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Abstract

Consider a multi-cell mobile edge computing network, in which each user wishes to compute the

product of a user-generated data matrix with a network-stored matrix. This is done through task offload-

ing by means of input uploading, distributed computing at edge nodes (ENs), and output downloading.

Task offloading may suffer long delay since servers at some ENs may be straggling due to random

computation time, and wireless channels may experience severe fading and interference. This paper aims

to investigate the interplay among upload, computation, and download latencies during the offloading

process in the high signal-to-noise ratio regime from an information-theoretic perspective. A policy based

on cascaded coded computing and on coordinated and cooperative interference management in uplink

and downlink is proposed and proved to be approximately optimal for a sufficiently large upload time.

By investing more time in uplink transmission, the policy creates data redundancy at the ENs, which

can reduce the computation time, by enabling the use of coded computing, as well as the download time

via transmitter cooperation. Moreover, the policy allows computation time to be traded for download

time. Numerical examples demonstrate that the proposed policy can improve over existing schemes by

significantly reducing the end-to-end execution time.

Index Terms

Matrix Multiplication, Straggler, Edge Computing, Transmission Cooperation, Coded Computing

I. INTRODUCTION

Motivation and scope: Mobile edge computing (MEC) is an emerging network architecture

that enables cloud-computing capabilities at the edge nodes (ENs) of mobile networks [2]–[4].

Through task offloading, MEC makes it possible to offer mobile users intelligent applications,

such as recommendation systems or gaming services, that would otherwise require excessive

on-device storage and computing resources. Deploying task offloading, however, poses non-

trivial design problems. On one hand, task offloading may require a large amount of data to be

transferred between users and ENs over uplink or downlink channels, which may suffer severe

channel fading and interference conditions, resulting in large communication latencies. On the

other hand, edge servers are likely to suffer from the straggling effect, yielding unpredictable

computation delays [5]. A key problem in MEC networks, which is the subject of this paper,

is to understand the interplay and performance trade-offs between two-way communication (in

both uplink and downlink) and computation during the offloading process.
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Fig. 1. A multi-cell MEC network carrying out distributed matrix multiplication via uplink communication, edge computing,

and downlink communications.

To this end, this study focuses on the baseline problem of computing the product between

user-generated data vectors {u} and a network-stored matrix A. Matrix multiplication is a

representative computation task that underlies many machine learning and data analytic problems.

Examples of applications include recommendation systems based on collaborative filtering [6],

in which the user-generated data {u} corresponds to user profile vectors, while the network-

side matrix A collects the profile vectors of a certain class of items, e.g., movies. Matrix A is

generally very large in practice, preventing a simple solution whereby users download and store

the matrix for local computation.

Matrix multiplication, as many other more complex computations [7], can be decomposed

into subtasks and distributedly computed across multiple servers. In MEC networks, the servers

are embedded in distinct ENs, and hence distributed computing at the edge requires input

data uploading via the uplink, computation at the ENs, and output data downloading via the

downlink. A fundamental question that this work tackles is: What is the minimum achievable

upload-compute-download latency triplet for completing matrix multiplication in the presence

of straggling servers and multi-cell interference?

In the task offloading process discussed above, the overall latency is the sum of three compo-

nents, namely the time needed for input uploading, server computing, and output downloading.

This paper is devoted to studying the interplay and trade-offs among these three components

from an information-theoretic standpoint. A key result that will be illustrated by our results is

that investing more time in any one of the three steps may be instrumental in reducing the time

needed for subsequent steps thanks to coded computing [8]–[19] and cooperative transmission

[20]–[24]. As explained next, both coded computing and cooperative transmissions leverage

forms of computation redundancy.

Background and related works: Coded computing was introduced in [9] for a master-slave

system with ideal communication links and linear computations. The approach aims at reducing

the average latency caused by distributed servers with random computation time, hence mitigating

the problem of straggling servers [5], through linear coding of the rows of matrix A. Linear

coding assigns each server a flexible number of encoded rows of matrix A. Thanks to maximum

distance separable (MDS) coding, assigning more coded rows at the servers reduces the number

of servers that need to complete their computations in order to recover the desired outputs

[10]–[12]. Coded computing was introduced in [13] as a means to speed up the computation of
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distributed matrix multiplication in a MEC system, providing a starting point for this work.

A simple way to ensure computation redundancy is to assign repeatedly the same rows of

matrix A across multiple ENs. While this does not provide the same robustness against stragglers

as MDS coding, it allows ENs to compute common outputs, i.e., computation replication, as pro-

posed in [25]. This in turn makes it possible for the ENs to cooperate for transmission to the users

in the downlink, which can reduce the download latency in an interference-limited system such

as multi-user multi-server MEC systems shown in Fig. 1. This form of cooperative transmission

enabled by computation redundancy has been explored by [13], [25], [26] for task offloading in

multi-cell MEC systems and by [27] for data shuffling in wireless MapReduce systems, all with

the goal of mitigating the multi-cell interference and hence boost the communication efficiency.

Cooperative transmission has also been explored in the context of multi-cell caching systems in

[20]–[24] to accelerate content delivery by caching overlapped contents at different ENs.

Overview and main contributions: In the MEC system of Fig. 1, investing more time for

uplink communication allows the same user-generated input vectors to be received by more ENs,

which enhances computation redundancy. The computation redundancy generally introduces a

heavier computation load, which can in turn increase the robustness against straggling servers

via coded computing and mitigate multi-cell downlink interference via cooperative transmission.

Based on these observations, this paper aims to establish the optimal trade-off between computing

and download latencies at any given upload latency. We focus on the high signal-to-noise

ratio (SNR) regime in order to highlight the role of interference management as enabled by

computation redundancy.

The most related prior works, as reviewed above, are [13] and [25]. The work [13] proposes

a computing and downloading strategy by making the simplified assumption that the upload

time is unconstrained so that the input vectors from all users are available at all ENs. The

work [25] characterizes the trade-off between upload and download latencies by assuming

that the computation time at each EN is deterministic (in contrast to random) so that coded

computing is not needed. Moreover, reference [25] adopts a general task model, rather than

matrix multiplication as studied in this work. In contrast to [13] and [25], in this paper, we

study the joint design of task assignment, input upload, edge computing, and output download,

and we analyze the performance trade-offs among upload, computing and download latencies.

In summary, this paper studies the communication (in both uplink and downlink) and compu-

tation tradeoff in multi-user multi-server MEC networks by enabling the use of coded computing

and cooperative transmission. The main contributions are as follows:

• We propose a new task offloading strategy that integrates coded computing based on a

cascade of MDS and repetition codes [11] with cooperative transmission at the ENs for in-

terference management [22]. By uploading the same input vectors of a user to multiple ENs,

the policy creates data redundancy at the ENs that is leveraged to reduce the computation

time by coded computing and the download time via transmission cooperation. Moreover,

by waiting for more non-straggling ENs to finish their tasks, the proposed policy enhances

the downlink transmission cooperation opportunities, and hence it allows the computation

time to be traded for download time.

• We derive achievable upload-compute-download latency triplets, as well as the end-to-end

execution time, and characterize the trade-off region between computing and download

latencies at any given upload latency. The analysis of upload and download latencies relies

respectively on the analysis of degrees of freedom (DoF) for the effective X-multicast

channel formed during uplink transmission and for the cooperative X channels obtained

during downlink transmission [22].
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• Furthermore, we provide a converse result that demonstrates the optimality of the achievable

upload latency for fixed computation and download latencies, as well as constant multiplica-

tive gaps to their respective lower bounds for computation and download latencies at a large

upload latency. The proof is based on genie-aided arguments and on a generalization of the

arguments in [21]. The end-to-end execution time is also proved to be order-optimal for a

large upload latency.

• Through numerical examples, we show that, as compared to baseline schemes, the proposed

policy can reduce the overall end-to-end execution time. We also show that, when the down-

link transmission is the major bottleneck of the offloading process, the proposed cascaded

MDS-repetition coding scheme reduces to repetition coding with no loss of optimality;

while, when the bottleneck comes from the uplink transmission or edge computing, MDS

coding is required to mitigate the effect of straggling ENs.

The rest of the paper is organized as follows. Section II presents the problem formulation and

definitions. Main results including communication-computation latency trade-offs are presented

in Section III. The proposed scheme is detailed in Section IV. Section V provides numerical

examples. Conclusions are drawn in Section VI. The converse proof is available in Appendix.
Notations: K denotes the set of indexes {1, 2, · · ·, K}. [a : b] denotes the set of integers

{a+1, a+2, . . . , b}. [a] denotes the set of integers [1 :a]. (·)T denotes the transpose. (x)+ denotes

max{x, 0}. (Xi)
b
i=a denotes the vector (Xa, Xa+1, · · ·, Xb)

T . {xi : i∈ [a : b]} or {xi}
b
i=a denotes

the set {xa, xa+1, · · ·, xb}. {xk}q:K denotes the q-th smallest element of set {xk : k∈ [K]}. Fm×n
2B

denotes the set of all matrices of dimension m× n with entries in the finite field F2B [28].

