
1

Dynamic Programming for Sequential Deterministic
Quantization of Discrete Memoryless Channels

Xuan He, Kui Cai, Wentu Song, and Zhen Mei

Abstract—In this paper, under a general cost function C, we
present a dynamic programming (DP) method to obtain an opti-
mal sequential deterministic quantizer (SDQ) for q-ary input dis-
crete memoryless channel (DMC). The DP method has complexity
O(q(N −M)2M), where N and M are the alphabet sizes of the
DMC output and quantizer output, respectively. Then, starting
from the quadrangle inequality, two techniques are applied to
reduce the DP method’s complexity. One technique makes use
of the Shor-Moran-Aggarwal-Wilber-Klawe (SMAWK) algorithm
and achieves complexity O(q(N −M)M). The other technique
is much easier to be implemented and achieves complexity
O(q(N2 −M2)). We further derive a sufficient condition under
which the optimal SDQ is optimal among all quantizers and the
two techniques are applicable. This generalizes the results in the
literature for binary-input DMC. Next, we show that the cost
function of α-mutual information (α-MI)-maximizing quantizer
belongs to the category of C. We further prove that under a
weaker condition than the sufficient condition we derived, the
aforementioned two techniques are applicable to the design of
α-MI-maximizing quantizer. Finally, we illustrate the particular
application of our design method to practical pulse-amplitude
modulation systems.

Index Terms—α-mutual information, discrete memoryless
channel, dynamic programming, quadrangle inequality, sequen-
tial deterministic quantizer.

I. INTRODUCTION

Consider the quantization problem for the q-ary input dis-
crete memoryless channel (DMC) with q ≥ 2, as shown by
Fig. 1. The channel input X takes values from X ,

X = {x1, x2, . . . , xq},

with probability

PX(xi) = Pr(X = xi) > 0, i ∈ [q],

where [n] = {1, 2, . . . , n} for any positive integer n. The
channel output Y takes values from Y ,

Y = {y1, y2, . . . , yN},

with channel transition probability

PY |X(yj |xi) = Pr(Y = yj |X = xi), i ∈ [q], j ∈ [N],

where PY |X(yj |xi) ∈ [0, 1] and
∑
j∈[N] PY |X(yj |xi) = 1. We

assume PY (yj) =
∑
i∈[q] PX(xi)PY |X(yj |xi) > 0,∀j ∈ [N]

throughout the paper. The most generic task is to design a
quantizer

Q : Y → Z = {1, 2, . . . ,M}

Part of this work has been presented in ISIT 2019 [1].
This work is supported by RIE2020 Advanced Manufacturing and Engi-

neering (AME) programmatic grant A18A6b0 057 and Singapore Ministry of
Education Academic Research Fund Tier 2 MOE2019-T2-2-123.

DMC Quantizer

Fig. 1. Quantization of a discrete memoryless channel (DMC).

to minimize a certain cost function C(Q), where 2 ≤M < N
is of interest. Clearly, the quantizer Q is uniquely specified by
PZ|Y , Z’s probability distribution conditioned on Y .

A deterministic quantizer (DQ) Q : Y → Z means that for
each y ∈ Y , there exists a unique z′ ∈ Z such that

PZ|Y (z|y) =

{
1, z = z′,

0, z 6= z′,

or equivalently, we say y’s quantization result Q(y) is a
deterministic element in Z . For the cost function C considered
in this paper, we show that there always exists at least one DQ
that is optimal among all quantizers. Due to this reason as well
as that DQ is more practical than non-deterministic quantizer,
we focus only on DQs in this paper. For any DQ Q : Y → Z ,
denote Q−1(z) ⊂ Y as the preimage of z ∈ Z .

For binary-input DMC, dynamic programming (DP) [2,
Section 15.3] was applied by Kurkoski and Yagi [3] to
design quantizers that maximize the mutual information (MI)
between X and Z, i.e., I(X;Z). The complexity (refer to
the computational complexity throughout this paper unless the
storage complexity is specified) of this DP method was re-
duced [4], [5] by applying the Shor-Moran-Aggarwal-Wilber-
Klawe (SMAWK) algorithm [6]. However, for the general q-
ary input DMC with q > 2, design of the optimal quantizers
that maximize I(X;Z) is an NP-hard problem [7], [8]. Up
till now, only the necessary condition [9], [10], rather than
any sufficient condition, has been established for the optimal
quantizer; meanwhile, there only exist some suboptimal design
methods in practice [8], [11]–[14].

In this paper, we are not going to solve the NP-hard
problem: finding an optimal DQ to minimize C for a general
q-ary input DMC. Instead, we consider the optimal design of
a specific type of DQ Q : Y → Z satisfying

Q−1(1) = {yλ0+1, y2, . . . , yλ1
},

Q−1(2) = {yλ1+1, yλ1+2, . . . , yλ2
},

...
Q−1(M) = {yλM−1+1, yλM−1+2, . . . , yλM },

(1)

where 0 = λ0 < λ1 < λ2 < · · · < λM−1 < λM = N .
We name this type of DQ sequential deterministic quantizer
(SDQ). The design of SDQs is called sequential determin-

ar
X

iv
:1

90
1.

01
65

9v
4

 [
cs

.I
T

]
 2

4
Fe

b
20

21

2

istic quantization in this paper. Based on (1), every SDQ
Q : Y → Z can be equivalently described by the integer set
Λ = {λ0 = 0, λ1, λ2, . . . , λM = N}, in which each element
is regarded as a quantization boundary/threshold. Due to its
simplicity, SDQ is generally more preferable in practical com-
munication and data storage systems which usually have real-
valued channel outputs. For example, SDQs are used for addi-
tive white Gaussian noise (AWGN) channels with quadrature
amplitude modulations (QAMs) with Gray mappings [15] (this
channel model can essentially be decomposed into AWGN
channels with pulse-amplitude modulations (PAMs)), for non-
volatile memory (NVM) channels which are similar to AWGN
channels with PAMs [16]–[19], and also for hardware-friendly
decoders of low-density parity-check (LDPC) codes [20], [21].
These practical applications motivate us to investigate the
design of SDQs for q-ary input DMCs, particularly the DMCs
derived from AWGN channels with PAMs.

A. Contributions of This Paper

The main contributions of this work are summarized as
follows. We remark that since our results are generally for
q ≥ 2 and for a general cost function, they are non-trivial
extensions of the results of [3]–[5].

1) Under a general cost function C, we present a DP method
with complexity O(q(N −M)2M) to obtain an optimal
SDQ.

2) For the case where the quadrangle inequality (QI) [22]
holds, we apply two techniques to reduce the complexity
of the DP method. One technique achieves complexity
O(q(N −M)M) by making use of the SMAWK algo-
rithm [6], and the other technique is much easier to be
implemented and achieves complexity O(q(N2 −M2)).

3) We derive a sufficient condition under which the optimal
SDQ is an optimal DQ and the above two low-complexity
techniques are applicable.

4) We make special effort design the α-mutual information
(α-MI) [23]–[25] maximizing SDQs. (In particular, for
α = 1, the α-MI is exactly the standard MI, which is
the most popular metric for channel quantization.) We
show that the related cost function belongs to the category
of C; consequently, the results mentioned in the first
three contributions are also applicable here. Moreover, we
prove that the two low-complexity techniques are actually
applicable to the design of α-MI-maximizing SDQs under
a condition which is weaker than the sufficient condition
mentioned in the third contribution.

5) We investigate the quantization of DMCs derived from
AWGN channels with PAMs. We illustrate that the
weaker condition mentioned in the fourth contribution
holds for this case. The numerical results demonstrate
that the DP method optimized by the two low-complexity
techniques can be much more efficient in terms of actual
running time. Moreover, the optimal SDQs obtained by
our DP method are better (have lower cost) than the DQs
obtained by both the greedy combining algorithm [11],
[12] and the Kullback-Leibler (KL)-means algorithm
[13].

B. Organization

The remainder of this paper is organized as follows. Section
II presents some preliminaries for the quantizer design. Section
III develops a DP method for the sequential deterministic
quantization of q-ary input DMCs. Section IV introduces the
QI and applies two techniques to reduce the DP method’s com-
plexity. Section V investigates the design of α-MI-maximizing
quantizer in details. Section VI presents the numerical results
for the quantization of DMCs derived from AWGN channels
with PAMs. Finally, Section VII concludes the paper.

C. Notations

We list notations used throughout this paper. X =
{x1, x2, . . . , xq}, Y = {y1, y2, . . . , yN}, and Z =
{1, 2, . . . ,M} denote the alphabets of the DMC input, DMC
output, and quantizer output. Their corresponding random
variables are denoted by X , Y , and Z, whose realizations are
denoted by x, y, and z, respectively. The distributions or joint
distributions of X , Y , and Z are denoted in the conventional
style, e.g., PX , PX,Y , PY |X , etc.
Q denotes a DQ (possibly also an SDQ), while Λ always

denotes an SDQ. C denotes the cost function. For 1 ≤
i ≤ j ≤ N , w(i, j) denotes the cost caused by quantizing
{yi, yi+1, . . . , yj} into one level. For 1 ≤ m ≤ n ≤ N ,
dp(n,m) denotes the minimum cost for using an SDQ to
quantize {y1, y2, . . . , yn} into m levels. For m − 1 ≤ t < n,
denote dpt(n,m) = dp(t,m−1)+w(t+1, n) and sol(n,m) =
arg minm−1≤t<n dpt(n,m).

