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Abstract—Resistive random-access memory (ReRAM) is a
promising candidate for the next generation non-volatile memory
technology due to its simple read/write operations and high
storage density. However, its crossbar array structure causes a
severe interference effect known as the “sneak path.” In this
paper, we propose channel coding techniques that can mitigate
both the sneak-path interference and the channel noise. The main
challenge is that the sneak-path interference is data-dependent,
and also correlated within a memory array, and hence the
conventional error correction coding scheme will be inadequate.
In this work, we propose an across-array coding strategy that
assigns a codeword to multiple independent memory arrays, and
exploit a real-time channel estimation scheme to estimate the
instantaneous status of the ReRAM channel. Since the coded
bits from different arrays experience independent channels, a
“diversity” gain can be obtained during decoding, and when
the codeword is adequately distributed over different memory
arrays, the code actually performs as that over an uncorrelated
channel. By performing decoding based on the scheme of treating-
interference-as-noise (TIN), the ReRAM channel over different
memory arrays is equivalent to a block varying channel we
defined, for which we propose both the capacity bounds and
a coding scheme. The proposed coding scheme consists of a
serial concatenation of an optimized error correction code with
a data shaper, which enables the ReRAM system to achieve a
near capacity limit storage efficiency.

Index Terms—ReRAM, sneak path, across-array coding, data
shaping

I. Introduction
Resistive random-access memory (ReRAM) is an emerging

non-volatile memory technology that changes the resistance
value of a memristor to represent two states of the binary
user data: the High-Resistance State corresponding to logic 0
while the Low-Resistance State corresponding to logic 1. The
memristor cell is positioned on each row-column intersection
of a crossbar structure, which offers a huge density advantage
for ReRAM systems [1].

When a cell in a memory array is read, voltage is applied
to the memristor cell, and the current flows through the
memristor and senses the resistance value. If the memristor
is detected with a High-Resistance State, the bit is decided
to be a ‘0’; if it is detected with a Low-Resistance State,
the bit is determined to be a ‘1’. A fundamental drawback
of the ReRAM crossbar array is the sneak-path problem [2].
Sneak paths are undesirable paths in parallel to the selected
cell for reading. The current goes through the sneak paths
and degrades the measured resistance value. Sneak paths are
detrimental when a cell with a High-Resistance State is read
because the resistance degradation may lead to an erroneous
decision.

In the literature, several works [3]–[5] tackled the sneak-
path problem by using information and communication theo-
retical frameworks. In particular, Y. Cassuto et al. [3] studied
the maximum storage efficiency when the constrained codes
are employed to completely avoid sneak paths. This method
incurs a high code rate loss, especially when the array size
is large. Y. Cassuto et al. proved that as the array size
approaches infinity, the storage information rate approaches
0 in order to achieve a sneak-path free channel. On the other
hand, a commonly used method to eliminate the sneak paths
is to introduce a cell selector in series to each array cell.
However, these selectors are also prone to failure due to
the imperfections of the memory fabrication and maintenance
process, leading to the reoccurrence of the sneak paths [4]
[5]. Y. Ben-Hur [4] and Zehui et al. [5] considered ReRAM
systems with imperfect selectors which fail with a certain
probability. They built a probabilistic sneak-path model and
developed the corresponding data detection schemes. A main
challenge for the ReRAM channel is that the sneak-path in-
duced interference to the channel is data-dependent. Moreover,
the sneak-path interference is also correlated between different
locations of the crossbar array. Previous work [4] developed
single-cell data detection schemes that detect the data for
each memory cell independently. More sophisticated joint-cell
data detection schemes were developed in [5] by introducing
pilot cells. However, the probabilistic model in [5] becomes
too complex when the array size is getting large. No error
correction code (ECC) was employed in previous research
works [4] [5].

According to the information theory, an efficient way to
achieve reliable data storage is to apply ECC to the system.
Such a design should not be a straightforward extension of the
conventional ECC designed for the symbol-wise independent
and identically distributed (i.i.d.) channels. Other than the
channel noise, the code must overcome the sneak-path inter-
ference which is data-dependent and also correlated within the
crossbar array.

In this paper, we propose efficient coding and decoding
schemes for ReRAM channels. To reduce the correlation of
the sneak-path interference within a codeword, we propose
an across-array coding strategy which spreads a codeword
to multiple independent memory arrays, and also exploit a
real-time channel estimation scheme to obtain the channel
status of each memory array. Since the coded bits from
different memory arrays experience independent channels, the
overall channel will be averaged and a “diversity” gain will
be obtained during decoding. In this way, we can design the
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coding scheme over a symbol-wise i.i.d. channel. By further
applying the treating-interference-as-noise (TIN) decoding, the
ReRAM channel is equivalent to a block-varying channel
whose status does not depend on the input data, based on
which we derive the lower and upper bounds of its channel
capacity and propose a coding scheme. The proposed coding
scheme consists of an outer irregular repeat-accumulate (IRA)
code being concatenated with an inner data shaper, which is
used to change the input data distribution so as to achieve the
maximum information rate. A low-complexity joint message-
passing decoding for the IRA code and the data shaper is
developed based on the state-of-the-art sparse-graph coding
theory. With an optimized IRA code, our ReRAM system
achieves a near capacity limit storage efficiency.

The rest of this paper is organized as follows. In Section II,
we present the ReRAM channel model and describe the data-
dependent feature of the sneak-path interference. The across-
array coding strategy and the capacity bounds for the ReRAM
channel are proposed in Section III. In Section IV, we propose
a coding scheme for ReRAM channels and present both
numerical and simulation results. In Section V, we conclude
the paper.

II. ReRAM ChannelModel

Consider an m × n crossbar memory array. The memristor
that lies at the intersection of row i and column j denotes
memory cell (i, j). Each array is able to store an m× n binary
data matrix X = [xi, j]m×n, where bit xi, j ∈ {0, 1} is stored
in memory cell (i, j), i ∈ {1, ...,m}, j ∈ {1, ..., n}. During the
writing process, each bit is written into the memory cell by
changing the resistance value of the memristor, i.e., for a
logical “0” bit, the cell is changed to a high resistance of
R0, referred to as the High-Resistance State, and for a logical
“1” bit, it is changed to a low resistance of R1, referred to as
the Low-Resistance State.

