L when Nr = 64, Nrf = 10, K = 50, and SNR = 10 dB.
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Fig. 9 compares the MSE performance of different algorithms versus L when Nr = 64, Nrf = 10,

K = 50, and SNR = 10 dB. From this figure, the computation MSEs of all algorithms increase with

the number of functions operated at the AP, implying that the multi-function operation at the AP leads

to increased computation error. Besides, we can see that the FD-ZF algorithm shows less computation

MSE than the Lagrange-BCD algorithm when L ≤ 3, since the inter-function interference is insignificant

and can be handled by the FD-ZF algorithm in such a case. In particular, the fully-digital beamforming

structure in the FD-ZF algorithm shows its advantages of exploiting the spatial degrees and the array gain

compared with the hybrid one in the Lagrange-BCD algorithm. However, these advantages are marginal

as the inter-function interference becomes more severe in the regime of large L. This further verifies the

effectiveness of our proposed algorithms in multi-function/multi-modal massive MIMO AirComp systems.
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Fig. 10: The computation MSE performance versus SNR when Nr = 64, Nt = 10, Nrf = 10, K = 50, and L = 10.

Fig. 10 shows the MSE performance versus SNR under Nr = 64, Nt = 10, Nrf = 10, K = 50, and

L = 10. We can see that the MSE values by all our considered schemes decreases monotonically as

SNR increases. Due to the advantages of the fully-digital beamforming structure, the FD-ZF algorithm

achieves a smaller computation MSE than that of the Lagrange-BCD algorithm when SNR is less than

10 dB, while the opposite holds when SNR is larger than 10 dB. However, our proposed Lagrange-SCA

algorithm outperforms the FD-ZF algorithm over the whole SNR regime due to the proposed resource

optimization.
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VI. CONCLUSION

In this paper, we exploited massive MIMO with hybrid beamforming for AirComp systems. We jointly

optimized the transmit digital beamforming at devices, the receive analog and digital beamforming at

the AP to minimize the computation MSE. To solve the non-convex hybrid beamforming problem for

MSE minimization, we proposed alternating-optimization-based designs, in which we first optimized the

transmit digital beamforming using the Lagrange duality method, then proposed two approaches to update

the receive analog beamforming via SCA and BCD, respectively, and finally optimized the receive digital

beamforming by applying the first-order optimality condition. To gain more insights, we analyzed the

system performance for the special case with a fully-digital receive beamforming at AP and proved that

the computation MSE is inversely proportional to the number of receive antennas for this special case.

Our numerical results showed that the proposed algorithms achieve an outstanding performance that is

close to the performance upper bound achieved under a fully-digital receiver but with a much smaller

number of RF chains required.

APPENDIX A

PROOF OF LEMMA 1

Let µk ≥ 0 denote the Lagrange multiplier associated with the power constraint for device k in problem

P2. The Lagrangian of P2 is denoted as:

L(Vk) , Tr[(UH
bbU

H
rfHkVk − I)(UH

bbU
H
rfHkVk − I)H ] + µk[Tr(VkV

H
k )− P ]. (40)

According to the Karush-Kuhn-Tucker (KKT) conditions, the following equalities hold:

▽Vk
L(Vk) = 0, (41)

Tr(VkV
H
k )− P ≤ 0, (42)

µk ≥ 0, (43)

µk(Tr(VkV
H
k )− P ) = 0. (44)

(41) is the first-order optimality condition of L(Vk) with respect to Vk, which yields

Vk = (HH
k UrfUbbU

H
bbU

H
rfHk + µkI)

−1HH
k UrfUbb. (45)

Therefore, once we obtain the optimal µk, denoted by µ
opt
k , Vk can be updated by substituting µ

opt
k

into (45). Combining (43) and (44), we optimize µk by considering two cases with µk = 0 and µk > 0.
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Let Vk(µk) denote the right-hand side of (45). For the first case, if HH
k UrfUbbU

H
bbU

H
rfHk is invertible

and

Tr[Vk(0)V
H
k (0)] < P, (46)

then the optimal transmit beamforming is given by Vk(0). For the second case, the equality of constraint

in problem P2 holds according to (44).

Tr[Vk(µk)V
H
k (µk)] = P. (47)

Substituting (45) into (47), we have

Tr[(HH
k UrfUbbU

H
bbU

H
rfHk + µkI)

−2HH
k UrfUbbU

H
bbU

H
rfHk] = P. (48)

Note that µk must be positive in this case and the left-hand side is a decreasing function with respect to

µk for µk > 0. Then we can obtain the optimal Lagrange multiplier in (48) via a bisection search. Finally,

the transmit beamforming can be updated by substituting µ
opt
k into (45).

APPENDIX B

PROOF OF THEOREM 1

We first prove the existence of at least one limiting point before stating that any limit point of the

sequence generated by the proposed algorithms is a stationary solution. In this paper, the feasible set

of each variable ({Vk}, Urf , and Ubb) is compact, respectively. Then, problem P1 over their Cartesian

product set is bounded. Therefore, the sequence generated by Algorithm 3 is compact and bounded. Since

any compact and bounded sequence must have at least one limiting point, we can claim the existence of

a limiting point of our proposed algorithms.