Let R (resp. R+) denote the (resp. nonnegative) real number
set, and [0, 1] denote the set of real numbers between 0
and 1 (both inclusive). For any positive integer n, [n] =
{1, 2, . . . , n}. Denote the (q − 1)-dimensional probability
simplex by

U = {(a1, a2, . . . , aq) | a1 + · · ·+ aq = 1, ai ≥ 0, i ∈ [q]}.

For any a = (ai)1≤i≤n,b = (bi)1≤i≤n ∈ Rn+, define the
binary relation � between a and b by

a � b ⇐⇒ aibj ≥ ajbi,∀1 ≤ i < j ≤ n. (2)

II. PRELIMINARIES

In this paper, for any quantizer Q : Y → Z , we consider
the following general cost function:

C(Q) =
∑
z∈Z

PZ(z)φ(PX|Z(·|z)), (3)

where PX|Z(·|z) = (PX|Z(x1|z), . . . , PX|Z(xq|z)) ∈ U and
φ : U → R is concave on U , i.e.,

φ(tu1 + (1− t)u2) ≥ tφ(u1) + (1− t)φ(u2)

for any u1, u2 ∈ U and t ∈ [0, 1]. Here, C(Q) given by
(3) is a general cost function used for minimum impurity
partition in learning theory [8]–[10]. The minimum impurity
partition problem is somewhat equivalent to the problem of
finding the optimal quantizers for DMCs [3]. C(Q) includes
many popular concrete cost functions as subcases. For ex-
ample, φ(PX|Z(·|z)) = −

∑
x∈X PX|Z(x|z) logPX|Z(x|z)

3

yields I(X;Z) = H(X)−C(Q); as a result, C(Q) becomes
a valid cost function for MI-maximizing quantizer. Later in
Section V, we will also illustrate that the cost function of α-
MI-maximizing quantizer belongs to the category of C(Q).

Lemma 1: There exists a DQ Q∗ : Y → Z which is optimal
among all quantizers quantizing Y to Z , i.e.,

C(Q∗) = min
Q:Y→Z

C(Q)

with C(Q) given by (3).
Proof: See Appendix A.

Lemma 1 generalizes [3, Lemma 1] since it uses a general
cost function. It explains why we only consider DQ in this
paper. When only DQ is considered for (3), we have

PZ(z)φ(PX|Z(·|z))

=Pr(Y ∈ Q−1(z))φ

(∑
y∈Q−1(z) PX|Y (·|y)PY (y)

Pr(Y ∈ Q−1(z))

)
,

which can be considered as the (weighted) cost for quantizing
Q−1(z) into one level. Moreover, we have

C(Q) ≥
∑
z∈Z

∑
y∈Q−1(z)

PY (y)φ
(
PX|Y (·|y)

)
=
∑
y∈Y

PY (y)φ
(
PX|Y (·|y)

)
,

where the inequality is due to the concavity of φ. This implies
that any quantizer cannot have a smaller cost than that before
quantization, which indeed is reasonable.

Denote
∆ = {δ1, δ2, . . . , δN}, (4)

where for j ∈ [N], δj is given by

δj = (PX|Y (x1|yj), PX|Y (x2|yj), . . . , PX|Y (xq|yj)),

which can be regarded as a point in U from the viewpoint
of geometry. In this way, we establish a one-to-one mapping
between ∆ and Y . Define an equivalent quantizer of Q : Y →
Z by

Q̃ : ∆→ Z.

They are equivalent in the sense that Q̃(δj) = Q(yj) for 1 ≤
j ≤ N and C(Q̃) = C(Q). We have the following result.

Lemma 2: There exists an optimal quantizer Q̃∗ : ∆→ Z ,
i.e.,

C(Q̃∗) = min
Q̃:∆→Z

C(Q̃),

such that Q̃∗ is deterministic and for any z, z′ ∈ Z with
z 6= z′, there exists a hyperplane that separates Q̃∗−1(z)
and Q̃∗−1(z′). Moreover, the equivalent quantizer of Q̃∗,
Q∗ : Y → Z , is also deterministic and optimal.

We omit the proof, since it is almost identical to the proof
of [3, Lemma 2] except that a more general cost function is
considered here.

For the binary-input case (i.e., q = 2), [3] proved that if
PY |X satisfies

PY |X(yj |x1)PY |X(yj+1|x2) ≥
PY |X(yj+1|x1)PY |X(yj |x2),∀j ∈ [N − 1],

any optimal SDQ is an optimal DQ that can maximize
I(X;Z). Also, [3] developed a DP method with complexity
O((N−M)2M) to obtain the optimal SDQ. This DP method’s
complexity was reduced to O((N−M)M) in [4] by applying
the SMAWK algorithm [6]. Moreover, [5] further extended
the result of [4] to α-MI-maximizing quantizer. These works
motivate us to apply DP to obtain an optimal SDQ for a
general q-ary input DMC.

III. DYNAMIC PROGRAMMING FOR SEQUENTIAL
DETERMINISTIC QUANTIZATION

In this section, we first present a DP algorithm for obtaining
an optimal SDQ, and then derive a sufficient condition which
ensures the global optimality of the optimal SDQ among all
DQs.

A. Dynamic Programming Algorithm
For 1 ≤ l ≤ r ≤ N , denote w(l, r) as the cost for quantizing
{yl, yl+1, . . . , yr} into one level, i.e.,

w(l, r) =

r∑
j′=l

PY (yj′)φ

(∑r
j=l PX,Y (·, yj)∑r
j′′=l PY (yj′′)

)
. (5)

To simplify the computation of w(·, ·), we precompute and
store

∑k
j=1 PX,Y (xi, yj) for k = 1, 2, . . . , N and i =

1, 2, . . . , q, both the computational and storage complexities
of which are O(qN) (Hence this term does not dominate
the complexities of the algorithms discussed later in the
paper). In this case, we can generally compute w(l, r) with a
computational complexity linear to the input alphabet size q.
We thus denote the computational complexity for computing
w(l, r) for any given pair of (l, r) by O(q). Note that we
can also precompute and store w(·, ·), with computational
and storage complexities of O(qN2) and O(N2), respectively.
However, this is not necessary since we can compute w(l, r)
on-the-fly for any pair of (l, r) with computational complexity
O(q) when needed. The computational complexity of each
algorithm discussed later in the paper is given for the case
where w(·, ·) is not precomputed. When the precomputation is
applied, an algorithm’s computational complexity may change
and is lower-bounded by O(qN2), with an extra storage
complexity of O(N2). As an example, we will discuss this
situation for the DP method proposed later in this section.

For 1 ≤ m ≤ n ≤ N , let Λ(n,m) = {λ0, λ1, . . . , λm}, 0 =
λ0 < λ1 < · · · < λm = n be an SDQ for quantizing
{y1, y2, . . . , yn} into m levels. We have

C(Λ(n,m)) =

m∑
i=1

w(λi−1 + 1, λi).

Moreover, let

Λ∗(n,m) = {λ∗0, λ∗1, . . . , λ∗m} = arg min
Λ(n,m)

C(Λ(n,m)).

Our task is to obtain a Λ∗(N,M). Recall that

dp(n,m) = C(Λ∗(n,m)),

dpt(n,m) = dp(t,m− 1) + w(t+ 1, n),m− 1 ≤ t < n,

sol(n,m) = arg min
m−1≤t<n

dpt(n,m).

4

Algorithm 1 Dynamic programming for obtaining Λ∗(N,M)

Input: PX , PY |X , N,M .
Output: Λ∗(N,M).

1: //Initialization
2: for n← 1, 2, . . . , N do
3: dp(n, 1)← w(1, n).
4: sol(n, 1)← 0.
5: end for
6: //Compute dp(N,M)
7: for m← 2, 3, . . . ,M do
8: for n← N −M +m,N −M − 1 +m, . . . ,m do
9: sol(n,m)← arg minm−1≤t<n dpt(n,m).

10: dp(n,m)← dpsol(n,m)(n,m).
11: end for
12: end for
13: //Recursively generate Λ∗(N,M)
14: λ∗M ← N .
15: for m←M,M − 1, . . . , 1 do
16: λ∗m−1 ← sol(λ∗m,m).
17: end for
18: return Λ∗(N,M).

Algorithm 1 summarizes the computation of Λ∗(N,M).
Proposition 1: Algorithm 1 is correct and runs in O(q(N −

M)2M) time.
Proof: For m = 1, we have dp(n,m) = w(1, n). For

m > 1, we have

dp(n,m) =

m∑
i=1

w(λ∗i−1 + 1, λ∗i)

= dp(λ∗m−1,m− 1) + w(λ∗m−1 + 1, n)

= dpsol(n,m)(n,m),

implying that Algorithm 1 is correct.
On the other hand, clearly, the computational complexity

of Algorithm 1 is dominated by the computation between
lines 7 and 12, which is O(q(N − M)2M). (Recall that
this complexity is given for the case where w(·, ·) is not
precomputed. It becomes O(qN2 +(N−M)2M) when w(·, ·)
is precomputed.)

B. A Sufficient Condition

We now derive a sufficient condition under which the
optimal SDQ obtained by Algorithm 1 is an optimal DQ (and
thus is also optimal among all quantizers). We assume that
there exist at least two points δj , δj′ ∈ ∆ defined by (4) such
that δj 6= δj′ ; otherwise, any DQ will have the same cost
value according to (3). Consider the situation where all points
in ∆ = {δ1, δ2, . . . , δN} are located on a line, i.e., there exists
a unique tj ∈ R for any δj ∈ ∆ such that

δj = δ1 + tjd, d = (di)1≤i≤q = δN − δ1, (6)

where the addition and substraction are element-wise and we
assume δ1 6= δN (since we can replace δN by any δj 6= δ1).