II. PROBLEM FORMULATION

A. MEC Network Model

As shown in Fig. 1, we consider a multi-cell MEC network consisting of K single-antenna

ENs communicating with M single-antenna users via a shared wireless channel. Denote by

K = {1, 2, . . . , K} the set of ENs and by M = {1, 2, . . . ,M} the set of users. Each EN is

equipped with an edge server. The mobile users offload their computing tasks to the ENs through

the uplink channel (from users to ENs) and then download the computation results back via the

downlink channel (from ENs to users). Let hu
ki denote the uplink channel fading from user i∈M

to EN k∈K, and hd
ik denote the downlink channel fading from EN k∈K to user i∈M, both

of which are independent and identically distributed (i.i.d.) for all pairs (i, k) according to some

continuous distribution. A central scheduling unit (CSU) is connected to all nodes via backhaul

links to collect the uplink channel state information (CSI) Hu , {hu
ki : k ∈ K, i ∈ M} and

downlink CSI Hd,{hd
ik : i∈M, k∈K} estimated at these nodes. It utilizes the collected global

CSI to design the transmit or receive beamforming coefficients for the symbols transmitted or

received at the nodes. We assume perfect CSI for uplink and downlink channels at the CSU,

and we refer to [29]–[31] for analysis of the impact of imperfect CSI in the high-SNR regime.
We consider that each user has a matrix multiplication task to compute. Matrix multiplication

is a building block of many machine learning and data analytic problems, e.g., linear inference

tasks including collaborative filtering for recommendation systems [6]. Specifically, we assume

that each user i has an input matrix with N input vectors1 ui,j∈F
n×1
2B

, j∈ [N ], and it wishes to

compute the output matrix with N output vectors vi,j∈F
m×1
2B

, j∈ [N ], where

vi,j=Aui,j, for j∈ [N ], (1)

1The same number of input vectors for different users is assumed for analytical tractability. When this is not the case, a simple,

generally suboptimal, solution is to add extra inputs (e.g., zero vectors) to each user to make their inputs equal in number.
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and A∈F
m×n
2B

is a data matrix available at the network end, and B is the size (in bits) of each

element. The matrix A is partially stored across the ENs, which conduct the product operations

in a distributed manner. To this end, each EN k has a storage capacity of µmnB bits, and it can

hence store a fraction µ∈ [ 1
K
, 1] of the rows of matrix A. Specifically, during an offline storage

phase, an encoding matrix Ek∈F
µm×m
2B

is used to generate a coded matrix Ak=EkA, which is

then stored at EN k, as in [10], [11].

B. Task Offloading Procedure

The task offloading procedure proceeds through task assignment, input uploading, edge com-

puting, and output downloading.

1) Task Assignment: A task assignment scheme is defined through the following sets

{Ui,K′ : i∈M,K
′

⊆K}, (2)

where Ui,K′ ⊆ {ui,j}Nj=1 denotes the subset of input vectors from user i that are assigned only

to the subset of ENs K
′

for computation. We impose the condition
⋃

K
′
⊆K Ui,K′ ={ui,j}

N
j=1 for

i∈M to guarantee that all input vectors are computed. Furthermore, by definition, we have the

relation Ui,K′

⋂
Ui,K′′ =∅ for K

′

6=K
′′

so that these subsets are not overlapped. The subset of

input vectors from all users assigned to each EN k is hence given as Uk=
⋃

i∈M,K′⊆K: k∈K′ Ui,K′ .

Definition 1. (Repetition Order) For a given task assignment scheme {Ui,K′}i∈M,K′⊆K, the

repetition order r, with 1 ≤ r ≤ K, is defined as average input data redundancy, i.e., the

total number of input vectors assigned to the K ENs (counting repetitions) divided by the total

number of input vectors of the M users, i.e.,

r,

∑
k∈K |Uk|

MN
. (3)

The repetition order indicates the average number of ENs that are assigned the same input

vector, which has been adopted in [25] as a measure of the degrees of computation replication.

The above task assignment {Ui,K′} is realized through the following input uploading phase.

2) Input Uploading: At run time, each user i maps its input vectors {ui,j}Nj=1 into a codeword

Xu
i , (Xu

i (t))
T u

t=1 of length T u symbols under the power constraint (T u)−1
E
[
||Xu

i ||
2
]
≤P u. Note

that Xu
i (t)∈C is the symbol transmitted at time t∈ [T u]. At each EN k∈K, the received signal

Y u
k (t)∈C at time t∈ [T u] can be expressed as

Y u
k (t)=

∑

i∈M

hu
ki(t)X

u
i (t)+Zu

k(t), (4)

where Zu
k(t)∼CN (0, 1) denotes the noise at EN k. Each EN k decodes the sequence (Y u

k (t))
T u

t=1

into an estimate {ûi,j} of the assigned input vectors {ui,j : ui,j∈Uk}.

3) Edge Computing: After the uploading phase is completed, each EN k computes the

products of the assigned estimated input vectors in set Uk with its stored coded model Ak.

The computation time for EN k to complete the computation of the corresponding µm|Uk|
row-vector products2 is modeled as

T c
k = µm|Uk|ωk, for k ∈ K, (5)

where the random variable ωk represents the time needed by EN k to compute a row-vector

product, and it is modelled as an exponential distribution with mean 1/η (see, e.g., [9], [10],

[12], [14]). T c
k is thus a scaled exponential distribution with mean µm|Uk|/η. The MEC network

2The row-vector product indicates the product of a row vector of matrix A with a column vector ui,j .
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waits until the fastest q ENs, denoted as subset Kq⊆K, have finished their tasks before returning

the results back to users in the downlink. The cardinality |Kq|=q is referred to as the recovery

order. The rest of K−q ENs are known as stragglers. The resulting (random) duration of the

edge computing phase is hence equal to the maximum computation time of the q fastest ENs,

i.e., T c = maxk∈Kq
T c
k .

4) Output Downloading: At the end of the edge computing phase, each EN k∈Kq obtains the

coded outputs Vk,{vi,j,k=Akûi,j : ui,j∈Uk}. Every EN k in Kq then maps Vk into a length-T d

codeword Xd
k ,
(
Xd

k(t)
)T d

t=1
with an average power constraint (T d)−1E

[
||Xd

k||
2
]
≤P d. For each

user i∈M, its received signal Y d
i (t)∈C at time t∈ [T d] is given by

Y d
i (t)=

∑

k∈Kq

hd
ik(t)X

d
k(t)+Zd

i (t), (6)

where Zd
i (t) ∼ CN (0, 1) is the noise at user i. Each user i decodes the sequence (Y d

i (t))
T d

t=1

to obtain an estimate {v̂i,j,k}j∈[N ],k∈Kq
of the coded outputs, from which it obtains an estimate

{v̂i,j}j∈[N ] of its desired outputs. This is possible if the estimated coded outputs {v̂i,j,k}j∈[N ],k∈Kq

contain enough information to guarantee the condition H({vi,j}j∈[N ]|{v̂i,j,k}j∈[N ],k∈Kq
)=0. The

overall error probability is given as Pe , P
(⋃M N

i=1,j=1 {v̂i,j 6=vi,j}
)
. A task offloading policy is

said to be feasible when the error probability Pe→0 as B→∞.

C. Performance Metric

The performance of the considered MEC network is characterized by the latency triplet

accounting for task uploading, computing, and output downloading, which we measure in the

high-SNR regime as defined below.

Definition 2. The normalized uploading time (NULT), normalized computation time (NCT), and

normalized downloading time (NDLT) achieved by a feasible policy with repetition order r and

recovery order q are defined, respectively, as

τ u(r) , lim
P u→∞

lim
B→∞

EHu [T u]

NnB/ logP u
, (7)

τ c(r, q) , lim
m→∞

Eω [T c]

Nm/η
, (8)

τ d(r, q) , lim
P d→∞

lim
m→∞

lim
B→∞

EHd [T d]

NmB/ logP d
. (9)

The definitions (7) and (9) have been also adopted in [25], and follow the approach introduced

in [21] by normalizing the delivery times to those of reference interference-free systems (with

high-SNR rates logP u and logP d, respectively). Similarly, the computation time in definition

(8) is normalized by the average time needed to compute over all the input vectors of a user.

To avoid rounding complications, in definition (8) and (9), we let the output dimension m grow

to infinity.

Definition 3. Given the definition of achievable NULT-NCT-NDLT triplet
(
τ u(r), τ c(r, q), τ d(r, q)

)

with repetition order r and recovery order q as in Definition 2, the optimal compute-download

latency region for a given NULT τ u is defined as the union of all NCT-NDLT pairs (τ c, τ d) that



7

non-straggling ENs compute       , among 
them      ENs have the common output

     
         

stragglers

user

upload       to a   

subset of     ENs 

     

       

non-straggling ENs

MDS code 
rate

Repetition code 
rate 

m
select         to 
store at each EN

      

ensure recovery and redundancy

Fig. 2. (Bottom) Hybrid MDS-Repetition coding for matrix A; (Top) Input uploading and edge computing.

satisfy τ c≥τ c(r, q) and τ d≥τ d(r, q) for some (r, q) while the corresponding NULT τ u(r) is no

larger than τ u, i.e.,

T
∗(τ u),

{
(τ c, τ d) :

(
τ u(r), τ c(r, q), τ d(r, q)

)
is achievable for some (r, q) and τ u(r)≤τ u,

τ c(r, q)≤τ c, and τ d(r, q)≤τ d
}
. (10)

Definition 4. (End-to-end execution time) For a given pair (r, q), based on the defined communi-

cation and computation latency triplet, the end-to-end execution time is defined as the weighted

sum of the NULT, NCT, and NDLT as

τ(r, q) = τ u(r) + δcτ
c(r, q) + δdτ

d(r, q). (11)

In (11), δc=
Nm/η

NnB/ logP u represents the ratio between the reference time needed to compute over

all the input vectors of a user and the reference time needed to upload all the input vectors of

a user, while δd =
NmB/ logP d

NnB/ logP u is ratio between the reference time needed to download all the

output vectors of a user and the mentioned upload reference time.

Remark 1. (Convexity of compute-download latency region.) For an input data assignment policy

{Ui,K′}i∈M,K′⊆K with repetition order r, fix an input uploading strategy achieving an NULT of τ u.