Then, let r denote the iteration number. Clearly, given Urf,r and Ubb,r, the optimal solution for {Vk,r}

can be obtained by using the Lagrange duality method and the KKT conditions, which leads to

MSE({Vk,r+1},Urf,r,Ubb,r) ≤ MSE({Vk,r},Urf,r,Ubb,r). (49)

Considering the discussion in Section III-B, Algorithm 1 and Algorithm 2 both establish the local

convergence to the stationary solutions of problem P3 when {Vk,r} and Ubb,r are fixed. Then the following

inequality holds:

MSE({Vk,r},Urf,r+1,Ubb,r) ≤ MSE({Vk,r},Urf,r,Ubb,r). (50)
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Similarly, when we update Ubb by using (31) with given {Vk,r} and Urf,r, we have

MSE({Vk,r},Urf,r,Ubb,r+1) ≤ MSE({Vk,r},Urf,r,Ubb,r). (51)

Note that in each iteration of Algorithm 3, the objective function value is non-increasing and also lower

bounded by zero. Hence, the convergence of Algorithm 3 follows.

APPENDIX C

PROOF OF THEOREM 2

Substituting the optimal sum-MMSE receiver in (35) into (36), we have

MSE({Vk},Ubb)

=
K
∑

k=1

Tr[(UH
bbHkVkV

H
k H

H
k Ubb −UH

bbHkVk −VH
k H

H
k Ubb + I) + σ2UH

bbUbb]

= KL+ Tr[UH
bb

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)

Ubb −
K
∑

k=1

(UH
bbHkVk +VH

k H
H
k Ubb)]

= KL− Tr





(

K
∑

k=1

VH
k H

H
k

)(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)−1( K
∑

k=1

HkVk

)



 . (52)

As we can see that the term

(

K
∑

k=1

HkVkV
H
k H

H
k + σ2I

)−1

is intractable. To simplify the below deriva-

tions, let us define the following matrix sequence:

An =

n
∑

k=1

HkVkV
H
k H

H
k + σ2I, ∀n ∈ K. (53)

Then we have An = An−1+HnVnV
H
n H

H
n and AK =

K
∑

k=1

HkVkV
H
k H

H
k +σ2I. According to the Kailath

Variant identity [41], the inverse of An is given by

A−1
n = A−1

n−1 −A−1
n−1HnVn(I+VH

n H
H
n A

−1
n−1HnVn)

−1VH
n H

H
n A

−1
n−1. (54)

Letting n be 1 in (53) and using (54), we have

A−1
1 =

1

σ2

(

I−H1V1

(

σ2I+VH
1 H

H
1 H1V1

)−1
VH

1 H
H
1

)

. (55)

Then we check the inverse of A2

A−1
2 = A−1

1 −A−1
1 H2V2(I+VH

2 H
H
2 A

−1
1 H2V2)

−1VH
2 H

H
2 A

−1
1

≈ A−1
1 − 1

σ2
H2V2

(

I+
1

σ2
VH

2 H
H
2 H2V2

)−1

VH
2 H

H
2

=
1

σ2

(

I−
2
∑

n=1

HnVn(σ
2I+VH

n H
H
n HnVn)

−1VH
n H

H
n

)

,

(56)
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where the approximation is due to Assumption 1 stated in (33) and (34). Hence, from (56), we can obtain

the inverse of AK as follows:

A−1
K ≈ 1

σ2

(

I−
K
∑

n=1

HnVn(σ
2I+VH

n H
H
n HnVn)

−1VH
n H

H
n

)

. (57)

Substituting (57) into (52) yields

MSE({Vk},Ubb)

= KL− 1

σ2
Tr

[(

K
∑

k=1

VH
k H

H
k

)

A−1
K

(

K
∑

k=1

HkVk

)]

= KL− 1

σ2
Tr

[

K
∑

k=1

(VH
k H

H
k HkVk −VH

k H
H
k HkVk(σ

2I+VH
k H

H
k HkVk)

−1VH
k H

H
k HkVk)

]

≈ KL− 1

σ2

K
∑

k=1

Tr(βNrV
H
k Vk − β2N2

rV
H
k Vk(σ

2I+ βNrV
H
k Vk)

−1VH
k Vk)

= KL−
K
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k=1

Tr(βNrV
H
k Vk(σ

2I+ βNrV
H
k Vk)

−1)

= KL−
K
∑

k=1

Tr

(

βNrP

L

(

σ2 +
βNrP

L

)−1

I

)

= KL− KLβNrP

Lσ2 + βNrP

=
KL2σ2

Lσ2 + βNrP
, (58)

where the approximation and the fourth equality are due to (34) and (32), respectively. When Nr is

sufficiently large, βNrP becomes the dominated term of denominator such that (58) is reduced to

MSE({Vk},Ubb) ≈
KL2σ2

βNrP
. (59)

Obviously, when Nr → ∞, (59) goes to zeros. The result follows immediately.
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APPENDIX D

PROOF OF LEMMA 2

According to (57), (35) can be rewritten as

Ũsmmse =
1

σ2

(

I−
K
∑

k=1

HkVk(σ
2I+VH

k H
H
k HkVk)

−1VH
k H

H
k

)(

K
∑

k=1

HkVk

)

≈
K
∑

k=1

1

σ2

(

HkVk −HkVk(σ
2I+VH

k H
H
k HkVk)

−1VH
k H

H
k HkVk

)

,

=

K
∑

k=1

1

σ2
HkVk

(

I− (σ2I+VH
k H

H
k HkVk)

−1VH
k H

H
k HkVk

)

,

=

K
∑

k=1

HkVk(σ
2I+VH

k H
H
k HkVk)

−1

≈
K
∑

k=1

HkVk(σ
2I+ βNrV

H
k Vk)

−1,

(60)

where the approximations are due to (33) and (34), respectively. For the special case where VH
k Vk =

P
L
I

and Nr is sufficiently large, (60) can be simplified as:

Ũsmmse =

K
∑

k=1

L

Lσ2 + βNrP
HkVk

=

K
∑

k=1

L

βNrP
HkVk.

(61)

The result follows immediately.
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