δ1, δ2, . . . , δN are said to sequentially located on a line if and
only if we further have

0 = t1 ≤ t2 ≤ · · · ≤ tN = 1. (7)

We have the following result.
Theorem 2: The following three statements are equivalent:

1) δ1, δ2, . . . , δN (defined by (4)) are sequentially located on
a line.

2) δ1, δ2, . . . , δN are located on a line, and the elements in
X can be relabelled to make PY |X satisfy

PY |X(·|xi) � PY |X(·|xi′),∀1 ≤ i < i′ ≤ q, (8)

where � is defined in (2).
3) δ1, δ2, . . . , δN are located on a line, and the elements in
X can be relabelled to make PY |X satisfy

PY |X(yj |xi)PY |X(yj+1|xi+1) ≥
PY |X(yj+1|xi)PY |X(yj |xi+1),

∀i ∈ [q − 1], j ∈ [N − 1]. (9)

Moreover, if δ1, δ2, . . . , δN are sequentially located on a line,
any optimal SDQ is an optimal DQ.

Proof: See Appendix B.
Note that if δ1, δ2, . . . , δN are located on a line, we can al-

ways make them sequentially located on the line by relabelling
the elements in Y . Specifically, denote tj1 , tj2 , . . . , tjN as the
result after sorting t1, t2, . . . , tN given by (6) in ascending
order. After relabelling yjk as yk for k ∈ [N], δ1, δ2, . . . , δN
(corresponding to the new labelling) are sequentially located
on the line. We also show in (19) how to further relabel the
elements in X to make PY |X satisfy (8) and (9). Moreover, for
the binary-input case (i.e., q = 2), δ1, δ2, . . . , δN are always
located on a line. In such a case, the elements in Y can always
be relabelled to make PY |X satisfy (8) and (9), after which
any optimal SDQ is an optimal DQ. This situation is fully
investigated in [3] for the MI-maximizing quantizer, while
being included as a subcase of our results.

IV. REDUCING THE COMPLEXITY OF DYNAMIC
PROGRAMMING

In certain cases the DMC output alphabet size N can be
very large, and hence Algorithm 1 may need to take a long
time to find an optimal solution. For example, when we use
Algorithm 1 to quantize the output of a continuous memoryless
channel to M levels, we may need to first uniformly quantize
the continuous output to N levels, after which Algorithm 1
can be applied. Obviously, increasing N can reduce the loss
due to uniform quantization. Thus, it is worth reducing the
computational complexity of Algorithm 1 to make it work
well for large N .

We develop two low-complexity techniques in this section.
Both techniques rely on the QI which is defined as follows.
The QI was first proposed by Yao [22] as a sufficient condition
to reduce the complexity of a class of DP. Then, it was pointed
out in [26] that Yao’s result can be achieved by using the
SMAWK algorithm [6].

5

Definition 1 (Quadrangle inequality): w(·, ·) (see (5)) is said
to satisfy the QI if it satisfies

w(i, k) + w(j, l) ≤ w(i, l) + w(j, k) (10)

for all 1 ≤ i < j ≤ k < l ≤ N .

A. First Technique: SMAWK Algorithm

Inspired by the works of [26] and [4], for 2 ≤ m ≤M , we
define Dm = [dmi,j]1≤i,j≤N−M+1 as a matrix with dmi,j given
by

dmi,j =

{
dpj−2+m(i− 1 +m,m), i ≥ j,
∞, i < j,

(11)

where ∞ indeed can be replaced by any constant larger than
all dmi,j for i ≥ j.

We define Dm as above since it can be computed in the
order of D2, D3, . . . , DM , and for m ≤ n ≤ N −M + m,
dp(n,m) is given by the minima of the (n − m + 1)-th
row of Dm. More specifically, for a given m, let p =
(pi)1≤i≤N−M+1, where pi is the position (column index) of
the leftmost minima in the i-th row of Dm, i.e., pi is the
smallest integer such that dmi,pi = minj∈[N−M+1] d

m
i,j . Then,

we have

sol(n,m) = arg min
m−1≤t≤n−1

dpt(n,m)

= pn−m+1 − 2 +m.

As a result, the computation in lines 8 to 11 of Algorithm
1 corresponds to the new problem of computing p. The new
problem is essentially the classical problem discussed in [6],
where the SMAWK algorithm was proposed to solve this
problem when Dm is totally monotone.

Definition 2 (Totally monotone matrix): A 2×2 matrix A =
[ai,j]1≤i,j≤2 is monotone if a1,1 > a1,2 implies a2,1 > a2,2.
A matrix D is totally monotone if every 2 × 2 submatrix
(intersections of arbitrary two rows and two columns) of D is
monotone.

Assume Dm is totally monotone. The SMAWK algorithm
for finding the leftmost minima in each row of Dm is
summarized in Algorithm 2. For a subset of rows r and
columns c of Dm, let Dm(r, c) denote the submatrix of Dm

which consists of the intersections of rows r and columns
c. The function SMAWK(r, c) is to find the column indices
of the leftmost minima in each row of Dm(r, c), and the
function Reduce(r, c) is to reduce Dm(r, c) to size |r| × |r|
by deleting |c| − |r| many “dead” columns in which the
leftmost minima are not located. The essential ideas of both
SMAWK(r, c) and Reduce(r, c) are to make use of the total
monotonicity of Dm(r, c). We further remark that Algorithm
2 does not require Dm to be precomputed, but a specific entry
of Dm to be computed on-the-fly when needed. According to
(11), any entry dmi,j of Dm can be computed with the same
complexity as computing w(j − 1 +m, i− 1 +m), i.e., O(q)
in general. Therefore, the total complexity of Algorithm 2 is
O(q(N − M)) [6]. More details about Algorithm 2 can be
found in [6].

The following lemma illustrates the connection between the
QI and the total monotonicity. It implies that if w(·, ·) satisfies

Algorithm 2 SMAWK algorithm for finding the leftmost
minima in each row of Dm

1: r← c← (1, 2, . . . , N −M + 1).
2: return SMAWK(r, c).
3:
4: Function: SMAWK(r, c)
5: c← Reduce(r, c).
6: if |r| = 1 then
7: return p← c.
8: else
9: r′ ← (r2, r4, . . . , rb|r|/2c·2).

10: (p2, p4, . . . , pb|r|/2c·2)← SMAWK(r′, c).
11: j ← 1.
12: for i = 1, 3, . . . , d|r|/2e · 2− 1 do
13: pi ← cj .
14: If i < |r|, u← pi+1; otherwise, u←∞.
15: while j ≤ |r| and cj ≤ u do
16: pi ← cj if dmri,cj < dmri,pi .
17: j ← j + 1.
18: end while
19: j ← j − 1.
20: end for
21: return p← (pi)1≤i≤|r|.
22: end if
23:
24: Function: Reduce(r, c)
25: i← 1.
26: while |r| < |c| do
27: if dmri,ci ≤ d

m
ri,ci+1

and i < |r| then
28: i← i+ 1.
29: else if dmri,ci ≤ d

m
ri,ci+1

and i = |r| then
30: Delete ci+1 from c.
31: else if dmri,ci > dmri,ci+1

then
32: Delete ci from c.
33: i← i− 1 if i > 1.
34: end if
35: end while
36: return c.

the QI, the complexity of Algorithm 1 can be reduced to
O(q(N −M)M) by applying Algorithm 2.

Lemma 3: If w(·, ·) satisfies the QI, Dm is totally monotone
for 2 ≤ m ≤M .

Proof: Consider the 2×2 submatrix of Dm consisting of
the intersections of rows k, l with k < l and columns i, j with
i < j, denoted by Ds. If j > k, we have dmk,j =∞, implying
Ds is monotone. For j ≤ k, we have dmk,i+dml,j−dmk,j−dml,i =
w(i + m, k + m) + w(j + m, l + m) − w(j + m, k + m) −
w(i + m, l + m) < 0 because w(·, ·) satisfies the QI. Then,
dmk,i > dmk,j implies dml,i > dml,j , indicating Ds is monotone.
This completes the proof.

B. Second Technique

To check whether w(·, ·) satisfies the QI is vital for reducing
the complexity of Algorithm 1. For w(·, ·) that cannot be

6

determined analytically of whether it satisfies the QI or not,
we can test it by exhaustively checking [26]

w(r, s) + w(r + 1, s+ 1) ≤ w(r, s+ 1) + w(r + 1, s) (12)

for 1 ≤ r < s < N . It can be easily proved that (10) is
equivalent to (12). Checking (12) has complexity O(qN2),
which will lower-bound the overall complexity for the quan-
tizer design if it is applied. It is worth doing the checking if
qN2 < q(N−M)2M , i.e., the checking costs less complexity
than Algorithm 1.

If w(·, ·) is verified by the exhaustive test to satisfy the QI,
the SMAWK algorithm can be used to reduce the complexity
of Algorithm 1, and hence the overall complexity approaches
the lower-bound of O(qN2). Considering that implementing
the SMAWK algorithm is tricky and sophisticated, in the
following, we present another low-complexity DP algorithm
which is much easier to be implemented, and the overall
complexity also approaches this lower-bound. By simply mod-
ifying the upper and lower bounds of t in line 9 of Algorithm 1
(i.e. the standard DP algorithm), it can reduce the complexity
from O(q(N−M)2M) to O(q(N2−M2)). The corresponding
details are as follows.