Consider now two policies π1 and π2 that differ may in their computing and download phases,

and achieve two NCT-NDLT pairs
(
τ c
1 , τ

d
1

)
and

(
τ c
2 , τ

d
2

)
, respectively. For any ratio λ∈ [0, 1], it

can be seen that there exists a policy that achieves the NCT-NDLT pair λ
(
τ c
1 , τ

d
1

)
+(1−λ)

(
τ c
2 , τ

d
2

)

for the same NULT τ u. To this end, assuming m is sufficiently large, matrix A, correspondingly,

all output vectors in (1) are split horizontally so that Nλm and N(1−λ)m outputs can be

processed by using policies π1 and π2, respectively. By the linearity of the NCT in (8) and

NDLT in (9) with respect to the output size, the claimed pair of NCT and NDLT is achieved.

Thus, the region in (10) is convex. Similar arguments were also used in [21, Lemma 1].

Based on the remark above, the region T ∗(τ u) in (10) is convex thanks to the time- and

memory-sharing arguments, while it can be proved that the same is not true for the region

of achievable triplets (τ u, τ c, τ d). Region T ∗(τ u) will be adopted to capture the trade-offs

between computation and download latencies for a fixed upload latency. Our general goals are to

characterize the minimum communication-computation latency triplet, the optimal tradeoff region

between computing and download latencies, as well as the minimum end-to-end execution time.
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III. MAIN RESULTS

In this section, we introduce a novel task offloading scheme based on the joint design of

task assignment, two-way communication, and cascaded coded computing. Then, we study

the communication-computation latency triplet and the end-to-end execution time achieved by

this scheme. We derive inner and outer bounds on the compute-download latency region, and

then discuss some consequences of the main results in terms of the tradeoffs among upload,

computation, and download latencies. Furthermore, we specialize the main results to a number

of simpler set-ups in order to illustrate the connections with existing works.

A. Key Ideas

We start by outlining the main ideas that underpin the proposed scheme. In task assignment,

we choose a repetition-recovery order pair (r, q) from a feasible set R of values. We demonstrate

that for any (r, q)∈R, it is possible to recover all outputs through a suitable design of the system.

For any such pair (r, q), as shown in Fig. 2-(bottom), matrix A is encoded by a cascade of an

MDS code of rate 1/ρ1 and a repetition code of rate 1/ρ2. Of the encoded rows, µm different

rows are stored at each EN, with each MDS encoded row replicated at ρ2 distinct ENs. As we

will prove, the MDS code can alleviate the impact of stragglers on the computation latency by

decreasing the admissible values for the number q of non-straggling ENs (see also [9]–[11]);

while repetition coding can reduce the download latency by enabling cooperative transmission

among multiple ENs computing the same outputs [13], [25].

In the input upload phase, each user divides its N input vectors into
(
K
r

)
subsets {Ui,K′},

with each subset uploaded to all the r ENs in subset K
′

for computation. By using interference

alignment (IA), at each EN, a total of M
(
K−1
r−1

)
desired subsets of inputs can be successfully

decoded with the other M
(
K−1
r

)
undesired subsets of interfering signals being aligned together.

Then, as shown in Fig. 2-(top), in the computing phase, each input vector of any user is computed

by a subset of p1 non-straggling ENs with p1 being at least r − (K− q) and at most min{r, q}.

Therefore, since each encoded row of A is replicated at a subset of ρ2 ENs, after computation,

each MDS-encoded row-vector product result for a user will be replicated at a subset of p2
non-straggling ENs, with p2 being at least max{ρ2−K+p1, 1} and at most min{p1, ρ2}.

In the output download phase, each subset of p2 ENs computing the same coded outputs can

first use zero-forcing (ZF) precoding to null the interfering signal caused by common outputs at

a subset of p2 −1 undesired users. When the number of undesired users does not exceed p2 −1,

i.e., when M−1≤p2 −1, by ZF precoding, each user only receives its desired outputs with all

undesired outputs being cancelled out. When this condition is violated, i.e., when M>p2, after

ZF precoding, each output still causes interferences to M−p2 undesired users. As detailed in

[22], IA can be applied in cascade to the ZF precoders in order to mitigate the impact of these

interfering signals.

B. Bounds

The scheme summarized above and detailed in Sec. IV achieves the following latency region.
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Theorem 1. (Inner bound). For the described MEC network with M users and K ENs, each

with storage capacity µ∈ [ 1
K
, 1], the following communication-computation latency triplet

(
τ u

a (r),
τ c

a (r, q), τ
d
a (r, q)

)
is achievable

τ u
a (r)=

(M−1)r+K

K
, (12)

τ c
a (r, q)=

Mrµ(HK−HK−q)

K
, (13)

τ d
a (r, q)=

min{r,q}∑

p1=r−K+q

Bp1




lmax∑

p2=lp1

Bp2

dd
p1,M,p2

+
Blp1−1

dd
p1,M,lp1−1


, (14)

for any repetition order r and recovery order q in the set

R,
{
(r, q) : r∈ [K], q∈ [K], and (r−K+q)µ≥1

}
, (15)

where HK =
∑K

k=1 1/k, H0 = 0, Bp1 =
(
q
p1

)(
K−q
r−p1

)
/
(
K
r

)
, Bp2 =

(
p1
p2

)(
K−p1
ρ2−p2

)
ρ1/
(
K
ρ2

)
, Blp1−1 =

1−
∑lmax

p2=lp1
Bp2 , and dd

p1,M,p2
is given by

dd
p1,M,p2

=





1, p2≥M
(

p1
M−1

)
(M−1)(

p1
M−1

)
(M−1) + 1

, p2=M−1

max
{
d′,

p2
M

}
, p2≤M−2

, (16)

with d′,max1≤t≤p2
p1−t+1

M+p1−2t+1
;

ρ2=inf

{
ρ :

(
K

ρ

)
−

(
2K−r−q

ρ

)
≥

1

ρ1

(
K

ρ

)
, ρ1ρ=Kµ, ρ1∈

{
1,

Kµ

Kµ−1
,

Kµ

Kµ−2
· · · , Kµ

}}
;

(17)

and

lp1=inf

{
l :
∑lmax

p2=l
Bp2m≤m, l∈ [lmin : lmax], lmax=min{p1, ρ2}, lmin=max{ρ2−K+p1, 1}

}
. (18)

Therefore, for an NULT τ u = τ u
a (r) given in (12) for some r, an inner bound Tin(τ

u) on the

compute-download latency region is given by the convex hull of the set
{(

τ c
a (r, q), τ

d
a (r, q)

)
:q∈[

⌈ 1
µ
⌉ +K− r :K

]}
.

Proof. The proof of Theorem 1 is given in Section IV.

By Theorem 1, an achievable end-to-end execution time is given as follows.

Corollary 1. An achievable end-to-end execution time for (r, q) ∈ R is given as τa(r, q) =
τ u

a (r)+ δcτ
c
a (r, q) + δdτ

d
a (r, q), where τ u

a (r), τ
c
a (r, q), and τ d

a (r, q) are given in (12), (13), and

(14), respectively.

We also have the following converse.

Theorem 2. (Converse). For the same MEC network, the set of all admissible pairs (r, q) is

included in the set R in (15). Furthermore, any feasible communication-computation latency
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.

triplet
(
τ u(r), τ c(r, q), τ d(r, q)

)
for pairs (r, q) in R is lower bounded as

τ u(r)≥τ u
a (r), (19)

τ c(r, q)≥τ c
l (r, q)=max

t∈[q]

(HK−HK−q+t−1)(r−K+t)+Mµ

t
, (20)

τ d(r, q)≥τ d
l (r, q)= max

t∈{1,··· ,min{q,M}}

M−(M−t)(q−t) r
K
µ

t
. (21)

Therefore, for an NULT τ u=τ u
a (r) in (12) for some r, an outer bound Tout(τ

u) of the compute-

download latency region is given by the convex hull of set
{(
τ c
l (r, q), τ

d
l (r, q)

)
:q∈
[
⌈1
µ
⌉+K−r :K

]}
.

Proof. The proof of Theorem 2 is available in Appendix.

Fig. 3 plots the derived inner and outer bounds on the compute-download latency region

T ∗(τ u) for the case with M=K=10 and two different values of τ u. For instance, in Fig. 3-(a), for

a small NULT τ u=6.4 at r=6, we have the achievable NCT-NDLT pairs (τ c
a , τ

d
a )=(3.04, 3.62)

at q=6 and (τ c
a , τ

d
a )=(10.54, 2.44) at q=10; while, in Fig. 3-(b), for a large NULT τ u =9.1 at

r=9, we have two smaller latency pairs (τ c
a , τ

d
a )=(2.59, 3.51) at q=4 and (τ c

a , τ
d
a )=(7.72, 2.14)

at q=8. First, we observe that for both cases, as q increases, the NDLT is reduced at the expense

of an increasing NCT: A larger q enables more opportunities for transmission cooperation at

the ENs during output downloading, while increasing, on average, the time required for q ENs

to complete their tasks. Furthermore, comparing Fig. 3-(a) with Fig. 3-(b), we also see that

allowing for a longer upload time τ u increases the compute-download latency region. This is

because when more information is uploaded to ENs over a larger latency τ u, on the one hand,

users can wait for fewer ENs to finish their computing tasks, reducing the NCT; and, on the

other hand, the increased duplication of outputs also increases opportunities for transmission

cooperation to reduce the NDLT.

Corollary 2. The minimum end-to-end execution time τ(r, q) for (r, q)∈R is lower bounded as

τ(r, q)≥τl(r, q)=τ u
a (r) + δcτ

c
l (r, q) + δdτ

d
l (r, q), where τ u

a (r), τ
c
l (r, q), and τ d

l (r, q) are given in

(12), (20), and (21), respectively.

