
ar
X

iv
:1

91
2.

07
11

2v
2 

 [
cs

.I
T

] 
 1

6 
Fe

b 
20

20

Joint Beamforming, User Association, and Height

Control for Cellular-Enabled UAV Communications

Jiancao Hou, Member, IEEE, Yansha Deng, Member, IEEE, and

Mohammad Shikh-Bahaei, Senior Member, IEEE

Abstract

Supporting reliable and seamless mobility for aerial users, such as unmanned aerial vehicles (UAVs),

is a key challenge for the next-generation cellular systems. To tackle this challenge, we propose a

joint beamforming, user association, and UAV-height control framework for cellular-connected multi-

UAV networks with multiple antenna base stations (BSs). With the aim of maximizing the minimum

achievable rate for UAVs subject to co-existed terrestrial user equipment’s rate constraints, we devise a

hierarchical bi-layer iterative algorithm to optimize BSs’ beamforming vectors, UAV association matrix,

and the height of UAVs jointly. With the aid of projection gradient method in inner layer iteration

and geometric program modelling plus convex-concave procedure in outer layer iteration, our proposed

algorithm is proved to converge to a local optimum. Taking mobility characteristics of UAVs into account,

we also exploit our proposed algorithm for imperfect channel estimation scenario. Numerical results

show that our proposed algorithm can achieve improved UAVs’ minimum achievable rate compared with

that of the conventional nearest association of UAVs for both perfect and imperfect channel estimation

scenarios. Moreover, we also examine the trade-off between the UAVs’ minimum achievable rate and

the frequency for updating optimization variables with single moving UAV.

Index Terms

MIMO beamforming, UAV association, height control, spectrum efficiency, cellular network.

I. INTRODUCTION

Due to the ability of flexible on-demand deployment and high line-of-sight (LoS) probability,

unmanned aerial vehicles (UAVs) have become appealing solutions, which will likely open

attractive vertical markets for a wide range of applications, such as aerial inspection/rescue,

cargo delivery, surveillance, and precision agriculture, etc [1]–[4]. However, traditional UAV
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communications mainly rely on simple and direct connections between the UAV and the dedicated

ground user via unlicensed frequency band, where data rate, security, and operational coverage

can hardly be guaranteed. To overcome these limitations and provide reliable and seamless

connectivity, UAVs need to be controlled and connected over a wider area wireless network,

where terrestrial cellular network is well positioned to provide the services due to its pervasive

deployment and guaranteed accessibility [4], [5].

Despite the potential advantages might be brought via cellular-connected UAVs, the integration

of UAVs to the traditional terrestrial networks are also envisioned to bring important challenges

to the considered systems. Specifically, with ability of flying in a three-dimension geographic

area for UAVs, their favourable LoS propagation conditions could be one of their strongest

limiting factors, since the significant LoS interference generated by UAVs via uplink transmission

can deteriorate the co-existed ground user equipment’s (G-UE) rates either in the same cell or

neighbouring cell. Conversely, the downlink transmission of ground base station (G-BS) can also

generate severe interference to the UAV associated with the neighbouring G-BS [5], [6]. Note

that, contemporary G-BSs in cellular network are designed to support reliable connectivity for

G-UEs with the nearest user association process [7]–[9]. However, when one or many UAVs

present and tend to associate to G-BSs, due to strong co-channel interference and dynamically

changes of fading channels, the nearest user association may not lead to the optimal system

performances. In this case, how to handle the co-channel interference and user association with

respect to UAV mobility robustness will bring challenges [5], [10]–[12].

In light of these challenges, the authors in [13] studied the feasibility of integrating UAVs

into existing cellular networks by presenting a generic framework for evaluating the coverage

performance. The results demonstrated that the favourable propagation condition that UAVs

enjoy due to their altitudes is also their strongest limiting factor, and the negative effect can be

substantially reduced by optimizing UAV flying altitude, G-BS height and antenna down-tilted

angle. Meanwhile, the authors in [14] took UAV mobility into account with the target to minimize

the UAV’s mission completion time by optimizing its trajectory by the means of graph theory. The

mobility challenges, such as handover’s reliability/latency and mobility performance, for cellular-

enabled UAV communications was evaluated in [8] via simulations, where the results revealed

that handover/radio link failure can be directly linked with the height of UAV, and advanced

interference cancellation techniques should be complemented with additional enhancements to



improve mobility robustness. It is noted that the above solutions for providing a fast and reliable

connection between UAV and cellular network only considered single-antenna based G-BSs,

where spatial multiplexing and/or diversity gains have not been exploited.

Consider UAVs and G-UEs co-exist within the same time and frequency, and G-BSs are

equipped with multiple antennas. The authors in [7] evaluated the performances of cellular-

connected downlink UAVs communications supported by massive multiple input multiple output

(MIMO) enabled network with zero-forcing (ZF) beamforming, where users tend to associate to a

nearby G-BS. In [15], the authors derived the successful content delivery probability of a cellular-

enabled UAV network and shown that exploiting conjugate beamforming from massive MIMO

enabled G-BSs to spatially multiplex an UAV and G-UEs can substantially improve the UAV’s

performance. Such scheme assumed perfect channel state information (CSI) at G-BSs. Note

that, both [7] and [15] assumed that only massive MIMO combining with simple beamforming

methods was exploited. In practice, due to the imperfect channel estimation and the size of

communication equipments, massive MIMO may not always be feasible solutions. Motivated

by above discussion, in this paper, we propose a joint beamforming, user association, and

UAV-height control framework to maximize the minimum achievable rate for UAV in cellular-

enabled multiple UAVs uplink communication systems with limited number of antennas per

G-BS. Moreover, in consideration of mobility of UAVs, we further study the proposed algorithm

by taking imperfect CSI into account.

The main contributions of this paper can be summarized as follows:

• We formulate the minimum achievable rate for UAV optimisation problem with G-UE’s

target rate constraints being guaranteed via jointly optimizing the UAV association matrix,

G-BSs’ beamforming vectors, and the height of the UAVs. To solve this mixed integer

non-linear optimization problem, a hierarchical bi-layer searching algorithm is proposed

to find the optimal solution iteratively. Based on this, we also analyze the computational

complexity and convergence of the proposed algorithm theoretically.

• The proposed algorithm consists of two main iterations: In outer layer iteration, we fix the

height of UAVs and jointly optimize UAV association matrix and beamforming vectors with

helps of bi-section search and projection gradient method. Then, given the UAV association

matrix, we jointly optimize the height of UAVs and beamforming vectors by exploiting

geometric program modeling and convex-concave procedure in inner layer iteration.



TABLE I: Summarizes the basic notations in the paper

Symbol Usage

RN , CN The set of real and complex N -tuples, respectively.

a, A The column vector and matrix, respectively.

[A]m,n The element in the mth row and the nth column of matrix A.

A∪ B The union of set A and set B.

| · | The absolute value of a scalar.

‖ · ‖ Euclidean norm of a vector or Frobenius norm of a matrix.

‖ · ‖1 The taxicab norm of a vector.

E{·} The expectation of random variable(s).

(·)−1 Inverse of a matrix.

min{a, b} The minimum value between a and b.

{·} A set.

IN The identity matrix with size of N ×N .

1N The all one column vector with size of N × 1.

(·)H The vector (or matrix) conjugate transpose.

(·)T The vector transpose.