Lemma 4: If w(·, ·) satisfies the QI, we then have

sol(n,m− 1) ≤ sol(n,m) ≤ sol(n+ 1,m) (13)

for 2 ≤ m ≤ n < N .

Proof: See Appendix C.

The inequality of (13) was first proved by Yao as a con-
sequence of the QI in order to reducing the complexity for
solving the DP problem considered in [22]. Though our DP
problem is different from that considered in [22], fortunately,
(13) still holds as a consequence of the QI and can also be
used to reduce the complexity for solving our DP problem. In
particular, when (13) holds, for n = N −M + m − 1, N −
M +m− 2, . . . ,m in line 8 of Algorithm 1, we can conduct
a low-complexity technique by enumerating t in line 9 from
max{m−1, sol(n,m−1)} to min{n−1, sol(n+1,m)} instead
of from m − 1 to n − 1. Let T (n,m) denote the complexity
for enumerating t in line 9 with respect to the m in line 7 and
the n in line 8. Then, the total complexity for enumerating t,
after applying this low complexity algorithm, is given by

M∑
m=2

N−M+m∑
n=m

T (n,m)

≤
M∑
m=2

T (N −M +m,m)+

M∑
m=2

N−M+m−1∑
n=m

(sol(n+ 1,m)− sol(n,m− 1) + 1)

≤M(N −M + 1) +

N∑
n=M+1

sol(n,M)

≤(N +M)(N −M + 1)

Therefore, this low-complexity algorithm has complexity
O(q(N2 −M2)).

C. Remarks

The two low-complexity techniques presented in this section
can be used to reduce the complexity of Algorithm 1 once
w(·, ·) satisfies the QI, no matter this requirement is verified
analytically or by exhaustive test. The first technique making
use of the SMAWK algorithm works faster, while being more
complicated than the second technique making use of (13) in
terms of the implementation complexity.

Theorem 3: If δ1, δ2, . . . , δN defined by (4) are sequentially
located on a line, w(·, ·) satisfies the QI.

Proof: See Appendix D.
Theorem 2 together with Theorem 3 indicate that, if

δ1, δ2, . . . , δN are located on a line, we can first relabel the
elements in Y to make δ1, δ2, . . . , δN sequentially located on
the line. Then, an optimal DQ can be obtained by using the
DP method given by Algorithm 1, and at the same time, the
two low-complexity techniques become applicable. This result
extends the results of [3]–[5] to cases with q > 2 and to a more
general cost function.

V. α-MUTUAL INFORMATION-MAXIMIZING QUANTIZER

In this section, we consider a specific quantizer, the α-
MI-maximizing quantizer for α > 0. The α-MI is closely
related to Gallager’s exponent function [27] and to the channel
capacity problems in many applications (e.g., see [28]). In
particular, it can be used to measure the channel capacity of
order α [25]. For α > 0, the α-MI between X and Z is defined
by (14) [5], [23]–[25]. Note that I1(X;Z) is equivalent to the
standard MI between X and Z, i.e., I(X;Z), and I1/2(X;Z)
is equivalent to the cutoff rate between X and Z [25].

We first illustrate that the cost function of an α-MI-
maximizing quantizer can be defined as a specific case of (3).
To this end, for α > 0, define the cost function of any quantizer
Q : Y → Z by

Cα(Q) =
∑
z∈Z

PZ(z)φα(PX|Z(·|z)), (15)

where

φα(PX|Z(·|z)) =

−
∑
x∈X PX|Z(x|z) logPX|Z(x|z), α = 1,

−maxx∈X PX|Z(x|z)/PX(x), α =∞,(∑
x∈X P

1−α
X (x)PαX|Z(x|z)

)1/α

, α ∈ (0, 1),

−
(∑

x∈X P
1−α
X (x)PαX|Z(x|z)

)1/α

, α ∈ (1,∞).

The cost function Cα(Q) given by (15) is a specific case of
that given by (3), since it can be easily proved that φα : U → R
is concave on U (e.g., see [5, Lemma 1]). On the other hand,
we have

Iα(X;Z) =


H(X)− Cα(Q), α = 1,

log(−Cα(Q)), α =∞,
α
α−1 log (Cα(Q)) , α ∈ (0, 1),
α
α−1 log(−Cα(Q)), α ∈ (1,∞),

(16)

where H(X) = −
∑
x∈X PX(x) logPX(x) is a constant given

PX . According to (16), maximizing Iα(X;Z) is equivalent

7

Iα(X;Z) =


∑
z∈Z

∑
x∈X PX,Z(x, z) log

PX,Z(x,z)
PX(x)PZ(z) , α = 1,

log
(∑

z∈Z maxx∈X PZ|X(z|x)
)
, α =∞,

α
α−1 log

(∑
z∈Z

(∑
x∈X PX(x)PαZ|X(z|x)

)1/α
)
, α ∈ (0, 1) ∪ (1,∞).

(14)

to minimizing Cα(Q). This implies that design of the α-
MI-maximizing quantizers belongs to the quantizer design
category discussed in the previous sections, and hence all the
previous results are applicable here.

We now consider the design of α-MI-maximizing SDQs.
Since the cost function varies for different α, to avoid ambigu-
ity, w(·, ·) is now replaced by wα(·, ·), which can be computed
based on (5) with φ(·) being replaced by φα(·). We have the
following result.

Theorem 4: If the elements in X can be relabelled to make
PY |X satisfy (8), wα(·, ·) satisfies the QI.

Proof: See Appendix E.
We remark that Theorem 4 does not require δ1, δ2, . . . , δN to

be located on a line, while Theorem 3 does. In fact, the condi-
tion required by Theorem 4 is necessary, but not sufficient, for
the condition required by Theorem 3 to hold, i.e., the condition
that the elements in X can be relabelled to make PY |X satisfy
(8) is necessary, but not sufficient, for δ1, δ2, . . . , δN to be
sequentially located on a line. Therefore, when considering the
design of α-MI-maximizing SDQs, Theorem 4 is a stronger
statement than Theorem 3 as it requires a weaker condition.
We show in the next section that Theorem 4 is applicable to the
DMCs derived from AWGN channels with PAMs. However,
for other scenarios with q > 2, it is generally hard to relabel
the elements in X (and even also in Y) to make PY |X satisfy
(8).

VI. QUANTIZATION OF AWGN CHANNELS WITH PAMS

In this section, we consider the quantization of the PAM
system shown in Fig. 2. The probability density function
(pdf) of the channel continuous output Ỹ = ỹ conditioned
on channel input X = xi is given by

fỸ |X(ỹ|xi) =
1√

2πσ2
exp

(
− (ỹ − xi)2

2σ2

)
for i ∈ [q] and ỹ ∈ R. Our goal is to use an SDQ to
quantize Ỹ into Z ∈ Z = {1, 2, . . . ,M}. That is, the
quantization should be done by finding M + 1 thresholds
Θ = {θ0, θ1, . . . , θM}, θ0 = −∞ < θ1 < · · · < θM−1 <
θM = +∞, such that for i ∈ [M], Ỹ ∈ (θi−1, θi] is quantized
to Z = i.

We first convert the channel into a DMC, as shown in Fig.
2, with output Y ∈ Y = {y1, y2, . . . , yN}, where N � M .
More specifically, we create N + 1 candidate thresholds Γ =
{γ0, γ1, . . . , γN}, γ0 = −∞ < γ1 < · · · < γN−1 < γN =
+∞, such that the transition probability of the DMC is given
by

PY |X(yj |xi) =

∫ γj

γj−1

fỸ |X(ỹ|xi)dỹ

for i ∈ [q] and j ∈ [N]. In general, we can set γ1 = x1 − 3σ
and γN−1 = xq+3σ, and set γj = γj−1+(γN−1−γ1)/(N−2)

1 x
1 2

x
2 3 N-1x

q

y
1 y

2
y

3
y

N-1 y
N

0
 = - N-2 N

 =

. . .

. . .

Fig. 2. PAM system with input X ∈ X = {x1, x2, . . . , xq}, x1 < x2 <
· · · < xq . X is transmitted over an AWGN channel with noise variance σ2

and mean 0. The channel is converted into a DMC by uniformly quantizing
the continuous channel output Ỹ to N levels Y = {y1, y2, . . . , yN} based
on N + 1 thresholds Γ = {γ0, γ1, . . . , γN} with γ1 = x1 − 3σ, γN−1 =
xq + 3σ, and γ1 − γ2 = γ2 − γ3 = · · · = γN−2 − γN−1.

for j = 2, . . . , N − 2 to uniformly partition [γ1, γN−1] into
N − 2 segments.

We can then use Algorithm 1 to find the optimal thresholds
Θ from the candidate thresholds Γ according to Proposition
1. In particular, if α-MI-maximizing SDQs are of interest, the
two low-complexity techniques discussed in Section IV are
applicable here, according to Theorem 4 and the following
lemma. We remark that Lemma 5 only requires x1 < x2 <
· · · < xq and γ0 = −∞ < γ1 < · · · < γN−1 < γN = +∞.
However, it does not depend on PX and the specific values of
{x1, . . . , xq, γ1, . . . , γN−1}. Moreover, Lemma 5 also implies
that if only x1 < x2 < · · · < xq does not hold, {x1, . . . , xq}
can be relabelled to make PY |X satisfy (8) such that Theorem
4 is also applicable.

Lemma 5: For the converted DMC shown in Fig. 2, PY |X
satisfies (8).