During the reading process, the data bit can be detected
by measuring the resistance value of the corresponding cell.
If it is in the High-Resistance State, the bit is identified
as a ‘0’; if it is in the Low-Resistance State, the bit is
identified as a ‘1’. However, due to the existence of the sneak-
path interference, as well as a mix of other noises which
can be modeled as an additive Gaussian noise, the memory
reading becomes unreliable [3]–[5]. When the cell (i, j) in
a memory array is read, certain voltage is applied to the
target cell to measure its resistance. A sneak path is defined
as a closed path that originates from and returns to location
(i, j) while traversing logical-1 cells through alternating ver-
tical and horizontal steps. An example is shown in Fig. 1,
where (3, 2) is a target cell for reading and the green line
shows the desired path to measure the resistance. However,
(3, 2) → (3, 4) → (1, 4) → (1, 2) → (3, 2) forms a sneak
path (red line) in parallel of the selected cell (3, 2). Since
sneak paths always degrade the measured resistance value,
they actually benefit the data detection when a cell in a Low-
Resistance State (logic 1) is read. The detrimental effect only
occurs when a High-Resistance State cell (logic 0) is read,
making it more vulnerable to noise. In this paper, we only
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Fig. 1. (a) Example of a 4 × 4 memory array. (b) Corresponding logical
values of memory array. (3, 2) is a target cell for reading. Voltage is applied
to memristor cell (3, 2) and green line is the desired path for resistance
measuring. However, (3, 2)→ (3, 4)→ (1, 4)→ (1, 2)→ (3, 2) forms a sneak
path (red line) in parallel of target cell (3, 2) that degrades the measured
resistance value. Arrows show current flow directions. Note that the sneak
path produces a reverse current across cell (1, 4).

consider the sneak path when a High-Resistance State cell is
read.

The most popular method to mitigate the sneak-path in-
terference is to introduce a cell selector in series to each
array cell. A cell selector is an electrical device that allows
current to flow only in one direction across the cell. Since
sneak paths inherently produce reverse currents in at least
one of the cells along the parallel path, the cell selector can
completely eliminate sneak paths from the entire array. In this
paper we follow the previous work [4], [5] and consider the
1D1R structure, even though our proposed approaches can be
extended to other structures as well. Although cell selectors
can effectively eliminate sneak paths, they are also prone to
failures due to the imperfections in the production or the
maintenance of memory array, leading to the reoccurrence of
the sneak paths. Following previous work [4], [5], we assume
that the selectors in a memory array fail i.i.d. with probability
p f . However, our work is based on the fact that once a selector
fails it will by no means recover, and hence the locations
of the failed selectors are fixed during the reading of the
whole array. This is different from the assumption made by the
previous work [4], [5] that the locations of the failure cells vary
randomly in the crossbar array during the reading of each cell.
Although these two assumptions may not affect the detection
performance significantly for the uncoded ReRAM systems,
they are fundamentally different for the coded systems. The
previous assumption [4], [5] actually leads to a near i.i.d.
model for the sneak-path interference of each cell. In this
work, the sneak-path events for the cells at different locations
in the same array are highly correlated, which is much more
difficult to be tackled by the channel coding scheme.

We define a sneak-path event indicator ei, j for cell (i, j) to
be a Boolean variable with the value ei, j = 1 if the cell (i, j) is
affected by sneak paths, otherwise, ei, j = 0. According to the
previous work [5], sneak-path events occur during the reading
of cell (i, j) and lead to ei, j = 1 if and only if the following
three conditions are satisfied:

[Sneak-Path Condition:]
1) The cell (i, j) is in a High-Resistance State, i.e., xi, j = 0.
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Fig. 2. PMFs of sneak-path rate within single memory array simulated for
array sizes m×n = 64×64, 128×128 and input distributions with q = 0.25, 0.5.
The mean values of sneak-path rates for the four cases, indicated by the dashed
lines, are εq = 0.06, 0.3888, 0.2216, and 0.8626, respectively.

2) There exists at least one combination of k ∈ {1, ...,m}, ` ∈
{1, ..., n} that induces a sneak path, defined by

xi,` = xk,` = xk, j = 1. (1)

3) The selector at the diagonal cell (k, `) fails. Due to the
circuit structure of the crossbar array, cells (i, l) and (k, j) will
conduct current in the forward direction and not be affected
by their selectors. Only when the selector of the cell (k, l) is
faulty, a sneak path will be formed.

The above Sneak-Path Condition definition limits the sneak
path to length of 3, i.e., traversing three cells [5]. More
sophisticated cases of the sneak paths were considered in [4].
The principle of our work can be extended to those cases.

Building on the above Sneak-Path Condition, we define a
[ReRAM Channel:]
Let X = [xi, j]m×n be the stored data array and Y = [yi, j]m×n

be the corresponding readback signal for the crossbar array.
Let R be the set of real numbers. An ReRAM channel is a
channel with input X ∈ {0, 1}m×n and output Y ∈ Rm×n:

yi, j =

 ( 1
R0

+
ei, j

Rs
)−1 + ηi, j if xi, j = 0

R1 + ηi, j if xi, j = 1
(2)

where Rs is the parasitic resistance value brought by sneak
paths. Here ηi, j ∼ N(0, σ2), i = 1, ...,m, j = 1, ..., n is an
additive white Gaussian noise (AWGN) with mean 0 and
variance σ2 [4]. It is used to model a mix of various noises
of the ReRAM system.

The fundamental problem of the ReRAM channel is to
recover the stored data array X based on readback signal Y in
the presence of sneak-path interference [ei, j]m×n and Gaussian
noise [ηi, j]m×n. The ReRAM channel {0, 1}m×n → Rm×n with
input and output size m × n actually consists of mn symbol-
wise channels with {0, 1} → R. Since the sneak-path indicator

ei, j of each target cell is related to the entire data array, these
mn symbol-wise channels are data-dependent and correlated.