• Taking into account mobility of UAVs, we relax the perfect CSI assumption and study

the proposed scheme in statistical channel environments, i.e., each G-BS has an estimated

version plus the estimation error covariance of its related channel links. In this case, we

derive effective SINRs for our imperfect CSI scenario. Numerical results show that the

proposed algorithm outperforms the conventional UAV association via the nearest G-BS in

terms of the minimum achievable rate for UAV, especially when co-channel interference

effects is small. In addition, considering one of UAVs is moving, the proposed algorithm

can provide much stable rate performance than the conventional UAV association policy.

The rest of the paper is organized as follows. Section II presents system model and problem

formulation of the proposed UAV-enabled MIMO cellular network. Section III provides the

proposed hierarchical bi-layer search method to solve the formulated objective accompanied

with its computational complexity and convergence analysis. Then, we extend the proposed

scheme working in imperfect CSI condition in Section IV. Section V provides the numerical

results and the corresponding discussion. Section VI concludes the paper. Throughout the paper,

the main notations are summarized in Tab. I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider the uplink transmission of cellular-connected UAV networks,

where multiple UAVs co-exist with the G-UEs to upload data to their associated G-BSs. The

G G-BSs are assumed with equal height of hG, with its set denoted as G = {1, . . . , G}. Each
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Fig. 1: An example of multi-UAV co-existed cellular network.

G-BS is equipped with N antennas and serves K pre-associated single-antenna G-UEs. Without

loss of generality, we assume the set of G-UEs as K = {1, . . . , K
︸ ︷︷ ︸

K1

, . . . , (G− 1)K + 1, . . . , GK
︸ ︷︷ ︸

KG

}

in the network, where Ki is a group of G-UEs associated with the ith G-BS. We assume that

there are U single-antenna UAVs flying above the ground, where each UAV can only associate

with one G-BS, and the set of UAVs is denoted as U = {1, . . . , U}. By exploiting the spatial

multiplexing gain, each G-BS with N receive antennas is allowed to associate with a maximum

of N − K UAVs as long as its associated K G-UEs’ target rate constraints are not violated.

Let’s denote Ui(⊂ U) as the set of UAVs associated with the ith G-BS, where Ui is defined as

the cardinality of the set Ui. Combining with K pre-associated G-UEs per cell, the total number

of served UEs by the ith G-BS can be expressed as Ji , K + Ui, where Ji ≤ N and its set is

denoted as Ji = Ki ∪ Ui. It is assumed that the transmissions from UAVs and G-UEs to G-BSs

are with universal time and frequency reuse, and the G-BSs estimate their associated channel

links including the location of UAVs by exploiting the pilot-based channel estimation method

within fixed coherent time [16].

A. Channel Models

The channel links between G-UEs and G-BSs follow standard territorial cellular channel

models, which consist of the non Line-of-Sight (NLoS) large-scale fading and the small-scale

multi-path fading. To avoid collisions and follow air traffic regulations, we assume the flying

heights of UAVs are no less than 100 meters and no more than 300 meters. In this case, by

complying with channel models defined in 3GPP Release 15 [5], the channel links between

UAVs and G-BSs are characterized as LoS large-scale fading and small-scale fading. In general,



the large scale fading between the ith G-BS and the jth UE can be expressed as

ζv(ri,j) = Avd
−αv

i,j = Av

[
r2i,j + (hj − hG)

2
]−αv

2 , i ∈ G, j ∈ K ∪ U , (1)

where Av, v ∈ {L,N}, is a constant representing the path loss at the reference distance di,j = 1

for either LoS or NLoS link. ri,j is the horizontal distance between the ith G-BS and the jth

UE, and hj is the vertical height of the jth UE. Here, if j ∈ K, then these UEs are G-UEs, such

that hj = 0; if j ∈ U , then these UEs are UAV, such that hmax = 300m ≥ hk ≥ hmin = 100m.

αv, v ∈ {L,N}, is the path loss exponents for either LoS or NLoS link. The small scale fading

channels are formulated by Nakagami-m model, e.g., hi,j ∈ CM , where the channel gain, e.g.,

Ωv, v ∈ {L,N}, for each entry follows a Gamma distribution with probability density function

(p.d.f.) as

fΩv
(ω) =

mmv
v ωmv−1

Γ(mv)
exp(−mvω). (2)

In (2), mv, v ∈ {L,N}, is the fading parameters for either LoS or NLoS link, and it is assumed

to be integers for analytical tractability.

B. Power Control and User Association

Following the standard, the G-UEs and UAVs perform uplink transmission using the statistics-

aware uplink power control as in [5], [16]. Such power control takes the average over the received

power, which is easier for implementation, especially for high mobility UAVs communication

systems. With given location information of the G-UEs, the transmit power of the kth G-UE

served by the ith G-BS can be formulated as

Pk = min{PK, BN · (r2i,k + h2
G)

αN
2 }, i ∈ G, k ∈ Ki, (3)

where BN > 0 is a cell-specific parameter for G-UE with NLoS, which is used to limit the

transmit power no more than its amplifiers to handle. PK is the maximum transmit power

constraint of a G-UE; ri,k is the horizontal distance between the kth G-UE and its associated

G-BS. For the uth UAV associated with the ith G-BS, its transmit power can be formulated as

Pi,u = min{PU, BL ·
[
r2i,u + (hu − hG)

2
]αL

2 }, i ∈ G, u ∈ Ui, (4)



where, similar to BN in (3), BL > 0 is a cell-specific parameter for UAV with LoS. PU is the

maximum transmit power constraint of a UAV. ri,u is the horizontal distance between the uth

UAV and its associated G-BS. Let’s define an association matrix A with the size of G×U , where

its elements (i.e., ag,u ∈ {0, 1}) represent the association status between the uth ∈ [1, . . . , U ]

UAV and the gth ∈ [1, . . . , G] G-BS. Here, ag,u = 1 means the uth UAV is associated with the

gth G-BS, otherwise ag,u = 0. The received signal yi ∈ CM at the ith G-BS can be modeled as

yi =
∑

k∈K

√

PkζN(ri,k)hi,ksk +
∑

g∈G

∑

u∈U

ag,u

√

Pg,uζL(ri,u)hi,usu + vi, (5)

where sk ∈ C and su ∈ C are the symbols transmitted by the kth G-UE and the uth UAV with

unit power, respectively, with E{|sk|2} = 1, ∀k ∈ K and E{|su|2} = 1, ∀u ∈ U . In addition,

vi ∈ CM is the additive white Gaussian noise (AWGN) with zero mean and variance σ2
0 . In (5),

the first summation term represents the signals received from G-UEs, and the second summation

term is the received signal from UAVs.

Introducing the ith G-BS generated beamforming vectors zj ∈ CM , ∀j ∈ Ji, ∀i ∈ G, for

co-channel interference mitigation and/or desired signal enhancement, the decoded signal at the

ith G-BS from the jth its associated UE is given by

zHj yi =
∑

k∈K

√

PkζN(ri,k)z
H
j hi,ksk +

∑

g∈G

∑

u∈U

ag,u

√

Pg,uζL(ri,u)z
H
j hi,usu + zHj vi, (6)

where j could be a G-UE or a UAV that is associated with the ith G-BS. For simplicity, we

denote D(j)
i,k , PkζN(ri,k)|zHj hi,k|2, F

(j)
i,u , ζL(ri,u)|zHj hi,u|2, and N (j)

i , |zHj vi|2. The received

SINR at the ith G-BS from its served kth G-UE can be written as

SINRi,k =
D(k)

i,k
∑

k′∈K/k D
(k)

i,k′
+
∑

g∈G

∑

u∈U ag,uPg,uF
(k)
i,u +N (k)

i

. (7)

Moreover, the received SINR at the ith G-BS from the uth UAV can be written as

SINRi,u =
ai,uPi,uF

(u)
i,u

∑

k∈K D(u)
i,k +

∑

g∈G

∑

u′∈U/u ag,u′Pg,u
′F (u)

i,u
′ +N (u)

i

. (8)

In (7) and (8), the first summation term in the denominator consists of both intra- and inter-

cells interference from G-UEs, and the second summation term in the denominator consists of

the interference from UAVs. Note that, a UAV formulates its transmit power according to the



distance to its associated G-BS. Different heights of the UAV and/or G-BS associations give

different power allocation and then generate different interference power to other UEs.

