
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

1Optimal Energy Efficiency with Delay Constraints for
Multi-layer Cooperative Fog Computing Networks

Thai T. Vu, Diep N. Nguyen, Dinh Thai Hoang, Eryk Dutkiewicz, Thuy V. Nguyen

Abstract—We develop a joint offloading and resource allocation
framework for a multi-layer cooperative fog computing network,
aiming to minimize the total energy consumption of multiple
mobile devices subject to their service delay requirements. The
resulting optimization involves both binary (offloading decisions)
and real variables (resource allocations), making it an NP-hard
and computationally intractable problem. To tackle it, we first
propose an improved branch-and-bound algorithm (IBBA) that is
implemented in a centralized manner. However, due to the large
size of the cooperative fog computing network, the computational
complexity of the proposed IBBA is relatively high. To speed up the
optimal solution searching as well as to enable its distributed imple-
mentation, we then leverage the unique structure of the underlying
problem and the parallel processing at fog nodes. To that end, we
propose a distributed framework, namely feasibility finding Benders
decomposition (FFBD), that decomposes the original problem into
a master problem for the offloading decision and subproblems for
resource allocation. The master problem (MP) is then equipped with
powerful cutting-planes to exploit the fact of resource limitation at
fog nodes. The subproblems (SP) for resource allocation can find
their closed-form solutions using our fast solution detection method.
These (simpler) subproblems can then be solved in parallel at fog
nodes. The numerical results show that the FFBD always returns the
optimal solution of the problem with significantly less computation
time (e.g., compared with the centralized IBBA approach). The
FFBD with the fast solution detection method, namely FFBD-F,
can reduce up to 60% and 90% of computation time, respectively,
compared with those of the conventional FFBD, namely FFBD-S,
and IBBA.

Keywords- Task offloading, fog computing, resource alloca-
tion, latency, MINLP, branch-and-bound algorithm, and Benders
decomposition, distributed computation.

I. INTRODUCTION

Emerging mobile applications tend to be more and more
demanding in computation (e.g., 3D rendering and image pro-
cessing) as well as lower latency requirements (e.g., interactive
games and online object recognition) [2], [3]. Nonetheless,
mobile devices are usually limited in computing resources,
battery life, and network connections. As a promising solution,
a novel network architecture, referred to as mobile edge or fog
computing, has recently received paramount interest. The key
idea of fog computing is to “move” computing resources closer
to mobile users [4]. For that, in a fog computing architecture,

Thai T. VU, Diep N. Nguyen, Dinh Thai Hoang, and Eryk Dutkiewicz
are with University of Technology Sydney, Sydney, NSW 2007, Aus-
tralia. E-mails: tienthai.vu@student.uts.edu.au, {Diep.Nguyen, Hoang.Dinh, and
Eryk.Dutkiewicz}@uts.edu.au.

Thuy V. Nguyen is with the Faculty of Information Technology, Posts and
Telecommunications Institute of Technology (PTIT), Hanoi, Vietnam. E-mail:
thuynv@ptit.edu.vn.

An abridged version of this paper was presented at the IEEE Globecom
Conference, Dec, 2018[1]

powerful computing devices, e.g., servers, are deployed at the
edges of the mobile network to support hardware resource-
constrained devices, e.g., mobile and IoT devices, to perform
high-complexity computational tasks with lower delay. Thanks
to its unique advantages (e.g., low latency and high bandwidth
connections with both mobile devices as well as cloud servers,
in the proximity of mobile devices, agile mobility and location
awareness support), the fog computing architecture [5] has
proved itself as an effective solution to enable energy-efficient
and low-latency mobile applications[6].

However, not all computational tasks benefit from being
offloaded to a fog node. Some tasks even consume more energy
when being offloaded than being processed locally due to the
communication overhead, i.e., sending requests and receiving
results [4], [7]. As such, the task offloading and resource alloca-
tion decisions should be jointly considered/optimized. Moreover,
unlike public clouds, e.g., Amazon Web Services and Microsoft
Azure, a fog/edge node does not possess abundant computing
resource [8]. While the computation offloading demand from
mobile users is huge, a fog node can support a limited number
of tasks. As such the collaboration between fog nodes and cloud
servers (referred to as vertical collaboration, e.g., [9]–[12]) or
amongst fog nodes (referred to as horizontal collaboration, e.g.,
[13]–[15]) is a very promising approach.

Most existing work on joint task offloading and resource
allocation of fog computing network only consider either the
vertical or horizontal collaboration amongst fog nodes and
servers. For example, in [16], a representative of user devices
can offload tasks to either nearby fog nodes or a cloud server,
aiming to minimize the total delay. However, the authors did
not investigate the consumed energy and delay between users
and the representative. In [17], the authors developed a joint
task offloading and computation resource allocation scheme to
minimize the average task duration. This work did not optimize
communication resource allocation since the bandwidth was
assumed to be equally shared among associated users. With
regard to the horizontal collaboration amongst fog nodes, there
are very few works [13]–[15]. Authors of [18] proposed the joint
communication and computation resource sharing scheme in
NOMA-aided cooperative computing system. However, a small-
scale model with only a user device, a helper, and an access
point is considered. Additionally, there is a rich literature on the
energy and delay trade-off in fog computing. For that, in this
work we focus on the potential collaboration amongst fog nodes
and between fog nodes and the cloud to optimize the decision
where is the best for a task to be offloaded to, considering the
availability of both computing and communications resources as
well as the latency requirement of each task.

Moreover, as aforementioned, although fog nodes’ comput-
ing capability and resource are more powerful than mobile
devices, they are still limited, in comparison with cloud servers.
Admitting tasks offloaded from one or a group of mobile
devices may prevent it from serving others. Most of the above
works and others in the literature tend to overlook this fact,
considering only a single-user case. Given the above, this work
aims to simultaneously leverage both vertical and horizontal
collaboration (amongst fog nodes as well as between fog and
cloud server nodes) to jointly optimize the task offloading
and resource/computing allocation to minimize the total energy
consumption of multiple mobile users (subject to their diverse
latency requirements). To that end, we introduce a multi-layer
mixed fog and cloud computing system including multiple users,
multiple fog nodes, and the remote cloud server. The model
allows us to exploit the advantages of both fog nodes and
the cloud server as well as enables the scalability due to the
collaboration between fog nodes. To overcome the drawbacks
of [16] and [17], we investigate all factors (i.e., uplink, downlink
and processing) contributing to the overall delay, consumed
energy as well as communication resource allocation.

The resulting optimization involves both binary (offloading
decisions) and real variables (resource allocations), called a
mixed integer non-linear programming problem (MINLP). That
makes it an NP-hard and computationally intractable problem.
To tackle it, we first propose an improved branch-and-bound
algorithm (IBBA) that is implemented in a centralized manner.
However, due to the large size of the cooperative fog computing
network, the computational complexity of the proposed IBBA
is relatively high. To speed up the optimal solution searching
as well as to enable its distributed implementation, we then
leverage the unique structure of the underlying problem and the
parallel processing at fog nodes. To that end, we then propose a
distributed approach, namely feasibility finding Benders decom-
position (FFBD), that decomposes the original problem into a
master problem for the offloading decision and subproblems for
resource allocation. The master problem (MP) for the offloading
decisions is then equipped with powerful cutting-planes based
on resource limitation of fog nodes. The subproblems (SP) for
resource allocation can find closed-form solutions using our fast
solution detection method. These (simpler) subproblems can be
then solved in parallel at fog nodes. The numerical results show
that the FFBD always returns the optimal solution of the problem
with significantly less computation time (e.g., in comparing with
the centralized approach). The FFBD with the fast solution
detection method can reduce up to 60% and 90% of computation
time, respectively, than those of the conventional FFBD and
IBBA. Major contributions of this paper are as follows:

• We propose a cooperative computing framework which
considers both vertical and horizontal collaboration amongst
fog and cloud nodes while minimizing the total energy of
all mobile devices, subject to their service delay constraints.

• We then propose an improved branch-and-bound (IBBA)
method that exploits special features of our task offloading
model to obtain different optimal offloading policies.

• To leverage the computation capability at all fog nodes,
we develop a distributed feasibility-finding Benders decom-
position (FFBD) algorithm. The algorithm decomposes the

original problem into a master problem (MP) for offloading
decisions and multiple subproblems (SP) for resources allo-
cation. Exploiting special characteristics of the problem, the
subproblems (SP) in the FFBD can be solved independently
at edge nodes.

• To further reduce the computation time of FFBD, we
develop a theoretical framework for the feasibility and
infeasibility detection of the subproblems based on fog
nodes’ resource limitation. Then, the master problem is
equipped with powerful cutting-planes using theoretical
analysis on the infeasibility of SPs. The subproblems can
then find closed-form solutions using the fast solution
detection method.

• We perform intensive simulations to evaluate the efficiency
of the proposed framework and solutions, and compare their
performance (i.e., the consumed energy, delay, processing
time and complexity) with those of the standard solutions.
These results provide insightful information on factors
affecting the performance of the proposed methods.

The rest of the paper is as follows. We describe the system
model and the problem formulation in Section II. Section III
presents the proposed algorithms (IBBA, FFBD-S, FFBD-F with
different optimal solution selection criteria), the theoretical anal-
yses, the optimal solution selection strategies. In this section, we
also design a protocol to implement the proposed algorithms. In
Section IV, we evaluate the performance of proposed algorithms
and compare them with different baseline methods. Conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Fig. 1 illustrates a multi-layer fog computing system with
N mobile devices N = {1, . . . , N}, M cooperative fog nodes
M = {1, . . . ,M}, and a cloud server V that can be directly
reached by all mobile devices (e.g., the cloud server is co-
located with the base station). A mobile device can offload a
task to either one of fog nodes, the cloud via a fog node or
directly to the cloud server V . We assume a given multi-access
method is in place. The proposed scheme and analysis in the
sequel can adopt any multi-access method, especially recent non-
contention orthogonal ones, that are more suitable for delay-
sensitive applications, like NOMA.

At each time slot, mobile user i can request to offload a1

computing task Ii
(
Di
i, D

o
i , Ci, t

r
i

)
, in which Di

i and Do
i respec-

tively are the input (including input data and execution code) and
output/result data lengths, Ci is the number of CPU cycles that
are required to execute the task, and tri is the maximum delay
requirement of the task. Only the mobile device, fog nodes, or
the cloud server satisfying the delay requirement are eligible to
process the task.

Under the multi-tier/layer model, the highest tier is the cloud
server that has the highest CPU rate but would require more
energy and latency for the mobile nodes to offload to. On the
other hand, the second tier, i.e., fog nodes, has lower CPU
rates than the cloud’s but is closer to mobile devices. As such,

1The following analysis also applies if a mobile user has multiple tasks at the
same time

Backhaul Link

Fog node

Cloud Server

Device

Layer

Fog

Layer

Cloud

Layer

Direct link

Fig. 1: Three-layer cooperative fog computing network.

in terms of communications latency and energy, fog nodes are
more preferable than the cloud for mobile devices to offload on.
The last tier is the mobile devices who have the lowest CPU
rates but if they select to process the tasks locally, then the
communications latency is the lowest or zero, compared with
offloading the tasks to the fog or the cloud.

1) Local Processing: Mobile device i has a processing rate
f li in cycles per second. If task Ii is processed locally, the time
to perform the task is given by

T li = Ci/f
l
i . (1)

The consumed energy Eli of the mobile device is proportional
to the CPU cycles required for task Ii and is given by

Eli = viCi, (2)

where vi denotes the consumed energy per CPU cycle [19], [20].
2) Fog Node Processing: Fog node j has capabilities denoted

by a tuple (Ruj , R
d
j , R

f
j) in which Ruj , Rdj , and Rfj are the total

uplink rate, total downlink rate, and CPU cycle rate respectively.
If task Ii is processed at fog node j, then the fog node will
allocate radio/communications and computation resources for the
mobile device/task Ii, defined by a tuple rij = (ruij , r

d
ij , r

f
ij), in

which ruij , r
d
ij , r

f
ij respectively are uplink, downlink, and CPU

cycle rates for input, output transmissions, and executing the
task. In this case, the energy consumption at the mobile user is
for both transferring input to and receiving output from fog node
j, and the delay includes time for transmitting input, receiving
output and task processing at the fog node.

Various physical factors (i.e., channel fading, antenna gain,
power level, circuit power, and active/receive time of transmit-
ter/modem) affect energy efficiency of communication at each
mobile device [21], [22]. These parameters are readily available
at the physical layer can be captured through the energy required
per up-/down-link (transmit/receive) data unit.

Let euij and edij denote the energy consumption for transmitting
and receiving a unit of data between the mobile device i and the
fog node j, respectively. Let ζ denote the multi-access delay to
capture the accusation delay of the initial data frame. ζ depends
on the frame structure/duration and the multi-access method. The
delay T fij and the consumed energy Efij of mobile device are
given by:

T fij = Di
i/r

u
ij +Do

i /r
d
ij + Ci/r

f
ij + ζ, (3)

and
Efij = Euij + Edij , (4)

where Euij = euijD
i
i and Edij = edijD

o
i .

Note that the impact of multiple users and multi-access is
captured through the resource allocation and offloading deci-
sions. For a given up and downlink capacity/constraint, if more
users are admitted, each will get less rate. In reality, this is
less the number of time slots or carriers or frames (e.g., in
TDMA/FDMA or NOMA) to be allocated, resulting longer delay
to transmit/receive a given data unit. Additionally, serving a
task/user may prevent a given fog node from serving others due
to the limited computing capability of the fog node.