C. Optimality

The following lemma characterizes the optimality of the proposed scheme.
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Lemma 1. (Optimality). For any triplet
(
τ u

a (r), τ
c(r, q), τ d(r, q)

)
with NULT τ u

a (r) in (12), it

is not possible to reduce the achievable NULT τ u while still guaranteeing the feasibility of a

triplet (τ u, τ c(r, q), τ d(r, q)). Furthermore, for a sufficiently large NULT τ u ≥ τ u
a (K−n1) and

small recovery order q≤K(1−1/n2)+1, with integers 0≤n1<q/2 and n2≥1, the multiplicative

gap between the achievable NCT in (13) and its lower bound τ c
l in (20) satisfies the inequality

τ c
a /τ

c
l ≤(1 + n1)(1 + n2). (22)

Finally, for a sufficiently large NULT τ u ≥τ u
a (K−n), with integer n≥0, the multiplicative gap

between the achievable NDLT in (14) and its lower bound τ d
l in (21) satisfies the inequality

τ d
a /τ

d
l ≤2(1+nµ), (23)

and hence, if τ u ≥ τ u
a (K), we have τ d

a /τ
d
l ≤ 2. In the special case µ = 1, for a sufficiently

large NULT τ u ≥ τ u
a (M+K− q), we have τ d

a = τ d
l = 1 that is optimal; for a smaller NULT

τ u
a (K−n)≤τ u<τ u

a (M+K−q), with integer q−M<n≤q−1, we have τ d
a /τ

d
l <n+1.

Proof. The proof of Lemma 1 is given in Appendix.

The multiplicative gaps in Fig. 3 are consistent with Lemma 1, since τ c
a /τ

c
l = 2.74< 22 at

(r, q) = (9, 10) (i.e., n1 = 1 and n2 = 10) and τ d
a /τ

d
l = 1.32< 3.2 at (r, q) = (9, 3) (i.e., n= 1).

Based on the inequality τa/τl=(τ u
a + δcτ

c
a + δdτ

d
a )/(τ

u
a + δcτ

c
l + δdτ

d
l )≤max{τ c

a /τ
c
l , τ

d
a /τ

d
l }, the

order-optimality of the end-to-end execution time is obtained as below.

Corollary 3. For a sufficiently large NULT τ u ≥ τ u
a (K−n1) and small recovery order q ≤

K(1−1/n2)+1, with integers 0 ≤ n1< q/2 and n2 ≥ 1, the multiplicative gap between the

achievable end-to-end execution time τa and its lower bound τl satisfies the inequality

τa/τl≤max{(1 + n1)(1 + n2), 2(1+n1µ)}. (24)

D. Special Cases

In the special case when r =K, hence ignoring limitations on the uplink transmission, the

achievable NDLT (14) reduces to τ d
a (K, q)=M

∑lmax

p2=lq
Bp2/p2+Blp1−1/(lp1−1) when using only

ZF precoding in downlink, which is consistent with the normalized communication delay in [13,

Eq. (13)]. Furthermore, when setting q=K, hence ignoring stragglers’ effects, and µ=1, i.e.,

ignoring ENs’ storage constraint, the achievable NDLT (14) reduces to τ d
a =M/min{K,M},

which is optimal and recovers the communication load in [26, Remark 5], the NDT with cache-

aided EN cooperation in [21, Eq. (25)], and the NDLT in [25, Eq. (50)].

IV. ACHIEVABLE SCHEME

In this section, we present the achievable scheme for any µ ∈{1/K, 2/K, · · ·, 1}3 and any

repetition and recovery order pair (r, q) in the feasible set R in (15). Note that each input is

computed by at least r−(K−q) non-stragglers, so set R ensures that any subset of r−K+q
ENs can store at least m rows of A to multiply each input. The entire scheme including task

assignment, input uploading, edge computing and output downloading are detailed below.

3For general u∈ [ 1

K
, 1] satisfying Kµ=β⌈Kµ⌉+(1−β)⌊Kµ⌋, we can use memory- and time-sharing methods to achieve

the linear combinations of the latency triplets achieved at integers ⌈Kµ⌉ and ⌊Kµ⌋.
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Fig. 4. Interference alignment on the 3-Tx 3-Rx X-multicast channel with size-2 multicast group.

1) Task Assignment: In this paper, we treat tasks from all users equally without considering

user priority. So, without loss of generality, we consider the task assignment of {ui,j}Nj=1 for user

i∈M. As discussed in Section III-A, for a repetition order r, we partition the N input vectors

{ui,j}Nj=1 of each user i∈M into
(
K
r

)
equal-sized subsets, each denoted as Ui,K′ and assigned to

all the r ENs in subset K
′

⊆K for computation. Each EN k is thus assigned M
(
K−1
r−1

)
N/
(
K
r

)
=

MNr/K inputs corresponding to subsets {Ui,K′ : i∈M,K
′

⊆K, |K
′

|=r, k∈K
′

}. By Definition

1, the repetition order is calculated as K(MNr/K)/MN=r, which equals the cardinality |K
′

|.
2) Input Uploading: Based on the task assignment {Ui,K′}, each user i∈M uploads the subset

Ui,K′ of inputs to the subset K
′

of ENs via the uplink channel for K
′

⊆K and |K
′

|=r. In other

words, each user communicates with all
(
K
r

)
distinct subsets of ENs of cardinality r, and any

subset of r ENs can form a receiver multicast group. Hence, the resulting uplink channel can be

treated as an X-multicast channel with M transmitters, K receivers, and size-r multicast group,

the same as that defined in [32] (see Fig. 4 for the case with M=K=3 and r=2). Enabled by

asymptotic interference alignment with infinite symbol extensions, each group of M interfering

signals from M transmitters can be aligned along the same direction at each receiver [32]. As

a result, each receiver can successfully decode a total of M
(
K−1
r−1

)
desired messages from M

transmitters over the symbol-extended channel, with the other M
(
K−1
r

)
undesired messages being

aligned into
(
K−1
r

)
common subspaces, each subspace containing M undesired messages from

M transmitters. For instance, in Fig. 4, each receiver can decode the desired 3
(
2
1

)
=6 messages

occupying independent subspaces with the undesired 3 signals sent by 3 transmitters being

aligned into a common subspace. A per-receiver DoF of 6/7 can be achieved asymptotically.

In general, as proved in [22, Lemma 1] and [32, Theorem 2], the optimal per-receiver DoF

of this channel is given by du
r = Mr/(Mr+K− r). The per-receiver rate of this channel in

the high SNR regime can be approximated as Ru
r = du

r×logP u+o(logP u), where only the first

term is relevant in computing (7), so the uploading time can be approximately expressed as

T u= MNr
K

nB/(du
r logP

u+ o(logP u)). Let P u→∞ and B→∞, by Definition 2, the NULT τ u
a at

repetition order r is given as below,

τ u
a (r)=

Mr/K

du
r

=
(M−1)r+K

K
. (25)

3) Edge Computing: After the input uploading phase is finished, each EN computes the

products of the assigned input vectors and the stored coded matrix. Following Section III-A,

a cascade of an MDS code with rate 1/ρ1 and a repetition code with rate 1/ρ2 is applied to

encode matrix A into Ac. Under the constraint of the total storage size Kµ, the code rates satisfy

ρ1ρ2 =Kµ, ρ1 ∈ {1, Kµ/(Kµ−1), Kµ/(Kµ−2), · · · , Kµ} and ρ2 ∈ [Kµ]. Then, we split the

coded matrix Ac into
(
K
ρ2

)
submatrices {Ac,K′′}, each stored at a distinct subset K

′′

of ρ2 ENs.

As shown in Fig. 2, when there are K− q stragglers randomly occurring, any subset of r−K+ q
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Fig. 5. Illustration of downlink transmission for K =M =5, µ=3/5, m=40, N =5, q=3, r=4, and (ρ1, ρ2)= (3/2, 2).
The MISO broadcast channel and X-channel are formed to transmit outputs of {ui,1}

5
i=1 back to the users sequentially.

This figure only shows the pattern of MISO broadcast channels for transmitting {a25ui,1, · · · ,a30ui,1}
5
i=1. Outputs of

{ui,2}
5
i=1, {ui,3}

5
i=1, · · · , {ui,5}

5
i=1 are transmitted in a similar way.

non-straggling ENs must store at least m encoded rows to compute all outputs. This can be

ensured by condition ρ1m−
(
K−(r−K+q)

ρ2

)
ρ1m/

(
K
ρ2

)
≥m. Further, under this recovery condition, in

order to create more data redundancy, the parameter ρ2∈ [Kµ] is maximized as

ρ2=inf

{
ρ :

(
K

ρ

)
−

(
2K−r−q

ρ

)
≥

1

ρ1

(
K

ρ

)
, ρ1ρ=Kµ, ρ1∈

{
1,

Kµ

Kµ−1
,

Kµ

Kµ−2
· · · , Kµ

}}
;

(26)

As an example, in Fig. 5, for K=M=5, m= 40, µ=3/5, q=3, and r=4, by (26), we have

(ρ1, ρ2)=(3/2, 2) such that A is encoded into 60 rows and then split into
(
5
2

)
=10 submatrices,

each with 6 rows replicated at 2 ENs. By the given task input assignment {Ui,K′}, each EN

k computes MNrµm/K row-vector products. Let ω1:K ≤ ω2:K ≤ · · · ≤ ωK:K denote the order

statistics in a sample of size K from an exponential distribution with mean 1/η [33], by Definition

2, the NCT is given by

τ c
a (r, q)= lim

m→∞

E
[
MNrµm

K
ωq:K

]

Nm/η
=
Mrµ(HK−HK−q)

K
, (27)

which follows E [ωq:K]=(HK−HK−q)/η [33, Eq. (4.6.6)].