C. Problem Formulation

Following the above system descriptions, our main aim in this paper is to answer the following

question: for given target rate of individual G-UE in a cell, what will be the optimal strategy

for the UAV association, MIMO receive beamforming design, and UAVs height setup, which

can maximize the minimum achievable rate of the UAVs? Mathematically, we can formulate the

objective problem as

P1 : max
A,{hu}u∈U ,{zj}j∈K∪U

t

s.t. SINRi,u ≥ ai,ut, ∀i ∈ G, ∀u ∈ U , (9a)

SINRi,k ≥ γ, ∀i ∈ G, ∀k ∈ Ki, (9b)

G∑

i=1

ai,u = 1, ∀u ∈ U , (9c)

U∑

u=1

ai,u ≤ N −K, ∀i ∈ G, (9d)

hmin ≤ hu ≤ hmax, ∀u ∈ U , (9e)

ai,u ∈ {0, 1}, ∀i ∈ G, ∀u ∈ U , (9f)

where the first constraint (9a) in problem P1 is to guarantee UAVs’ minimum SINR no less than

t; the second constraint (9b) is to guarantee all individual G-UE’s target SINR no less than γ;

(9c) is to limit that each UAV must associate with one and only one G-BS; (9d) indicates that

each G-BS can maximally associate with N −K UAVs due to its limited spatial DoFs; (9e) is

individual UAV’s height constraint; (9f) is the integer value for the association matrix A. It is

shown that problem P1 is a mixed integer non-linear optimization problem, which in general is

difficult to handle or find the global optimal solution. This motivate us in the following section

to develop the bi-layer search method to solve the problem.

III. THE PROPOSED BI-LAYER SEARCH METHOD

In this section, we mainly focus on solving the problem P1 using our proposed bi-layer search

method with the assumption that the perfect CSI of UAVs to G-BSs links and G-UEs to G-BSs



links are available at their corresponding G-BSs. Specifically, in outer layer iteration, with a

fixed UAVs’ heights hu, ∀u ∈ U , we iteratively optimize the UAV association matrix A and

beamforming vectors zj , ∀j ∈ K ∪ U , via the proposed bi-section search combining with the

gradient projection method [17]; In inner layer iteration, by giving the UAV association matrix A

from the outer layer iteration, the optimal UAVs’ heights hu, ∀u ∈ U , and beamforming vectors

zj , ∀j ∈ K ∪ U , can be jointly obtained with the help of the proposed generalized geometric

programming (GGP) [18] plus the convex-concave procedure (CCP) [19].

A. Outer Layer Iteration

By fixing the UAVs’ height hu, ∀u ∈ U , the optimal UAV association matrix A and beam-

forming vectors zj , ∀j ∈ K ∪ U , can be obtained by solving the following sub-problem

P1.1 : max
A,{zj}

t

s.t. SINRi,u ≥ ai,ut, ∀i ∈ G, ∀u ∈ U , (10a)

SINRi,k ≥ γ, ∀i ∈ G, ∀k ∈ Ki, (10b)

G∑

i=1

ai,u = 1, ∀u ∈ U , (10c)

U∑

u=1

ai,u ≤ N −K, ∀i ∈ G, (10d)

ai,u ∈ {0, 1}, ∀i ∈ G, ∀u ∈ U . (10e)

Problem P1.1 is a mixed integer non-linear programming problem, which is non-convex and

NP-hard due to the coupling among integer elements of association matrix A, beamforming

vectors zj , ∀j, and the target SINR of UAVs t. To solve the problem P1.1, we first need to

decouple the ai,ut term on the right-hand side of constraint (10a), where this term represents

that the target SINR t of UAV is met only if the uth UAV is associated with the ith G-BS. In

this case, by introducing the big-M technique [20], we can rewrite the constraint (10a) as

ai,uPi,uF
(u)
i,u +M(1 − ai,u)

∑

k∈K D(u)
i,k +

∑

g∈G

∑

u′∈U/u ag,u′Pg,u′F (u)

i,u′ +N (u)
i

≥ t, (11)

where M should be a properly large number so that, when ai,u = 0, constraint (10a) is

not violated, and when ai,u = 1, term M(1 − ai,u) = 0 makes (11) converge back to the



original constraint (10a). Such technique aims to find a feasible solution of original problem by

introducing an auxiliary variable. The detailed explanation of how to find the proper value of M

is presented in Appendix A. It is worth noting that M cannot be arbitrary large, as an arbitrary

large M may affect the operation accuracy of computer simulations.

Following the big-M transformation, the constraint (11) is still non-convex due to the coupling

among ag,u′ , t and zi. Moreover, the constraint (10b) is also non-convex due to the coupling

between ag,u and zi. Apart from those, the problem contains binary variables ai,u (i.e. see

(10c)), which makes the problem NP-hard [21]. Thus, by replacing (10a) with (11), we need

to implement a sub-layer iterative process within this outer layer iteration to find the optimal

A and zi, ∀i of problem P1.1. Specifically, our proposed sub-layer iterative method is mainly

composed of a sub-layer outer iteration and a sub-layer inner iteration, where in this sub-layer

outer iteration, the bi-section search is used to find the maximum achievable target SINR t of

UAV. Then, in the sub-layer inner iteration, given a particular target t, the optimal A and zi, ∀i

can be found by relaxing the binary variables, i.e. ai,u ∈ {0, 1} into ai,u ∈ [0, 1], and using a

generalized fixed-point method [22] to determine whether the given t is feasible or not.

1) Sub-Layer Outer Iteration: Let’s use the superscript (n) to denote the iteration number in

the outer loop. In addition, we pre-define the lower bound and the upper bound of target SINR

of UAV as t and t, respectively. For each iteration, if the result of the previous sub-layer inner

iteration loop is ‘feasible’, we will update







t(n+1) = t(n)+t
2

,

t = t(n).
(12)

Otherwise, if the result of the previous sub-layer inner iteration loop is ‘infeasible’, we have







t(n+1) = t(n)+t
2

,

t = t(n).
(13)

The outer iteration is terminated when t− t ≤ ǫ, where ǫ is a small number used for the iteration

stop criteria.



2) Sub-Layer Inner Iteration: Given a target SINR t of the UAV from the sub-layer outer

iteration, to determine whether it is feasible or not, we shall solve the following problem:

P1.1.2 : max
A,{zj}

G∑

i=1

U∑

u=1

ai,u

s.t. (11), (10b), (10d), (10e) (14a)

G∑

i=1

ai,u ≤ 1, ∀u ∈ U . (14b)

In this problem, we aim to jointly optimize A and {zj}j∈K∪U in order to find the maximum

number of UAVs achieving the minimum target rate t. Following our proposed optimization

procedure, if each UAV can be associated to a G-BS, i.e.,
∑G

i=1

∑U
u=1 ai,u = U , the problem

P1.1.2 is considered as ‘feasible’, and (12) will be used to update t in sub-layer outer iteration.