3) Cloud Server Processing (offloaded via a fog node):
Without loss of generality, we can assume that all fog nodes
are connected to a public cloud server with a backhaul capac-
ity/bandwidth rate as W c

j .
If fog node j forwards task Ii to the cloud server, it will

allocate resources for mobile device i, defined by a tuple rij =

(ruij , r
d
ij , r

f
ij), in which ruij , r

d
ij are uplink rate, downlink rate

for input and output transmissions, and rfij = 0. After receiving
the task, fog node j sends the input data to the cloud server
for processing, then receives and sends the result back to the
mobile user. All tasks that are processed at the cloud server via
fog node j share the backhaul capacity W c

j and the total CPU
capacity F cj at the cloud (for the fog node j). We denote the
backhaul data rate allocated for task Ii between the fog node j
and the cloud server as wcij and the processing rate assigned to
task Ii on the cloud server as f cij . In this case, the consumed
energy Ecij at the mobile user is only for transmitting input and
output data directly to and from fog node j as in the case of
fog node processing, while the delay T cij includes the time for
transmitting the input from mobile user to the fog node, time
from the fog node to the cloud server, time for receiving the
output from the cloud server to mobile user via the fog node,
and task-execution time at the cloud server. These performance
metrics are as follows:

T cij = Di
i/r

u
ij +Do

i /r
d
ij + (Di

i +Do
i)/w

c
ij + Ci/f

c
ij + ζ, (5)

and
Ecij = Efij = Euij + Edij . (6)

4) Cloud Server Processing (directly offloaded by mobile
devices): Let M∗ = M ∪ {V } be the set of M fog nodes and
the cloud server V . To simplify the notation in the sequel, the
cloud V is also denoted as the (M+1)th node of M∗. The direct
connection from mobile devices to the cloud is captured by the
tuple (Ru(M+1), R

d
(M+1), R

f
(M+1)) in which Ru(M+1), R

d
(M+1),

and Rf(M+1) are uplink capacity, downlink capacity, and the CPU
cycle rate of the cloud, respectively. We have Rf(M+1) = f c.

For a task Ii to be directly offloaded and executed by
the cloud V (or the (M + 1) node), the cloud will allo-
cate radio/communications and computation resources, defined
by a tuple ri(M+1) = (rui(M+1), r

d
i(M+1), r

f
i(M+1)), in which

rui(M+1), r
d
i(M+1), r

f
i(M+1) respectively are the cloud’s uplink,

downlink, and CPU cycle rates for input, output transmissions,
and executing the task. The corresponding delay T fi(M+1) and

energy consumption Efi(M+1) for this case can then be calculated
similarly to those in equation (3) and (4):

T fi(M+1) = Di
i/r

u
i(M+1) +Do

i /r
d
i(M+1) + Ci/r

f
i(M+1) + ζ, (7)

and
Efi(M+1) = Eui(M+1) + Edi(M+1), (8)

where Eui(M+1) = eui(M+1)D
i
i and Edi(M+1) = edi(M+1)D

o
i

(with that eui(M+1) and edi(M+1) are the energy consumption for
transmitting and receiving a unit of data between the mobile
device i and the cloud).

Note that for the cloud (i.e., node (M + 1)), as itself is the
top/last tier, it can’t choose to offload a task to a higher tier.
This is mathematically captured by setting T ci(M+1) = ∞ and
Eci(M+1) as a constant.

B. Problem Formulation

We denote the binary offloading decision variable for task
Ii by xi = (xli, x

f
i1, . . . , x

f
i(M+1), x

c
i1, . . . , x

c
i(M+1)), in which

xli = 1, xfij = 1, and xcij = 1 respectively indicate that task
Ii is processed at the mobile device, fog node j (or directly at
the cloud if j = M + 1), or the cloud server (via fog node j
for j < M + 1). As mentioned above, the cloud V or the node
(M + 1)th is the top-tier, so it can’t offload a task to a higher
tier or xci(M+1) = 0.

Let hi = (T li , T
f
i1, . . . , T

f
i(M+1), T

c
i1, . . . , T

c
i(M+1)). From

Eqs. (1), (3), (5), and (7), the delay Ti when task Ii is processed
is given as

Ti = h>i xi. (9)

Note that the delay Ti in Eq. (9) is not a convex function
w.r.t. the offloading and resource allocation decisions. This is
due to the its non-convex components in the form of the ratio
of these variables x/r (where x and r are offloading decision
and resource allocation variables, respectively). Consequently,
the formulated problem with delay constraints is not a convex
optimization problem. To leverage convex optimization, we con-
vert Ti in Eq. (9) to a convex one. Because xli, x

f
ij , x

c
ij are binary

variables, we have xli = (xli)
2, xfij = (xfij)

2, and xcij = (xcij)
2.

Thus, we can equivalently reformulate Ti as

Ti = h>i yi, (10)

where yi = ((xli)
2, (xfi1)

2, . . . , (xfi(M+1))
2, (xci1)

2, . . . , (xci(M+1))
2).

In the rest of the paper we will use Ti described in Eq. (10)
for the delay of task Ii. The convexity of Ti in Eq. (10) will be
proven and used in Theorem 1.

Let ei = (Eli, E
f
i1, . . . , E

f
i(M+1), E

c
i1, . . . , E

c
i(M+1)). From

Eqs. (2), (4), (6), and (8), the consumed energy Ei of the mobile
user when task Ii is processed are given as

Ei = e>i xi. (11)

Let e = (e1, . . . , eN) and x = (x1, . . . ,xN). The total
consumed energy of mobile devices is given as

E = e>x. (12)

In this paper, we address a joint offloading decision (x) and
resource allocation (r = {rij},w = {wcij}, and f = {f cij})

problem that aims to minimize the total energy consumption of
all mobile devices under the delay requirement. The problem is
formally stated as follows.

(P0) min
x,r,w,f

e>x, (13)

s.t.

(R0)



(C1) Ti ≤ tri ,∀i ∈ N,
(C2)

∑N
i=1 r

f
ij ≤ R

f
j ,∀j ∈M∗,

(C3)
∑N
i=1 r

u
ij ≤ Ruj ,∀j ∈M∗,

(C4)
∑N
i=1 r

d
ij ≤ Rdj ,∀j ∈M∗,

(C6)
∑N
i=1 w

c
ij ≤W c

j ,∀j ∈M∗,
(C7)

∑N
i=1 f

c
ij ≤ F cj ,∀j ∈M∗,

ruij , r
d
ij , r

f
ij , w

c
ij , f

c
ij ≥ 0,∀(i, j) ∈ N×M∗,

f cij ≤ fmaxj ,∀(i, j) ∈ N×M∗,

(14)

and

(X0)

 (C5) xli +
M+1∑
j=1

xfij +
M+1∑
j=1

xcij = 1,∀i ∈ N,

xli, x
f
ij , x

c
ij ∈ {0, 1},∀(i, j) ∈ N×M∗.

(15)

where (C1) is the delay requirement of tasks, (C2), (C3) and (C4)
are resource constraints at fog nodes, (C5) is offloading decision
constraints, (C6) is the backhaul capacity constraints, and (C7)
is the constraints of CPU cycle capacity at the cloud. For the
cloud of direct connections from mobile device, as the cloud
can’t offload tasks to a higher tier, we set W c

(M+1) = 0 Mbps
and F c(M+1) = 0 CPU cycles.

Among the three tiers, the local processing (at the mobile
devices) does not incur transmission/reception and propagation
delay, compared with offloading the task (to either the fog node
tier or the cloud tier). Local processing also does not consume
energy to offload the task. So, in terms of energy consumption
and delay, local processing tends to be the best option. However,
due to the limited computing capability of mobile devices (also
to conserve their battery), more demanding tasks tend to be
offloaded .

For the last two tiers, i.e., the fog nodes and the cloud, the
latency and required energy to offload the tasks to the second tier
are generally less than those of the case that tasks are offloaded to
the third/cloud tier. So, for tasks that can’t be processed locally,
they should be offloaded to and processed by the second tier (the
fog nodes). For tasks that can’t be locally processed and the fog
nodes also can’t process them (e.g., due to fog nodes’ limited
communications resources or computing capability), they will be
offloaded to the cloud tier.

Remark: In the above, for simplicity, we adopt a linear rela-
tionship between the data size and the energy consumption. Note
that our analysis below and proposed framework can be extended
to a nonlinear relationship between the data size and the energy
consumption. This is because the energy consumption calculated
for different offloading options/decisions (local processing, fog
processing, or cloud processing) in Eqs. (2), (4), (6), and (8) for
a given data size is provided as an input (the vector e) to the
problem P0 above but not part of the optimizing variables, the
vector x.

III. PROPOSED OPTIMAL SOLUTIONS

The optimization problem (P0) is an NP-hard due to its mixed
integer non-linear programming. We observe that by relaxing all
its binary variables to real numbers xli, x

f
ij , x

c
ij ∈ [0, 1],∀(i, j) ∈

N ×M∗, the resulting problem (referred to as the fully-relaxed
problem) is a convex optimization problem [23]. The convexity
of the fully-relaxed problem is maintained in partly-relaxed
problems, that are obtained by fixing some binary variables (to be
0 or 1) and relaxing the remaining ones. Using this characteristic,
in the sequel we introduce three effective approaches to address
the problem (P0).

A. Convexity of Relaxed Problems

The fully-relaxed problem is written as follows:

(P̃0) min
x,r,w,f

e>x, (16)

s.t. (R0) and

(X̃0)

{
(C5) xli +

∑M+1
j=1 xfij +

∑M+1
j=1 xcij = 1,∀i ∈ N,

xli, x
f
ij , x

c
ij ∈ [0, 1],∀(i, j) ∈ N×M∗.

(17)
We first will prove that the fully-relaxed problem (P̃0) is a

convex optimization problem.

THEOREM 1. The relaxed problem (P̃0) is a convex optimiza-
tion problem.

Proof: The detailed proof is presented in Appendix A.
The below (suboptimal) solution to (P0) obtained through

solving (P̃0) is referred to as “Relaxing Optimization Policy”
(ROP). In ROP, we first solve the relaxed optimization problem
(P̃0). The convex optimization problem with constraints can be
solved efficiently by the interior-point method [23], which is
implemented in many popular solvers such as CPLEX, MOSEK,
and the fmincon() function in MATLAB. Then, the real offload-
ing decision solution of (P̃0) is converted to the closest integer
decision for the problem (P0). Due to the interdependence
between the resource allocation and the offloading decision, the
resource allocation solution of the relaxed problem has to be
re-visited after rounding the integer decisions. Specifically, after
fixing the offloading strategy with converted integer decisions,
we again solve the resource allocation of problem (P0) to find
feasible solutions.

Although this approximation method (ROP) can quickly find
a solution, the solution is suboptimal. In the following sections,
we introduce two effective methods to find the optimal solution
of (P0).

B. Improved Branch and Bound Algorithm

The conventional BB works by searching through a tree, in
which every node of it represents a subproblem after fixing a
binary variable. The relaxed version of the subproblem at that
node, which is equivalent to a partly-relaxed problem of the
original one, can be solved to evaluate the potential of that node
before branching and visiting the left or right children nodes. As
such, in the standard BB, the size of subproblems at children
nodes is 1 unit less than that of the father node in term of

the number of variables. In other words, the complexity of the
subproblems is reduced slowly in the conventional BB.

In this section, we introduce an improved branch and bound
algorithm, namely IBBA, which efficiently solves the MINLP
(P0) by leveraging the unique characteristics of its binary deci-
sion variables to reduce the complexity. The IBBA, summarized
in Algorithm 1, has the following features:
• Branching task dictates that a task can be executed at only

one place, i.e, at the mobile device, one of the fog nodes,
or the cloud server. Thus, for the offloading decisions xi
of task i there is only one variable that is equal to 1, and
all others are equal to 0. Thus, at every node in the search
tree of IBBA, we choose to branch the decisions of a task,
forming a (2(M + 1) + 1)-tree with height N .

• Simplifying problem dictates that when a task is executed
at the mobile device, a fog node, or the cloud server, all
other fog nodes do not need to allocate resources toward
that task. Thus, when xfij = 0 or xcij = 0, we can eliminate
all sub-expressions of the forms xfijA and xcijB, these
decision variables, and related resource allocation variables
ruij , r

d
ij , r

f
ij , w

c
ij , and f cij in (P0). Consequently, we have

subproblems, namely (RS), with a less number of variables.
• Preserving convexity dictates that the relaxed versions

of subproblems (RS) are convex optimization problems.
In particular, based on Theorem 1, it can be observed
that if we fix some binary variables in (P0) and set all
other binary variables to be real ones, the corresponding
relaxed subproblems, also called partly-relaxed problems,
are always convex.

The superiority of IBBA over the standard BB method in
terms of complexity reduction is analyzed and presented in
Section III-D2.