4) Output Downloading: At the end of edge computing phase, the K− q non-straggling

ENs return the computed outputs back to users via the downlink channel. Following Section

III-A, for each user, the number of input vectors computed by p1 non-straggling ENs equals(
K−q
r−p1

)
N/
(
K
r

)
= Bp1N/

(
q
p1

)
, where r− (K−q) ≤ p1 ≤ min{r, q}. Furthermore, the number of

encoded rows of A replicated at p2 non-straggling ENs is
(
K−p1
ρ2−p2

)
ρ1m/

(
K
ρ2

)
=Bp2m/

(
p1
p2

)
, where

max{ρ2−K+p1, 1}≤p2≤min{p1, ρ2}. Hence, among the p1 non-straggling ENs, any subset of p2
ENs computing the same MBp1NBp2m/

((
q
p1

)(
p1
p2

))
outputs can form a transmitter cooperation

group, resulting in
(
p1
p2

)
groups in total, and each EN cooperation group has outputs to send to all

users. The resulting downlink is a cooperative X channel with p1 transmitters, M receivers, and

size-p2 cooperation group, as defined in [22] (see Fig. 6 for the case with p1=M=3 and p2=2).

As discussed in Sec. III-A, when p2 ≥M , each subset of p2 ENs can cooperatively transmit

common outputs to M users via ZF precoding. In contrast, when p2<M , each subset of p2 ENs

partitions each common output into
(
M−1
p2−1

)
submessages, and first use ZF precoding to null the

interference caused by each submessage at a distinct subset of p2−1 undesired users. Then, by
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Fig. 6. Interference alignment and ZF precoding on the 3-Tx 3-Rx cooperative X channel with size-2 cooperation group.

cascading ZF precoding with asymptotic IA, the rest of interferences from each subset of t−1
ENs can be aligned into a distinct subspace at each user [22]. Particularly, when p2 =M−1,

each submessage only causes interference to one user, so all interfering signals at each user can

be aligned into a common subspace. For example, in Fig. 6, each common message is split into

2 submessages with each being cancelled at a undesired receiver and causing interference only

to another undesired receiver. Then, each receiver can decode the 2
(
3
2

)
=6 desired submessages

with the rest 2
(
3
2

)
= 6 interferences being aligned into a common subspace, which achieves a

per-receiver DoF of 6/7.

In general, by [22, Lemma 1], an achievable per-receiver DoF dd
p1,M,p2

of this downlink channel

is given as (16), which is within a multiplicative gap of 2 to the optimal DoF. The per-receiver

channel rate for high SNR regime can be approximated as dd
p1,M,p2

× logP d+o(logP d), where

only the first term is relevant in computing (9). The traffic load for each user to download its

desired outputs is Bp1NBp2mB/
(
q
p1

)
bits, so the downloading time can be approximately given

by T d =
Bp1

NBp2
mB/( q

p1
)

dd
p1,M,p2

logP d+o(logP d)
. Let P d →∞ and mB→∞, by Definition 2, the NDLT for each

user to download the outputs replicated at p2 non-stragglers is given by

τ d
p1,p2

=
Bp1Bp2/

(
q
p1

)

dd
p1,M,p2

. (28)

Due to the MDS coding, the total number of coded outputs available on the p1 ENs may

exceed the number m needed to recover the outputs of each input vector. Denote by lp1−1 the

minimum degrees of replication of needed coded outputs on the p1 ENs, lp1 is determined by

lp1
= inf

{
l :
∑min{p1,ρ2}

p2=l Bp2
m ≤m, l ≥max{ρ2−K+p1, 1}

}
, so the number of needed coded outputs

replicated at lp1−1 ENs equals MBp1NBlp1−1m/
(
q
p1

)
, where Blp1−1=1−

∑lmax

p2=lp1
Bp2 . Note that

Blp1−1
m/
(

p1
lp1−1

)
can be seen as an integer for infinitely large m since

(
Blp1−1mmod

(
p1

lp1−1

))
/m<(

p1
lp1−1

)
/m→0 as m→∞. So it enables any subset of lp1−1 ENs among p1 ENs to cooperatively

transmit Bp1NBlp1−1m/
((

q
p1

)(
p1

lp1−1

))
common outputs to each user, the downlink channel is also

a cooperative X channel with p1 transmitters, M receivers, and size-(lp1−1) cooperation group.

Similar to (28), the NDLT for each user to download the outputs replicated at lp1−1 non-stragglers

is given by

τ d
p1,lp1−1=

Bp1Blp1−1/
(
q
p1

)

dd
p1,M,lp1−1

. (29)

Furthermore, by considering all the inputs computed by p1 ENs, with p1 from r−(K−q) to
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min{r, q}, and all the outputs replicated at p2 ENs, with p2 from lp1−1 to min{p1, ρ2}, and by

summing all download time given in (28) and (29), the NDLT τ d
a (r, q) is obtained as below,

τ d
a (r, q)=

min{r,q}∑

p1=r−K+q

Bp1




lmax∑

p2=lp1

Bp2

dd
p1,M,p2

+
Blp1−1

dd
p1,M,lp1−1


 (30)

We now illustrate the output downloading latency by the example in Fig. 5. First, for inputs

{ui,1}5i=1 computed by p1=2 ENs, there are 30 outputs {a25ui,1, . . . , a30ui,1}5i=1 replicated at

p2=2 ENs. These 30 outputs can be cooperatively transmitted back to the users via ZF precoding,

resulting in a 2-transmitter 5-receiver MISO broadcast channel that is a special case of cooperative

X channels under full transmitter cooperation. As a result, an NDLT of 3/40 is achieved. After

this round of transmission, users still need 34×5=170 outputs inside the blue dashed rectangle

in Fig. 5, which can be transmitted by the 2 ENs via interference alignment. The downlink is

a 2-transmitter 5-receiver X channel that is a special case of cooperative X channels with size-

1 cooperation group, yielding the NDLT of 51/100. Thus, the NDLT for outputs of {ui,1}5i=1

is 3/40+51/100 = 117/200. Then, the input vectors {ui,2}5i=1, {ui,3}5i=1 are also computed

by p1=2 ENs, their outputs can be transmitted in a similar way, which achieves an NDLT

of (117/200)×2 = 117/100. Likewise, for the inputs {ui,4}5i=1, {ui,5}5i=1 computed by p1=3
ENs, the 3-transmitter 5-receiver cooperative X-channel with size-2 cooperation group, and 3-

transmitter 5-receiver X-channel are formed to transmit the total 400 outputs, yielding an NDLT

of (21/100+77/300)×2 = 14/15. Thus, in this example, the total NDLT at (r, q) = (4, 3) is

14/15+(117/200)×3=1613/600.

5) Inner Bound of Compute-Download Latency Region: For an NULT τ u = τ u
a (r) given in

(25) for some r ∈ [K], by the region R given in (15), the feasible recovery order q satisfies

⌈1/µ⌉+K−r≤q≤K. By Remark 1, for any two integer-valued q1 and q2 in
[
⌈1/µ⌉+K−r :K

]
,

any convex combination of achievable pairs (τ c
a (r, q1), τ

d
a (r, q1) and (τ c

a (r, q2), τ
d
a (r, q2)) can also

be achieved. So an inner bound Tin(τ
u) of the compute-download latency region is given as the

convex hull of set
{(

τ c
a (r, q), τ

d
a (r, q)

)
:q∈

[
⌈ 1
µ
⌉+K−r :K

]}
.

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we first evaluate the system performance in terms of the asymptotic end-to-end

execution time τ in Eq. (11). Then, we use numerical examples to show the average uploading,

computing, downloading, and end-to-end execution times in the non-asymptotic regime.

A. Asymptotic Results

The analysis in the previous section has shown that, by choosing the repetition order r and the

recovery order q, one can obtain different triplets of the upload latency τ u, computation latency

τ d, and download latency τ c. As a result, parameters (r, q) can be optimized to minimize the

end-to-end execution time, yielding the minimum end-to-end execution time τ ∗= min
(r,q)∈R

τ(r, q).

To illustrate the minimum end-to-end execution time τ ∗, we consider a MEC network with

M=8 users and K=10 servers. Each EN has a fractional storage size of µ=3/5. We compare

the proposed scheme with the following baseline strategies, for which parameters r and q are

also optimized: a) MDS coding: Only an MDS code is applied to encode A, i.e., we have the

special case (1/ρ1, 1/ρ2)=(1/Kµ, 1); b) Repetition coding: Only the repetition code is applied

to encode A, i.e., we have (1/ρ1, 1/ρ2) = (1, 1/Kµ); c) Achievable schemes in [13]: Each EN

has the inputs of all users and transmits the outputs back by using one-shot linear precoding. A

cascade of MDS and repetition codes is applied to encode A as in the proposed scheme.
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(b) τ∗ versus δd. δc=5.

Fig. 7. The impacts of the ratios δc and δd on the end-to-end execution time τ∗.

Fig. 7 shows the impacts of the ratio δc between computation and upload reference latencies

and the ratio δd between download and upload reference latencies on the end-to-end execution

time τ ∗. By providing more flexible choices for task uploading, the proposed scheme increases

the achievable region in terms of the latencies for task uploading, computing, and output down-

loading, leading to a reduction in the end-to-end execution time. In Fig. 7-(a), it is also observed

that, when the computing speed is slow, i.e., δc is large, it is suboptimal to upload the input

data of each user to all ENs, and, as a result, the proposed scheme obtains gains with respect to

[13] that increases with δc. In contrast, when δc is small, the proposed scheme reduces to that

of [13], since, for fast server computing speeds, the optimal task assignment policy prefers to

replicate tasks at all ENs.

