
ar
X

iv
:2

10
2.

07
38

4v
1 

 [
ee

ss
.S

P]
  1

5 
Fe

b 
20

21

Reconfigurable Intelligent Surface Aided Mobile

Edge Computing: From Optimization-Based to

Location-Only Learning-Based Solutions
Xiaoyan Hu, Member, IEEE, Christos Masouros, Senior Member, IEEE, Kai-Kit Wong, Fellow, IEEE

Abstract—In this paper, we explore optimization-based and
data-driven solutions in a reconfigurable intelligent surface (RIS)-
aided multi-user mobile edge computing (MEC) system, where
the user equipment (UEs) can partially offload their computation
tasks to the access point (AP). We aim at maximizing the total
completed task-input bits (TCTB) of all UEs with limited energy
budgets during a given time slot, through jointly optimizing the
RIS reflecting coefficients, the AP’s receive beamforming vectors,
and the UEs’ energy partition strategies for local computing
and offloading. A three-step block coordinate descending (BCD)
algorithm is first proposed to effectively solve the non-convex
TCTB maximization problem with guaranteed convergence. In
order to reduce the computational complexity and facilitate
lightweight online implementation of the optimization algorithm,
we further construct two deep learning architectures. The first
one takes channel state information (CSI) as input, while the
second one exploits the UEs’ locations only for online inference.
The two data-driven approaches are trained using data samples
generated by the BCD algorithm via supervised learning. Our
simulation results reveal a close match between the performance
of the optimization-based BCD algorithm and the low-complexity
learning-based architectures, all with superior performance to
existing schemes in both cases with perfect and imperfect input
features. Importantly, the location-only deep learning method
is shown to offer a particularly practical and robust solution
alleviating the need for CSI estimation and feedback when line-
of-sight (LoS) direct links exist between UEs and the AP.

Index Terms—Mobile edge computing, reconfigurable intelli-
gent surface, receive beamforming, energy partition, deep learn-
ing.

I. INTRODUCTION

A. Motivations and Prior Works

The increasing data rates provided by 5G and beyond

technologies, together with the proliferation of Internet-of-

things (IoT) devices, have recently given rise to massive con-

nectivity communications. Accompanied by a wide range of

emerging computation-intensive applications, the computing

and processing demands for user equipment (UEs), e.g., smart

devices and IoT sensors, are growing unprecedentedly. In order

to liberate the resource-limited UEs from heavy computation

workloads and provide them with high-performance low-

latency computing services, mobile edge computing (MEC)

promotes to use cloud computing capabilities at the edge

of mobile networks through integrating MEC servers at the
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wireless access points (APs) [2]. Hence, UEs’ computation-

intensive tasks can be offloaded and completed at the adjacent

APs with less cost, energy and time.

Extensive works have contributed to the performance en-

hancement of applying MEC in various wireless networks, ei-

ther improving the energy efficiency or reducing the execution

latency through jointly optimizing the radio and computational

resources [3–8]. A multicell MEC system was considered

in [3], where users’ energy consumption was minimized

through joint resource allocation. Later in [4], a game-theoretic

algorithm was proposed to maximize the cell load as well

as minimize the cost of time and energy. The offloading

priority function was defined in [5] to show the relationship

between the offloading strategy and resource allocation. A

wireless powered MEC system was investigated in [6], where

user cooperation was utilized to counteract the double-near-far

effect. Work in [7] addressed the joint resource allocation of a

multi-user multi-server MEC scenario to maximize the system

utility. The complementary benefits of edge and central cloud

computing were studied in a two-tier heterogeneous cloud

computing network in [8].

In order to further enhance the uplink offloading perfor-

mance of the resource-limited UEs, great attentions have

been drawn to the technology of reconfigurable intelligent

surface (RIS) recently, due to its advantages of low cost, easy

deployment, fine-grained passive beamforming and directional

signal enhancement or interference nulling [9–11]. Through

controlling the reflecting elements on the surface, RISs can

be reconfigured to provide a more favourable wireless prop-

agation environment for communications. Clearly, leveraging

RISs into MEC systems is a cost-effective and environment-

friendly way to facilitate UEs’ computation offloading.