However, if
∑G

i=1

∑U
u=1 ai,u < U , the problem P1.1.2 is considered as ‘infeasible’, and (13)

will be used to update t in sub-layer outer iteration.

Problem P1.1.2 can be solved by firstly relaxing the binary variables of A to continuous

variables, i.e., ai,u ∈ [0, 1], ∀i, u, and then using a generalized fixed-point method, where at

each iteration we update either A or {zj}j∈K∪U while the other variables are kept fixed. More

specifically, for a given A, each G-BS first computes

z∗i,u= arg max
‖zi,u‖=1

ai,uBLALz
H
i,uhi,uh

H
i,uzi,u +M(1− ai,u)z

H
i,uzi,u

zHi,u

(
∑

k∈K D̃i,k +
∑

g∈G

∑

u′∈U/u ag,u′ P̃g,u′ F̃i,u′ + σ2
0I
)

zi,u

, (15)

and

z∗i,k= arg max
‖zi,k‖=1

PkζN(ri,k)z
H
i,khi,kh

H
i,kzi,k

zHi,k

(
∑

k′∈K/k D̃i,k′ +
∑

g∈G

∑

u∈U ag,uP̃g,uF̃i,u + σ2
0I
)

zi,k

, (16)

for all UAVs and G-UEs, where D̃i,k , PkζN(ri,k)hi,kh
H
i,k and F̃i,u , ζL(ri,u′ )hi,uh

H
i,u. In view of

the Rayleigh-Ritz quotient result [23], the optimal beamforming vector of (15) is the eigenvector

corresponding to the largest eigenvalue of




∑

k∈K

D̃i,k +
∑

g∈G

∑

u′∈U/u

ag,u′ P̃g,u′ F̃i,u′ + σ2
0I





−1

·
[
ai,uBLALhi,uh

H
i,u +M(1− ai,u)I

]
.

Similarly, the optimal beamforming vector of (16) is the eigenvector corresponding to the largest



eigenvalue of




∑

k′∈K/k

D̃i,k′ +
∑

g∈G

∑

u∈U

ag,uP̃g,uF̃i,u + σ2
0I





−1

·
[
PkζN(ri,k)hi,kh

H
i,k

]
.

Subsequently, the optimal A with continuous elements can be obtained by solving the relaxed

version of the problem P1.1.2 with the fixed {zj}j∈K∪U , which becomes a convex problem. It

is worth noting that, to optimize the continuous elements of A, we should use the projection

gradient descent (PGD) steps instead of directly finding the global optimality of P1.1.2 with

fixed {zj}j∈K∪U . This is because if we directly find the global optimality at the initial steps, the

elements of A will be fixed during the entire iterative process. In other words, there would be no

further optimization of the beamforming vectors {zj}j∈K∪U . To elaborate the PGD method, we

first reshape the association matrix A into a vector form (e.g., a ∈ RGU ) with size of GU× 1,

and define the constraints set in problem P1.1.2 as Q. Starting from a initial point a(0) ∈ Q,

the PGD iteratively optimizes the following equation until a stopping criteria is met:

a(n+1) = PQ

(
a(n) + δ1GU

)
, (17)

where 1GU is an all one column vector with size of GU× 1. δ is the carefully chosen step size.

PQ(·) is the projection operator, which is

PQ(a
(n)) = argmin

a∈Q

1

2
‖a− a(n)‖22. (18)

By giving a(n), the projection process in (18) is trying to find a column vector a ∈ Q with

the same size as a(n) which is ‘closest’ to a(n). After the joint iterative optimization of A with

continuous elements and {zj}j∈K∪U converges, the binary linear programming (BLP) method

[24] can be used to find an optimal solution of the relaxed problem P1.1.2 with the fixed

optimized {zj}j∈K∪U , for which the assignment variables {ai,u} are binary.

The overall steps to solve problem P1.1.2 is given in Algorithm 1 in detail.

The major computational complexity of Algorithm 1 lies in iteratively formulating beamforming

vectors for each UE (i.e. Step 4) and the PGD method to find optimal association matrix (i.e.

Step 5), and the BLP to finalize the optimal integer values of the association matrix (i.e. Step

7). Let us assume L1 as the number of iterations to jointly optimize the beamforming vectors



Algorithm 1 The Proposed Fixed-Point Method for Problem P1.1.2

1: Initialize: Use superscript (n) to denote the iteration number, give t and a(0) ∈ Q;

2: Set n = 1;

3: Repeat

4: Fix a(n−1) and find the optimal {z(n)j }j∈K∪U using (15) and (16);

5: Fix {z(n)j }j∈K∪U and apply the PGD method to the relaxed optimization problem

P1.1.3 : max
a(n)

G∑

i=1

U∑

u=1

ai,u

s.t. (11), (10b), (10d), (14b), (19a)

0 ≤ ai,u ≤ 1, ∀i ∈ G, ∀u ∈ U , (19b)

according to (17) and (18);

6: Until convergence

7: Fix the optimized {z∗j}j∈K∪U and apply BLP method to problem P1.1.3 to find the optimal

binary {a∗i,u}∀i∈G,∀u∈U ;

8: Return: {a∗i,u}∀i∈G,∀u∈U and {z∗j}j∈K∪U .

and association matrix. Thus, in each iteration, the worst-case complexity for optimizing the

beamforming vectors is O((GK+U)N3), and the interior-point method for optimizing assocation

matrix is O((GU)3 log(1/ǫ1)), where O(log(1/ǫ1)) is the complexity of interior-point iterations.

In addition, following the work in [25], our BLP problem can be converted into convex quadratic

programming (CQP) problem, thus interior-point method can also be used to solve the problem

in polynomial time. In summary, the worst-case computational complexity of Algorithm 1 is

O(L1(GK + U)N3 + (L1 + 1)(GU)3 log(1/ǫ1)).

B. Inner Layer Iteration

Given the optimal UAV association matrix A from the outer layer iteration, in this inner layer

iteration process, we want to jointly optimize UAVs’ heights hu, ∀u ∈ U and beamforming

vectors zj , ∀j ∈ K ∪ U . Specifically, let us denote xu , (hu − hG)
2, then the UAVs’ height

related constraints can be formulated as

(hmin − hG)
2 ≤ xu ≤

G∑

i=1

ai,u

[(
PU

BL

) 2
αl

− r2i,u

]

, ∀u ∈ U . (20)



For ease of demonstration, we assume that the required transmit power of a UAV is always less

than its maximum transmit power constraint PU. Such assumption can be easily relaxed to more

general cases if the association matrix A is pre-determined. Therefore, we have

Pi,u = P̃i,u , ai,uBL ·
[
r2i,u + xu

]αl
2 , ∀i ∈ G, ∀u ∈ U . (21)

With the fixed A, substituting (hu−hG)
2 with xu and substituting Pi,u with P̃i,u for all equations

in problem P1, the sub-problem for inner layer iteration can be formulated as

P1.2 : max
{zj},{xu}

t

s.t. S̃INRi,u ≥ ai,ut, ∀i ∈ G, ∀u ∈ U , (22a)

S̃INRi,k ≥ γ, ∀i ∈ G, ∀k ∈ Ki, (22b)