Fig. 7 also demonstrates the advantages of using both MDS and repetition coding. In Fig. 7-(b),

when δd is sufficiently small, i.e., δd≤8.5, the proposed cascaded MDS-repetition coding scheme

approaches MDS coding. This is because in this regime, repetition coding only brings limited

transmission cooperation gain in the downlink, but it requires large upload and computation

latencies for output recovery. Therefore, when uplink transmission and edge computing are

the major bottlenecks of the offloading process, MDS coding can reduce the input uploading

constraint required for output recovery and mitigate random straggling effects at computing

phases. In contrast, when δd is larger, downlink latency becomes the bottleneck, and repetition

coding is preferable since it can fully exploit transmission cooperation gains in data downloading

to reduce the download time.

B. Non-asymptotic Results

We consider a 2-user 3-server MEC network, and set the network parameters N=3, µ=2/3,

n = 100, m = 900 rows, B = 8 bits, 1/η = 10−4 seconds. The uplink and downlink channel

bandwidths are Bu=Bd= 100 KHz. We consider the normalized Rayleigh channel fading and

normalized noise power. By set R in (15), we have feasible pairs (r, q)∈{(2, 3), (3, 3), (3, 2)}.

Interference alignment on 2×3 or 3×2 networks only needs finite symbol extensions over these

channels. The simulations are averaged over 50000 independent channel realizations.

Table I shows the actual average input uploading time T u, edge computing time T c, output

downloading time T d, and end-to-end execution time T , at different transmission powers. It

is seen that the optimal policy is to upload user inputs to all 3 ENs and then wait for the

fastest 2 ENs to finish their tasks, which significantly reduces the total time T . For example,

when P u = P d = 20 dB, the total time at (r, q) = (2, 3) is decreased by 23% compared to the
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Table I. Actual average uploading, computing, and downloading times

P u (or P d) 10 dB 20 dB 30 dB

(r, q) (2, 3) (3, 3) (3, 2) (2, 3) (3, 3) (3, 2) (2, 3) (3, 3) (3, 2)
T u (sec.) 0.112 0.158 0.158 0.027 0.036 0.036 0.011 0.014 0.014

T c (sec.) 0.44 0.66 0.3 0.44 0.66 0.3 0.44 0.66 0.3

T d (sec.) 0.315 0.106 0.313 0.105 0.048 0.105 0.053 0.029 0.053

Total time T (sec.) 0.867 0.924 0.771 0.572 0.744 0.441 0.504 0.703 0.367

optimal time at (r, q)=(3, 2). In this policy, the higher repetition order enables the transmission

cooperation to reduce downloading times, and the lower recovery order mitigates the effect of

1 straggling node and thus reduces computing times. Comparing the times at (r, q)=(2, 3) and

(r, q)=(3, 3), we also see that replicating inputs at all 3 ENs may cause more total times since

the gain on reducing downloading times is limited compared to the increased computing time.

VI. CONCLUSIONS

This paper studies the communication-computation tradeoff for distributed matrix multiplica-

tion in multi-user multi-server MEC networks with straggling ENs. We propose a new task

offloading policy that leverages cascaded coded computing and cooperative transmission to

alleviate the impact of straggling ENs and speed up the communication phase. We derive

achievable upload-compute-download latency triplets and the end-to-end execution time, as well

as the lower bounds. We prove that the obtained upload latency is optimal for fixed computation

and download latencies, and that the computation latency and download latency are within

constant multiplicative gaps to their respective lower bounds for a sufficiently large upload

latency. Our results reveal that for a fixed upload latency, the download latency can be traded

for computation latency; and that increasing the upload latency can reduce both the computation

latency and download latency. Through numerical results, we show that the proposed policy is

able to obtain a more flexible trade-off among upload, computation, and download latencies than

baseline schemes, and that this leads to a significant reduction in the end-to-end execution time.

APPENDIX: PROOFS OF CONVERSE

In this appendix, we prove Theorem 2 and Lemma 1. Note that in each subsection, we first

derive the lower bound in Theorem 2, and then prove the multiplicative gap in Lemma 1.

For a repetition-recovery order pair (r, q), as discussed, each input is computed by at least

r−(K−q) non-stragglers. The condition (r−K+ q)µ≥1 must be satisfied such that any subset

of r−K+q non-stragglers are able to provide sufficient information to compute the outputs of

all users. This proves that no pair (r, q) is feasible outside the feasible set R in (15). Then, we

consider an arbitrary user input assignment policy
{
Ui,K

′ : i∈M,K
′

⊆K, |K
′

|=r
}

with (r, q)∈

R. The input vectors from user i assigned to EN k are denoted as set Ii,k ,
{
Ui,K′

}
K′⊂K:k∈K′

for i∈M and k∈K. The size of Ii,k is denoted as γi,kNnB bits, where the ratio γi,k satisfies∑

k∈K

γi,k = r, i ∈ M (31)

0 ≤ γi,k ≤ 1, i ∈ M, and k ∈ K. (32)

In the following, we first derive the lower bounds on the NULT, NCT, and NDLT for a par-

ticular task assignment policy
{
Ui,K′

}
with repetition-recovery order pair (r, q) ∈R. Then, by

considering all possible task assignment policies and the effect of random stragglers, we obtain

the minimum lower bounds for the NULT τ u
l , NCT τ c

l , and NDLT τ d
l . For a fixed NULT at
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r ∈
[
⌈ 1
µ
⌉, K

]
, by convexity of the compute-download latency region, an outer bound of this

region is given by the convex hull of all pairs {(τ c
l , τ

d
l )}, as described in Theorem 2.

A. Lower Bound and Optimality of NULT

1) Lower bound: For a particular task assignment policy
{
Ui,K′

}
, we use genie-aided argu-

ments to derive a lower bound on the NULT. Specifically, for any EN k and user io, consider

the following three disjoint subsets of task input vectors (or messages):

Wr = {Ui,K′ : i ∈ M, k ∈ K
′

}, (33)

Wt = {Ui,K′ : i = io, k /∈ K
′

}, (34)

W = {Ui,K′ : i 6= io and k /∈ K
′

}. (35)

The set Wr indicates the input messages from all users assigned to EN k or all input messages

that EN k needs to decode, which satisfies |Wr| =
∑

i∈M γi,kNnB. The set Wt indicates the

input messages from user io assigned to all ENs in K excluding EN k, which satisfies |Wt|=
(1−γio,k)NnB. The last set W indicates all input messages from users in M excluding user i
assigned to ENs in K excluding EN k.

Let a genie provide the messages W to all ENs, and additionally provide messages Wr to

ENs in M/{k}. The received signal of EN j can be represented as

yj =
M∑

i=1,i 6=io

Hu
jiXi +Hu

jioXio + Zu
j , (36)

where the diagonal matrices Hu
ji, Xi, and Zu

j denotes the channel coefficients from user i to EN

j, signal transmitted by user i, and noise received at EN j, respectively, over the block length

T u. The ENs in M/{k} have messages W
⋃
Wr, which include the input messages that EN k

should decode and input messages transmitted by all users excluding user io. By this genie-aided

information, each EN j∈M/{k} can construct the transmitted symbols {Xi : i 6= io} and subtract

them from the received signal. So we can rewrite the signal received at EN j 6=k as

ȳj = yj −
∑

i∈M/{io}

Hu
jiXi = Hu

jioXio + Zu
j . (37)

Each EN j∈M/{k} needs to decode the input messages in subset Wt assigned to it, denoted

as Wj
t . By Fano’s inequality and (37), we have

H(Wj
t |yj,W ,Wr) ≤ T uǫ, j ∈ M/{i}. (38)

Since EN k can decode input messages Wr assigned to it, by Fano’s inequality, we also obtain

H(Wr|ŷk,W) ≤ T uǫ. (39)

Then, EN k can construct the transmitted symbols {Xi : i 6= io} based on genie-aided messages

W and its decoded messages Wr, and subtract them from its received signal, obtaining

ȳk = yk −
∑

i∈M/{io}

Hu
kiXi = Hu

kioXio + Zu
k. (40)

Reducing the noise in the constructed signal ȳk and multiplying it by Hu
jio

(
Hu

kio

)−1
, we obtain

ȳ
j
k = Hu

jio

(
Hu

kio

)−1
ȳk = Hu

jioXio + Ẑu
j , (41)

where Ẑu
j is the reduced noise. By (37), we see that ȳ

j
k is a degraded version of ȳj for EN

j ∈M/{i}. Hence, for the messages that ENs in M/{i} can decode, EN k must also be able

to decode them, and we have

H(Wj
t |ŷk,W,Wr)≤H(Wj

t |yj,W ,Wr)≤T uǫ, j∈M/{i}. (42)
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Using genie-aided information, receiver cooperation, and noise reducing as discussed above can

only improve channel capacity. Thus, we obtain the following chain of inequalities,

|Wr|+ |Wt| = H(Wr,Wt)

(a)
=H(Wr,Wt|W)

(b)
= I(Wr,Wt; ŷk|W) +H(Wr,Wt|ŷk,W)

(c)
= I(Wr,Wt; ŷk|W) +H(Wr|ŷk,W) +H(Wt|ŷk,Wr,W)

≤ I(Wr,Wt; ŷk|W) +H(Wr|ŷk,W)+
∑

j∈M/{k}
H(Wj

t |ŷk,Wr,W)

(d)

≤ I(Wr,Wt; ŷk|W) + T uǫ+
∑

j∈M/{k}
T uǫ

(e)

≤ I(x1,x2, · · · ,xai ,xio ; ŷi|W) +MT uǫ

(f)

≤ T u logP u +MT uǫ, (43)

where (a) is due to the independence of messages; (b) and (c) are based on the chain rule; (d)

follows Fano’s inequalities (39) and (42); (e) uses the data processing inequality; and (f) follows

the DoF bound of MAC channel. Dividing (43) by NnB/logP u, and let P u →∞ and ǫ→0 as

B → ∞, we have

τ u≥
|Wr|+|Wt|

NnB
=
∑

i∈M

γi,k+1− γio,k=
∑

i∈M/{io}

γi,k+1. (44)

Hence, the NULT for a particular task assignment γ, [γi,k]i∈M,k∈K satisfies τ u≥
∑

i∈M/{io}
γi,k+1

for k∈K, io∈M, i.e., the minimum NULT for task assignment policy γ is lower bounded by

τ u∗(r,γ) ≥ max
k∈K,io∈M

∑

i∈M/{io}

γi,k + 1. (45)

Further, the minimum NULT over all feasible task assignment is given as τ u∗(r)=min
γ

τ u∗(r,γ),

i.e., it can be lower bounded by the optimal solution of the optimization problem

P1 : min
γ

max
k∈K,io∈M

∑

i∈M/{io}

γi,k + 1

s.t. (31), (32).