The ReRAM channel is also asymmetrical, whose channel
status (sneak-path occurring probability) is highly related to
the channel input distribution. We define the input distribution
as i.i.d. Bernoulli (q), i.e., Pr(xi, j = 1) = q and Pr(xi, j = 0) =

1 − q for i = 1, ...,m, j = 1, ..., n.
For a fixed input distribution, we investigate the fraction of

sneak-path affected cells in the crossbar array and define a
sneak-path rate over the array as

∑m
i=1

∑n
j=1 ei, j

mn(1−q) . Its mean value is
derived as a function of q:

εq
∆
= E

∑m
i=1

∑n
j=1 ei, j

mn(1 − q)

 (3)

= Pr(ei, j = 1|xi, j = 0)

= 1 −
m−1∑
u=0

n−1∑
v=0

(
m − 1

u

)(
n − 1

v

)
qu+v(1 − q)m−1−u+n−1−v

×(1 − p f q)uv. (4)

When m or n is large, (4) is difficult to calculate. However,
when p f q is small, using the Taylor expansion (1 − p f q)uv ≈

1 − uvp f q + α
(

uv
2

)
p2

f q
2, we can approximately calculate (4):

εq ≈ 1 −
m−1∑
u=0

n−1∑
v=0

(
m − 1

u

)(
n − 1

v

)
qu+v(1 − q)m−1−u+n−1−v

×

(
1 − uvp f q + α

(
uv
2

)
p2

f q
2
)

(5)

= (m − 1)(n − 1)p f q3 − α

(
2q

(
m − 1

2

)(
n − 1

2

)
+(n − 1)

(
m − 1

2

)
+ (m − 1)

(
n − 1

2

))
p2

f q
5 (6)

where α is a balance factor for the last term of the Taylor
expansion. Here a good setting for α is 0.8.

We define the probability mess function (PMF) of the sneak-
path rate as

F(ε) = Pr
∑m

i=1
∑n

j=1 ei, j

mn(1 − q)
= ε

 . (7)

For a memory array size of m × n = 64 × 64, 128 × 128
and input distributions with q = 0.25, 0.5, we simulate F(ε)
and the results are illustrated by Fig. 2. In particular, we
generate a large amount of input data arrays, compute the
sneak-path rate of each array, and obtain the PMF statistically.
In the simulations as well as the numerical results of this
paper, we assume the selectors fail i.i.d. with probability
p f = 10−3. Fig. 2 shows that a larger value of q, or a
larger array size, leads to higher sneak-path rates, i.e., worse
channels. The values of the sneak-path rate are quite diverse
for different input data patterns since the PMF spreads in a
large range over the abscissa, which indicates that the channel
varies significantly for different input data patterns. This is
because the occurrence of sneak-path events depends on the
input data pattern. This creates a big challenge for designing
the coding scheme for the ReRAM channels since the code
directly designed based on the average sneak-path rate of
εq =

∑
ε εF(ε) will be inadequate.
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Fig. 3. Across-array coding strategy for ReRAM.

III. Across-Array Coding Strategy and Channel Capacity
Bounds

To mitigate the variability of the ReRAM channel, we pro-
pose an across-array coding strategy that assigns a codeword
to multiple crossbar arrays. Since the coded bits at different
arrays experience independent channels, the sneak-path rate
within one codeword will be close to its mean value and hence
the channel is closer to an i.i.d. channel. Based on the across-
array coding strategy, we further investigate the ReRAM
channel capacity bounds. As the sneak path is dependent on
the data message, it is difficult to derive the exact capacity of
the ReRAM channel. By treating the sneak-path interference
as the i.i.d. noise during decoding, the ReRAM channel over
multiple memory arrays resembles a block-varying channel
that we will define in Section III-B, whose status does not
depend on the input data. We then derive the capacity bounds
of the block-varying channel, which can be regarded as an
approximation of the ReRAM channel capacity.

A. Across-Array Coding Strategy

The proposed across-array coding strategy is illustrated
in Fig. 3. Consider the processing of the data vector b =

(b1, b2, ..., bNR), where N is the code length and R is the code
rate. Here, b is encoded into codeword x = (x1, x2, ..., xN)
which is assigned to T memory arrays, where N = sT for
some integer s. Thus, we split x into T equal-length vectors,
each of which is assigned to an independent memory array.
Without loss of generality, we assign xt = (xt

1, x
t
2, ...., x

t
N/T )

with xt
i = x(t−1)N/T+i, i = 1, ...,N/T , to the t-th memory array

for t = 1, ...,T . Since each memory array is of size m × n,
mnT/N codewords can be stored by these T memory arrays,
where mnT/N is assumed to be an integer. As the code rate
is R, the storage efficiency is R bits/cell.

Each codeword is decoded independently based on its
readback signal. The codeword x = (x1, ..., xT ) is decoded
based on its readback signal y = (y1, ..., yT ), where yt is the
readback signal of xt from the t-th memory array, t = 1, ...,T ,
to obtain the estimated data b̂. Here we employ a suboptimal
decoding scheme known as the TIN decoding [6]. The TIN
decoder ignores the correlation between the channel input and
the sneak paths and treats the sneak-path interference as the
i.i.d. noise.

To illustrate the advantage of across-array coding strategy
more explicitly, in Fig 4, we evaluate the PMF of the sneak-
path rate over one codeword that is stored in T memory arrays.
In the figure, we employ the array sizes and the code lengths
of N = m × n = 64 × 64 and 128 × 128. Since the coded
bits are distributed in T memory arrays, the sneak-path rate
as well as its PMF are rewritten as

∑T
t=1

∑N/T
i=1 et

i/(mn(1 − q))
and FT

q (ε) = Pr(
∑T

t=1
∑N/T

i=1 et
i/(mn(1 − q)) = ε), where et

i is the
sneak-path event indicator during the reading of the i-th bit that
belongs to the t-th array. For each case of m×n = 64×64 and
128 × 128 and the given input distribution with q = 0.25 and
0.5, as T increases, the spread of the PMF of the sneak-path
rate gets smaller and concentrates closer to the mean value εq

and the channel becomes more stable. The reason is that since
the codeword is assigned to T independent memory arrays,
the sneak-path rate is averaged over the T arrays. Based on
the law of large numbers, as T → ∞, the sneak-path rate
converges exactly to the mean value with probability 1, and
therefore, we can design a code based on this mean value
to guarantee error free decoding. Note that the across-array
coding strategy does not change the channel correlation. It
actually reduces the correlation of the sneak-path interference
within one codeword since the readback signals for coded bits
from different memory arrays are independent with each other.
As all the coded bits are encoded from the same message data,
this resembles a “code diversity” strategy for block fading
channels [7].