(20), (22c)

where we define

S̃INRi,u ,
ai,uBLAL|zHu hi,u|2

∑

k∈K D(u)
i,k +

∑

g∈G

∑

u′∈U/u ag,u′ P̃g,u
′F (u)

i,u
′ +N (u)

i

, (23)

and

S̃INRi,k ,
D(k)

i,k
∑

k′∈K/k D
(k)

i,k′
+
∑

g∈G

∑

u∈U ag,uP̃g,uF
(k)
i,u +N (k)

i

. (24)

Problem P1.2 can also be solved by using the generalized fixed-point method, which was used

to solve problem P1.1.2 in Sec. III-A. Specifically, given xu, ∀u ∈ U , each G-BS can compute

the beamforming vectors for each of its associated UAV(s) as

z∗i,u= arg max
‖zi,u‖=1

ai,uBLALz
H
i,uhi,uh

H
i,uzi,u

zHi,u

(
∑

k∈K D̃i,k +
∑

g∈G

∑

u′∈U/u ag,u′ P̃g,u′ F̃i,u′ + σ2
0I
)

zi,u

= ai,uηi,u




∑

k∈K

D̃i,k +
∑

g∈G

∑

u′∈U/u

ag,u′ P̃g,u′ F̃i,u′ + σ2
0I





−1

hi,u, ∀i ∈ G, ∀u ∈ U , (25)

where ηi,u denotes the normalization factor and is used to guarantee ‖zi,u‖ = 1; D̃i,k ,

PkζN(ri,k)hi,kh
H
i,k; F̃i,u′ , ζL(ri,u′ )hi,u′hH

i,u′ . In addition, the beamforming vectors for each of



G-BS associated G-UE can be formulated as

z∗i,k= arg max
‖zi,k‖=1

PkζN(ri,k)z
H
i,khi,kh

H
i,kzi,k

zHi,k

(
∑

k′∈K/k D̃i,k′ +
∑

g∈G

∑

u∈U ag,uP̃g,uF̃i,u + σ2
0I
)

zi,k

= ηi,k




∑

k
′
∈K/k

D̃i,k′ +
∑

g∈G

∑

u∈U

ag,uP̃g,uF̃i,u + σ2
0I





−1

hi,k, ∀i ∈ G, ∀k ∈ Ki, (26)

where ηi,k denotes the normalization factor and is used to guarantee ‖zi,k‖ = 1.

Given the above formulated beamforming vectors, the optimal UAVs’ height can be calculated

as follow. As we can see, the second term in the denominator of SINR in (22a) can be expanded

to

∑

g∈G

∑

u′∈U/u

ag,u′ P̃g,u
′F (u)

i,u′ =
∑

u′∈Ui/u

ai,u′BLAL|z
H
i,uhi,u

′ |2

+
∑

g∈G/i

∑

u′∈U/Ui

ag,u′BLAL|z
H
u hi,u′ |2

(
r2
g,u′ + xu′

r2
i,u′ + xu′

)αl
2

, (27)

where the first term in the right-hand side of (27) is the intra-cell interference, and the second

term in the right-hand side of (27) is the inter-cell interference. Similarly, the second term in

the denominator of SINR in (22b) can be expanded to

∑

g∈G

∑

u∈U

ag,uP̃g,uF
(k)
i,u =

∑

u∈Ui

ai,uBLAL|z
H
k hi,u|

2 +
∑

g∈G/i

∑

u∈U/Ui

ag,uBLAL|z
H
k hi,u|

2

(
r2g,u + xu

r2i,u + xu

)αl
2

,

(28)

where the first term in the right-hand side of (28) is the intra-cell interference, and the second

term in the right-hand side of (28) is the inter-cell interference.

Let us define F̂ (j)
i,u , BLAL|zHj hi,u|2, I

(u)
i ,

∑

k∈KD(u)
i,k +

∑

u′∈Ui/u
ai,u′BLAL|zHu hi,u

′ |2 as

the sum of intra-cell interference at the ith G-BS for the uth UAV, and I(k)
i ,

∑

k′∈K/k D
(k)

i,k′
+

∑

u∈Ui
ai,uBLAL|zHk hi,u|2 as the sum of intra-cell interference at the ith G-BS for the kth G-UE.

Through introducing the auxiliary variables xu
i,g, ∀i, g 6= i, u, the problem P1.2 with fixed zi,u



and zi,k, ∀i, u, k, can be reformulated as

P1.2.1 : max
{xu},{xu

i,g}
t

s.t. ŜINRi,u ≥ ai,ut, ∀i ∈ G, ∀u ∈ U , (29a)

ŜINRi,k ≥ γ, ∀i ∈ G, ∀k ∈ Ki, (29b)

(
r2g,u + xu

r2i,u + xu

)αl
2

≤ xu
i,g, ∀i, g 6= i ∈ G, ∀u ∈ U , (29c)

(20), (29d)

where we define

ŜINRi,u ,
ai,uF̂u

i,u

I(u)
i +

∑

g∈G/i

∑

u
′
∈U/Ui

ag,u′ F̂ (u)

i,u′xu′

i,g +N (u)
i

, (30)

and

ŜINRi,k ,
D(k)

i,k

I(k)
i +

∑

g∈G/i

∑

u∈U/Ui
ag,uF̂

(k)
i,u x

u
i,g +N (k)

i

. (31)

Problem P1.2.1 is still non-convex due to the coupling between xu
′

i,g and t in (29a) and the

non-convexity on the left-hand side in (29c). Inspired by the GGP modelling as in [18], the

following lemma will help us to convert the non-convex problem P1.2.1 into a convex problem.

Lemma 1: If a function f(x) is a posynomial, i.e.,

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n , (32)

where ck > 0 is constant, ai ∈ R is exponents, and x1, x2, · · · , xn are variables. By defining

yi = log xi (so xi = eyi), the function

F (y) = log f(ey) (33)

is convex [18].

According to Lemma 1, constraint (29a) is a standard posynomial inequality. By defining

yui,g , log xu
i,g (so xu

i,g = ey
u
i,g), ∀i, g 6= i ∈ G, ∀u ∈ U , and yt , log t (so t = eyt), constraint



(29a) can be converted to a convex constraint, which is

ai,uI
(u)
i

ai,uF̂u
i,u

· eyt +
∑

g∈G/i

∑

u′∈U/Ui

ai,uag,u′ F̂ (u)

i,u′

ai,uF̂u
i,u

· ey
u
′

i,g · eyt +
ai,uN

(u)
i

ai,uF̂u
i,u

· eyt − 1 ≤ 0. (34)

Similarly, constraint (29b) is also a standard posynomial inequality, and in order to in line with

(34), we have

γI(k)
i

D(k)
i,k

+
∑

g∈G/i

∑

u∈U/Ui

γag,uF̂
(k)
i,u

D(k)
i,k

ey
u
i,g +

γN (k)
i

D(k)
i,k

− 1 ≤ 0. (35)

In addition, by introducing logarithm operation and then replacing the concave part of left-hand

side of constraint (29c) by its first order Taylor expansion, the constraint (29c) can be converted

into

log(r2g,u + xu) +
1

r2g,u + xu

(xu − xu)− log(r2i,u + xu) ≤
2

αl

yui,g, (36)

where xu is the optimal solution obtained from the previous iteration. Based on the CCP as

in [19], the solution of non-convex problem P1.2.1 can be obtained by successively solving a

sequence of the following convex problem:

P1.2.2 : max
yt,{xu}{y

(u)
i,g }

yt

s.t. (20), (34), (35), (36), (37a)

where the standard interior point method [26] can be used to solve the problem P1.2.2.

The overall steps to solve problem P1.2 is given in Algorithm 2 in detail.