Proof: For 1 ≤ i < q and 1 ≤ j ≤ N , we have

PY |X(yj |xi)/PY |X(yj |xi+1)

=

∫ γj
γj−1

fỸ |X(ỹ|xi)dỹ∫ γj
γj−1

fỸ |X(ỹ|xi+1)dỹ

=

∫ γj
γj−1

fỸ |X(ỹ|xi)
/
fỸ |X(ỹ|xi+1)fỸ |X(ỹ|xi+1)dỹ∫ γj

γj−1
fỸ |X(ỹ|xi+1)dỹ

. (17)

Since
fỸ |X(ỹ|xi)
fỸ |X(ỹ|xi+1)

= exp

(
(xi − xi+1)(2ỹ − xi − xi+1)

2σ2

)
keeps strictly decreasing when ỹ increases from γj−1 to γj ,
we have

fỸ |X(γj−1|xi)
fỸ |X(γj−1|xi+1)

>
fỸ |X(ỹ|xi)
fỸ |X(ỹ|xi+1)

>
fỸ |X(γj |xi)
fỸ |X(γj |xi+1)

(18)

8

2 4 6 8 10 12 14 16 18 20
Quantization output alphabet size, M

10-3

10-2

10-1

100
I(

X
;Y

)-
I(

X
;Z

)

Dynamic Program.
Greedy Comb.
KL-means

q = 8

q = 4

q = 2

Fig. 3. Performance of the DP method, the greedy combining [11], [12], and
the KL-means [13] algorithms.

for γj−1 < ỹ < γj . Then, based on (17) and (18), we have

fỸ |X(γj−1|xi)
fỸ |X(γj−1|xi+1)

>
PY |X(yj |xi)
PY |X(yj |xi+1)

>
fỸ |X(γj |xi)
fỸ |X(γj |xi+1)

,

indicating that PY |X satisfies (8).
Next, for the converted DMC shown in Fig. 2, we compare

the quantization performance of the DP method with the prior
art quantizer design algorithms proposed for the general q-
ary input DMC, i.e., the greedy combining algorithm [11],
[12] and the KL-means algorithm [13]. The MI-maximizing
quantizers are of interest, and the MI gap Ig = I(X;Y) −
I(X;Z) is used as the comparison metric, which is the smaller
the better. In the simulations, we use uniform distribution for
PX . We set σ = 1, xi = 2i − q − 1 for i ∈ [q], and N =
128. Y is quantized to M levels, M = 2, 3, . . . , 20. When
the KL-means algorithm is used, we randomly choose M out
of N points as the initial means (see [13]) for Ti = 100
times, and for each time the KL-means algorithm runs for
Tr = 100 iterations to obtain a DQ, and finally the best (Ig is
minimized) DQ among the Ti times is chosen. The simulation
results are illustrated by Fig. 3. It is shown that the DP method
performs better than both the greedy combining and KL-means
algorithms, for different values of q.

Moreover, note that the two low-complexity techniques are
applicable here. The DP method has complexity O(q(N −
M)M) if applying the SMAWK algorithm and O(q(N2 −
M2)) if applying (13). In contrast, the greedy combining and
KL-means algorithms have complexities O(qN2(N − M))
and O(TiTrqNM), respectively, and hence are much more
complex than the DP method. As an example, we show the
actual running time for these algorithms in Table I.

Our final remark is that the optimal SDQ for the con-
verted DMC shown by Fig. 2 may not be a globally op-
timal DQ. One toy counter-example has the following pa-
rameters: (q,N,M, σ2) = (4, 7, 4, 0.1), (x1, x2, x3, x4) =
(−3,−1, 1, 3), and PX = (0.53, 0.23, 0.23, 0.01). We also find

TABLE I
AVERAGE RUNNING TIME ON A STANDARD DESKTOP FOR DIFFERENT

QUANTIZER DESIGN ALGORITHMS, WHERE A1–A5 REFER TO THE
ORIGINAL DP ALGORITHM GIVEN BY ALGORITHM 1, THE DP

ALGORITHM OPTIMIZED BY USING THE SMAWK ALGORITHM, THE DP
ALGORITHM OPTIMIZED BY USING (13), THE GREEDY COMBINING

ALGORITHM, AND THE KL-MEANS ALGORITHM, RESPECTIVELY, AND
q = 2,M = 8, Ti = 100, Tr = 100 ARE USED

Algorithm Complexity
Running time in second

N = 128 N = 1000

A1 O(q(N −M)2M) 0.042 2.323

A2 O(q(N −M)M) 0.004 0.045

A3 O(q(N2 −M2)) 0.007 0.349

A4 O(qN2(N −M)) 0.206 89.496

A5 O(TiTrqNM) 1.353 10.063

a counter-example among millions of test cases with uniformly
distributed PX and randomly generated PY |X which satisfies
(8). Both counter-examples imply that the condition of (8)
cannot solely guarantee the global optimality of an optimal
SDQ among all DQs. To guarantee the global optimality, one
sufficient condition given by Theorem 2 is to additionally
require δ1, δ2, . . . , δN to be located on a line. An intriguing
but very hard problem is to find a more general sufficient
condition.

VII. CONCLUSION

In this paper, under the general cost function C given
by (3), we have presented a DP method with complexity
O(q(N −M)2M) to obtain an optimal SDQ for q-ary input
DMC. Two efficient techniques have been applied to reduce
the DP method’s complexity once w(·, ·) satisfies the QI. One
technique makes use of the SMAWK algorithm and achieves
complexity O(q(N −M)M). The other one is much easier
to be implemented and achieves complexity O(q(N2−M2)).
We have proved that when δ1, δ2, . . . , δN defined by (4) are
sequentially located on a line, the optimal SDQ is an optimal
DQ and the two efficient techniques are applicable. This result
generalizes the results of [3]–[5]. Next, we have showed that
the cost function of an α-MI-maximizing quantizer can be
defined as a specific case of C. We have further proved
that if the elements in X can be relabelled to make PY |X
satisfy (8), but not requiring δ1, δ2, . . . , δN to be sequentially
located on a line, the aforementioned two efficient techniques
are applicable to the design of α-MI-maximizing quantizer.
Finally, we have demonstrated the application of our design
method to the DMCs derived from AWGN channels with
PAMs.

APPENDIX A
PROOF OF LEMMA 1

Note that for any quantizer Q : Y → Z , Q is specified by
PZ|Y , and C(Q) given by (3) is a function of PZ|Y . We now
show C(Q) is concave on PZ|Y . For any t ∈ [0, 1] and any two

9

quantizers Q(1), Q(2) specified by P
(1)
Z|Y , P

(2)
Z|Y , respectively,

denote Q as the quantizer specified by PZ|Y = tP
(1)
Z|Y + (1−

t)P
(2)
Z|Y , where the addition is element-wise. Then, for x ∈ X

and z ∈ Z , we have

PZ(z) = tP
(1)
Z (z) + (1− t)P (2)

Z (z),

PX|Z(x|z) =
tP

(1)
Z (z)

PZ(z)
P

(1)
X|Z(x|z)+

(1− t)P (2)
Z (z)

PZ(z)
P

(2)
X|Z(x|z).

Since φ is concave on PX|Z , we have

C(Q) =
∑
z∈Z

PZ(z)φ(PX|Z(·|z))

≥
∑
z∈Z

(
tP

(1)
Z (z)φ(P

(1)
X|Z(·|z))+

(1− t)P (2)
Z (z)φ(P

(2)
X|Z(·|z))

)
= tC(Q(1)) + (1− t)C(Q(2)),

indicating that C(Q) is concave on PZ|Y . It is well known that
there exists at least one extreme point, which corresponds to a
DQ in this case, to make the concave function C(Q) achieve
its minima. This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

1)→ 2): If δ1, δ2, . . . , δN are sequentially located on a line,
they are definitely located on the line and both (6) and (7) hold.
We relabel the elements in X to satisfy

PX|Y (xi|y1)di+1 ≥ PX|Y (xi+1|y1)di,∀i ∈ [q − 1], (19)

which is always possible. For any 1 ≤ i < i′ ≤ q, if
PX|Y (xi′ |y1) = 0, we have di′ > 0 and

PX|Y (xi|y1)di′ ≥ PX|Y (xi′ |y1)di. (20)

If PX|Y (xi′ |y1) > 0, we have PX|Y (xi′−1|y1) > 0 due to
(19). Recursively, we have PX|Y (xk|y1) > 0 for i ≤ k ≤ i′.
In this case, according to (19), we have

di
PX|Y (xi|y1)

≤ di+1

PX|Y (xi+1|y1)
≤ · · · ≤ di′

PX|Y (xi′ |y1)
,

indicating that (20) also holds. Then, for 1 ≤ i < i′ ≤ q and
1 ≤ j < j′ ≤ N , we have

PY |X(yj |xi)PY |X(yj′ |xi′)− PY |X(yj′ |xi)PY |X(yj |xi′)
= (PX|Y (xi|y1)di′ − PX|Y (xi′ |y1)di)(tj′ − tj)·

PY (yj)PY (yj′)/PX(xi)/PX(xi′)

≥ 0,

indicating that the second statement of Theorem 2 is true.
2) → 3): This is a trivial conclusion.
3) → 1): Suppose that δ1, δ2, . . . , δN are located on a line.

As a result, (6) holds. Further assume that the elements in X
can be relabelled to make PY |X satisfy (9), and we implement

the relabelling in this way. After that, for any i ∈ [q − 1] and
j ∈ [N − 1], we have

0 ≤PX|Y (xi|yj)PX|Y (xi+1|yj+1)−
PX|Y (xi|yj+1)PX|Y (xi+1|yj)

=(PX|Y (xi|y1)di+1 − PX|Y (xi+1|y1)di)(tj+1 − tj).