The drawback of a joint coding across T arrays is a
potential increase of the read/write latency. Note that such
additional latency is unavoidable for many sneak-path mitigat-
ing approaches in the literature. For example, the multistage
reading technique presented in [8] requires three readings and
three writings to get a better estimation of the sneak current;
[4] investigates the multiple-read detector and shows that it
can achieve near-optimum performance with 10 reads. We
remark that for our proposed across-array coding strategy, the
additional read/write latency can be minimized if a parallel
reading/writing circuit [9] is adopted across different crossbar
arrays. Moreover, the additional latency incurred will become
negligible if the two-dimensional crossbar arrays are stacked
to form a 3D structure, which naturally enables the parallel
reading/writing across different arrays [10].
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B. Channel Equivalence and Capacity Bounds

We first define a block-varying (ε, σ)-channel and show how
the ReRAM channel capacity is related to that of the block
varying (ε, σ)-channel.

To begin, we first define an (ε, σ)-channel. As illustrated
in Fig. 5, an (ε, σ)-channel is a concatenation of an i.i.d.
asymmetrical discrete channel and an i.i.d. additive Gaussian
channel, and therefore, it is also an i.i.d. channel without
channel correlation. The asymmetrical discrete channel is with
binary-input X ∈ {0, 1} and ternary-output from {R0,R′0,R1}

with R′0 =
(

1
R0

+ 1
Rs

)−1
, and the transition property is described

by Pr(R0|0) = 1 − ε, Pr(R′0|0) = ε, and Pr(R1|1) = 1. The addi-
tive Gaussian channel is with noise distribution η ∼ N(0, σ2),
whose output Y ∈ R serves as the output of the (ε, σ)-channel.

For given input distribution Pr(X = 0) = 1 − q, Pr(X = 1) =

q, the (ε, σ)-channel capacity can be derived as

Cq(ε, σ) = I(X; Y)
= H(Y) − H(Y |X)
= H(Y) − qH(Y |X = 1) − (1 − q)H(Y |X = 0)

= −

∫ +∞

−∞

pY (y) log2 pY (y)dy − q log2

√
2πeσ2

+(1 − q)
∫ +∞

−∞

pY |X=0(y) log2 pY |X=0(y)dy

where

pY (y) = (1 − q)
(
εφ(y,R′0) + (1 − ε)φ(y,R0)

)
+ qφ(y,R1)

pY |X=0(y) = εφ(y,R′0) + (1 − ε)φ(y,R0)

φ(y,m) = 1/(
√

2πσ)e−
(y−m)2

2σ2 .

The (0, σ)- and (1, σ)-channels are asymmetrical binary-
input AWGN channels, which are two special cases of
an (ε, σ)-channel. Obviously, the (ε, σ)-channel capacity de-
creases as ε increases leading to Cq(1, σ) < Cq(ε, σ) <
Cq(0, σ).

A T -block block-varying (ε, σ)-channel with parameters
ε = (ε1, ε2, ..., εT ) varies from data block to data block,
while within the t-th data block, the channel is a symbol-
wise i.i.d. (ε t, σ)-channel, t = 1, 2, ...,T . The block-varying
(ε, σ)-channel is a type of channel with block interference as
proposed by [11].

The ReRAM channel over T memory arrays resembles the
T -block block-varying (ε, σ)-channel. In particular, the sneak-
path rate of the ReRAM channel varies from memory array
to memory array resembles the block-varying property (the
channel varies from block to block) of the block-varying
(ε, σ)-channel. The channel parameter ε t = Pr(R′0|X = 0)
resembles the instantaneous sneak-path rate of the t-th memory
array. The main difference is that in the ReRAM channel, the
sneak-path interference is dependent on the input data and this
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data-dependency leads to the channel correlation, while the pa-
rameter ε of block-varying (ε, σ)-channel is data-independent
and the channel within each block is i.i.d. However, if we adopt
TIN decoding where the decoder ignores this data-dependency
and regards the sneak paths as the i.i.d. noise, an ReRAM
channel is equivalent to a block-varying (ε, σ)-channel. The
memory block length, denoted by M, of the block-varying
(ε, σ)-channel should be identical to the data array size of
the ReRAM channel, i.e., M = mn. The channel parameters
ε t, t = 1, 2, ...,T should be i.i.d. generated based on PMF of
the sneak-path rate of the ReRAM channel. Therefore, the
maximum achievable coding rate over the ReRAM channel
under TIN decoding can be approximated by the block-varying
(ε, σ)-channel capacity.

In preparation to give the capacity limit, we define an (ε, σ)-
channel code:

Definition 1: An (ε, σ)-channel code includes a sequences
of codes with rate Cq(ε, σ) and different code lengths n, which
achieve asymptotical error free decoding over the i.i.d. (ε, σ)-
channel as the code length approaches infinity.

The existence of the (ε, σ)-channel code ensemble is guar-
anteed by the conventional channel coding theorem.

Consider a block-varying (ε, σ)-channel with memory block
size M. Parameter ε t has the PMF F(ε t), t = 1, 2, ...,T , and
mean value ε̄ =

∑
ε εF(ε), as defined in (3). Since the channel

varies from block to block, we consider joint T -block encoding
and decoding. The code length is therefore MT . Let R be the
encoding rate, and we then have the following theorem:

Theorem 1: For fixed input distribution of Bernoulli (q),
as T → ∞, the maximum achievable code rate R with joint
T -block encoding and decoding is bounded by

Cq(ε̄, σ) ≤ R ≤ Cq(σ) (8)

where Cq(σ) =
∑
ε F(ε)Cq(ε, σ).