IBBA’s Optimal Solution Selection: The joint offloading and
resource allocation problem may have more than one optimal
solutions in which the numbers of tasks processed at the mobile
device, edge nodes and the cloud server are different. While some
network operators prefer the optimal solutions with more tasks
processed at fog nodes, the others may not. For example, if the
cost of cloud’s computation resource is lower than that of fog
nodes’, then the network operators may prefer offloading to the
cloud server. Otherwise, the fog computing is more preferable
since it can reduce the backhaul throughput between fog nodes
and the cloud server. However, general solvers for MIP, e.g.,
CPLEX and MOSEK, do not allow us to select an optimal
solution. In the IBBA, the selection of an optimal solution can be
realized by leveraging the unique structure of the joint offloading
and resource allocation problem.

Without loss of generality, we develop an optimal solution
selection policy, namely LFC (L, F and C, respectively, stands
for local, fog and cloud processing), so that the final solution
is the optimal one with tasks preferably processed at mobile
device, then at fog nodes, and at the cloud server. In other
words, if a problem has more than one optimal solutions, then the
solution with more tasks processed locally at the mobile devices
will be chosen as the final solution. Otherwise, if these optimal
solutions have the same number of tasks processed locally, then
the optimal solution with more tasks processed at fog nodes will
be chosen as the final solution (and so on). Recall that the IBBA

is a search tree-based algorithm, and the first optimal solution
during the search is returned as the final solution. As mentioned
above, branching task at a node will create a list of children
nodes, each is equivalent to a fixed offloading decision of that
computational task. Therefore, to enable the LFC policy, the
list of children nodes will be visited in the order of offloading
decisions, i.e., processing at mobile device, at fog nodes, and at
cloud server.

Generally, we assume that computational tasks are chosen to
branch in the order of I1, . . . , IN , and the processors (i.e., mobile
device, fog nodes and cloud server) are chosen to serve these
tasks in the order of L,F1, . . . , F(M+1), C1, . . . , C(M+1). Here,
Ii stands for task Ii, L is a mobile device, Fj is fog node j, and
Cj is for the case in which fog node j forwards the computational
task to the cloud server. The search tree in the IBBA method with
this optimal solution selection policy, LFC, depicted in Fig. 2,
is described as follows.

• The deep-first search (DFS) algorithm is used to travel
the search tree of IBBA, and a stack is used to store the
subproblems (RS), which are generated during traveling
the tree. Here, the stack is a popular data structure for
adding and removing subproblems at one end called top
of the stack as in Fig. 2(b).

• Tasks are chosen to branch in the order of I1, . . . , IN . Tasks
are called active tasks if their offloading decisions have not
been fixed on the search tree.

• When branching a task, i.e., deciding where the task to
be processed, the current subproblem on the top of the
stack is deleted and the next subproblems (RS) are gen-
erated and pushed in the stack in the order of processors
C(M+1), . . . , C1, F(M+1), . . . , F1, L.

In Fig. 2(a), the DFS search algorithm scans the tree from left
to right, and thus the most left branch optimal solution will be
found first. Fig. 2(b) shows the status of the stack, which is a data
structure to store the subproblems, before and after processing
subproblem 1L. Here, the subproblem 1L on the top of the stack
is deleted and the consequent subproblems are generated and
pushed in the stack. We can see that the stack is suitable to the
DFS search algorithm since the most left subproblem is always
on the top of the stack. Consequently, the final solution is the
optimal one with much tasks processed at mobile device, then
at fog nodes, and at the cloud server.

In practice, we can sort tasks using different priority orders
(e.g., their application types, or tasks’ resource demand). For
example, the higher-demand tasks are chosen to branch before
the lower-demand tasks. Besides, each task can define its own
order of processors. Thus, when branching a task at a node, the
order of subproblems being pushed into the stack can be different
according to its specific order of processors.

In the IBBA, Branching task defines an efficient partition
of the search space, and Simplifying problem only eliminates
the cases which can not lead to a optimal solution. Note that
the optimal solution selection schemes (i.e., LFC and LCF) do
not reduce the search space. Thus, the IBBA’s optimality is
preserved, i.e., the same as that under the standard BB method.
The detail of IBBA is summarized in Algorithm 1.

1L

1F1

1FM+1

1C1

1CM+1

...
...

Pop(1L)

2L

2F1

2FM+1

2C1

2CM+1

1F1

1FM+1

1C1

1CM+1

...
...

...
...

Push(2CM+1,…,2C1,

2FM+1,…,2F1,2L)

(a) The tree after branching Task 2 at 1L. (b) The stack before and after

branching Task 2 at 1L.

xL: Subproblem where Task x processed at Mobile device

xFy: Subproblem where Task x processed at Fog node y

xCy: Subproblem where Task x processed at Cloud via Fog node y

0: The original problem

L

... ...

F1 FM+1 C1 CM+1

Branching

Task 1

1CM+11C11FM+11F11L

0

L

... ...

F1 FM+1 C1 CM+1

Branching

Task 2

2CM+12C12FM+12F12L

Fig. 2: Search Tree for IBBA with Optimal Solution Selection.

C. Feasibility-Finding Benders Decomposition

Although the IBBA has less and smaller size intermediate
subproblems than the conventional BB algorithm, as analyzed in
Section III-D2, the size of the intermediate subproblems reduces
slowly. Moreover, the IBBA is not a distributed algorithm in
essence. In this section, we design a distributed algorithm that de-
composes the original problem into low-complexity subproblems
that can be solved parallelly. Note that the dual decomposition
method that is often instrumental to convex problem is not
applicable to the underlying MINLP problem of which decisions
for a task to be processed locally, at a fog, or at the cloud couple.

The Benders method [24] transforms the original problem
into a master problem and subproblems for both integer and
continuous variables. These two simpler problems are solved
iteratively so that Benders cuts (also called Benders cutting-
planes) can be applied to both the subproblems and the master
problem. Note that the Benders decomposition method used in
[25] is not efficient for large scale problems. First, in [25], only
one Benders cut is created in each iteration and the master
problem may have to try most of its solutions. Second, this
linearization method with the dual multipliers faces the zig-
zagging issue [26], [27] which increases the computation time.

To tackle these issues, we develop a distributed algorithm
named Feasibility-Finding Benders decomposition (FFBD) as
illustrated in Fig. 3. The key idea of FFBD is the generation of
Benders cuts which exclude superfluous solutions, by assessing
the communication and computation resources of fog nodes
to satisfy tasks’ requirements. Specifically, the Benders cuts
are created simultaneously by solving the resource allocation
problems at fog nodes. This completely differs from the approach
presented in [25] in which only one Benders cut is created by
solving the dual problem in each iteration.

Specifically, we first decompose (P0) into a master problem
(MP0) for the offloading decision and a subproblem (SP0)
for the resource allocation. Then, the FFBD algorithm finds
the optimal solution of (P0) by iteratively solving (MP0) and
(SP0) at either the cloud server or a fog node.

(MP0) x(k) = argmin
x∈X0

{e>x}, (18)

Algorithm 1: IBBA Algorithm

Input : Set of tasks {Ii
(
Di
i, D

o
i , Ci, t

r
i

)
}

Set of (M + 1) nodes {Nodej(Ruj , Rdj , R
f
j)}

Fog nodes to cloud server {W c
j , F cj }

Output: Optimal solution and value of problem (P0)

1 begin
2 s← ∅ . Initialize empty solution
3 minE ← +∞ . Initialize consumed energy +∞
4 t.empty() . Make stack empty
5 t.push((P0)) . Put (P0) into stack
6 while t.isNotEmpty() do
7 p← t.pop() . Get subproblem from top of stack
8 subs, subminE ← Solve relaxed problem of p

then return its optimal solution and value
9 if subminE > minE or p is infeasible then

10 Prune p . Delete subproblem p
11 end
12 if subminE < minE then
13 if subs satisfies all integer constraints of {xi}

then
14 s← subs . Update solution
15 minE ← subminE . Update optimal

result
16 Prune p . Delete subproblem p
17 end
18 else
19 children← Branch p by fixing the

decisions of an active task in the order of
{Ii} based on Branching task property.

20 Sort children in the order of increasing
prority of processors.

21 for each child in children do
22 Simplify child based on Simplifying

problem property.
23 t.push(child) . Put subproblem into

stack
24 end
25 end
26 end
27 end
28 Return s and minE
29 end

s.t. cuts(k), and
(SP0) min

r,w,f∈R0

{0}, (19)

where the set of Benders cutting-planes cuts(k) are restrictions
on integer offloading solution x(k) of (MP0) at iteration (k),
and {0} is the zero constant function.

From Eqs. (18) and (19), the cost function of (P0) is identical
with that of (MP0). (SP0) only verifies if integer offloading
solution x(k) of (MP0) leads to a feasible resource allocation
solution (r,w, f). Theorem 2 shows that the iteration can stop
when a feasible solution (x, r,w, f) is found or (MP0) is
infeasible. The convergence of the FFBD to an optimal solution
in a finite number of iterations is analyzed in Section III-C3.

Master problem

Subproblem 1

Subproblem M+1

...

Feedback
(cuts)

Offloading
Solutions

Cuts set

(a) FFBD Model.

Start

Is x(k) feasible?

End

NOYES
x

(k) defines (M+1)

subproblems SP1

Is r feasible?

NO

YES

Initialize k=1

Initialize 3(M+1) resource cutting-planes:

 cuts
(k) = {cj

u
, cj

d
 cj

f
 | 1����j��� M +1}

x
(k) = Solve MP0 with constraints cuts

(k)

r= {r1,«, rM+1} = Solve (M+1)

subproblems SP1

 Output: (x(k), r) is an

offloading and resource

allocation solution

Update k=k+1

Update cutting-planes for infeasible subproblems:

 cuts
(k) = cuts

(k)
 U {cj

(k)
 | SP1 at fog node j is infeasible}

Input: Problem P0 has N tasks, M

fog nodes, one cloud server V

Determine Master problem MP0 of P0

Output: P0

is infeasible

(b) FFBD Procedure.

Fig. 3: Feasibility-Finding Benders Decomposition.

1) Distributed Subproblems: At iteration (k), by solving the
integer programming problem (MP0) the offloading decision
variables x(k) are found. The solution x(k) determines if a task is
processed at either mobile device, one of fog nodes, or the cloud
server. Thus, (SP0) is equivalently divided into a set of (M+1)
independent resource allocation subproblems (corresponding to
(M + 1) nodes including the M fog nodes and the cloud V).

Let xj = (xfj ,x
c
j) be variables defining the offloading deci-

sions of N tasks onto fog node j or the cloud server (via fog
node j), where xfj = (xf1j , . . . , x

f
Nj) and xcj = (xc1j , . . . , x

c
Nj).

Here, xj is a part of x =
⋃(M+1)
j=1 xj .

Without loss of generality, we assume Ntj and Nsj , respectively,
be the sets of tasks to be processed at fog node j and at the
cloud server (via fog node j). Here, Ntj and Nsj are respectively
determined by two offloading decision variables x

f(k)
j and x

c(k)
j

in x(k) at iteration kth. We can write Ntj = {1, . . . , t}, Nsj =

{t+1, . . . , t+s}, and Nt+sj = Ntj∪Nsj = {1, . . . , t+s} is defined
by x

(k)
j = (x

f(k)
j ,x

c(k)
j). Variables rj = (r1j , . . . , r(t+s)j),

wj = (wc
1j , . . . ,w

c
(t+s)j), and fj = (f c1j , . . . , f

c
(t+s)j), respec-

tively, are resources allocation and backhaul rate of fog node j,
and the computation rate at the cloud towards its assigned set of
tasks Nt+sj . Note that the fog node j does not need to allocate
the resources towards other tasks except Nt+sj . The resource
allocation problem at fog node j can be then written as

(SP1) min
rj ,wj ,fj∈Rj

{0}, (20)

where

(Rj)



(C1j) Ti ≤ tri ,∀i ∈ Nt+sj ,

(C2j)
∑
i∈Nt

j
rfij ≤ R

f
j ,

(C3j)
∑
i∈Nt+s

j
ruij ≤ Ruj ,

(C4j)
∑
i∈Nt+s

j
rdij ≤ Rdj ,

(C6j)
∑
i∈Nt+s

j
wcij ≤W c

j ,

(C7j)
∑
i∈Nt+s

j
f cij ≤ F dj ,

rfij , r
u
ij , r

d
ij , w

c
ij , f

c
ij ≥ 0,∀i ∈ Nt+sj ,

f cij ≤ fmaxj ,∀i ∈ Nt+sj ,

rfij = 0,∀i ∈ Nsj ,
wcij = 0, f cij = 0,∀i ∈ Nfj .

(21)

As in Eq. (14), (C1j) is the delay requirement of tasks,
(C2j), (C3j) and (C4j) are resource constraints at fog node j,
(C6j) and (C7j) are the constraints of backhaul capacity at fog
node j and CPU cycles at the cloud.

Thus, instead of solving (SP0), all subproblems (SP1) can
be solved distributedly among fog nodes in cooperation with the
cloud server for (MP0). Besides, these subproblems (SP1) can
also be solved in parallel at all fog nodes. Fig. 3 shows the model
of the distributed FFBD method.

THEOREM 2. At any iteration (k), if a feasible solution (x) of
(MP0) leads to a feasible solution (r,w, f) of (SP0). Then,
(x, r,w, f) is the optimal solution of the original problem (P0).

At any iteration (k), if the master problem (MP0) is infeasi-
ble, then the original problem (P0) is infeasible.

Proof: The detailed proof is presented in Appendix B.
The solution of (SP1) can be found by solving its equivalent

problem (SP2), which is always feasible, with additional slack
variables z using any solver.