Then, for any i ∈ [q − 1], we have

0 ≤
∑

j∈[N−1]

(
PX|Y (xi|yj)PX|Y (xi+1|yj+1)−

PX|Y (xi|yj+1)PX|Y (xi+1|yj)
)

=PX|Y (xi|y1)di+1 − PX|Y (xi+1|y1)di.

As a result, if tj+1 < tj for some j ∈ [N − 1], we must have

PX|Y (xi|y1)di+1 = PX|Y (xi+1|y1)di,∀i ∈ [q − 1]. (21)

We now prove (21) is not true. If (21) holds, we have
PX|Y (xi|y1) > 0,∀i ∈ [q]; otherwise, PX|Y (xi|y1) = 0,∀i ∈
[q] can be derived but this is not true. Then, we have

d1

PX|Y (x1|y1)
=

d2

PX|Y (x2|y1)
= · · · = dq

PX|Y (xq|y1)
.

Further since 0 =
∑
i∈[q] PX|Y (xi|yN) − 1 =∑

i∈[q](PX|Y (xi|y1) + tNdi) − 1 =
∑
i∈[q] di, we must

have d1 = d2 = · · · = dq = 0. In this case, we have
0 = d = δN − δ1, contradicting to the assumption that
δ1 6= δN . Therefore, (21) is not true and hence we have
tj+1 ≥ tj ,∀j ∈ [N − 1], indicating that δ1, δ2, . . . , δN are
sequentially located on the line.

Optimality: Suppose that δ1, δ2, . . . , δN are sequentially
located on a line. According to Lemma 2, there exists an
optimal DQ Q̃∗ : ∆ → Z such that for any z, z′ ∈ Z
with z 6= z′, there exists a point that separates Q̃∗−1(z) and
Q̃∗−1(z′) on the line. In this case, the equivalent quantizer of
Q̃∗, Q∗ : Y → Z , is an optimal DQ as well as an optimal
SDQ.

APPENDIX C
PROOF OF LEMMA 4

For 2 ≤ m ≤ n < N , let t = sol(n,m) for brevity. For any
m− 1 ≤ k < t, we have

dpt(n+ 1,m)− dpk(n+ 1,m)

=dpt(n,m)− w(t+ 1, n) + w(t+ 1, n+ 1)−
(dpk(n,m)− w(k + 1, n) + w(k + 1, n+ 1))

≤w(t+ 1, n+ 1) + w(k + 1, n)−
w(t+ 1, n)− w(k + 1, n+ 1)

≤0,

where the last inequality holds because w(·, ·) satisfies the QI.
Therefore, we have sol(n,m) = t ≤ sol(n+ 1,m).

We now continue to prove sol(n,m) ≥ sol(n,m − 1). For
m = 2, we have sol(n,m) ≥ sol(n,m− 1) = 0 trivially. For
m ≥ 3, let t = sol(n,m − 1) for brevity. For any m − 1 ≤

10

k < t, we have

dpt(n,m)− dpk(n,m)

=dp(t,m− 1) + dpt(n,m− 1)− dp(t,m− 2)−
(dp(k,m− 1) + dpk(n,m− 1)− dp(k,m− 2))

≤dp(k,m− 2) + dp(t,m− 1)−
dp(k,m− 1)− dp(t,m− 2).

We continue the proof by first proving the following lemma.
Lemma 6: For 2 ≤ m ≤ i < j ≤ N , denoting dp(i,m −

1)+dp(j,m)−dp(i,m)−dp(j,m−1) by ψ(i, j,m), we have

ψ(i, j,m) ≤ 0.

Proof: Let t = sol(i, 2) for brevity. We have

ψ(i, j, 2) ≤ dp(i, 1) + dpt(j, 2)− dpt(i, 2)− dp(j, 1)

= w(1, i) + w(t+ 1, j)− w(t+ 1, i)− w(1, j)

≤ 0.

We then inductively prove ψ(i, j,m) ≤ 0 for m ≥ 3 given
ψ(i, j,m− 1) ≤ 0 for m− 1 ≤ i < j.

Let a = sol(i,m) and b = sol(j,m − 1) for brevity. Note
that m− 1 ≤ a < i. If a < b, we have

ψ(i, j,m)

≤dpa(i,m− 1) + dpb(j,m)− dpa(i,m)− dpb(j,m− 1)

=dp(a,m− 2) + dp(b,m− 1)−
dp(a,m− 1)− dp(b,m− 2)

=ψ(a, b,m− 1)

≤0.

If a ≥ b, we have

ψ(i, j,m)

≤dpb(i,m− 1) + dpa(j,m)− dpa(i,m)− dpb(j,m− 1)

=w(b+ 1, i) + w(a+ 1, j)− w(a+ 1, i)− w(b+ 1, j)

≤0.

This completes the proof of Lemma 6.
At this point, we have dpt(n,m)−dpk(n,m) ≤ ψ(k, t,m−

1) ≤ 0, implying sol(n,m) ≥ sol(n,m− 1).

APPENDIX D
PROOF OF THEOREM 3

Lemma 7: Let n be a positive integer. A,B,C,D ∈ Rn are
located on a line with A and D being the endpoints. η is a
function which is concave on this line. If there exist γ, β ∈
[0, 1] such that γA + (1 − γ)D = βB + (1 − β)C, we then
have

γη(A) + (1− γ)η(D) ≤ βη(B) + (1− β)η(C).

Proof: If A = D, Lemma 7 holds. For A 6= D, there
exist unique θ, τ ∈ [0, 1] such that

B = θA+ (1− θ)D,
C = τA+ (1− τ)D.

Then, we have

γA+ (1− γ)D

=βB + (1− β)C

=(βθ + (1− β)τ)A+ (β(1− θ) + (1− β)(1− τ))D,

which leads to

γ = βθ + (1− β)τ.

As a result, we have

βη(B) + (1− β)η(C)

≥β(θη(A) + (1− θ)η(D))+

(1− β)(τη(A) + (1− τ)η(D))

=γη(A) + (1− γ)η(D),

indicating that Lemma 7 is correct.
Lemma 7 is indeed a well-known result for concave func-

tion. We now use it to simplify the proof of Theorem 3. For
1 ≤ r ≤ s ≤ N , denote

a(r, s) =

s∑
j=r

PY (yj),

b(r, s) =

s∑
j=r

PY (yj)

a(r, s)
δj .

Then, according to (5), we have

w(r, s) = a(r, s)φ(b(r, s)). (22)

Suppose δ1, δ2, . . . , δN are sequentially located on a line.
In such a case, for any 1 ≤ r < r′ ≤ s < s′ ≤ N ,
b(r, s), b(r, s′), b(r′, s), b(r′, s′) are located on the line with
b(r, s) and b(r′, s′) being the endpoints, and φ is concave
on the line. Let γ = a(r, s)/(a(r, s) + a(r′, s′)) and β =
a(r, s′)/(a(r, s′) + a(r′, s)). We have γ, β ∈ [0, 1] and
γb(r, s) + (1 − γ)b(r′, s′) = βb(r, s′) + (1 − β)b(r′, s). By
applying (22) and Lemma 7, we have

(w(r, s) + w(r′, s′))/(a(r, s) + a(r′, s′))

=γφ(b(r, s)) + (1− γ)φ(r′, s′)

≤βφ(b(r, s′)) + (1− β)φ(b(r′, s))

=(w(r, s′) + w(r′, s))/(a(r, s′) + a(r′, s)),

leading to w(r, s) + w(r′, s′) ≤ w(r, s′) + w(r′, s). This
completes the proof.

APPENDIX E
PROOF OF THEOREM 4

Our goal is to prove

wα(r, s) + wα(r′, s′)− wα(r, s′)− wα(r′, s) ≤ 0 (23)

for α ∈ (0,∞] and for all 1 ≤ r < r′ ≤ s < s′ ≤ N
given that the elements in X can be relabelled to make PY |X
satisfy (8). Since wα(·, ·) is independent from the labelling
of the elements of X , for convenience, we assume that the
elements in X has been relabelled to make PY |X satisfy (8).

For any a = (ai)1≤i≤q,b = (bi)1≤i≤q ∈ Rq+, we use the
following notations:

11

i) ‖a‖1 =
∑q
i=1 ai,

ii) Imin(a) = arg mini(ai = 0),
iii) Imax(a) = arg maxi(ai = 0),
iv) a + b = (ai + bi)1≤i≤q ,

The proof is divided into four parts based on the four cases
of α = 1, α ∈ (0, 1), α ∈ (1,∞), and α =∞.

Part I: α = 1
Denote p,a,b, c ∈ Rq+, with pi, ai, bi, ci given by

pi = PX(xi),

ai =

r′−1∑
j=r

piPY |X(yj |xi),

bi =

s∑
j=r′

piPY |X(yj |xi),

ci =

s′∑
j=s+1

piPY |X(yj |xi). (24)

Given (8), we have

a � b,b � c,a � c, (25)

where � is defined in (2). From (8) and (25), we can easily
derive Imin(a) ≤ Imin(b) ≤ Imax(a) ≤ Imax(b),

Imin(b) ≤ Imin(c) ≤ Imax(b) ≤ Imax(c),
ui > 0,∀u ∈ {a,b, c}, i ∈ [Imin(u), Imax(u)].

(26)

For any u ∈ Rq+, define

g(u) =

q∑
i=1

ui log
‖u‖1
ui

,

where we let ui log ‖u‖1ui
= 0 if ui = 0. Here the natural

logarithm in base e is used. For other bases, the following
proof can be similarly carried out. In addition, let

f(a,b, c) = g(a + b) + g(b + c)− g(a + b + c)− g(b)

= wα(r, s) + wα(r′, s′)− wα(r, s′)− wα(r′, s).