Proof: We first show that for a fixed input distribution of
Bernoulli (q), Cq(ε̄, σ) is achievable. Let x = (x1, ..., xT ) be the
joint T -block codeword, where t-th block xt = (xt

1, ..., x
t
M) ex-

periences an (ε t, σ)-channel, i.e., each symbol xt
j, j = 1, ...,M,

experiences an i.i.d. (ε t, σ)-channel. We assume that the code-
word is encoded in the way that the i-th bits, located at differ-
ent data blocks, i.e., (x1

i , x
2
i , ..., x

T
i ), belong to a codeword of a

length-T (ε̄, σ)-channel code. In this way, the original length-
MT codeword x can be considered as a vector consisting M
length-T (ε̄, σ)-channel codewords. This is possible because
we can always split the uncoded data vector into M equal-
length sub-vectors, and encode each of them independently us-
ing an (ε̄, σ)-channel code. As the encoding rate of each (ε̄, σ)-
channel code is Cq(ε̄, σ), the overall code rate is R = Cq(ε̄, σ).

During decoding, for each i = 1, ...,M, (x1
i , x

2
i , ..., x

T
i ) is

decoded based on its channel output (y1
i , y

2
i , ..., y

T
i ), where yt

i
is a channel observation of xt

i. Since coded bit xt
i experiences

an (ε t, σ)-channel, where ε t, t = 1, 2, ...,T , are i.i.d. generated
based on the PMF of F(ε), the overall codeword experiences
an (ε̄, σ)-channel where ε̄ =

∑
ε εF(ε). Since (x1

i , x
2
i , ..., x

T
i )

is an (ε̄, σ)-channel codeword, the decoding error probability
approaches 0 as T → ∞ according to Definition 1.

In [11], an upper bound of the block interference channel
is proposed. That is, given the channel parameters ε, the

channel becomes memoryless, leading to R ≤ 1
MT I(x; y) ≤

1
MT I(x; x|ε) ≤ I(x1

1; y1
1|ε

1) =
∑
ε F(ε)Cq(ε, σ) = Cq(σ). �

It was also shown in [11] that if the channel state is finite,
i.e., ε is from a finite set, the upper bound is tight when the
block size M → ∞.

Based on our channel equivalence, maxq Cq(εq, σ) is an ap-
proximate lower bound of the ReRAM channel capacity with
TIN decoding, and maxq

∑
ε Fq(ε)Cq(ε, σ) is an upper bound.

Since we have the explicit formula (4) for εq, the lower bound
is much easier to be calculated than the upper bound, which
requires Fq(ε). Fortunately, we can show that when the array
size N is large, the two bounds are numerically very close
with each other, and hence the lower bound maxq C(εq, σ) can
be a good approximation of the ReRAM channel capacity.
Fig. 6 illustrates the capacity upper bound

∑
ε Fq(ε)Cq(ε, σ)

and lower bound C(εq, σ) as functions of q, for different
memory array sizes m×n = 32×32, 64×64, 128×128, 256×256
and different noise values of σ = 30, 50, 100. The resistance
parameters are fixed with R1 = 100 Ω,R0 = 1000 Ω, and
Rs = 250 Ω. Observe that when the memory array size N is
large, the two bounds are very close with each other.

Fig. 6 also indicates that the ReRAM channel capacity
bounds decrease as the data size increases due to the increase
of the sneak-path rate, i.e., the larger the data array size the
lower the average storage efficiency for each cell, and vice
versa. For a very low noise level of σ = 30, the capacity
bounds are maximized at about q = 0.5, and for σ = 50, 100,
they are typically maximized when q < 0.5. The optimal value
of q that maximizes the channel capacity bounds decreases
as noise level increases. This is because noise amplifies the
detrimental effect of sneak paths, while reducing q effectively
reduces the sneak-path rate.

IV. Design of the Coding Scheme

In this section, we present the design of a coding scheme for
the ReRAM channel. We also propose a real-time maximum
likelihood channel estimation, based on which the message-
passing decoding is performed. We utilize the state-of-the-
art sparse-graph code and message-passing decoding theories
to design the coding scheme, which is essentially an (εq, σ)-
channel code design. A major difference between the (εq, σ)-
channel code and the classical ECC is that since the former
works over an asymmetrical channel, the coded data should
follow the desired distribution to approach the channel ca-
pacity (Fig. 6). We propose a coding scheme, which is a
serial concatenation between a classical ECC and a data shaper
that shapes the desired data distribution. Bit error rate (BER)
simulations and performance comparisons are also presented
in this section for our proposed coding scheme.

A. Coding and Decoding Model

A system model for the proposed coding scheme is il-
lustrated in Fig. 7. The encoder includes an ECC encoder
and a data shaper. The ECC encoder encodes data vector
b = (b1, b2, ..., bNR) into codeword c = (c1, c2, ..., cN) whose
entries are uniformly distributed on {0, 1}. The data shaper
reforms the data distribution into Bernoulli (q). Its output is
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Fig. 6. Upper bound
∑
ε Fq(ε)Cq(ε, σ) and lower bound C(εq, σ) of the capacity as T → ∞, with R1 = 100 Ω,R0 = 1000 Ω,Rs = 250 Ω, and p f = 10−3.

x = (x1, x2, ..., xN). Here the data shaper in our system has
rate-1, and therefore, the overall code rate is still R.

The decoder involves a real-time channel estimator, elemen-
tary signal estimator (ESE), a de-shaper, and an ECC decoder.
Since the decoding is actually a block-varying (ε, σ)-channel
decoding, the channel estimator first estimates the channel
parameters ε = (ε1, ..., εT ) over the T memory arrays based
on readback signal y = (y1, ..., yT ). Based on ε̂ and y, the
ESE calculates a soft estimation {L(xt

i |y
t
i, ε̂

t)}, i.e., the log-
likelihood ratio (LLR), for each coded bit xt

i that is used as
the decoder input. The decoder consists of a de-shaper and
an ECC decoder, both of which use soft-in soft-out (SISO)
processings and perform iteratively to improve the decoding
reliability. The corresponding decoding is standard message-
passing decoding. Specifically, the de-shaper calculates soft
LLR {Le(ci)} for each ECC coded bit, based on which an
ECC decoding refines the estimation and feds back an updated
LLR {La(ci)} to the de-shaper for the next round of decoding
iterations. After a fixed maximum number of iterations, a hard
decision is performed at the ECC decoder to produce data

estimation b̂.