(SP2) min
rj ,wj ,fj∈RZj

(z1 + z2 + z3 + z4 + z5) , (22)

where

(RZj)



Ti ≤ tri ,∀i ∈ Nt+sj ,∑
i∈Nt

j
rfij − z1 ≤ R

f
j ,∑

i∈Nt+s
j

ruij − z2 ≤ Ruj ,∑
i∈Nt+s

j
rdij − z3 ≤ Rdj ,∑

i∈Nt+s
j

wcij − z4 ≤W c
j ,∑

i∈Nt+s
j

f cij − z5 ≤ F cj ,
rfij , r

u
ij , r

d
ij , w

c
ij , f

c
ij ≥ 0,∀i ∈ Nt+sj ,

f cij ≤ fmaxj ,∀i ∈ Nt+sj ,

rfij = 0,∀i ∈ Nsj ,
wcij = 0, f cij = 0,∀i ∈ Nfj ,
z1, z2, z3, z4, z5 ≥ 0.

(23)

If (SP2) is feasible and its cost function is zero, then (SP1)
is feasible. Otherwise, (SP1) is infeasible.

At iteration (k), if (SP1) is feasible at every fog nodes,
then x(k), r = (r1, . . . , r(M+1)), w = (w1, . . . ,w(M+1)), and
f = (f1, . . . , f(M+1)) are optimal solution of (P0). Otherwise,
if (SP1) is infeasible at fog node j, a new cutting-plane c(k)j

will be added to the cut set of (MP0) for the next iteration:
cuts(k+1) = cuts(k) ∪ c(j)j . The details of cutting-planes gener-
ation are in Section III-C3.

2) Fast Feasibility and Infeasibility Detection: Normally, the
FFBD repeatedly solves (MP0) and M independent subprob-
lems of the form (SP1) using solvers, then update the cutting-
plane set cuts(k+1) = cuts(k) ∪ c(j)j . The closer to the optimal
binary offloading decisions, the less number of iterations the
master problem (MP0) needs to be solved. Moreover, in many
cases, we can quickly determine if (SP1) is feasible or not
without using any solver. Consequently, the computation time is
reduced. The theoretical analysis below can be used to improve
the efficiency of the FFBD algorithm.

From Eqs. (3), (5), and (7), the delay constraint (C1j) Ti ≤ tri
in (Rj) of (SP1) can be rewritten as

(
Di

i

ruij
+

Do
i

rdij
+ Ci

rfij

)
≤ tri − ζ, ∀i ∈ Ntj(

Di
i

ruij
+

Do
i

rdij

)
+
(

(Di
i+D

o
i)

wc
ij

+ Ci

fc
ij

)
≤ tri − ζ, ∀i ∈ Nsj .

(24)

Remarkably, the component (tri − ζ) is a constant. If ∃i ∈
Nt+sj , tri − ζ ≤ 0, then processing task Ii at either fog node j or
the cloud server does not satisfy its delay requirement Ti ≤ tri .
In other words, (SP1) is infeasible. A Benders cut to prevent
offloading task Ii to the cloud server can be directly created for
this case. Otherwise, if tri − ζ > 0,∀i ∈ Nt+sj , then we define
the relative size of task Ii by converting the delay requirement
to 1 and adding the data size for backhaul link transmission
as well as the number of CPU cycles that are required to
process at the cloud. The relative size is defined as a 5-tuple
(Di′

i , D
o′

i , C
′

i , D
c′

i , C
c′

i), which Di′

i , Do′

i , respectively, are the
uplink/downlink data lengths between the mobile device and fog
node j, C

′

i is the task’s CPU cycles for execution at the fog node,
Dc′

i is the data length for the backhaul transmission, and Cc
′

i is
the task’s CPU cycles for execution at the cloud.

(
Di

i

tri−ζ
,
Do

i

tri−ζ
, Ci

tri−ζ
, 0, 0

)
, ∀i ∈ Ntj(

Di
i

tri−ζ
,
Do

i

tri−ζ
, 0,

(Di
i+D

o
i)

tri−ζ
, Ci

tri−ζ

)
, ∀i ∈ Nsj .

(25)

Let βi =
(
Di′

i

ruij
+

Do′
i

rdij
+

C
′
i

rfij
+

Dc′
i

wc
ij

+
Cc′

i

fc
ij

)
be the satisfaction

rate of task Ii. The delay constraint in Eq. (24) becomes

βi =

(
Di′

i

ruij
+
Do′

i

rdij
+
C
′

i

rfij
+
Dc′

i

wcij
+
Cc
′

i

f cij

)
≤ 1,∀i ∈ Nt+sj .

(26)
The Theorems 3 and 4 below can quickly check the feasibility

and infeasibility of (SP1).

THEOREM 3. When fog node j and the cloud allocate all re-
sources proportional to the input, output data sizes and CPU cy-
cles of tasks, the equivalent delay components of these tasks are

equal and defined as βubal =

∑
i∈Nt+s

j
Di′

i

Ru
j

, βdbal =

∑
i∈Nt+s

j
Do′

i

Rd
j

,

βfbal =

∑
i∈Nt+s

j
C
′
i

Rf
j

, βwbal =

∑
i∈Nt+s

j
Dc′

i

W c
j

, βcbal =

∑
i∈Nt+s

j
Cc′

i

F c
j

. If

βbal = βubal + βdbal + βfbal + βwbal + βcbal ≤ 1, then the problem
(SP1) is feasible.

Proof: The detailed proof is presented in Appendix D.

Corollary 3.1. Let βfbal =

∑
i∈Nt

j
C
′
i

Rf
j

, βwbal =∑
i∈Ns

j
Dc′

i

W c
j

, βcbal =

∑
i∈Ns

j
Cc′

i

F c
j

, then calculate

γubal =

∑
i∈Nt

j
Di′

i /(1−β
f
bal)+

∑
i∈Ns

j
Di′

i /(1−β
w
bal−β

c
bal)

Ru
j

, and

γdbal =

∑
i∈Nt

j
Do′

i /(1−β
f
bal)+

∑
i∈Ns

j
Do′

i /(1−β
w
bal−β

c
bal)

Rd
j

.

If βfbal, β
w
bal, β

c
bal ≤ 1 and γbal = γubal + βdbal ≤ 1, then the

problem (SP1) is feasible.

The Corollary 3.1 is derived from Theorem 3. Fog node j first
allocates the fog/cloud computation resources and the backhaul
rate toward tasks in the set Ntj , which are processed at the fog
node, and the tasks in the set Nsj , which are processed at the
cloud, then allocates both the uplink and downlink resources
toward all tasks in Nt+sj based on their remaining delay require-
ments. Noticeably, tasks in Nt+sj are either processed at fog node
j or forwarded to the cloud server by this fog node. Then, we
apply sequentially Theorem 3 to βfbal, β

w
bal, β

c
bal and γbal.

Lemma 1. Assume variables pi ≥ 0, qi > 0, ∀i ∈ N ,
satisfying conditions:

∑
i∈N pi = P and

∑
i∈N qi = Q. We

have max
i∈N
{piqi } ≥

P
Q .

Proof: The detailed proof is presented in Appendix C.

THEOREM 4. If

∑
i∈Nt+s

j
Di′

i

Ru
j

> 1 or

∑
i∈Nt+s

j
Do′

i

Rd
j

> 1 or∑
i∈Nt+s

j
C
′
i

Rf
j

> 1 or

∑
i∈Nt+s

j
Dc′

i

W c
j

> 1 or

∑
i∈Nt+s

j
Cc′

i

F c
j

> 1, then

the problem (SP1) is infeasible.

Proof: The detailed proof is presented in Appendix E.
Fast Feasibility Detection: Theorem 3 helps find a feasible

solution of the subproblem at fog node j with assigned tasks
Nt+sj so that using any solver is not necessary. Consequently,
the computation time is reduced. Especially, for the case of
the ratio of Di′

i , Do′

i , C
′

i , D
c′

i , and Cc
′

i approximately equal
between all tasks Nt+sj , this theorem can find feasible solutions
of subproblems.

Corollary 3.1 is theoretically stronger than Theorem 3 because
it repeatedly applies the theorem to the computation and back-
haul resources then calculates the remaining delay requirements
to allocate the uplink and downlink resources. Therefore, we can
use Corollary 3.1 instead of Theorem 3 for feasibility detection.

Fast Infeasibility Detection: The cutting-planes based on The-
orem 4 are useful for the large scale system (e.g., thousands of
tasks and hundreds of fog nodes). For example, if a fog node
can approximately support a maximum of n tasks, these cutting-
planes can avoid the generation of subproblems with more than
n assigned tasks.

3) Cutting-Plane Generation: In this paper, we introduce
three types of cutting-planes which will be updated in (MP0),
namely “Resource Cutting-Plane”, “Subproblem Cutting-Plane”,
and “Prefixed Decision Cutting-Plane”. Although the FFBD
can find the optimal solution only by using the subproblem

cutting-planes (as analyzed below), by using the resource and
prefixed decision cutting-planes, the master problem can avoid
the offloading decisions that violate the resources and delay
constraints. That helps reduce the search space.

Resource Cutting-Plane:
Recall that, xfj is the offloading decision variable vector that

determines the subset of tasks Ntj ⊆ N being processed at fog
node j, and xcj is the offloading decision variable vector that
determines the subset of tasks Nsj ⊆ N being sent to the cloud
by fog node j. Thus, vector (xfj ,x

c
j) determines the subset of

tasks Nt+sj ⊆ N.
Let c

u(fog)
j , c

d(fog)
j and c

f(fog)
j , respectively, be the coef-

ficient vectors of xfj in the uplink, downlink and computa-
tion resource cutting-planes below. From Theorem 4, we have
c
u(fog)
j = (Di′

1 , . . . , D
i′

N)/Ruj , c
d(fog)
j = (Do′

1 , . . . , D
o′

N)/Rdj
and c

f(fog)
j = (C

′

1, . . . , C
′

N)/Rfj . Here, (Di′

i , D
o′

i , C
′

i) is cal-
culated as in Eq. (25) for i ∈ Ntj .

Let cu(cloud)j , cd(cloud)j , cw(cloud)
j , and c

f(cloud)
j , respectively,

be the coefficient vectors of xcj in the uplink, downlink, backhaul
link, and computation resource cutting-planes below. From The-
orem 4, we have c

u(cloud)
j = (Di′

1 , . . . , D
i′

N)/Ruj , c
d(cloud)
j =

(Do′

1 , . . . , D
o′

N)/Rdj , c
w(cloud)
j = (Dc′

1 , . . . , D
c′

N)/W c
j , and

c
f(cloud)
j = (Cc

′

1 , . . . , C
c′

N)/F cj . Here, (Di′

i , D
o′

i , D
c′

i , C
c′

i) is
calculated as in Eq. (25) for i ∈ Nsj .

From Theorem 4, to avoid the generation of every subset
Nt+sj ⊆ N that violates the uplink, downlink and computation
resource constraints at edge node j, we add the following
Benders cuts into cuts set of the Master problem (MP0):

cuj = {cu(fog)>j xfj + c
u(cloud)>
j xcj ≤ 1},

cdj = {c
d(fog)>
j xfj + c

d(cloud)>
j xcj ≤ 1},

cfj = {cf(fog)>j xfj ≤ 1},

c
w(cloud)
j = {cw(cloud)>

j xcj ≤ 1}, and

c
f(cloud)
j = {cf(cloud)>j xcj ≤ 1}.

The above resource cutting-planes are the linear functions of
offloading decisions with non-zero coefficients as calculated in
Eq. (25).

Subproblem Cutting-Plane: At iteration (k), fog node j is
assigned a set of tasks Nt+sj = Ntj ∪ Nsj , which is defined
by offloading decision x

(k)
j = (x

f(k)
j ,x

c(k)
j). If the resource

allocation problem (SP1) at fog node j is infeasible, then any
resource allocation problem at edge node j with assigned tasks
Nj ⊇ Nt+sj is infeasible. Thus, to eliminate all subproblems at
edge node j containing Nt+sj , a new Benders cut c(k)j is added
into cuts set of the Master problem (MP0) after iteration (k):

c
(k)
j = {xf(k)>j xfj + x

c(k)>
j xcj ≤ t+ s− 1}.

Prefixed Decision Cutting-Plane: If task Ii satisfies Eli < Efij
and T li ≤ tri , then it can be pre-decided as local processing.
As mentioned in Fast Feasibility and Infeasibility Detection, if
(tri − ζ) ≤ 0, then task Ii could not be offloaded. In these cases,
the suitable cutting-planes can be created and added to set cuts
of (MP0).

In each iteration of the FFBD, if a subproblem (SP1) is
infeasible then a subproblem cutting-plane is created. Each
subproblem cutting-plane is equivalent to a set of computational
tasks, which are either processed or forwarded to the cloud server
for execution by fog node j. Besides, due to the finite numbers of
tasks and fog nodes, the number of subproblem cutting-planes is
finite. Consequently, the FFBD stops after has a finite number of
iterations. Based on Theorem 2 we can conclude that the FFBD
always returns the optimal solution after a limited number of
iterations. This is equivalent to the conditions to converge to an
optimal solution in the standard Benders decomposition [28]–
[30].