Algorithm 2 The Proposed Fixed-Point Method for Problem P1.2

1: Initialize: Use superscript (n) to denote the iteration number, give A, and set h
(0)
u =

hmin, ∀u ∈ U ;

2: Set n = 1;

3: Repeat

4: Fix {h(n−1)
u }∀u∈U and find the optimal {z(n)i,u }∀i∈G,∀u∈U and {z(n)i,k }∀i∈G,∀k∈G−UEi

using (25)

5: and (26), respectively;

6: Fix {z(n)i,u }∀i∈G,∀u∈U and {z(n)i,k }∀i∈G,∀k∈G−UEi
and apply CCP at starting point x(n−1)

u =

7: (h
(n−1)
u − hG)

2, ∀u ∈ U to solve problem P1.2.2 and obtain the solution {h(n)
u }∀u∈U ;

8: Until convergence

9: Return: {h∗
u}∀u∈U , {z∗i,u}∀i∈G,∀u∈U and {z∗i,k}∀i∈G,∀k∈G−UEi

.



The major computational complexity of Algorithm 2 lies in the minimum mean square error

based beamforming vector formulation and successive CCP for optimizing UAVs’ height per

outer iteration. Let us assume the number of outer fixed-point iterations as L2 and the number

of iterations for successive CCP as L3. In each outer iteration, the main computational complexity

for optimizing beamforming vectors is O((GK+U)3, and the complexity for optimizing UAVs’

height with CCP is O(L3(U + V + 1)3 log(1/ǫ1)), where V denotes the number of random

variables of xu
i,g, ∀i, g 6= i ∈ G, ∀u ∈ U . Thus, the worst-case computational complexity of

Algorithm 2 is O(L2(GK + U)3 + L2L3(U + V + 1)3 log(1/ǫ1)).

C. Algorithm Outline and Convergence Analysis

1) Algorithm Outline: Combining the joint UAV association matrix A and beamforming

vectors optimization in Sec. III-A and the joint UAVs’ height and beamforming vectors opti-

mization in Sec. III-B, the proposed hierarchical bi-layer search method to solve problem P1

can be outlined in following Algorithm 3.

Algorithm 3 The Proposed Bi-Layer Search Method for Problem P1

1: Initialize: Use superscript (n) and (m) to denote the iteration numbers, give t(0) = t+t
2

, and

set h
(0)
u = hmin, ∀u ∈ U ;

2: Set n = 1;

3: Repeat

4: Give {h(n−1)}∀u∈U and set m = 1;

5: Repeat

6: Give t(m−1), solve problem P1.1.2 using Algorithm 1, and identify the problem P1.1.2
7: ‘feasible’ or not;

8: Update t(m) by using (12) or (13);

9: Until convergence

10: Give A(n), solve problem P1.2 using Algorithm 2 and obtain {h(n)
u }∀u∈U ;

11: Until convergence

12: Return: A∗, {h∗
u}∀u∈U , {z∗i,u}∀i∈G,∀u∈U and {z∗i,k}∀i∈G,∀k∈G−UEi

.

By involving the computational complexity of Algorithm 1 and Algorithm 2, the polynomial

time computational complexity for solving problem P1 is O(L4(L1(GK + U)N3 + (L1 +

1)(GU)3 log(1/ǫ1)) log(1/ǫ2) + L4(L2(GK + U)3 + L2L3(U + V + 1)3 log(1/ǫ1))), where L4

denotes the number of iterations of the proposed bi-layer search method, and O(log(1/ǫ2)) is

the complexity of the bisection method involved in the outer layer iteration.



2) Convergence of the Inner Layer Iteration: To show the convergence of the inner layer iter-

ation, we first introduce the following Proposition to show that f(t), representing the maximum

number of active UAVs, is strictly monotonically decreasing.

Proposition 1: For any given feasible target SINRs for both UAVs and G-UEs, the maximum

number of activated UAVs f(t) is strictly monotonically decreasing with respect to the target

SINR, i.e., t, of UAVs.

Proof: The monotonicity can be verified by contradiction. Assume that by given some values

t > t̃, we have f(t) ≥ f(t̃). Their solutions for problem P1.1.2 are denoted as {a∗, {z∗i,j}i∈G,j∈K∪U}

and {ã∗, {z̃∗i,j}i∈G,j∈K∪U}, respectively, where a = [a1,1, . . . , aG,U ]
T is the column-wise associa-

tion matrix A. From (11) and (10b), we can observe that SINR(ca, zi,j) < SINR(a, zi,j) for all

c > 1, which means we can always find a c0 > 1 such that SINR(c0a, zi,j) = t̃. In this case,

considering the assumption that f(t) ≥ f(t̃), we infer ‖c0a‖1 > ‖a‖1 ≥ ‖ã‖1, which means that

{ã∗, {z̃∗i,j}i∈G,j∈K∪U} is not optimal for t̃ and contradicts the original assumption.

With Proposition 1, we can first conclude that the bi-section method used in outer iteration in

Sec. III-A-1 can always guarantee the convergence. Then, for the inner iteration in Sec. III-A-2,

it is clear that in the steps of updating the UAV association matrix A, the objective function of

problem P1.1.2 is maximized while the beamforming vector {zi,j}i∈G,j∈K∪U are held fixed. On

the other hand, with fixed A and assisted by Proposition 1, finding the optimal beamforming

vectors to maximize the actual SINR will weaken the restriction of the target SINR, which

leave more DoFs to be used to further increase the number of active UAVs. Then, by following

the well-known fixed-point iteration theory [22], the convergence of the inner iteration (i.e.,

Algorithm 1) can be guaranteed as well.

3) Convergence of the Outer Layer Iteration: By inserting the optimal beamforming vectors

from (25) into the left-hand side of SINR constraints of UAVs in (29a), we obtain

SINRi,u = ai,uBLALh
H
i,u(I

(u)
i +

∑

g∈G/i

∑

u′∈U/Ui

ag,u′BLALh
H
i,u

′hi,u′xu
′

i,g +N (u)
i )−1hi,u, (38)

which is a continuously and monotonously decreasing function with respect to {xu
′

i,g}. In this

case, by iteratively updating {xu
′

i,g} within its feasibility region, we can always find a unique

fixed point, i.e., {xu
′
∗

i,g }, that lead to the maximum target SINR t∗ of UAVs. Thus, convergence

of outer iterations of Algorithm 2 can be guaranteed. On the other hand, the convergence proof



of CCP method to iteratively optimize {xu
′

i,g} and {xu} in Algorithm 2 can be found in the work

[19]. In summary, with the guaranteed convergence of inner layer and outer layer iterations, the

convergence of the proposed Algorithm 3 for solving the original problem P1 can be easily

guaranteed with the help of the fixed-point iteration theory [22].

IV. ROBUST PROPOSED ALGORITHM WITH IMPERFECT CSI

One of the key challenges in cellular-connected UAV communication systems is how to ensure

efficient mobility performances. In this case, perfectly tracking the rapidly changed channels is

almost impossible. Moreover, due to emerging trends in small-cell, the size of G-BS is getting

smaller. With the fixed number of G-BS antennas, if they are not well separated by more than the

coherence distance, different channel links will experience spatial correlations as well. Motivated

by these observations, in this section, we examine the proposed algorithm in Sec. III considering

statistical channel environments. In this case, the assumed imperfect CSI consists of the first and

second order statistics of the actual channel, i.e., the channel is modelled as the estimated version

plus its estimation error covariance. To this end, such channel model can be mathematically

formulated as [27], [28]

hi,j = hi,j +R
1/2
i hw, ∀i ∈ G, ∀j ∈ K ∪ U , (39)

where hw ∈ CN×1 denotes the channel estimation error, and has independent and identically

distributed (i.i.d.) elements distributed as CN (0, σ2
ch). In (39), Ri is defined as the long-term

receive correlation matrix at the ith G-BS, which can be formulated as a Toeplitz matrix [29],

defined by the correlation coefficient ρ (0 ≤ ρ ≤ 1) as [Ri]m,n = ρ|m−n|, ∀i ∈ G.