B. Data Shaper

The data shaper consists of a length-L repeater, a length-NL
bit interleaver π, and an L-to-1 mapper (Fig. 8). The repeater
duplicates each ECC coded bit L times. The bit interleaver
permutes the repeater output to relocate the bits. The L-to-1
mapper maps every L bits to one bit, i.e.,M : {0, 1}L → {0, 1}.
Therefore, the data shaper’s overall rate is 1. For the L-to-1
mapper, since there are 2L patterns for the mapping inputs, by
mapping i of them to 1 and 2L − i of them to 0, we obtain the
data output with a distribution of Bernoulli ( i

2L ). By choosing
i = 1, 2, ..., 2L − 1, we achieve data distributions of Bernoulli
(q) with q = 1

2L ,
2
2L , ...,

2L−1
2L .

The interleaver inside the data shaper is crucial in our
scheme. Rather than adopting random interleaving, we propose
a structured interleaving scheme, as shown in the data shaper’s
factor graph in Fig. 8. The interleaver π consists of L sub-
interleavers πi, i = 1, ..., L, each of which can be random. The
data-shaping process can be described using a factor graph.
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Fig. 8. Data shaper and its factor graph illustration.

Each variable node is associated with an ECC coded bit,
where the i-th variable node is associated with ci. There are L
edges from a variable node to the interleavers corresponding
to the L repetitions of the ECC coded bit. Each mapping
node has L edges from the interleavers corresponding to the L
mapping inputs. The i-th mapping node is associated with the
mapping output xi. By using our structured interleaver, the i-
th repetitions of the ECC coded bits enter a sub-interleaver πi

whose outputs are used as the i-th inputs of the mapping nodes.

1 2 3
c c c
1 2 3
c c c
1 2 31 2 3

000

001

010

011

100

101

110

111

0

1

xx

Fig. 9. 3-to-1 mapping for output data distribution Pr(x̃ = 0) = 3
4 , Pr(x̃ =

1) = 1
4 .

By doing so, each ECC coded bit has exactly one repetition
that occupies the i-th input of a mapping node for i = 1, ..., L.

The advantage of employing this structured interleaver can
be explained using an example. Consider a data shaper with
an (L = 3)-repeater and a 3-to-1 mapper M(c̃1, c̃2, c̃3) = x̃
(Fig. 9). There are eight patterns for three binary inputs
c̃1, c̃2, c̃3, where only two of them, 110 and 111, are mapped to
1, and the other six are mapped to 0. If c̃1, c̃2, c̃3 are i.i.d. with
Pr(c̃i = 0)=Pr(c̃i = 1) = 1

2 , i = 1, 2, 3, the mapping can realize
output data distribution with Pr(x̃ = 0) = 3

4 , Pr(x̃ = 1) = 1
4 .

Next we address the de-mapping. Mapping output x̃ actually
contains a different quantity of information about the three
input bits c̃1, c̃2, c̃3. By formulating the mapping rule as
x̃ =M(c̃1, c̃2, c̃3) = c̃1 · c̃2, where · is a multiply operation, we
evaluate the mutual information between x̃ and each input bit
as I(x̃; c̃1) = I(x̃; c̃2) = 3

4 log2
4
3 and I(x̃; c̃3) = 0. Therefore, if

the de-mapper is sufficiently near-optimal, during de-mapping
we can obtain information about the first and second bits c̃1, c̃2.
Unfortunately, we cannot get any information about the third
bit c̃3 since x̃ does not contain any information about c̃3. In
other words, one-third of the bits are erased after de-mapping.
If random interleaving is employed, with probability 1

27 , all
the three repetitions of an ECC coded bit will be assigned as
the third input of a mapping node and erased. In other words,
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with probability 1
27 , an ECC coded bit will be erased after de-

shaping, which leads to a poor ECC decoding performance.
Our structured interleaving guarantees that all the ECC coded
bits can obtain a positive and statistically equal quantity of
information from the de-shaper to benefit the ECC decoding.

C. Channel Estimation and ESE

We propose a maximum likelihood channel estimation to
obtain parameters ε = (ε1, ..., εT ). Since the decoder assumes
the channel created by the t-th memory array as an i.i.d. (ε t, σ)-
channel, with the channel observation of yt = (yt

1, ..., y
t
N/T ), the

log-likelihood function of ε t is written as:

Λ(ε t; yt) = log
N/T∏
i=1

Pr
(
yt

i |ε
t
)

(9)

=

N/T∑
i=1

log
[
(1 − q)

(
ε tφ(yt

i,R
′
0) + (1 − ε t)φ(yt

i,R0)
)

+qφ(yt
i,R1)

]
. (10)

Next we consider the approximation for (10). Let ȳt
i =

arg minx∈{R0,R′0,R1} |y
t
i− x| be the hard decision value of yt

i. Since
each term of (10) is in the form of log

∑
x∈{R0,R′0,R1}

pxφ(yt
i, x),

when the channel noise level is low, it is dominated by the
term of x = ȳt

i. We thereby apply

log
∑

x∈{R0,R′0,R1}

pxφ(yt
i, x) ≈ log

(
pȳt

i
φ(yt

i, ȳ
t
i)
)

= log pȳt
i
−

(yt
i − ȳt

i)
2

2σ2 −
1
2

log(2πσ2),

and hence have the following approximation:

Λ(ε t; yt) ≈ nR′0 log ε t + nR0 log(1 − ε t) −
N/T∑
i=1

(yt
i − ȳt

i)
2

2σ2 +c

where nx
∆
=

∑N/T
i=1 1{ȳt

i = x} is the total number of yt
i whose

hard decision is x and c is a constant term independent of ε t.
By maximizing Λ(ε t; yt) we obtain the estimation of ε t:

ε̂ t = arg max
ε t

Λ(ε t; yt) ≈
nR′0

nR′0 + nR0

. (11)

Next, the ESE calculates the LLR for each coded bit of
(x1, ..., xT ) based on the readback signal (y1, ..., yT ) and the
estimated channel parameters:

L(xt
i |y

t
i, ε̂

t) = log
Pr(yt

i |x
t
i = 0, ε̂ t)

Pr(yt
i |x

t
i = 1, ε̂ t)

(12)

= log
ε̂ tφ(yt

i,R
′
0) + (1 − ε̂ t)φ(yt

i,R0)
φ(yt

i,R1, σ2)
(13)

for i = 1, ...,N/T, t = 1, ...,T . Note that the implementation of
ESE (??) ignores the correlation between cells in a memory
array and regards the sneak-path interference as the i.i.d. noise.
A more sophisticated decoding scheme can be developed by
utilizing the cell correlation and performing joint data and
sneak path detection. It is left as our future work.