Note that (31) and (32) are the task assignment constraints for recovery order r. By defining a

new variable λk,̄io=
∑

i∈M/{io}

γi,k, Problem P1 can be transformed into

P2 : min
λ

max
k∈K,io∈M

λk,̄io + 1

s.t.
∑

k∈K

λk,̄io = r(M − 1), io ∈ M, (46)

0 ≤ λk,̄io ≤ M − 1, k ∈ K, io ∈ M. (47)

Lemma 2. The unique optimal solution to P2 is given by λ∗
k,̄io

=r(M−1)/K, k∈K, io∈M.

Proof: By contradiction, assuming that there exists an optimal solution {λ
′

k,̄io
} to P2 which

does not satisfy λ
′

k,̄io
=r(M−1)/K for k∈K and io∈M. By (46), there must exist index j∈K
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such that λ
′

j,̄io
>r(M−1)/K for io ∈M; otherwise, we have

∑
k∈K

λ
′

k,̄io
<r(M − 1) for io ∈M.

The optimal objective satisfies max
k∈K,io∈M

λ
′

k,̄io
+1≥λ

′

j,̄io
+1 > r(M−1)/K+1, and r(M−1)/K+1

is the objective value at λk,̄io = r(M−1)/K, k∈K, io∈M. So the initial assumption does not

hold. The optimal solution to P2 is λ∗
k,̄io

=r(M−1)/K for k∈K and io∈M, which is unique.

In turn, we use {λ∗
k,̄io

} in Lemma 2 to construct a feasible solution to P1 by letting γ∗
i,k =

λ∗
k,̄io

/(M−1) for i∈M and k∈K, and hence obtain the optimal solution to P1 as γ∗
i,k= r/K.

Therefore, at repetition order r, the minimum NULT τ u∗(r) is lower bounded by

τ u∗(r) ≥ τ u
l (r) =

r(M − 1) +K

K
. (48)

The lower bound of NULT in Theorem 2 is thus proved.

2) Optimality: Since (48) is the same as achievable bound (12), the NULT in (12) is optimal

for any given r, or more sufficiently, for any fixed
(
τ c(r, q), τ d(r, q)

)
, as stated in Lemma 1.

B. Lower Bound and Multiplicative Gap Analysis of NCT

1) Lower bound: Let {Xk}q:K denote the q-th smallest value of K variables {Xk}Kk=1 and

q :K denote the index of q-th smallest variable. For a particular task assignment policy
{
Ui,K′

}

with repetition order r and recovery order q and satisfying (31) and (32), the computation time

when the q-th fastest EN finishes its assigned tasks is lower bounded by

T c
q:K =

{
µm

∑

i∈M

γi,kNωk

}

q:K

(g)

≥ max
t∈[q]

{
µm

{∑

i∈M

γi,kN

}

t:K

· ωq−t+1:K

}
, (49)

where (g) follows the fact that for 2 sequences {xk}Kk=1 and {yk}Kk=1, given {xk}t:K{yk}q−t+1:K

for t∈ [q], there are at most q−1 product values among {xkyk}Kk=1 less than {xk}t:K{yk}q−t+1:K

for t ∈ [q]. So the q-th smallest product satisfies {xkyk}q:K ≥ {xk}t:K{yk}q−t+1:K for t ∈ [q].
Taking the expectation on T c

q:K , we have

E
[
T c
q:K

]
≥ E

[
max
t∈[q]

{
µm

{∑

i∈M

γi,kN

}

t:K

· ωq−t+1:K

}]

(h)

≥ max
t∈[q]

{
µm

{∑

i∈M

γi,kN

}

t:K

· E [ωq−t+1:K ]

}

(i)
= max

t∈[q]

(HK −HK−q+t−1)µm

η

{
∑

i∈M

γi,kN

}

t:K

, (50)

where (h) follows E
[
max

t
xt

]
≥max

t
E [xt], (i) uses the (q−t+1)-th order statistic of K i.i.d

exponential random variables. The second term denotes the t-th smallest value among K EN

workload sizes. By (31) and (32), for ∀i∈M, we let γi,k=1, k= t+1:K, t+2:K, · · · , K :K,

where k= t :K denotes the index of the t-th smallest value in {γi,k}k∈[K]. So the sum of the t
smallest values (k=1:K, · · · , t :K) is lower bounded by (r−K+t)+NM . Since the second term

also represents the largest value among those t smallest EN workload sizes, so this term can be

further lower bounded by the average value (r−K+t)+NM/t. So the average time for the q fastest

ENs to finish their tasks is lower bounded by T c(r, q)≥max
t∈[q]

(
(HK − HK−q+t−1)µm/η

)(
(r −
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Fig. 8. Illustration of the converse proof for NDLT.

K+ t)+NM/t
)
. Normalizing it by Nm/η, the lower bound of the minimum NCT is given by

τ c∗(r, q) ≥ τ c
l (r, q) = max

t∈[q]

(HK −HK−q+t−1)(r −K+ t)+Mµ

t
. (51)

2) Multiplicative gap: The multiplicative gap between the achievable NCT in Theorem 1 and

the lower bound (51) satisfies
τ c

a (r, q)

τ c
l (r, q)

≤ min
t∈[q]

Mrµ(Hk−HK−q)t

K(HK −HK−q+t−1)(r −K+ t)+Mµ

≤ min
t∈[q]

t

(r −K+ t)+
·

(
1 +

HK−q+t−1−HK−q

HK −HK−q+t−1

)

≤
q/2

(r −K+ q/2)+
·

(
1 +

q
2

1
K−q+1
q
2

1
K

)

=
q/2

(r −K+ q/2)+
·

(
1 +

K

K − q + 1

)
. (52)

When r ≥ K−n1 and q ≤ K(1−1/n2)+1 with integers 0 ≤ n1 < q/2 and n2 ≥ 1, we have
q/2

(r−K+q/2)+
≤ q/2

q/2−n1
≤ n1+1 and K/(K− q +1)≤ n2, respectively, and consequently, we have

τ c
a /τ

c
l ≤(1+ n1)(1+ n2). Since the NULT is optimal and increases strictly with r, the repetition

order satisfies r≥K− n1 when the NULT τ u≥τ u
a (K−n1).

We thus prove the lower bound of NCT in (20) and the order-optimality of NCT in (22).

C. Lower Bound and Multiplicative Gap Analysis of NDLT

1) Lower bound: For a particular task assignment policy
{
Ui,K′

}
satisfying (31) and (32),

and a particular subset of q ENs denoted as Kq ⊆ K whose outputs are available, each EN

k ∈ Kq is assigned ri,kN input vectors from each user i ∈M and can store µm rows of A.

Since each user i wants mN row-vector product results {vi,j=Am×nui,j}j∈[N ], it is equivalent

to state that each EN k can store ri,kµ fractional outputs desired by each user i, denoted as

Si,k , {Akui,j : ui,j ∈ Ui,K′ , k ∈K
′

} and with size |Si,k|= γi,kµNmB bits, where γi,k satisfies

(31) and (32). Thus, the policy
{
Ui,K′

}
i∈M,k∈K

with an available EN set Kq is equivalent to a

particular computation results distribution {Si,k}i∈M,k∈Kq
.

Let Mt⊆M denote an arbitrary subset of t users and Qq−t⊆Kq denote an arbitrary subset

of q− t ENs. Also, we have MM−t=M/Mt and Qt=Kq/Qq−t. For a particular computation

results distribution {Si,k}i∈M,k∈Kq
, we adopt the arguments proved in [21, Lemma 6] to derive
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the lower bound of the NDLT, i.e., intuitively, as shown in Fig. 8, given any subset of t signals

received at t ≤ min{q,M} users, denoted as {Yi}i∈Mt
, and the stored computation results

information of q− t ENs, denoted as {Si,k}i∈M,k∈Qq−t
, all transmitted signals {Xk}k∈Kq

and all

the desired outputs {vi,j}i∈M,j∈[N ] can be resolved in the high-SNR regime. First, we have the

following equality,

MNmB=H
(
{vi,j}i∈M,j∈[N ]

)

=I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

, {Si,k}i∈M,k∈Qq−t

)
+H

(
{vi,j}i∈M,j∈[N ]|{Yi}i∈Mt

, {Si,k}i∈M,k∈Qq−t

)
.