While the actual performance metric of communication systems, such as data rate or bit-error-

rate, is normally as a function of SINR. When G-BSs have perfect CSI, the aforementioned

metrics are all function of the same SINR as it defined. However, if imperfect CSI is assumed,

it is harder to measure system performances with direct link to the SINR. This motivates us to

focus on the ergodic capacity lower bound of the system to rigorously characterize the system

performances. It is worth noting that the exact capacity is unknown in general. In light of the

work in [30], we use one popular choice of capacity lower bound, named user-and-then-forget



(UatF) bound [31], to measure the system performance, which is

Ri,j , log2
(
1 + SINRi,j

)
, ∀i ∈ G, ∀j ∈ K ∪ U , (40)

and SINRi,j is denoted as the effective SINR. For G-UEs, we have

SINRi,k=
PkζN(ri,k)|E{zHk hi,k}|2

∑

k∈K E{D(k)
i,k }+

∑

g∈G

∑

u∈U ag,uPg,uE{F
(k)
i,u } − PkζN(ri,k)|E{zHk hi,k}|2 + σ2

0

,

(41)

and for UAVs, we have

SINRi,u =
ai,uPi,uζL(ri,u)|E{zHu hi,u}|2

∑

k∈K E{D(u)
i,k }+

∑

g∈G

∑

u∈U ag,uPg,uE{F
(u)
i,u } − ai,uPi,uζL(ri,u)|E{zHu hi,u}|2 + σ2

0

,

(42)

where the expectations E{·} in (41) and (42) are taken with respect to the small-scale fading

channel hi,j , ∀i ∈ G, ∀j ∈ K ∪ U . Following the imperfect CSI model in (40), we have

|E{zHj hi,j}|
2= zHj E{(hi,j +R

1/2
i hw)}E{(h

H

i,j + hH
wR

H/2
i )}zHj

= zHj (hi,j + E{R1/2
i hw})(h

H

i,j + E{hH
wR

H/2
i })zHj

= zHj hi,jh
H

i,jzj, (43)

and

E{|zHj hi,j|
2}= zHj E{(hi,j +R

1/2
i hw)(h

H

i,j + hH
wR

H/2
i )}zHj

= zHj (hi,jh
H

i,j + E{R1/2
i hwh

H
wR

H/2
i })zHj

= zHj hi,jh
H

i,jzj + σ2
chz

H
j Rizj. (44)

Then, by inserting (43) and (44) into (41) and (42), and replacing the SINR constraints in

(9a) and (9b) with (41) and (42), respectively, the proposed algorithm that was used to solve

problem P1 in Sec. III can be directly used to solve the newly formulated objective problem

with consideration of imperfect CSI. It is worth noting that, due to the mobility of UAVs, we

have to update our optimized UAV association matrix, beamforming vectors, and/or height of the

UAVs when a period of time lapses. More frequent updates will lead to more accurate system



evaluations. However, more updates will also bring the increased computational complexity. In

the next section, computer simulation will be used to evaluate the trade-off between UAVs’ rate

performances and the frequency to update the optimization variables.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, comprehensive simulations are provided to illustrate the performance of the

proposed joint beamforming, UAV association, and power control algorithm under both perfect

and imperfect CSI. Consider that three G-BSs (i.e., G = 3) are evenly distributed in a square

area of the size 600m× 600m to serve both UAVs and their pre-associated randomly distributed

G-UEs. The height of each G-BS is hG = 25m, and the noise power spectrum density is

σ2
0 = −174dBm/Hz. The channel path loss between UAV and G-BS is AL = 6 × 10−3, and

the path loss exponent is αL = 2.09. Correspondingly, the channel path loss between G-UE and

G-BS is AN = 10−3, and the path loss exponent is αN = 3.75. The small-scale fading for the

UAV to G-BS channel links follows Nakagami-3 distribution and the small-scale fading for G-

UE to G-BS channel links follows Nakagami-1 distribution. Following 3GPP standard [5], both

UAVs and G-UEs implement uplink power control with cell-specific parameters BL = 1.2×10−8

and BL = 1.67× 10−9, respectively. Throughout the simulations, 1000 channel realizations are

conducted to compute the average UAV’s/G-UE’s rate performances.

A. Achievable Rate Versus Number of G-BS Antennas

Considering perfect CSI estimation, in this subsection we examine the average minimum

achievable rate of our proposed optimization algorithm in comparison to the conventional UAV

association via the nearest G-BS (e.g., nearest association) for various number of G-BS antennas.

We set the number of G-UEs per cell as K = 2 and the total number of UAVs as U = 6. The

target G-UE’s SINR is set to be γ = 2. The UAVs’ minimum achievable rate is illustrated in

Fig. 2. In comparison to the nearest UAV association method, our proposed algorithm achieves

higher UAV’s rate especially when the number of G-BS antennas increases. This is because,

with increasing the number of G-BS antenna, the UAVs have more degrees of freedom (DoFs)

to choose their preferred G-BSs, which results in higher UAV’s rate in our proposed algorithm.

Furthermore, we also plot Fig. 3 to show the minimum achievable rate for G-UE. It can be

seen that, although the achievable rate for our proposed algorithm is slightly smaller than that
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Fig. 2: Minimum achievable rate for UAV versus number of G-BS antennas.
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Fig. 3: Minimum achievable rate for G-UE versus number of G-BS antennas.

of the nearest association case, the minimum target rate for G-UE can still be guaranteed for

both cases, e.g., log2(1 + γ) ≥ 1.58 bits/sec/Hz.

In addition, given the optimized UAV association matrix and the height of UAVs obtained

from Algorithm 3, we also plot the minimum achievable rates with partial zero-forcing (P-ZF)

[32] and match-filtering (MF) based beamforming designs in both Fig. 2 and Fig. 3. For P-ZF

beamforming, each G-BS needs to cancel all intra-cell interference and inter-cell interference

from UAV(s), and if there is still DoF(s) left, the G-BS will use the remaining DoF(s) to boost the

power of its desired signal. It is shown that the P-ZF with the proposed UAV association method
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Fig. 4: Minimum achievable rate for UAV versus flying height of UAV, where N = 14.

can still outperforms the nearest UAV association case in terms of UAVs’ minimum achievable

rate. For other cases, the nearest UAV association method will lead to better minimum rate

performance. Importantly, our proposed optimal beamforming strategy always leads to superior

minimum rate performances than P-ZF and MF beamforming methods.