To demonstrate the accuracy of the proposed channel es-
timation, in Fig. 10, we illustrate the mean squared error

Fig. 10. MSE: E[(ε̂ − ε)2] of our proposed channel estimation (solid lines)
and MSE: E[(εq − ε)2] of the average channel parameter (dashed lines).

(MSE) between the estimated and the actual sneak-path rates.
We obtain the MSE: E[(ε̂ − ε)2] by simulation for T = 1
and memory array sizes m × n = 64 × 64, 128 × 128, where
ε is the actual sneak-path occurrence rate, and ε̂ is the
estimated value obtained by (11). In general, the MSE is below
10−2 and decreases as the channel noise level decreases. For
comparison, we also illustrate the MSE: E[(εq − ε)2] between
the average and the actual sneak-path rates, where the average
sneak-path rate is employed by the decoder when channel
estimation is unavailable. Our proposed channel estimation is
much more accurate to predict the channel than the average
channel parameter, especially for large array size.

D. De-Shaper

The SISO de-shaper can also be realized by message-
passing processing over the factor graph shown in Fig. 8. Dur-
ing the de-shaping, each node performs as a local processor
and the edges pass LLR messages. The message passing on
the edges is bi-directional. The overall processing is performed
iteratively. In each iteration, each node in the factor graph acts
once. A mapping node performs de-mapping processing based
on the L priori LLRs from its neighboring variable nodes and
the LLR from ESE and outputs an extrinsic LLR for each
mapping input. The extrinsic LLR is used as an a priori LLR
for variable node processings. A variable node combines the
L priori LLRs from its neighboring mapping nodes and feeds
back an extrinsic LLR to each of its neighboring mapping
nodes. After a certain number of iterations the variable nodes
output a more reliable LLR for each ECC coded bit as the
de-shaper output.

1) Mapping Node Processing: A mapping node represents
a mapping constraint, i.e., the L edges on the left side
link to the L variable nodes that are the L mapping input,
and the edge on the right side links to a mapping output.
Therefore, the i-th mapping node represents mapping con-
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straint M(c′i,1, c
′
i,2, · · · , c

′
i,L) = xi, where c′i,1, c

′
i,2, · · · , c

′
i,L are

the mapping inputs and xi is the mapping output. Thus, the
edges from the left of a mapping node should pass the LLRs
for c′i,1, c

′
i,2, · · · , c

′
i,L and the edge from the right side should

pass LLR for xi.
Let L(xi) = log Pr(yi |xi=0)

Pr(yi |xi=1) be the LLR about xi, i = 1, ...,N,

obtained from the ESE. Let La(c′i, j) = log
Pr(c′i, j=0)
Pr(c′i, j=1) be an a

priori LLR of c′i, j from a variable node. The i-th mapping
node calculates an extrinsic LLR for c′i,k, k = 1, 2, ..., L, given
by

Le(c′i,k) = log
Pr(yi|c′i,k = 0)

Pr(yi|c′i,k = 1)

= log

∑
c′i, j, j,k Pr(yi|c′i,k = 0, c′i, j, j , k)

∏
j,k Pr(c′i, j)∑

c′i, j, j,k Pr(yi|c′i,k = 1, c′i, j, j , k)
∏

j,k Pr(c′i, j)

= log

∑
c′i,1,c

′
i,2,··· ,c

′
i,L

(1 − c′i,k)Pr(yi|xi)
∏

j,k Pr(c′i, j)∑
c′i,1,c

′
i,2,··· ,c

′
i,L

c′i,kPr(yi|xi)
∏

j,k Pr(c′i, j)

= log

∑
c′i,1,c

′
i,2,··· ,c

′
i,L

(1 − c′i,k)e(1−xi)L(xi)+
∑

j,k(1−c′i, j)L
a(c′i, j)∑

c′i,1,c
′
i,2,··· ,c

′
i,L

c′i,ke(1−xi)L(xi)+
∑

j,k(1−c′i, j)L
a(c′i, j)

where xi =M(c′i,1, c
′
i,2, · · · , c

′
i,L).

2) Variable Node Processing: Since a variable node is
associated with an ECC coded bit, i.e., the i-th node is
associated with ci, the edges connected to it should pass LLR
messages for the same bit, i.e., ci,1 = ci,2 = · · · = ci,L = ci,
where ci, j, j = 1, ..., L, are L repetitions of ci.

Consider the processing at the i-th variable node. Let La(ci)
be the priori LLR about ci from the ECC decoder and La(ci, j)
be the priori LLR about ci, j, j = 1, ..., L, from the neighboring
mapping nodes. Since ci,1 = ci,2 = · · · = ci,L = ci, the variable
node calculates an extrinsic LLR for each ci,k, given by

Le(ci,k) = La(ci) +
∑
j,k

La(ci,k). (14)

After a certain number of processing iterations, the variable
node outputs an extrinsic LLR about ci to the ECC decoder

Le(ci) =

L∑
k=1

La(ci,k). (15)

E. ECC Optimization and BER Simulations

In this section, we present the ECC optimization and BER
simulation results for ReRAM systems. With our proposed
ECC, we achieve a high storage efficiency with a gap of less
than 0.1 bit/cell from the ReRAM channel capacity.

For the ECC, we adopt an IRA code which is a type of
irregular low-density parity-check (LDPC) code that is able
to approach the i.i.d. channel capacity with low encoding
and decoding complexity [12], [13]. We consider the code
design for two ReRAM systems with a memory array sizes
of m × n = 64 × 64 and 128 × 128, and at a noise level
of σ = 100. We adopt the data shapers with a (L = 4)-
repeater and 4-to-1 mappers with Mappings A and B (Fig. 11).
Mappings A and B produce data distributions of q = 5

16 and
q = 3

16 , respectively, which approach the maximum storage
efficiency for the considered ReRAM systems (Fig. 6). Here
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Fig. 11. Mappings A and B that achieved data distributions with q = 5/16
and q = 3/16.

TABLE I
Code parameters for m × n = 64 × 64 and 128 × 128 ReRAM systems.

Parameters of IRA code involves its variable node degree distribution: {λi}

and combiner factor: a [12], [13].