Algorithm 2: FFBD Algorithm

Input : Set of tasks {Ii
(
Di
i, D

o
i , Ci, t

r
i

)
}

Set of (M + 1) nodes {Nodej(Ruj , Rdj , R
f
j)}

Fog nodes to cloud server {W c
j , F cj }

Output: Optimal solution (x, r,w, f) of Problem (P0)

1 begin
2 Initialize k and cuts(k) as in Initialization.
3 while solution (x, r) has not been found do
4 x← Solve (MP0) with cuts(k) as in Master

Problem. . x store solution x(k) at iteration k
5 if x is feasible then
6 Based on x, create (M + 1) subproblems

(SP1) with asigned tasks Nt+s1 , . . . ,Nt+sM+1.
7 end
8 else
9 Return Problem (P0) is infeasible.

10 end
11 for (j = 1; j ≤ (M + 1); j = j + 1) do
12 (rj ,wj , fj)← Solve (SP1) at fog node j

with task set Nt+sj as in Subproblems.
13 if (rj ,wj , fj) is infeasible then
14 Add a new Benders cut c(k)j into

cuts(k+1) as in Subproblems.
15 end
16 end
17 if (r,w, f) = ((r1 ∪ . . . r(M+1)), (w1 ∪

. . .w(M+1)), (f1 ∪ . . . f(M+1)) is feasible then
18 Solution (x, r,w, f) has been found.
19 end
20 k ← (k + 1) . Increase iteration index
21 end
22 Return x and (r,w, f)
23 end

4) FFBD Procedure: The operation of the distributed FFBD
algorithm is summarized in Fig. 3. At the iteration (k), the
offloading decision solution x(k) of (MP0) determines where
the tasks in N will be processed (i.e., the mobile device, fog
nodes and the cloud server). Assume Ns+tj ⊆ N to be the
set of tasks assigned to fog node j. Then every fog node j
independently solves its own resource allocation problem of the
form (SP1). The Feasibility-Finding Benders decomposition,
Algorithm 2, is described as below.

...

Task 1

Task N

...

Session k

Offloading
for Session k

Session k+1 Session k+2

Send raw data Execute task Return results

Send
request

Find
solution

Return
solution

Synchronize

Fig. 4: Protocol defining the operation of proposed methods.

• Initialization: Set the iterator k = 1. Then,
initialize cuts(k) in (MP0) with 5(M + 1)
resource cutting-planes as in Section III-C3:
cuts(k) =

⋃M+1
j=1 {cuj , cdj , c

f
j , c

w(cloud)
j , c

f(cloud)
j }.

Other Benders cuts (i.e., prefixed decision cutting-planes) as
in Section III-C3, are also added to the cuts(k) of (MP0).

• Master Problem: At iteration (k), (MP0) is solved to find
x(k) ∈ X0 satisfying cuts(k). Here, x(k) defines (M + 1)
subproblems of the form (SP1). If (MP0) is infeasible,
then the FFBD is terminated with the infeasibility of (P0).
If (MP0) with its solution x(k) leads to a feasible solution
(r,w, f) = ((r1 ∪ . . . r(M+1)), (w1 ∪ . . .w(M+1)), (f1 ∪
. . . f(M+1)) of (M + 1) subproblems of the form (SP1),
then the FFBD is terminated, and (x(k), r,w, f) is the
optimal feasible solution of the original problem (P0).

• Subproblems: At iteration (k), a set of computational tasks
Nt+sj = Ntj ∪ Nsj are assigned to fog node j, in which
Ntj and Nsj are, respectively, processed and forwarded to
the cloud for execution by fog node j. Then, fog node j
independently solves (SP1) in order to allocate resource to
its own assigned tasks. Before calling a solver, Theorem 3
is used to check its feasibility. If (SP1) is infeasible, then
a new subproblem cutting-plane c(k)j as in Section III-C3
is created and added into cuts(k+1) of (MP0) for the next
iteration (k + 1): cuts(k+1) = cuts(k) ∪ {c(k)j }.

D. Implementation Protocol and Complexity Analysis

1) Implementation Protocol: We first introduce a method to
identify the user devices, then propose a protocol that defines
the operation of the ROP, IBBA and FFBD methods.

Device Identification: In order to cooperate horizontally and
vertically, all devices, i.e., mobile devices, fog nodes and cloud
server need to have a unique identification (ID), which can
be determined by the MAC address or a temporary granted
number. We assume that fog nodes and the cloud server have
permanent IDs, e.g., MAC address. For the mobile devices
without the permanent IDs, they can be periodically granted
two-component temporary IDs of the form (FIDj ,NID), in
which FIDj is the permanent ID of fog node j, and NID is
an integer number managed by fog node j. To make a unique
temporary ID (FIDj ,NID), fog node j will allocate different NID
in each period. Besides, each mobile device can hold at most one
temporary ID (FIDj ,NID) provided by at most one fog node.
Due to the cooperation among fog nodes and the cloud server,
the mobile devices can be managed using these temporary IDs.

Proposed Protocol: The timeline of the fog computing system
is divided into session including a fixed number of adjacent
time slots. A sessions, then, includes four stages, namely Send
request, Find solution, Return solution and Synchronize as in
Fig. 4. Here, we assume that the communication and computation
resources are managed so that the operation of the protocol in
the current session (i.e., session k) and the execution of the
tasks from previous sessions (i.e., session k-1, k-2) can occur
simultaneously. The following are the details of these stages.

• Send request: At the begin of session k, mobile devices
send offloading requests containing a unique identification
(FIDj ,NID, tk), where tk is a number to identify the task,
and the task’s information.

• Find solution: At this stage, a fog node or the cloud server
with powerful computation capacities will run either the
ROP, IBBA or FFBD. The FFBD method can also be run
in a parallel or distributed cooperative manner. Noticeably,
the tasks of session k will be offloaded then executed from
the beginning of session k+1, thus all fog nodes need to
estimate their available resources from session k+1 to find
the solution in session k.

• Return solution: The joint offloading and resource alloca-
tion solution found in the Find solution stage will be sent
to mobile devices via fog nodes.

• Synchronize: This gap period is for synchronizing the fog
computing system, preparing the offloading requests and
estimating the available resources for the next session.

Since the timeline is divided into adjacent sessions as pre-
sented in Fig. 4, the offloading, executing and returning the
results of tasks for session k can spread over the next sessions,
e.g., sessions k+1, k+2.

2) Complexity Analysis: In this section, we evaluate the
complexity of the proposed methods w.r.t. the numbers of tasks
and fog nodes.

Original Problem: With (M + 1) nodes (including M fog
nodes and the cloud V), the original problem (P0) has 5(M+1)
resource constraints as (C2), (C3), (C4), (C6) and (C7) described
in Eq. (14). Besides, for each task Ii in (P0), it needs (2(M +
1) + 1) binary and 5(M + 1) real variables, two delay and
offloading constraints (C1) as in Eq. (14) and (C5) as in Eq. (15).
Therefore, with N tasks and (M+1) nodes, the original problem
(P0) has respectively N(2(M + 1) + 1) integer and 5N(M+1)
real variables, and (2N + 5(M + 1)) constraints including N
for the offloading decisions, N for the delay of the tasks and
5(M + 1) for the resource requirements of the fog nodes and
the cloud as described in Eq. (14) and Eq. (15). Consequently,
the relaxed problem (P̃0) of (P0) has totally N(7(M +1)+ 1)
real variables and (2N + 5(M + 1)) constraints.

Standard BB Method: For the standard BB method, it works as
a binary search tree, in which every node on the tree represents a
subproblem after fixing a binary offloading variable. Thus, in the
worst case, the standard BB method has to solve (21+22+ · · ·+
2N(2(M+1)+1)) = (2N(2(M+1)+1)+1 − 2) intermediate relaxed
problems with the size decreasing from (N(7(M +1)+ 1)− 1)
to (5N(M +1)) real variables. So its complexity is in the order
of O(2NM).

IBBA Method: For the IBBA method, it works as a (2(M+1)+
1)-tree, in which every node on the tree represents a subproblem

after deciding where a task is processed. Thus, in the worst case,
the IBBA method has to solve ((2(M +1)+1)1+(2(M +1)+

1)2+ · · ·+(2(M+1)+1)N) = ((2(M+1)+1)N+1−(2(M+1)+1))
(2(M+1)) ≈

(2(M +1)+ 1)N+1/(2(M +1)) intermediate relaxed problems
with the size decreasing from ((N(7(M + 1) + 1) − (2(M +
1) + 1)− 5(M)) to (5N) real variables. So its complexity is in
the order of O(MN).

FFBD Method: For the FFBD method, the master problem
(MP0) and M+1 subproblems of the form (SP1) are iteratively
solved. At iteration k, (MP0) is an integer problem with
N(2(M + 1) + 1) binary offloading variables and at most
(N + 5(M + 1) + k(M + 1) constraints including N for the
offloading decision constraints as (C5) described in Eq. (15),
5(M + 1) for resource cutting-planes as in the Initialization
step, and at most k(M + 1) for the subproblem cutting-planes
from solving (M + 1) subproblems k times as in Subproblem
step. Besides, each subproblem (SP1) is assigned an average
of N/(M + 1) tasks. Thus, it has approximate 5N/(M + 1)
resources allocation variables and (N/(M + 1) + 5) constraints
including N/(M+1) for the delay of N/(M+1) tasks as (C1j)
in Eq. (21) and 5 constraints for the resources requirements at
the fog node and the cloud as (C2j), (C3j), (C4j), (C6j) and (C7j)
described in Eq. (21). In the worst case, (SP1) is assigned all
N tasks, thus, has at most 5N resources allocation variables and
(N+5) constraints. However, if this big subproblem violates the
resources constraints at the fog node according to Theorem 4,
it could not be created due to the resources cutting-planes
generation in the Initialization step. Additionally, considering
all the combinations of N tasks for (M + 1) fog nodes, there
are (M + 1)N+1 possible subproblems and (M + 1)N master
problems for the number of tasks per fog node varying from 0 to
N . For that, the (worst case) complexity of the FFBD method is
in the order of O(MN), the same as that of the IBBA method.
However, under FFBD most of subproblems are eliminated by
the cutting-planes generation, so the computing time in practice
is much shorter than that of IBBA and BB (reducing up to 90%
computation time as seen in the Section IV below). This is also
thanks to the fact that the size of the MP and subproblems in
the FFBD is a linear function of the number of tasks, whereas
the size of the intermediate problems in the IBBA is exponential
w.r.t. the number of tasks.

IV. PERFORMANCE EVALUATION

A. Offloading Analysis

Before conducting experiments, we analyze when mobile users
can benefit from offloading. Let αi be the ratio between the
number of required CPU cycles Ci and input data size Di

i . We
have Ci = αi ×Di

i . Then, the local consumed energy is Eli =
viCi = αiviD

i
i .

A mobile user is said to benefit from offloading if its total
energy consumption from task offloading is lower than being
locally processed. Thus, for task Ii, offloading will benefit if
Eli > Efi . In other words, we have αiviDi

i > euijD
i
i + edijD

o
i .

Let α∗i be the task complexity ratio at which Eli = Efi . We have:

α∗i =
euijD

i
i + edijD

o
i

viDi
i

. (27)

Thus, task Ii is likely to be offloaded if Eli > Efi or αi >
α∗i . The task complexity αi is especially important in evaluating
offloaded tasks as well as analyzing the performance of the whole
system.

B. Experiment Setup

We use the configuration of a Nokia N900 mobile device
as in [31] and set the number of devices as N = 10. Each
mobile device has CPU rate f li = 0.5 Giga cycles/s and the unit
processing energy consumption vi = 1000

730 J/Giga cycle (Energy
characteristics of local computing for Nokia N900/500 MHz
in Table 1 in [31]). In the IoT ecosystem, offloading demand
applications often have different characteristics in term of tasks’
data size and complexity. These applications share the same
communication and computation resources of fog nodes and the
cloud server. Therefore, it is reasonable to choose randomly data
size and complexity. We denote U(a, b) as the discrete uniform
distribution between a and b. Here, we assume that the input
and output data sizes following uniform distributions U(a, b)
MB and U(c, d) MB, respectively. We also assume that each
task has required Ci CPU processing cycles defined by αi×Di

i

Giga cycles, in which the parameter αi Giga cycles/MB is the
complexity ratio of the task. All parameters are given in Table I.
Specially, the maximum theoretically supported physical-layer
data rate of 72 Mbps (the WiFi highest physical-layer data rate
of 802.11n smartphones in [32], [33]) is used for both the uplink
and downlink of each fog node and cloud server V . Here, the
energy characteristics of a Nokia N900 with 3G near connection
(Table 2 in [31]) are used to configure the direct connection
between mobile devices and the cloud server V . Consequently,
the energy consumption for transmitting and receiving a unit
of data between mobile devices and the cloud server V are
eui(M+1) = 0.658 J/Mb and edi(M+1) = 0.278 J/Mb, respectively.
Besides, the energy consumption for transmitting and receiving a
unit of data between mobile device i and fog node j (j ≤M) are
lesser, euij = 0.142 J/Mb and edij = 0.142 J/Mb, respectively (the
energy characteristics of a Nokia N900 with WLAN connection
in Table 2 in [31]).