B. Achievable Rate Versus Height of UAVs, and Number of G-UEs

With perfect CSI estimation, we mainly demonstrate the optimal UAV flying height for our

proposed algorithm and also examine the optimal average UAVs’ minimum achievable rate for

various number of co-existed G-UEs per cell and number of activated UAVs configurations. The

target G-UE’s SINR in this subsection is still set to γ = 2. As shown in Fig. 4, the UAVs’

minimum achievable rates for various UAV flying heights and our optimized UAV height are

almost the same, where for U = 4, the optimal average UAV flying height is 108.31m in our

proposed case and is 100.02m in the nearest association case, and for U = 6, the optimal average

UAV flying height is 105.46m in our proposed case and is 100.02m in the nearest association

case. Unlike existing UAV height optimization work, with the proposed beamforming design

and LoS UAV channel model (i.e., hu ≥ 100m), the average UAVs’ minimum achievable rate

is not sensitive to their flying height. In addition, in comparison to the nearest UAV association

case, our proposed UAV association method leads to increased UAV rate performances.

In Fig. 5, we compare the UAVs’ minimum achievable rate for various number of G-UEs per
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Fig. 5: Minimum achievable rate for UAV versus number of G-UEs per cell, where N = 8.

cell and various number of activated UAVs. We can see that the UAVs’ minimum achievable

rate decreases with increasing the number of G-UEs per cell for U = 4 and U = 6. This is

because of the increased number of intra-cell and inter-cell interference from G-UEs. In addition,

our proposed scheme outperforms the nearest UAV association for various number of G-UEs

configurations. The performance gap reduces with increasing the number of G-UEs per cell due

to the increased co-channel interference. It is worth noting that, when U = 4 and K = 1, the

UAVs’ minimum achievable rate is the same for both association methods. This is because, with

only one associated G-UE per cell, each G-BS will have enough DoFs to handle all interference

with the help of our proposed beamforming method, thus no UAV association process is needed

to further improve the system rate performances.

C. Achievable Rate with Imperfect CSI and UAV Mobility

In this subsection, we consider imperfect CSI and mobile UAVs. The target G-UE’s SINR is

set to γ = 1, the number of antennas per G-BS is set to N = 8, and the number of G-UEs

per cell and UAVs are set to K = 4 and U = 4, respectively. In the first part, we examine

different channel estimation errors and different channel correlation coefficients effects on the

UAVs’ minimum achievable rate performances. In the second part, taking into account the UAV’s

mobility, we exploit the stability of our proposed method and the trade-off between UAV’s rate

and computational complexity for updating the optimized variables.
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Fig. 6: Minimum achievable rate for UAV versus variance of channel estimation error, where ρ = 0.6.

Fig. 6 plots the UAVs’ minimum achievable rate versus various variance of channel estimation

error, i.e., σ2
ch, where we fix ρ = 0.6. We can see that with increasing the channel estimation error,

the UAVs’ minimum achievable rate decreases. In addition, a large performance gab between

our proposed scheme and the nearest UAV association policy can be observed when σ2
ch is

small. Moreover, unlike the perfect CSI scenario, our proposed algorithm with imperfect CSI

shows better performances than the nearest association policy for P-ZF, MF, and our optimized

beamforming designs, which showcase the robustness of proposed scheme in term of CSI

imperfection. In Fig. 7, we examine the UAVs’ minimum rate performance for various channel

correlation coefficients, i.e., ρ, setup and the fixed σ2
ch = 0.0125. In this case, by increasing

the value of ρ, almost the same UAV’s rate performance can be observed expect for the case

that ρ = 1, which illustrates that ρ is not quite sensitivity to UAV’s rate performance when the

channel estimation error σ2
ch is relatively small.

Considering mobile UAVs, it is almost impossible to keep updating UAV association matrix

and beamforming vectors for every time instant due to computational complexity of optimization

process. This motivates us to examine the trade-off between the UAVs’ minimum achievable rate

performance and the frequency for updating the optimization variables. For ease of description,

in Fig. 8, we assume there is only one mobile UAV (i.e., U1) is moving in a line from a geometric

point (e.g., (600,-600,100)) to a geometric point (e.g., (-600,600,100)). Then, we evenly pick up

seven points in the line for carrying out the optimization process for both our proposed algorithm
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and nearest association method. In the right sub-figures of Fig. 8, we indicate the optimal UAV

association patterns for three U1’s locations. As shown in these sub-figures, optimal associated

UAVs for G-BSs is changing when U1 is moving. In the left sub-figure of Fig. 8, our proposed

UAV association optimization (i.e., Proposed, real time) offers quite stable rate performances

in comparison to the nearest association method (i.e., Nearest assoc., real time). In addition,

to reduce the computational complexity, we also plot the curve named ‘Proposed, fixed time’,

in which the optimization process is only conducted at the first point, i.e., (600,-600,100), and



the same optimized variables are used to calculate the UAVs’ minimum achievable rate in other

points. It is shown that, the UAV’s rate performance decreases as the UAV is moving, and when

the UAV is moving to the point with location (-200,200,100), the worst performance is observed.

As the UAV continously moving forward, its minimum achievable rate increases. This is because

that, although the out of date optimized variables are used, the symmetric moving pattern of

the UAV leads to similar large-scale fading effect. Here, the small-scale fading has already been

averaged out. Such observation illustrates the applicability of out-of-date optimized variables for

symmetric UAV movement with reduced computational complexity.

VI. CONCLUSION

In this paper, we have proposed a joint beamforming, UAV association, and power control

framework to maximize the minimum achievable rate for UAV subject to the co-existed G-

UEs’ target rate being guaranteed. By jointly optimizing the UAV association matrix, MIMO

beamforming vectors, and the height of UAVs, the uplink co-channel interference among UAVs

and G-UEs can be well eliminated. Taking into account the high mobility of UAVs, we have

also revised our proposed method for application in imperfect CSI and mobile UAV scenario. It

has been shown that our proposed algorithm can offer remarkable UAVs’ minimum achievable

rate in comparison to the conventional nearest UAV association policy for both perfect CSI

and imperfect CSI scenarios. Moreover, some interesting findings, such as the importance of

symmetric UAV path planning, have been observed when we analysed the trade-off between

UAVs’ minimum rate performance and optimization complexity.

APPENDIX A

FIND THE BIG-M

The value of M must satisfy the following constraints for all i ∈ G and for all u ∈ U , which

is

M ≥ t
∑

k∈K

D(u)
i,k + t

∑

g∈G

∑

u′∈U/u

ag,u′Pg,u′F (u)

i,u′ + tN (u)
i . (45)

From (45) we can see that the value of M depends on i, u, and A, and without loss of generality,

M can be

M = max
{i},{u},A



t
∑

k∈K

D(u)
i,k + t

∑

g∈G

∑

u
′
∈U/u

ag,u′Pg,u′F (u)

i,u′ + tN (u)
i



 , (46)



According to (46), there must exist an associated i∗ ∈ G and u∗ ∈ U such that

M = t
∑

k∈K

D(u∗)
i∗,k + t

∑

g∈G

∑

u′∈U/u∗

ag,u′Pg,u′F (u∗)

i∗,u′ + tN (u∗)
i∗ . (47)

This associated i∗ ∈ G and u∗ ∈ U can be found by comparing U × G combination values of

right-hand side of (46). Specifically, we have U ×G combination values for
∑

k∈KD(u)
i,k in (46)

in terms of i ∈ G and u ∈ U . With each combination of i ∈ G and u ∈ U , we can sum up the

U − 1 maximum combination values amount all G× (U − 1) combination values for Pg,u′F (u)

i,u′

in (46) in terms of g ∈ G and u′ ∈ U/u. Then, by adding
∑

k∈KD(u)
i,k to the corresponding

summed U − 1 maximum combination values for Pg,u′F (u)

i,u′ in (46), we obtain one of U × G

combination values for comparison. Finally, M will be the maximum value among the U × G

calculated combinations.
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