Array size 64 × 64 128 × 128m × n

Data shaper
L = 4 L = 4

Mapping A Mapping B
q = 5/16 q = 3/16

IRA code (ECC)
λ3 = 0.567736 λ3 = 0.501564
λ50 = 0.432264 λ50 = 0.498436

Combiner: a = 6 Combiner: a = 4
Code rate R = 0.542824 R = 0.414735

maxq(Cq(εq, σ = 100)) 0.660 0.494

the maximum storage efficiencies for m × n = 64 × 64 and
128 × 128 ReRAM systems are maxq Cq(εq, σ = 100) = 0.660
and 0.494 bit/cell, respectively. We optimize the IRA code for
these two cases over an i.i.d. (εq, σ)-channel using a density
evolution method [14]. The code parameters for these two
ReRAM systems are listed in TABLE I. Our codes achieve
R = 0.542824 and 0.414735 bit/cell, which are close to the
capacity bound with gaps of about 0.12 and 0.08 bit/cell.

In Figs. 12 and 13, we simulate the BER of the two coded
ReRAM systems in TABLE I with the across-array coding
strategy over both the ReRAM channels (solid lines) and
the equivalent block-varying (ε, σ)-channels (labeled by ◦).
Message-passing decoding were employed for both the de-
shaper and the ECC decoder, where the decoding of IRA codes
can be found [13]. For the m×n = 64×64 system, we employ
a code length N = 64 × 64 = 4096 and for 128 × 128, we
adopt N = 128 × 128 = 16384. In both figures, the BERs
over the ReRAM channels are almost the same as those over
the block-varying (ε, σ)-channels, thus demonstrating the pro-
posed channel equivalence. The BERs improve as T increases
and approach the decoding performance over the i.i.d. (εq, σ)-
channel, which is the performance limit for ReRAM channels
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Fig. 12. BERs for IRA-coded ReRAM channel (solid line) and IRA-coded
block-varying (ε, σ)-channel (labeled by ◦) with across-array coding strategy
where channel parameters are set as m × n = 64 × 64, R1 = 100 Ω,R0 =
1000 Ω,Rs = 250 Ω, and p f = 10−3.
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Fig. 13. BERs for IRA-coded ReRAM channel (solid line) and IRA-coded
block-varying (ε, σ)-channel (labeled by ◦) with across-array coding strategy
where channel parameters are set as m × n = 64 × 64, R1 = 100 Ω,R0 =
1000 Ω,Rs = 250 Ω, and p f = 10−3.

as T → ∞. This performance improvement as T increases can
be regarded as a “diversity” gain by assigning the codeword
to multiple memory arrays. For comparison, we also illustrate
the BER performances of the same IRA codes without data
shaping (q = 1/2) over i.i.d. (εq, σ)-channel. The decoding
performance deteriorates significantly due to the lack of data
shaping.

To emphasize the importance of the proposed real-time
channel estimation, in Fig. 14, we compared the BERs be-

Fig. 14. BER comparison between the IRA-coded ReRAM channel with
and without channel estimation (CE), where memory array size is m × n =
64 × 64, 128 × 128 and joint-coding array number is T = 1, 16.

 

Fig. 15. BER comparison between our proposed structured interleaving and
random interleaving over the i.i.d. (εq, σ)-channel.

tween the IRA-coded ReRAM channels with and without
channel estimation for memory array sizes m × n = 64 ×
64, 128 × 128 and joint-coding array numbers T = 1, 16. We
employ the same code parameters listed in TABLE I for both
cases. For the IRA-coded ReRAM channel without channel
estimation, we employ the average channel parameter εq for
the decoder. We observe that by applying the channel estima-
tion, the BER improvement is obvious for each comparison
pair.

Note that the codes in TABLE I are designed at σ = 100
for the i.i.d. (εq, σ)-channel, which means that theoretically the
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code can be decoded without errors at σ = 100. However, the
actual decoding performances shown in Figs. 12 and 13 are
much worse. This is because with density evolution, the code
is designed under an infinite code length assumption, while in
our simulations finite-length codes were employed. In other
words, the codes are asymptotically decodable at σ = 100 as
the code length approaches infinity. For the same reason, the
128×128 ReRAM system achieves a lower BER performance
than the 64×64 system since a much longer code is employed
in the 128 × 128 system although the codes in both systems
are designed at the same noise level of σ = 100.

In Fig. 15, we provide BER comparisons between our
proposed structured interleaving scheme and the random in-
terleaving for the codes in TABLE I over the i.i.d. (εq, σ)-
channel. For both codes, our proposed structured interleaving
scheme outperforms the random interleaving. The BER curves
are steeper with structured interleaving than that with random
interleaving. This verifies our analysis in Section IV-B. Note
that similar performance gain can also be observed from the
ReRAM channels, which are the block-varying forms of the
(ε, σ)-channel.

V. Conclusion
We have considered the design of effective channel coding

schemes to tackle both the sneak-path interference and the
additive noise for the ReRAM channels. We have proposed
an across-array coding strategy to mitigate the channel insta-
bility. It also enables a “diversity” gain during decoding. By
employing TIN decoding, the ReRAM channel is equivalent
to a block-varying channel whose status is not data-dependent,
based on which, we proposed the capacity limit as well as a
coding scheme. We have also proposed a real-time channel
estimation scheme to obtain the sneak-path rates of the T
arrays, based on which an ESE calculates the LLR for each
coded bit for decoding. To deal with the channel asymmetry,
we proposed an ECC concatenated with a data shaper, where
the later forms the desired input data distribution to achieve
the maximum information rate. With an optimal ECC design,
the ReRAM system achieved a high storage efficiency with a
gap of less than 0.1 bit/cell from the ReRAM channel capacity
limit.

We would also like to point out some possible extensions
that lead to our future work. Although we only considered the
AWGN noise in this paper, our work can be easily extended
to other types of noises, such as the lognormal noise, through
reformulating the channel capacity and the LLR formula in the
ESE. Moreover, to consider more general sneak-path models
that involve multiple sneak paths affecting a read cell, the
channel model in Fig. 5 should be modified as a binary input
multi-level output channel, where the types of the output signal
levels depend on the corresponding sneak-path combinations
[4].
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