Here, we refer the policy in which all tasks are processed
locally as “Without Offloading” (WOP), and the policy in which
all tasks are offloaded to the fog nodes or the cloud server then
minimized the average delay of all tasks as the “All Offloading”
(AOP). Due to the simplicities of WOP, AOP, and ROP, these
policies are modeled using the GAMS language and solved by
the ANTIGONE solver. We develop the proposed algorithms,
IBBA and FFBD, as in Algorithm 1 and 2 using the Optimizer
API of the MOSEK solver [34]. To evaluate the efficiency of
theoretical proposals, each of these methods is implemented with
two variants. Specifically, the IBBA variant with the optimal
solution selection LFC policy is denoted as IBBA-LFC, whereas
IBBA-LCF is the name of the IBBA variant with the LCF
policy. In the IBBA-LFC, tasks are branched in the order of
mobile device → fog nodes → cloud server. In the IBBA-
LCF, the tasks are branched in the order of mobile device
→ cloud server → fog nodes. In other words, the IBBA-LFC
tries to offload tasks to fog nodes as much as possible before
offloading to the cloud server. On the contrary, the IBBA-LCF
tries to offload to the cloud server before considering fog nodes.

TABLE I: Experimental parameters

Parameters Value
Number of mobile devices N 10
Number of fog nodes M 4
Number of cloud server V 1
CPU rate of mobile devices f li 0.5 Giga cycles/s
Processing energy consumption rate vi 1000

730
J/Giga cycles

Input data size Di
i U(a, b) MB

Output data size Do
i U(c, d) MB

Required CPU cycles Ci αi ×Di
i

Unit transmission energy consumption 0.142 J/Mb
to fog nodes euij (∀j ≤M)

Unit receiving energy consumption 0.142 J/Mb
from fog nodes edij(∀j ≤M)

Unit transmission energy consumption 0.658 J/Mb
to cloud server V eu

i(M+1)

Unit receiving energy consumption 0.278 J/Mb
from cloud server V ed

i(M+1)

Delay requirement tri [1, 10]s
Processing rate of each fog node Rf

j 10 Giga cycles/s
Uplink data rate of each fog node Ru

j 72 Mbps
Downlink data rate of each fog node Rd

j 72 Mbps
CPU capacity of the cloud F c

j (via fog node j) 40 Giga cycles/s
Maximum CPU rate of cloud to each task fmax

j 10 Giga cycles/s
Backhaul capacity between FNs and the cloud W c

j [1, 10] Mbps
Multi-access delay ζ 20ms

Similarly, the FFBD variant using the standard MOSEK solver
for subproblems is denoted as FFBD-S, and the one first using
the fast solution detection method described in Theorem 3 is
denoted as FFBD-F. The results obtained by the IBBA-LFC/LCF
and FFBD-S/F will be compared with the ROP, WOP, and AOP.
To compare the computation time of IBBA-LFC/LCF and FFBD-
S/F, the same runtime environment is a normal laptop with Intel
Core i5 2.30GHz CPU and 8GB of RAM. Each method runs
every experiment 10 times continuously, then the performance is
calculated as the average of these 10 runs. Noticeably, the WOP,
AOP, and ROP may not satisfy either the delay constraints of
tasks or the consumed energy optimization. Thus, all methods
will be evaluated the error rates, defined as the proportion of
tasks that do not satisfy their delay constraints.

C. Numerical Results

1) Scenario 1 - Varying the Complexity of Tasks: In this
scenario, we investigate the effect of task complexity on the
offloading decisions and energy consumption of mobile devices
by varying the complexity of all tasks.

At first, N tasks Ii
(
Di
i, D

o
i , Ci, t

r
i

)
are generated as Di

i ∼
U(1.0, 10.0)MB, Do

i ∼ U(0.1, 1.0)MB, Ci ∼ αi × Di
i Giga

cycles, and the delay requirement tri is set to 10s for all tasks.
The backhaul capacity between FNs and the cloud is set as W c

j =
5 Mbps. The cloud server can allocate a total of 40 Giga cycles/s
to process tasks (each with maximum 10 Giga cycles/s) that are
forwarded via each fog node. Then, the complexity ratio of tasks
αi starts from U(0.1, 1.0) Giga cycles/MB, then increases each
task 0.1 Giga cycles/MB for each experiment. Other parameters
are set as in Table I.

Fig. 5 depicts the percentage of offloaded tasks and error rates,
which are the proportion of tasks violating their delay require-
ments, when the task complexity αi increases from U(0.1, 1.0)
to U(1.0, 1.9). Generally, while the offloading trends of WOP

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f

O
ff
lo

a
d
e
d
 T

a
s
k
s
 (

%
)

IBBA-LFC(c)

IBBA-LCF(c)

U
(0

.1
,1

.0
)

U
(0

.2
,1

.1
)

U
(0

.3
,1

.2
)

U
(0

.4
,1

.3
)

U
(0

.5
,1

.4
)

U
(0

.6
,1

.5
)

U
(0

.7
,1

.6
)

U
(0

.8
,1

.7
)

U
(0

.9
,1

.8
)

U
(1

.0
,1

.9
)

Task Complexity
i
 (Giga cycles/MB)

0

20

40

60

80

E
rr

o
r

R
a
te

 (
%

) FFBD

IBBA

ROP

WOP

AOP

Fig. 5: Percentage of offloaded tasks and error rate as the task
complexity αi is increased.

and AOP are constants, i.e., 0% and 100%, respectively, the
offloading trends of the FFBD, IBBA, and ROP methods increase
dramatically from 10% to 100%. This is because there are more
tasks benefit from offloading since their complexity αi is greater
than α∗i = 0.911 Giga cycles/MB according to Eq. (27). Besides,
the percentage of tasks processed at the cloud server (i.e., labeled
IBBA-LFC(c)) for the IBBA-LFC method is 0% due to the fog
processing priority and the sufficient resources at fog nodes.
However, only a proportion of offloaded tasks (e.g., 40% in 70%
offloaded tasks at αi = U(0.5, 1.4)) are processed at the cloud
server (i.e., labelled IBBA-LCF(c)) for the IBBA-LCF method
when αi ≥ U(0.5, 1.4). This is because the cloud processing
does not satisfy the delay requirements of all offloaded tasks.
From Fig. 5, the zero error rates indicate the reliability of the
FFBD and IBBA methods since their offloading and resource
allocation solutions satisfy tasks’ delay requirements, tri = 10s.
Besides, since αi ≥ U(0.5, 1.4), the local execution does not
satisfy the delay requirements of all tasks. Thus, the WOP
method records an increasing error rate from 30% to 80%
for the last six experiments. Noticeably, the error rate of the
approximation method, ROP, is proportional to the difference
between the offloading rates of ROP and the optimal methods,
FFBD and IBBA (e.g., error rate of 30% with 30% offloaded
task difference at αi = U(0.5, 1.4)).

Fig. 6(a) and 6(b), respectively, show the average consumed
energy of mobile devices and delay for the proposed meth-
ods when αi increases from U(0.1, 1.0) to U(1.0, 1.9) Giga
cycles/MB. Generally, the FFBD and IBBA have the lowest
energy consumption in comparing with other methods in all
experiments which satisfy the delay requirements. Specifically,
due to all offloading without considering energy benefit, the AOP
records a constant energy consumption (i.e., 7.37J/task) which
is not lower than that of the FFBD and IBBA methods. The
equality occurs only when αi ≥ U(0.6, 1.5) with all tasks being
offloaded in the FFBD, IBBA, and AOP methods. Additionally,
Fig. 6(a) shows that the ROP and WOP can be more energy-
efficient at some points in comparing with the FFBD and IBBA,
but they must suffer from latency constraint errors as in Fig. 5.
For example, when αi = U(0.6, 1.5) the consumed energy of
ROP and WOP are 6.2J/task and 6.6J/task, respectively, whereas
that of the FFBD and IBBA methods is 7.4J/task. However, the
ROP and WOP suffer the equivalent error rates of 50% and

50%. Noticeably, all tasks are processed locally in the WOP
method, thus the consumed energy increases linearly according
to the task complexity ratio. From Fig. 6(b), the average delays
of the IBBA-LFC/LCF and FFBD-S/F are always lower than
the threshold tri = 10s, matching with their zero error rates.
Additionally, the FFBD-F uses the fast feasible detection method
based on Theorem 3, which allocates the whole communication
and computation resources of fog nodes among their assigned
tasks. Consequently, the FFBD-F records the lowest average
delay in comparing with the IBBA-LFC/LCF and FFBD-S.
Moreover, the fluctuation of delay in the FFBD-F is caused by
the different distributions of tasks among fog nodes. We also can
see the drawback of the ROP since its average delay is bigger
than the threshold tri = 10s at all experiments with errors.

2) Scenario 2 - Varying the Task Delay Requirements: In this
scenario, we study the impact of task delay requirements on the
energy consumption of mobile devices and the computation time
of the proposed methods.

In this scenario, N tasks Ii
(
Di
i, D

o
i , Ci, t

r
i

)
are generated as

Di
i ∼ U(1.0, 10.0)MB, Do

i ∼ U(0.1, 1.0)MB, Ci ∼ αi × Di
i

Giga cycles, and tri varying between (2, 10)s. Besides, we choose
a wider complexity rate αi = U(0.1, 6.0). The backhaul capacity
between FNs and the cloud is set as W c

j = 5 Mbps. After
creating the data set, we detect that there are 5 tasks receiving
benefits from offloading (Eli > Efi) due to αi > α∗i = 0.911
Giga cycles/MB, and all tasks have the local delay between 2s
and 24s.

Fig. 7(a) shows the offloading trends and error rates when
the delay requirement goes up from 2s to 10s. Generally, while
the trends of WOP and AOP are constants, i.e., 0% and 100%,
respectively, the offloading trends of the FFBD and IBBA
methods decrease from 90% to 50%. Specifically, at first some
tasks without offloading benefits still have to be offloaded due
to their high local processing delay (T li > tri), then when tri
is larger, these tasks will be executed locally to reduce the
consumed energy if T li ≤ tri . Noticeably, the fog computing
system does not have enough resources to process all tasks
satisfying the delay requirement tri ≤ 3, hence it is infeasible at
tri = 2s for the FFBD, IBBA and ROP methods, and at tri = 2s
and 3s for the AOP. Since tri ≥ 8s, the FFBD and IBBA return
the optimum solution with only 50% offloaded tasks, which get
energy benefit from offloading. Besides, the proportion of tasks
processed at the cloud server (i.e., labelled IBBA-LFC(c)) for the
IBBA-LFC method is 0% due to the fog processing priority and
the sufficient resources at fog nodes. However, in the IBBA-LCF
method, the proportion of offloaded tasks being processed at the
cloud server (i.e., labeled IBBA-LCF(c)) increases from 10% in
90% to 40% in 50% when the delay requirements tri gradually
grows from 3s to 10s. This is because the cloud computing
can satisfy more tasks with the looser delay thresholds. From
Fig. 7(a), generally, while the error rate of FFBD and IBBA
is zero, it is generally decreases for other methods. The WOP
records the highest error rate, steadily decreasing from 90% to
50% when the delay requirement is looser. The ROP records
non-zero error rates when T ri is between 3s and 7s.

The offloading trends completely match with the average
energy consumption depicted in Fig. 7(b). Generally, while it is
a constant for both WOP with 8.5J/task and AOP with 7.4J/task,

U
(0

.1
,1

.0
)

U
(0

.2
,1

.1
)

U
(0

.3
,1

.2
)

U
(0

.4
,1

.3
)

U
(0

.5
,1

.4
)

U
(0

.6
,1

.5
)

U
(0

.7
,1

.6
)

U
(0

.8
,1

.7
)

U
(0

.9
,1

.8
)

U
(1

.0
,1

.9
)

Task Complexity
i
 (Giga cycles/MB)

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
/t
a
s
k
)

FFBD

IBBA

ROP

WOP

AOP

(a) Average consumed energy at mobile devices

U
(0

.1
,1

.0
)

U
(0

.2
,1

.1
)

U
(0

.3
,1

.2
)

U
(0

.4
,1

.3
)

U
(0

.5
,1

.4
)

U
(0

.6
,1

.5
)

U
(0

.7
,1

.6
)

U
(0

.8
,1

.7
)

U
(0

.9
,1

.8
)

U
(1

.0
,1

.9
)

Task Complexity
i
 (Giga cycles/MB)

2

4

6

8

10

12

14

16

A
v
e
ra

g
e
 D

e
la

y
 (

s
)

FFBD-S

FFBD-F

IBBA-LFC

IBBA-LCF

ROP

WOP

AOP

t
i
r

(b) Average task processing delay

Fig. 6: Consumed energy and task processing delay as the task complexity αi is increased.

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f

O
ff
lo

a
d
e
d
 T

a
s
k
s
 (

%
)

FFBD

IBBA

IBBA-LFC(c)

IBBA-LCF(c)

ROP

WOP

AOP

2 3 4 5 6 7 8 9 10

Delay Requirement t
i
r (s)

0

20

40

60

80

100

E
rr

o
r

R
a
te

 (
%

)

FFBD

IBBA

ROP

AOP

Infeasibility

(a) Percentage of offloaded tasks and error rate

3 4 5 6 7 8 9 10

Delay Requirement t
i
r (s)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
/t
a
s
k
)

FFBD

IBBA

ROP

WOP

AOP

(b) Average consumed energy at mobile devices

Fig. 7: Percentage of offloaded tasks, error rate, and average consumed energy as the delay requirement tri is less strict.

the consumed energy in the FFBD and IBBA decreases from
6.3J/task to 3.5J/task when increasing the delay requirement.
Equivalently, both the FFBD and IBBA methods reduce the
consumed energy from 15% to 52% and from 26% to 59%,
respectively, in comparing with AOP and WOP. Especially, in
comparing with the FFBD and IBBA methods, although the ROP
method achieves energy benefits at some experiments, it must
suffer from latency errors.