(53)

For the first term, following steps in [21, Eq. (64)], we have

I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

, {Si,k}i∈M,k∈Qq−t

)

= I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

)
+ I

(
{vi,j}i∈M,j∈[N ]; {Si,k}i∈M,k∈Qq−t

|{Yi}i∈Mt

)

≤ I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

)
+ I

(
{vi,j}i∈M,j∈[N ]; {Si,k}i∈M,k∈Qq−t

, {vi,j}i∈Mt,j∈[N ]|{Yi}i∈Mt

)

= I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

)
+ I

(
{vi,j}i∈M,j∈[N ]; {vi,j}i∈Mt,j∈[N ]|{Yi}i∈Mt

)

+I
(
{vi,j}i∈M,j∈[N ]; {Si,k}i∈M,k∈Qq−t

, |{vi,j}i∈Mt,j∈[N ], {Yi}i∈Mt

)

≤ I
(
{vi,j}i∈M,j∈[N ]; {Yi}i∈Mt

)
+H

(
{vi,j}i∈Mt,j∈[N ]|{Yi}i∈Mt

)

+H
(
{Si,k}i∈M,k∈Qq−t

|{vi,j}i∈Mt,j∈[N ], {Yi}i∈Mt

)
−H

(
{Si,k}i∈M,k∈Qq−t

|{vi,j}i∈M,j∈[N ], {Yi}i∈Mt

)

(j)

≤ h ({Yi}i∈Mt
)− h

(
{Yi}i∈Mt

|{vi,j}i∈M,j∈[N ]

)
+ tNmBǫ+H

(
{Si,k}i∈M,k∈Qq−t

|{vi,j}i∈Mt,j∈[N ]

)

(k)

≤ tT log
(
2πe(ΛP d + 1)

)
−h

(
{ni}i∈Mt

|{vi,j}i∈M,j∈[N ]

)
+ tNmBǫ+

∑

k∈Qq−t

H
(
{Si,k}i∈M|{vi,j}i∈Mt,j∈[N ]

)

(l)

≤ tT log
(
2πe(ΛP d + 1)

)
− tT log (2πe) + tNmBǫ+

∑

k∈Qq−t

∑

i∈MM−t

H (Si,k)

≤ tT log
(
ΛP d + 1

)
+ tNmBǫ+

∑

k∈Qq−t

∑

i∈MM−t

γi,kµNmB, (54)

where, in step (j), {Yi} are continuous random variables, the third term uses Fano’s inequality,

the fourth term is because dropping the condition increases the entropy, the last term is 0 since

the storage information {Si,k} are the functions of {vi,j}i∈M,j∈[N ]; In step (k), the first term

uses [21, Lemma 5], and note that Λ defined in [21, Lemma 5] is a constant only depending

on downlink channel coefficients in Hd. For the second term, by [21, Lemma 6] that proves the

adopted argument, we have

H
(
{vi,j}i∈M,j∈[N ]|{Yi}i∈Mt

, {Si,k}i∈M,k∈Qq−t

)
≤ tNmBǫ+T log det

(
IM−t + H̃d(H̃d)H

)
, (55)

where the (M−t)×(M−t) matrix H̃d defined in [21, Lemma 6] only depends on the channel

matrix Hd, and IM−t is a (M−t)×(M−t) identity matrix. The expressions of G̃ and Λ are

omitted here since they can be treated as constants.

Substituting (54) and (55) into (53), we have

MNmB≤ tT log
(
ΛP d + 1

)
+2tNmBǫ+

∑

k∈Qq−t

∑

i∈MM−t

γi,kµNmB+T log det
(
IM−t+H̃d(H̃d)H

)
,

(56)
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Moving T to the left side and dividing by NmB
logP d , we have

T

NmB/ logP d
≥

M−
∑

k∈Qq−t

∑
i∈MM−t

γi,kµ−2tǫ

t
·

t logP d

t log (ΛP d+1)+log det
(
IM−t+H̃d(H̃d)H

) .

(57)

Taking P d → ∞ and ǫ → 0 as B → ∞, the minimum NDLT under the output distribution

{Si,k}i∈M,k∈Qq−t
is lower bounded by

τ d∗(r,Kq,Qq−t) ≥

M−
∑

k∈Qq−t

∑
i∈MM−t

γi,kµ

t
, ∀Qq−t ⊆ Kq. (58)

Note that the adopted argument holds for any subset of q−t ENs (see Fig. 8). Thus, by tasking

the sum over all possible subset Qq−t ⊆ Kq, we have

(
q

q−t

)
τ d∗(r,Kq, q − t) ≥

∑

Qq−t⊆Kq

M−
∑

k∈Qq−t

∑
i∈MM−t

γi,kµ

t

=

(
q

q−t

)
M−

∑
i∈MM−t

∑
Qq−t⊆Kq

∑
k∈Qq−t

γi,kµ

t

=

(
q

q−t

)
M−

∑
i∈MM−t

(
q−1

q−t−1

) ∑
k∈Kq

γi,kµ

t
. (59)

For the particular policy
{
Ui,K′

}
with repetition order r and satisfying (31) and (32), this lower

bound also holds for any subset Kq since K−q stragglers occur randomly (see Fig. 8), by taking

the sum over all possible subsets Kq ⊆ K, we have

(
K

q

)(
q

q−t

)
τ d∗(r, q, q−t) ≥

∑

Kq⊆K

(
q

q−t

)
M−

∑
i∈MM−t

(
q−1

q−t−1

)∑
k∈Kq

γi,kµ

t

=

(
K
q

)(
q

q−t

)
M−

∑
i∈MM−t

(
q−1

q−t−1

) ∑
Kq⊆K

∑
k∈Kq

γi,kµ

t

=

(
K
q

)(
q

q−t

)
M−

∑
i∈MM−t

(
q−1

q−t−1

)(
K−1
q−1

)∑
k∈K

γi,kµ

t

(m)
=

(
K
q

)(
q

q−t

)
M−(M−t)

(
q−1

q−t−1

)(
K−1
q−1

)
rµ

t
, (60)

where (m) is due to (31). Remanaging (60), the lower bound of NDLT at pair (r, q) is given by

τ d∗(r, q, q − t) ≥
M − (M−t)(q − t) r

K
µ

t
, (61)

Since the argument we adopt to derive (61) holds for 1≤ t≤min{q,M}, the lower bound of

the minimum NDLT at pair (r, q) can be optimized as

τ d∗(r, q) ≥ τ d
l (r, q) = max

t∈{1,··· ,min{q,M}}

M − (M−t)(q − t) r
K
µ

t
. (62)
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2) Multiplicative gap: By (14), the achievable NDLT is upper bounded by

τ d
a =

min{r,q}∑

p1=r−K+q

Bp1

(
lmax∑

p2=lmin

Bp2

dd
p1,M,p2

+
Blp1−1

dd
p1,M,lp1−1

)

(m)

≤

min{r,q}∑

p1=r−K+q

Bp1

lmax∑
p2=lmin

Bp2+Blp1−1

dd
p1,M,1

(n)

≤
1

dd
r−K+q,M,1

, (63)

where (m) is because dd
p1,M,p2

increases with p2 [34, Lemma 1] and (n) is because dd
p1,M,1 =

p1/(p1+M−1) increases with p1. By (62), we have τ d
l (r, q)≥M/min{q,M}, so the multiplicative

gap satisfies

τ d
a

τ d
l

≤
min{q,M}

dd
r−K+q,M,1

=
min{q,M}(r−K+q+M−1)

(r−K+q)M
. (64)

If q≤M , we have τ d
a /τ

d
l ≤

q
r−K+q

( q
M
+M−1

M
− K−r

M
)≤ 2q

r−K+q
≤ 2q

q−n
≤ 2(nµ+1) for r≥K−n;

otherwise, we have τ d
a /τ

d
l ≤ 1+ M−1

r−K+q
≤ 1+ q−1

q−n
≤ 2+(n−1)µ for r≥K−n. Here, integer n

satisfies n≤q−1/µ due to (r−K+q)µ≥1. In summary, since 2(nµ+1)>2+(n−1)µ, we have

τ d
a /τ

d
l ≤ 2(nµ+1) for r≥K−n. Furthermore, when the NULT τ u ≥ τ u

a (K− n), the repetition

order satisfies r≥K−n. Thus, when r=K, or equivalently, τ u≥τ u
a (K), we have τ d

a /τ
d
l ≤2.

Next, consider the special case µ=1. For any input vectors with degrees of replication of p1,
the degrees of replication of their associated outputs is p2 = lmax = lmin = p1, and we also have

Bp2=1, so the achievable NDLT in (14) can be simplified as

τ d
a =

min{r,q}∑

p1=r−K+q

Bp1

1

dd
p1,M,p1

≤ M

min{r,q}∑
p1=r−K+q

Bp1

min{r −K + q,M}
=

M

min{r−K+ q,M}
. (65)

Due to τ d
l (r, q)≥M/min{q,M}, we have τ d

a /τ
d
l ≤min{q,M}/min{r−K+q,M}. It is seen

that when τ u(r)≥τ u
a (M+K− q), we have τ d

a = τ d
l =1 that is optimal; when τ u

a (K−n)≤τ u(r)<
τ u

a (M+K−q), we have τ d
a /τ

d
l ≤ q/(r−K+q)≤ q/(q−n)≤n+1, where the integer n satisfies

q−M<n≤q−1. We prove the lower bound of NDLT in (21) and the multiplicative gap in (23).

D. Outer Bound of Compute-Download Latency Region

Based on the feasible set R in (15) and the convexity of T ∗(τ u) in Remark 1, for an NULT

τ u=τ u
a (r) in (12) for some r, an outer bound Tout(τ

u) of the compute-download latency region

is given as the convex hull of set
{(
τ c
l (r, q), τ

d
l (r, q)

)
:q∈
[
⌈1
µ
⌉+K− r :K

]}
.
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