To prove f(a,b, c) ≤ 0, our idea is to properly modify a,b,
and c in a series of steps, where after each step, f(a,b, c)
keeps nondecreasing and finally becomes zero. We summarize
the procedure in Algorithm 3, following which we also provide
the remarks.

Remark 1: Note that for k = 1, (25), (26), and the following
conditions hold:

aibj = ajbi, bicj = bjci, aicj = ajci,∀1 ≤ i < j ≤ k. (27)

Inductively, suppose these conditions ((25)–(27)) hold for
k < q. In the subsequent remarks, we will prove that
these conditions can keep f(a,b, c) nondecreasing after any
modification of those in lines 4, 8, 10 made to a,b, c. We will
also prove that when Algorithm 3 reaches line 13 and increases
k by 1, either a = 0 or these conditions will still hold. It can
be easily verified that either a = 0 or these conditions that
hold for k = q can lead to f(a,b, c) = 0 at line 15.

Remark 2 (for line 4): Throughout this remark, let k,a,b, c
refer to those at the beginning of line 4 (before the modifi-

Algorithm 3 A series of modifications on a,b, and c such
that f(a,b, c) keeps nondecreasing and finally becomes zero
Input: a,b, c given by (24).

1: k ← 1.
2: while k < q and a 6= 0 do
3: if akbk+1 > ak+1bk then
4: ai ← ak+1bi/bk+1,∀i ∈ [k].
5: end if
6: if bkck+1 > bk+1ck then
7: if bk+1 > 0 then
8: ci ← bick+1/bk+1,∀i ∈ [k].
9: else

10: ci ← 0,∀i = k + 1, k + 2, . . . , q.
11: end if
12: end if
13: k ← k + 1.
14: end while
15: // At this point, we have f(a,b, c) = 0.

cation). Let a′ refer to the a at the end of line 4 (after the
modification). Our goal is to prove

f(a,b, c) ≤ f(a′,b, c), (28)

i.e., to prove f(a,b, c) keeps nondecreasing after the modifi-
cation in line 4.

Let T = ak+1bk/(akbk+1). For any i ∈ [k], according to
(27), we have Taibk = Takbi = a′ibk. This leads to Tai = a′i;
otherwise, we can easily derive a contradiction for Tai 6= a′i.
Let t ∈ [T, 1] be a variable. Denote a(t) = (ai(t))1≤i≤q with

ai(t) =

{
ait, i ∈ [k],

ai, i /∈ [k].

Then, we have a(1) = a and a(T) = a′.

We are now to prove

a(t) � b,a(t) � c,∀t ∈ [T, 1]. (29)

For any 1 ≤ i < j ≤ k or k < i < j ≤ q, we can easily verify
ai(t)bj ≥ aj(t)bi according to (25). For 1 ≤ i ≤ k < j ≤ q,
if aj(t)bi = 0, we also have ai(t)bj ≥ aj(t)bi. If aj(t)bi > 0,
according to (25) and (26), we have bl > 0,∀l ∈ [i, j], leading
to ai(t)/bi ≥ ak+1/bk+1 ≥ aj/bj . Thus, a(t) � b holds. To
prove a(t) � c, similarly, we only need to prove ai(t)cj ≥
aj(t)ci for 1 ≤ i ≤ k < j ≤ q and aj(t)ci > 0, for which we
also have bj , cj > 0 according to (25) and (26). Additionally,
since a(t) � b holds, we have ai(t)/aj(t) ≥ bi/bj ≥ ci/cj .
This completes the proof of (29). Moreover, according to (27),
we have

ai(t)bj = aj(t)bi, ai(t)cj = aj(t)ci,

∀t ∈ [T, 1], 1 ≤ i < j ≤ k. (30)

12

For t ∈ (T, 1), we have

∂f(a(t),b, c)

∂t

=
∑

i∈[k],ai>0

ai

(
log
‖a(t) + b‖1
ai(t) + bi

− log
‖a(t) + b + c‖1
ai(t) + bi + ci

)
≤0, (31)

where the last inequality is due to ‖a(t)+b‖1
ai(t)+bi

≤ ‖a(t)+b+c‖1
ai(t)+bi+ci

based on (25), (27), (29), and (30). Moreover, since
f(a(t),b, c) is continuous at t ∈ [T, 1], we have f(a,b, c) =
f(a(1),b, c) ≤ f(a(T),b, c) = f(a′,b, c), leading to (28).

If k = Imax(a) < Imax(b), we have a′ = 0, in which case
f(a′,b, c) = 0 holds and the proof of part I is completed.
For k < Imax(a) or Imax(a) = Imax(b), we always have
a′ 6= 0. After replacing a by a′, (25)–(27) still hold according
to (29) and (30), except that Imin(a) and Imax(a) in (26) are
undefined for the case of a = 0. However, this exception does
not affect the correctness of the proof of Part I.

Remark 3 (for line 8): Throughout this remark, let k,a,b, c
refer to those at the beginning of line 8. Let c′ refer to the c
at the end of line 8. Our goal is to prove

f(a,b, c) ≤ f(a,b, c′). (32)

Let T = bk+1ck/(bkck+1). For any i ∈ [k], according to
(27), we have cibk = ckbi = Tc′ibk. This leads to ci = Tc′i
due to bk > 0. Let t ∈ [T, 1] be a variable. Denote c′(t) =
(c′i(t))1≤i≤q with

c′i(t) =

{
c′it, i ∈ [k],

c′i, i /∈ [k].

Then, we have c′(1) = c′ and c′(T) = c.

Similar to (29), we have

b � c′(t),a � c′(t),∀t ∈ [T, 1]. (33)

Meanwhile, similar to (30), we have

aic
′
j(t) = ajc

′
i(t), bic

′
j(t) = bjc

′
i(t),

∀t ∈ [T, 1], 1 ≤ i < j ≤ k. (34)

Then, for t ∈ (T, 1), we have

∂f(a,b, c′(t))

∂t

=
∑

i∈[k],c′i>0

c′i

(
log
‖b + c′(t)‖1
bi + c′i(t)

− log
‖a + b + c′(t)‖1
ai + bi + c′i(t)

)
≥0, (35)

where the last inequality is due to ‖b+c′(t)‖1
bi+c′i(t)

≥ ‖a+b+c′(t)‖1
ai+bi+c′i(t)

based on (25), (27), (33), and (34). Moreover, since
f(a,b, c′(t)) is continuous at t ∈ [T, 1], we have f(a,b, c) =
f(a,b, c′(T)) ≤ f(a,b, c′(1)) = f(a,b, c′), leading to
(32). In addition, after replacing c by c′, (25)–(27) still hold
according to (33) and (34).

Remark 4 (for line 10): Throughout this remark, let k,a,b, c
refer to those at the beginning of line 10. Let c∗ refer to the

c at the end of line 10. Our goal is to prove

f(a,b, c) ≤ f(a,b, c∗), (36)

Let t ∈ [0, 1] be a variable. Denote c(t) = (ci(t))1≤i≤q
with

ci(t) =

{
ci, i ∈ [k],

cit, i /∈ [k].

Then, we have c(0) = c∗ and c(1) = c. Note that if Algorithm
3 reaches line 10, we must have k = Imax(b) according to
(26). As a result, we have ai = bi = 0,∀i = k+1, k+2, . . . , q.
Then, for t ∈ (0, 1), we have

∂f(a,b, c(t))

∂t

=
∑

k<i≤q,ci>0

ci

(
log
‖b + c(t)‖1

ci(t)
− log

‖a + b + c(t)‖1
ci(t)

)
≤0. (37)

Since f(a,b, c(t)) is continuous at t ∈ [0, 1], we have
f(a,b, c) = f(a,b, c(1)) ≤ f(a,b, c(0)) = f(a,b, c∗),
leading to (36). In addition, after replacing c by c∗, it can
be easily verified that (25)–(27) still hold.

Remark 5 (for line 13): Let a,b, c refer to those at the
beginning of line 13. Let v be the value of k at the end of
line 13. If a = 0, the proof of this part is indeed completed.
Suppose a 6= 0. Our final task is to prove that (25)–(27) still
hold for k = v, since these conditions will be used for k = v
for the proof of (28), (32), and (36).

In the previous remarks, we have proved that (25)–(27) hold
for k = v − 1, no matter the modifications in lines 4, 8, and
10 have been made or not. As a result, (25) and (26) still hold
for k = v. In order to prove (27) for k = v, our task becomes
to prove

aibv = avbi, bicv = bvci, aicv = avci,∀i ∈ [v − 1]. (38)

Note that when Algorithm 3 reaches line 13, we always
have av−1bv = avbv−1 and bv−1cv = bvcv−1. Based on this
condition and that (27) holds for k = v − 1, we can easily
derive (38). At this point, the proof of Part I is completed.

Part II: α ∈ (0, 1)
Denote p,a,b, c ∈ Rq+ by (24). For any u ∈ Rq+, define

g(u) =

(
q∑
i=1

p1−α
i uαi

)1/α

. (39)

In this case, we also have

f(a,b, c) = g(a + b) + g(b + c)− g(a + b + c)− g(b)

= wα(r, s) + wα(r′, s′)− wα(r, s′)− wα(r′, s).