3) Scenario 3 - Varying the Backhaul Capacity: To further
illustrate the effect of the backhaul capacity on the percentage
of offloaded tasks and the average delay, in this scenario, we
set αi = U(0.6, 1.5) Giga cycles/MB, then vary the backhaul
capacity W c

j from 1 Mbps to 10 Mbps. From Figure 8, we can
see that the proportional of offloaded tasks does not change much
for both FFBD and IBBA methods since the fog computing has
enough resources to process all tasks while offloading directly
to the cloud consumes more energy (due to the distance) and in-
troduces longer delay. However, the IBBA-LCF method records
the increasing percentage of tasks that are offloaded indirectly
to the cloud server via fog nodes (denoted by IBBA-LCF(c)).
Specifically, the proportion of tasks being processed at the cloud
server increases from 10% to 80% in the IBBA-LCF method
when the backhaul capacity increases from 1 Mbps to 10 Mbps.
Due to the unchanged proportion of offloaded tasks, both FFBD
and IBBA methods record the same energy consumption as the
experiment αi = U(0.6, 1.5) Giga cycles/MB in Scenario 1.

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 o
f

O
ff

lo
a

d
e

d
 T

a
s
k
s
 (

%
)

FFBD

IBBA

IBBA-LFC(c)

IBBA-LCF(c)

1 2 3 4 5 6 7 8 9 10

Backhual Capacity W
j
c (Mbps)

6

7

8

9

10

A
v
e

ra
g

e
 D

e
la

y
 (

s
)

FFBD-F

FFBD-S

IBBA-LFC

IBBA-LCF

t
i
r

Fig. 8: Percentage of offloaded tasks and average delay as the
backhaul capacity W c

j increases.

4) Complexity and Computation Time: In this subsection, we
present some results on the complexity of the four algorithms,
IBBA-LFC/LCF and FFBD-S/F, and the necessary time to find
an optimal solution in each experiment. Here, the WOP, AOP,
and ROP are ignored due to their inadequacy of the goal.

We also evaluate the efficiency of integrating ROP into the
FFBD method. Specifically, the methods, in which the offloading
decision and resource allocation solutions of ROP are used as
the initial point for FFBD-S/F, are named FFBD-S-ROP and

FFBD-F-ROP, respectively. Moreover, the solutions of the master
problem and subproblems from previous iterations are also used
as the initial points of the current iteration.

The complexity of the four algorithms is calculated by the
number of intermediate problems (i.e., the intermediate relaxed
problems during searching trees in the IBBA-LFC/LCF, master
problem (MP0) and subproblem (SP1) solved by the standard
solver in FFBD-S/F). In the FFBD-F, due to the low complexity,
the subproblems solved by the fast feasible detection method as
in Theorem 3 are ignored.

Fig. 9(a) and 9(b) show the computation time and the num-
ber of intermediate problems being solved since either the
task complexity goes up or the delay requirement is looser.
Generally, the computation time is proportional to the number
of intermediate problems. Noticeably, although the FFBD-F/S
methods have to solve much more intermediate problems in some
experiments, their computation time is still remarkably lower
than that of the IBBA-LFC/LCF methods due to the small size
of their intermediate problems. This shows the efficiency of the
decomposition, initial Benders cuts based on Theorem 4 and the
cutting-plane generation from the results of subproblems in the
FFBD. Besides, when either tasks have a higher complexity or
a lower delay requirement, the FFBD-S/F and IBBA-LFC/LCF
methods need to solve more intermediate problems in order to
satisfy more resource demands of tasks, thus they require more
time to find the optimal solutions. Especially, the FFBD-F with
the fast solution detection method can reduce, respectively, 60%,
90% and 94% of the average computation time in comparing
with the FFBD-S, IBBA-LFC and IBBA-LCF methods for
Scenario 1, and 40%, 78% and 89% for Scenario 2. Fig. 9
also shows that integrating the approximated solution of ROP
and intermediate solutions of iterations into FFBD does not
reduce the number of problems, but it improves the solving time.
Specifically, the solving time of FFBD-S-ROP and FFBD-F-ROP
are, respectively, lower than that of FFBD-S and FFBD-F in all
experiments.

Table II summarizes the major performance involving the
computation time, the standard solver and fast solution detection
method usages, and the master problem iterations. For Scenario
1, the FFBD-F-ROP, FFBD-F, FFBD-S-ROP, FFBD-S, IBBA-
LFC and IBBA-LCF algorithms, respectively, have the average
solving time of 186ms, 224ms, 382ms, 561ms, 2252ms, and
3714ms equivalent to an average of 3.5, 3.5, 9.4, 9.4, 17.9,
and 29 times using the standard solver for the subproblems,
which are either the intermediate relaxed problems in the IBBA-
LFC/LCF or the subproblems of the form (SP1) solved by the
standard solver in the FFBD-S/F. For Scenario 2, the maximum
number of master problem iterations is 20 for the FFBD-F/S,
and average 8.63 (56.1%) of 15.38 subproblems are solved by
the fast feasible method for the FFBD-F. From Fig. 9(a), 9(b)
and Table II, we can conclude that the computation time depends
not only on the number and size of intermediate problems but
also their specific properties, which correlate with the distance
between the intermediate solutions and the optimal one.

V. CONCLUSION

We have proposed the joint offloading decision and resource
allocation optimization framework for the multi-layer coopera-
tive fog computing network. To find the optimal solution, we

have developed three effective methods called IBBA with two
variants IBBA-LFC/LCF (based on the Branch and bound), the
distributed method, FFBD, with two variants FFBD-S/F (based
on the Benders decomposition) and ROP (an approximation
policy based on the solution of the relaxed problem). While the
IBBA-LFC/LCF and FFBD-S/F can find the optimal solution,
the ROP is a suboptimal method with error rates. The FFBD-
F implemented the fast feasible detection method is the fasted
algorithm in term of the computation time. Whereas, the IBBA-
LFC/LCF algorithms with the optimal solution selection strate-
gies can find the optimal solution with most tasks being offloaded
to fog nodes and the cloud server, respectively. Numerical results
have demonstrated the efficiency in terms of energy consumption
reduction of the proposed methods.

APPENDIX A
PROOF OF THEOREM 1

Proof. From Eqs. (2), (4), (6), (8), and (12), the objective
function, E = e>x, is a linear expression of decision variables x
because e is independent from x, r, w, and f . We need to show
that all constraints in (R0) and (X̃0) are convex functions. That
is, from Eqs. (1), (3), (5), (7), and (10), the delay Ti = h>i yi

is the sum of functions, i.e., xl2i ,
xf2
ij

ruij
,
xf2
ij

rdij
,
xf2
ij

rfij
, xc2ij ,

xc2
ij

ruij
,
xc2
ij

rdij
,

xc2
ij

wc
ij

, and
xc2
ij

fc
ij
∀j ∈ M∗, with positive coefficients, e.g., Ci, Di

i ,

Do
i , and

(
Di
i +Do

i

)
. Obviously, functions of the form x2 are

convex. We need to prove functions of the form g(x, r) = x2

r
are convex. Let H = ∇2g(x, r) is the Hessian of g(x, r). Then,
given an arbitrary vector v = (v1, v2), we have:

v>Hv = v>

[
∂2g
∂2x

∂2g
∂x∂r

∂2g
∂r∂x

∂2g
∂2r

]
v =

2

r

(
v1 − v2

x

r

)2
. (28)

Since the resource allocation variables ruij , r
d
ij , r

f
ij , w

c
ij , f

c
ij ≥

0 (The equality occurs only when xfij , x
c
ij = 0), we have r ≥ 0.

Consequently, we have v>Hv ≥ 0. This implies that H is a
positive semidefinite matrix, and thus g(x, r) is a convex function
w.r.t. (x, r) [23]. Thus, Ti is a convex function since it is the
nonnegative weighted sum of convex functions. In other words,
the constraint (C1) in (R0) is a convex function w.r.t. x, r, w,
and f . Besides, the constraints (C2), (C3), (C4), (C5), (C6), and
(C7) in (R0) and (X̃0) are linear functions.

Since the objective function in Eq. (12) is a linear function,
and all constraints in (R0) and (X̃0) are convex functions, the
relaxed problem (P̃0) is a convex optimization problem [23]. �

APPENDIX B
PROOF OF THEOREM 2

Proof. We assume the cutting-plane sets of (MP0) at iterations
(k) and (k + 1) are cuts(k) and cuts(k+1), respectively. At
iteration k, assume (MP0) is feasible, and there is at least one
infeasible subproblem (SP1). Consequently, we have cuts(k) ⊂
cuts(k+1). This leads to min

x∈X0

{c>x} s.t. cuts(k) ≤ min
x∈X0

{c>x}

s.t. cuts(k+1). In other words, min
x∈X0

{c>x} s.t. cuts(k) is a

function that does not decrease with iteration k. Therefore, the
first found feasible solution (x, r,w, f) of (MP0) and (SP0) is
the optimal solution of (P0).

0

1

2

3

4

5

6

S
o

lv
in

g
 T

im
e
 (

m
s
)

103

FFBD-S

FFBD-F

FFBD-S-ROP

FFBD-F-ROP

U
(0

.1
,1

.0
)

U
(0

.2
,1

.1
)

U
(0

.3
,1

.2
)

U
(0

.4
,1

.3
)

U
(0

.5
,1

.4
)

U
(0

.6
,1

.5
)

U
(0

.7
,1

.6
)

U
(0

.8
,1

.7
)

U
(0

.9
,1

.8
)

U
(1

.0
,1

.9
)

Task Complexity
i
 (Giga cycles/MB)

0

10

20

30

40

50

60

N
u

m
b
e

r
o

f
P

ro
b
le

m
s

IBBA-LFC

IBBA-LCF

(a) When task complexity αi is increased

0

2

4

6

8

10

12

S
o

lv
in

g
 T

im
e

 (
m

s
)

103

FFBD-S

FFBD-F

FFBD-S-ROP

FFBD-F-ROP

3 4 5 6 7 8 9 10

Delay Requirement t
i
r (s)

0

50

100

150

N
u

m
b

e
r

o
f

P
ro

b
le

m
s

IBBA-LFC

IBBA-LCF

(b) When delay requirement tri is less strict.

Fig. 9: Computation time and number of solved intermediate problems in order to find an optimal solution.

TABLE II: Complexity and computation times

Scenario 1: Increasing complexity
FFBD-F-ROP FFBD-F FFBD-S-ROP FFBD-S IBBA-LFC IBBA-LCF

Min. time 7ms 8ms 88ms 90ms 204ms 250ms
Max. time 640 735ms 1395 1400ms 4092ms 5780ms
Average time 194ms 228ms 433ms 477ms 2059ms 2862ms
Average num. of 3.5 3.5 10.0 10.0 17.9 29.3
standard solve (35%) (35%) (100%) (100%) (100%) (100%)
Average num. of 6.5 6.5 NA NA NA NA
fast solve (65%) (65%) (0%) (0%) (0%) (0%)
Max. MP 16 16 16 16 NA NA
Iterations
Average MP 4.5 4.5 4.5 4.5 NA NA
Iterations
Scenario 2: Vary the task delay requirements

FFBD-F-ROP FFBD-F FFBD-S-ROP FFBD-S IBBA-LFC IBBA-LCF
Min. time 6ms 7ms 87ms 100ms 398ms 646ms
Max. time 1966ms 2756ms 3439ms 3789ms 11286ms 11458ms
Average time 378ms 475ms 682ms 779ms 2169ms 3390ms
Average num. of 8 8 19 19 14.6 30.4
standard solve (42.1%) (42.1%) (100%) (100%) (100%) (100%)
Average num. of 11 11 NA NA NA NA
fast solve (57.9%) (57.9%) (0%) (0%) (0%) (0%)
Max. MP 26 26 26 26 NA NA
Iterations
Average MP 6.25 6.25 6.25 6.25 NA NA
Iterations

In the case that (MP0) is infeasible at iteration k, it means
that (MP0) will be infeasible at all later iterations due to
cuts(k) ⊂ cuts(k+v),∀v ≥ 1. In other words, the original
problem (P0) is infeasible. �

APPENDIX C
PROOF OF LEMMA 1

Proof. if p1
q1
≥ p2

q2
then max{p1q1 ,

p2
q2
} = p1

q1
≥ p1+p2

q1+q2
. Otherwise,

if p1
q1
< p2

q2
then max{p1q1 ,

p2
q2
} = p2

q2
> p1+p2

q1+q2
. In other words,

max{p1q1 ,
p2
q2
} ≥ p1+p2

q1+q2
. Similarly, max{p1+p2q1+q2

, p3q3 } ≥
p1+p2+p3
q1+q2+q3

.
Therefore, max{p1q1 ,

p2
q2
, p3q3 } ≥ max{p1+p2q1+q2

, p3q3 } ≥
p1+p2+p3
q1+q2+q3

.
Repeatedly, we have max

i∈N
{piqi } ≥

P
Q . �

APPENDIX D
PROOF OF THEOREM 3

Proof. Let’s find a feasible solution of (SP1). Task Ii will
be allocated with resources ruij , rdij , rfij , wcij and f cij as

ruij =
Di′

i

βu
bal

, rdij =
Do′

i

βd
bal

, rfij =
C
′
i

βf
bal

, wcij =
Dc′

i

βw
bal

, and

f cij =
Cc′

i

βc
bal

. We have βi =
(
Di′

i

ruij
+

Do′
i

rdij
+

C
′
i

rfij
+

Dc′
i

wc
ij

+
Cc′

i

fc
ij

)
=(

βubal + βdbal + βfbal + βwbal + βcbal

)
. Here, rfij = 0, C

′
i

rfij
= 0,∀i ∈

Nsj , and wcij = 0, f cij = 0, Dc′
i

wc
ij

= 0, Co′
i

fc
ij

= 0,∀i ∈ Nfj . Thus,

βi = βbal ≤ 1,∀i ∈ Nt+sj .

Besides,
∑
i∈Nt+s

j
ruij = Ruj ,

∑
i∈Nt+s

j
rdij = Rdj ,∑

i∈Nt+s
j

rfij = Rfj ,
∑
i∈Nt+s

j
wcij = W c

j , and
∑
i∈Nt+s

j
f cij = F cj

satisfying resource limit conditions. In conclusion, the problem
(SP1) is feasible. �

APPENDIX E
PROOF OF THEOREM 4

Proof. Applying Lemma 1 into {Di′

i }i∈Nt+s
j

and {ruij}i∈Nt+s
j

,

we have max
i∈Nt+s

j

{D
i′
i

ruij
} ≥

∑
i∈Nt+s

j
Di′

i∑
i∈Nt+s

j
ruij

. According to resource al-

location conditions,
∑
i∈Nt+s

j
ruij ≤ Ruj , we have max

i∈Nt+s
j

{D
i′
i

ruij
} ≥

∑
i∈Nt+s

j
Di′

i

Ru
j

. Therefore, max
i∈Nt+s

j

{D
i′
i

ruij
} > 1. Without loss of

generality, we assume ∃i∗ ∈ Nt+sj ,
Di′

i∗
rui∗j

= max
i∈Nt+s

j

{D
i′
i

ruij
} > 1.

Consequently, βi∗ =

(
Di′

i∗
rui∗j

+
Do′

i∗
rdi∗j

+
C
′
i∗

rfi∗j

)
>

Di′
i∗

rui∗j
> 1. It

contradicts the delay requirement of Task Ii∗, βi∗ ≤ 1 as in
Eq. (26). In conclusion, the problem (SP1) is infeasible.

The cases

∑
i∈Nt+s

j
Do′

i

Rd
j

> 1,

∑
i∈Nt+s

j
C
′
i

Rf
j

> 1,

∑
i∈Nt+s

j
Dc′

i

W c
j

> 1,

and

∑
i∈Nt+s

j
Cc′

i

F c
j

> 1 are proved in the similar way. �

REFERENCES

[1] T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Offloading energy efficiency with delay constraint for cooperative
mobile edge computing networks,” in 2018 IEEE Global Communications
Conference (GLOBECOM), 2018, Conference Proceedings, pp. 1–6.
[Online]. Available: https://arxiv.org/abs/1811.12686

[2] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture,” in 2012 IEEE Symposium on Computers and
Communications (ISCC), 2012, Conference Proceedings, pp. 59–66.

[3] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,
and P. Liljeberg, “Exploiting smart e-health gateways at the edge of
healthcare internet-of-things: A fog computing approach,” Future Genera-
tion Computer Systems, vol. 78, pp. 641–658, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17302121

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing – a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[7] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, April 2010.

[8] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and
C. Lin, “Edge of things: The big picture on the integration of edge, iot and
the cloud in a distributed computing environment,” IEEE Access, vol. 6,
pp. 1706–1717, 2018.

[9] M. Chen, B. Liang, and M. Dong, “Multi-user multi-task offloading
and resource allocation in mobile cloud systems,” IEEE Transactions on
Wireless Communications, vol. 17, no. 10, pp. 6790–6805, 2018.

[10] M. Chen, M. Dong, and B. Liang, “Resource sharing of a computing access
point for multi-user mobile cloud offloading with delay constraints,” IEEE
Transactions on Mobile Computing, vol. 17, no. 12, pp. 2868–2881, 2018.

[11] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource
allocation in mixed fog/cloud computing systems with min-max fairness
guarantee,” IEEE Transactions on Communications, vol. 66, no. 4, pp.
1594–1608, 2018.

[12] J. Du, L. Zhao, X. Chu, F. R. Yu, J. Feng, and I. C, “Enabling low-
latency applications in lte-a based mixed fog/cloud computing systems,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1757–1771,
2019.

[13] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment
and resource allocation for d2d-enabled mobile-edge computing,” IEEE
Transactions on Communications, vol. 67, no. 6, pp. 4193–4207, 2019.

[14] C. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task offloading
and resource allocation for ultra-reliable low-latency edge computing,”
IEEE Transactions on Communications, vol. 67, no. 6, pp. 4132–4150,
2019.

[15] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[16] J. Wang, K. Liu, B. Li, T. Liu, R. Li, and Z. Han, “Delay-sensitive multi-
period computation offloading with reliability guarantees in fog networks,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2019.

[17] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative task
offloading in three-tier mobile computing networks: An admm framework,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2763–2776,
2019.

[18] Y. Huang, Y. Liu, and F. Chen, “Noma-aided mobile edge computing via
user cooperation,” IEEE Transactions on Communications, vol. 68, no. 4,
pp. 2221–2235, 2020.

[19] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
2012 Proceedings IEEE INFOCOM, 2012, Conference Proceedings, pp.
2716–2720.

[20] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[21] C. Shuguang, A. J. Goldsmith, and A. Bahai, “Energy-efficiency of mimo
and cooperative mimo techniques in sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 6, pp. 1089–1098, 2004.

[22] D. N. Nguyen and M. Krunz, “A cooperative clustering protocol for energy
constrained networks,” in 2011 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
2011, Conference Proceedings, pp. 574–582.

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[24] A. M. Geoffrion, “Generalized benders decomposition,” Journal of
Optimization Theory and Applications, vol. 10, no. 4, pp. 237–260, 1972.
[Online]. Available: https://doi.org/10.1007/BF00934810

[25] Y. Yu, X. Bu, K. Yang, and Z. Han, “Green fog computing resource allo-
cation using joint benders decomposition, dinkelbach algorithm, and mod-
ified distributed inner convex approximation,” in 2018 IEEE International
Conference on Communications (ICC), 2018, Conference Proceedings, pp.
1–6.

[26] M. Fischetti and D. Salvagnin, “A relax-and-cut framework for gomory’s
mixed-integer cuts,” ser. Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Springer Berlin
Heidelberg, 2010, Conference Proceedings, pp. 123–135.

[27] M. Fischetti, I. Ljubić, and M. Sinnl, “Benders decomposition without
separability: A computational study for capacitated facility location
problems,” European Journal of Operational Research, vol. 253, no. 3, pp.
557–569, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0377221716301126

[28] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische Mathematik, vol. 4, no. 1, pp.
238–252, 1962. [Online]. Available: https://doi.org/10.1007/BF01386316

[29] A. Grothey, S. Leyffer, and K. McKinnon, “A note on feasibility in benders
decomposition,” Numerical Analysis Report NA/188, Dundee University,
1999.

[30] Z. C. A Taşkin, Benders Decomposition, 2011. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0104

[31] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” HotCloud, vol. 10, pp. 4–4, 2010.

[32] F. Liu, E. Bala, E. Erkip, M. C. Beluri, and R. Yang, “Small-cell traffic
balancing over licensed and unlicensed bands,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 12, pp. 5850–5865, 2015.

[33] S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri, and D. Kout-
sonikolas, “Power-throughput tradeoffs of 802.11n/ac in smartphones,” in
2015 IEEE Conference on Computer Communications (INFOCOM), 2015,
Conference Proceedings, pp. 100–108.

[34] E. D. Andersen and K. D. Andersen, “The mosek documentation and
api reference,” Report, 2019. [Online]. Available: https://www.mosek.com/
documentation/

https://arxiv.org/abs/1811.12686
http://www.sciencedirect.com/science/article/pii/S0167739X17302121
https://doi.org/10.1007/BF00934810
http://www.sciencedirect.com/science/article/pii/S0377221716301126
http://www.sciencedirect.com/science/article/pii/S0377221716301126
https://doi.org/10.1007/BF01386316
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0104
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0104
https://www.mosek.com/documentation/
https://www.mosek.com/documentation/

Thai T. VU received his B.S. and M.S. degrees in CS
from VNU University of Engineering and Technology,
Hanoi, Vietnam in 2006 and 2014, respectively. He
is currently a Ph.D. student at University of Tech-
nology Sydney (UTS) as well as a research staff at
the School of Engineering and Mathematical Sciences,
La Trobe University, Australia. Before joining UTS,
he was a lecturer at the Faculty of Computer Science
and Engineering, Thuyloi University, Vietnam. His re-
search interests include fog/cloud computing, Internet
of Things, machine learning, and learning algorithms,

with an emphasis on energy efficiency, low latency, fairness, and security/privacy
awareness.

DIEP N. NGUYEN (Senior Member, IEEE) received
the M.E. and PhD degrees in electrical and computer
engineering from University of California San Diego
(UCSD) and The University of Arizona (UA), respec-
tively. He is a Faculty Member of the Faculty of
Engineering and Information Technology, University of
Technology Sydney (UTS). Before joining the UTS,
he was a DECRA Research Fellow at Macquarie Uni-
versity, and a Member of Technical Staff at Broad-
com, CA, USA, and ARCON Corporation, Boston,
consulting the Federal Administration of Aviation on

turning detection of UAVs and aircraft, U.S. Air Force Research Lab on anti-
jamming. His current research interests include computer networking, wireless
communications, and machine learning applications, with an emphasis on sys-
tems’ performance and security/privacy. He has received several awards from
LG Electronics, UCSD, UA, U.S. National Science Foundation, and Australian
Research Council. He is an Editor, Associate Editor of the Transactions on
Mobile Computing, IEEE Access, Sensors journal, and IEEE Open Journal of
the Communications Society (OJ-COMS).

Dinh Thai Hoang (M’16) is currently a faculty mem-
ber at the School of Electrical and Data Engineering,
University of Technology Sydney, Australia. He re-
ceived his Ph.D. in Computer Science and Engineering
from the Nanyang Technological University, Singapore,
in 2016. His research interests include emerging top-
ics in wireless communications and networking such
as machine learning, ambient backscatter communica-
tions, IRS, mobile edge intelligence, cybersecurity, IoT,
and 5G/6G networks. He has received several awards
including Australian Research Council. Currently, he is

an Editor of IEEE Wireless Communications Letters and IEEE Transactions on
Cognitive Communications and Networking.

Eryk Dutkiewicz received his B.E. degree in Electrical
and Electronic Engineering from the University of
Adelaide in 1988, his M.Sc. degree in Applied Math-
ematics from the University of Adelaide in 1992 and
his PhD in Telecommunications from the University of
Wollongong in 1996. His industry experience includes
management of the Wireless Research Laboratory at
Motorola in early 2000’s. Prof. Dutkiewicz is currently
the Head of School of Electrical and Data Engineering
at the University of Technology Sydney, Australia.
He is a Senior Member of IEEE. He also holds a

professorial appointment at Hokkaido University in Japan. His current research
interests cover 5G/6G and IoT networks.

THUY V. NGUYEN received the B.Sc. degree from
the Hanoi University of Science and Technology
(HUST), Hanoi, Vietnam, the M.Sc. degree from New
Mexico State University, Las Cruces, NM, USA, and
the Ph.D. degree from The University of Texas at
Dallas, Richardson, TX, USA, all in electrical engineer-
ing. He was a member of Technical Staff with Flash
Channel Architecture, Seagate, Fremont, CA, USA. He
is currently a Lecturer with the Faculty of Information
Technology, Posts and Telecommunications Institute
of Technology (PTIT), Hanoi. His research interest

includes wireless communications, coding theory, and machine learning applica-
tions in next-generation communication systems.

	Clipboard Data(1)
	IEEE_TC_2col_Revised_26Dec2020_v01_final_Diep_edit_camera_ready_final.pdf
	Introduction
	System Model and Problem Formulation
	Network Model
	Local Processing
	Fog Node Processing
	Cloud Server Processing (offloaded via a fog node)
	Cloud Server Processing (directly offloaded by mobile devices)

	Problem Formulation

	Proposed Optimal Solutions
	Convexity of Relaxed Problems
	Improved Branch and Bound Algorithm
	Feasibility-Finding Benders Decomposition
	Distributed Subproblems
	Fast Feasibility and Infeasibility Detection
	Cutting-Plane Generation
	FFBD Procedure

	Implementation Protocol and Complexity Analysis
	Implementation Protocol
	Complexity Analysis

	Performance Evaluation
	Offloading Analysis
	Experiment Setup
	Numerical Results
	Scenario 1 - Varying the Complexity of Tasks
	Scenario 2 - Varying the Task Delay Requirements
	Scenario 3 - Varying the Backhaul Capacity
	Complexity and Computation Time

	Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of Theorem 3
	Appendix E: Proof of Theorem 4
	References
	Biographies
	Thai T. VU
	DIEP N. NGUYEN
	Dinh Thai Hoang
	Eryk Dutkiewicz
	THUY V. NGUYEN