To prove f(a,b, c) ≤ 0, our idea is the same as that in Part
I. In this case, we indeed only need to prove (28), (32), and
(36) under the new definition of g : Rq+ → R given by (39).
To this end, our task becomes to prove ∂f

∂t ≤ 0, ∂f∂t ≥ 0, and
∂f
∂t ≤ 0 as what we do in (31), (35), and (37), respectively. We
complete these proofs below, where the notations correspond
to those in (31), (35), and (37), except that g is replaced by
that defined by (39).

13

Proof of ∂f
∂t ≤ 0 corresponding to (31): We have

∂f(a(t),b, c)

∂t

=
∑

i∈[k],ai>0

p1−α
i ai


 q∑
j=1

p1−α
j

(
aj(t) + bj
ai(t) + bi

)α
1−α
α

−

 q∑
j=1

p1−α
j

(
aj(t) + bj + cj
ai(t) + bi + ci

)α
1−α
α


≤0,

where the last inequality is due to aj(t)+bj
ai(t)+bi

≤ aj(t)+bj+cj
ai(t)+bi+ci

based on (25), (27), (29), and (30).
Proof of ∂f

∂t ≤ 0 corresponding to (35): We have

∂f(a,b, c′(t))

∂t

=
∑

i∈[k],c′i>0

p1−α
i c′i


 q∑
j=1

p1−α
j

(
bj + c′j(t)

bi + c′i(t)

)α
1−α
α

−

 q∑
j=1

p1−α
j

(
aj + bj + c′j(t)

ai + bi + c′i(t)

)α
1−α
α


≥0,

where the last inequality is due to
bj+c

′
j(t)

bi+c′i(t)
≥ aj+bj+c

′
j(t)

ai+bi+c′i(t)

based on (25), (27), (33), and (34).
Proof of ∂f

∂t ≤ 0 corresponding to (37): We have

∂f(a,b, c(t))

∂t

=
∑

k<i≤q,ci>0

p1−α
i ci


 q∑
j=1

p1−α
j

(
bj + cj(t)

ci(t)

)α
1−α
α

−

 q∑
j=1

p1−α
j

(
aj + bj + cj(t)

ci(t)

)α
1−α
α


≤0.

Part III: α ∈ (1,∞)

We omit the proof in this part since it can be carried out
almost the same as that in Part II for α ∈ (0, 1).

Part IV: α =∞
Set a,b, c with ai, bi, ci given by

ai =

r′−1∑
j=r

PY |X(yj |xi),

bi =

s∑
j=r′

PY |X(yj |xi),

ci =

s′∑
j=s+1

PY |X(yj |xi).

In this case, (25) still holds. Let i = arg max1≤t≤q(at +
bt), j = arg max1≤t≤q(bt + ct), k = arg max1≤t≤q(at + bt +
ct), and l = arg max1≤t≤q bt. Then, we have

wα(r, s) + wα(r′, s′)− wα(r, s′)− wα(r′, s)

=− (ai + bi)− (bj + cj) + (ak + bk + ck) + bl

=− (ai + bi)− (bj + cj) + (ak + bk)+

(bl + cl) + (ck − cl)
≤ck − cl.

Based on a similar deduction, we indeed have wα(r, s) +
wα(r′, s′)−wα(r, s′)−wα(r′, s) ≤ min{ak−al, bl−bk, ck−
cl}. If min{ak − al, bl − bk, ck − cl} > 0, we have both
akbl > albk and bkcl < blck, leading to a contradiction to (25).
Therefore, we must have min{ak − al, bl − bk, ck − cl} ≤ 0,
implying (23) is true.

REFERENCES

[1] X. He, K. Cai, W. Song, and Z. Mei, “Dynamic programming for
quantization of q-ary input discrete memoryless channels,” in Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2019, pp. 450–454.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms: 2nd Edition. Cambridge, MA, USA: MIT Press, 2001.

[3] B. M. Kurkoski and H. Yagi, “Quantization of binary-input discrete
memoryless channels,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4544–
4552, Aug. 2014.

[4] K. Iwata and S. Ozawa, “Quantizer design for outputs of binary-input
discrete memoryless channels using SMAWK algorithm,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2014, pp. 191–195.

[5] Y. Sakai and K. Iwata, “Optimal quantization of B-DMCs maximizing
α-mutual information with monge property,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2017, pp. 2668–2672.

[6] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, “Geomet-
ric applications of a matrix-searching algorithm,” Algorithmica, vol. 2,
no. 1, pp. 195–208, Nov. 1987.

[7] B. Nazer, O. Ordentlich, and Y. Polyanskiy, “Information-distilling
quantizers,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 96–100.

[8] E. Laber, M. Molinaro, and F. M. Pereira, “Binary partitions with
approximate minimum impurity,” in Proc. 35th Int. Conf. Machine
Learning, vol. 80, Stockholmsmässan, Stockholm Sweden, Jul. 2018,
pp. 2854–2862.

[9] D. Burshtein, V. Della Pietra, D. Kanevsky, and A. Nádas, “Minimum
impurity partitions,” Ann. Statist., vol. 20, no. 3, pp. 1637–1646, Sep.
1992.

[10] D. Coppersmith, S. J. Hong, and J. R. Hosking, “Partitioning nominal
attributes in decision trees,” Data Mining and Knowledge Discovery,
vol. 3, no. 2, pp. 197–217, Jun. 1999.

[11] B. M. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Noise thresholds
for discrete LDPC decoding mappings,” in Proc. IEEE Global Commun.
Conf., Dec. 2008, pp. 1–5.

[12] Y. Sakai and K. Iwata, “Suboptimal quantizer design for outputs of
discrete memoryless channels with a finite-input alphabet,” in Proc.
IEEE Int. Symp. Inf. Theory and Its Applications, Nov. 2014, pp. 120–
124.

[13] J. A. Zhang and B. M. Kurkoski, “Low-complexity quantization of
discrete memoryless channels,” in Proc. IEEE Int. Symp. Inf. Theory
and Its Applications, Oct. 2016, pp. 448–452.

[14] S. Hassanpour, D. Wuebben, and A. Dekorsy, “Overview and investiga-
tion of algorithms for the information bottleneck method,” in Proc. 11th
Int. ITG Conf. on Systems, Commun. and Coding, Feb. 2017, pp. 1–6.

[15] J. Lewandowsky, M. Stark, and G. Bauch, “Message alignment for
discrete LDPC decoders with quadrature amplitude modulation,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2925–2929.

[16] C. A. Aslam, Y. L. Guan, and K. Cai, “Read and write voltage signal
optimization for multi-level-cell (MLC) NAND flash memory,” IEEE
Trans. Commun., vol. 64, no. 4, pp. 1613–1623, Feb. 2016.

[17] Z. Mei, K. Cai, L. Shi, and X. He, “On channel quantization for
spin-torque transfer magnetic random access memory,” IEEE Trans.
Commun., vol. 67, no. 11, pp. 7526–7539, Nov. 2019.

14

[18] Z. Mei, K. Cai, and X. He, “Deep learning-aided dynamic read thresh-
olds design for multi-level-cell flash memories,” IEEE Trans. Commun.,
vol. 68, no. 5, pp. 2850–2862, May 2020.

[19] J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang,
H. Shankar, and R. Wesel, “Enhanced precision through multiple reads
for LDPC decoding in flash memories,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 880–891, May 2014.

[20] X. He, K. Cai, and Z. Mei, “Mutual information-maximizing quantized
belief propagation decoding of regular LDPC codes,” arXiv, 2019.
[Online]. Available: https://arxiv.org/abs/1904.06666

[21] X. He, K. Cai, and Z. Mei, “On finite alphabet iterative decoding of
LDPC codes with high-order modulation,” IEEE Commun. Lett., vol. 23,
no. 11, pp. 1913–1917, Nov. 2019.

[22] F. F. Yao, “Efficient dynamic programming using quadrangle inequali-
ties,” in Proc. 12th Annual ACM Symposium on Theory of Computing.
New York, NY, USA: ACM, 1980, pp. 429–435.

[23] S. Verdú, “α-mutual information,” in Proc. IEEE Information Theory
and Applications Workshop, Feb. 2015, pp. 1–6.

[24] S. Ho and S. Verdú, “Convexity/concavity of Rényi entropy and α-
mutual information,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 745–749.

[25] I. Csiszár, “Generalized cutoff rates and Rényi’s information measures,”
IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 26–34, Jan. 1995.

[26] W. Bein, M. J. Golin, L. L. Larmore, and Y. Zhang, “The Knuth-Yao
quadrangle-inequality speedup is a consequence of total monotonicity,”
ACM Trans. Algorithms, vol. 6, no. 1, pp. 17:1–17:22, Dec. 2009.

[27] R. Gallager, “A simple derivation of the coding theorem and some
applications,” IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 3–18, Jan.
1965.

[28] Y. Polyanskiy and S. Verdú, “Arimoto channel coding converse and
Rényi divergence,” in Proc. Annual Allerton Conference on Commu-
nication, Control, and Computing, Sep. 2010, pp. 1327–1333.

https://arxiv.org/abs/1904.06666

	I Introduction
	I-A Contributions of This Paper
	I-B Organization
	I-C Notations

	II Preliminaries
	III Dynamic Programming for Sequential Deterministic Quantization
	III-A Dynamic Programming Algorithm
	III-B A Sufficient Condition

	IV Reducing the Complexity of Dynamic Programming
	IV-A First Technique: SMAWK Algorithm
	IV-B Second Technique
	IV-C Remarks

	V -Mutual Information-Maximizing Quantizer
	VI Quantization of AWGN Channels with PAMs
	VII Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Lemma 4
	Appendix D: Proof of Theorem 3
	Appendix E: Proof of Theorem 4
	References