Several pioneer RIS-aided MEC works have been done to

explore the potential benefits of utilizing RISs in MEC systems

[12–15]. A multi-user RIS-aided MEC system was considered

in [12], where the execution latency was minimized with joint

optimization on resource allocation and RIS coefficients design

in an iterative way. It was verified that significant performance

improvement can be attained compared to the case without

RIS. The advantages of RIS in directional beamforming were

exploited for both uplink task offloading and downlink results

downloading in [13], where the power minimization problem

was solved with an iterative block-structured algorithm. Simi-

larly, both uplink and downlink transmissions were considered

in the RIS-aided MEC work [14], while the system utility

was maximized iteratively to reduce the cost of energy and
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time. Later in [15], RIS was used in a wireless powered MEC

system, and the energy consumption was minimized through

a two-step iterative method.

For RIS-aided MEC systems, the formulated performance

enhancement problems are typically non-convex with coupled

optimization variables. Hence, iterative algorithms are usually

necessary for jointly optimizing the radio and computational

resource allocation as well as the RIS coefficients design. It

is true that iterative algorithms may be capable of providing

near-optimal solution even with guaranteed convergence, but

they have very high computational complexity which require

long execution time and thus may hinder their utilization

in practical networks. To tackle this issue, deep learning

architectures provide a promising way to achieve lightweight

online implementation via offline training [16–18].

Note that deep learning methods have been investigated in

some MEC systems to simplify the optimization algorithm

or fulfill online implementations [19–22]. A deep learning-

based offloading strategy was designed in [20] to minimize

the weighted energy consumption and latency. The deep re-

inforcement learning (DRL) was leveraged in [21] for smart

resource allocation of a software defined network (SDN)-

enabled MEC architecture, also in [22] for online offloading

decisions and resource allocation of a wireless powered MEC

system. Recently, the DRL was also used in the RIS-aided

architectures to enhance the security [23] and maximize the

sum rate of the downlink communications [24]. In [25],

a convolutional neural network (CNN) was constructed for

channel estimation of a large RIS-aided millimeter-wave (mm-

wave) communication system.

B. Our Contributions

As per the above literature, deep learning approaches are

promising to offer low-complexity solutions for the traditional

MEC-related systems or RIS-aided downlink communication

architectures. However, the potentials of deep learning meth-

ods in simplifying the optimization algorithms of complex

RIS-aided MEC systems have not been explored in the existing

literature. In this paper, a multi-user RIS-aided MEC architec-

ture with multiplexing computation offloading is considered,

where the RIS is installed to constructively control the interfer-

ence and enhance the overall performance of UEs. We not only

propose an iterative optimization algorithm to efficiently solve

the formulated problem with guaranteed convergence, but also

construct two deep learning architectures to facilitate online

implementations of the proposed algorithm with significantly

reduced complexity. To the best of our knowledge, this is the

first work that leverages the data-driven approach in the RIS-

aided MEC systems. Also, the proposed optimization-based

algorithm is used to train the deep neural networks (DNNs) for

efficient optimization and lightweight online implementation.

Our main contributions are summarized as follows:

• A RIS-aided MEC architecture with uplink multiplexing

offloading is leveraged to enhance the performance for

maximizing the total completed task-input bits (TCTB)

of all the resource-limited UEs. Partial computation

offloading is adopted for the RIS-aided MEC system in

a multiplexing way, where the UEs can partially offload

their computation task-input bits simultaneously. We aim

at maximizing the TCTB of all the UEs with limited

energy supply budgets during a given time slot, which

maximizes the computation efficiency in both time and

energy, through jointly optimizing the RIS reflecting

coefficients, the AP’s receive beamforming vectors, and

the UEs’ energy partition strategies for local computing

and computation offloading. The utilization of RIS is

capable to enhance the performance of maximizing TCTB

by constructively reconfiguring favourable propagations

for all the UEs.

• The RIS reflecting coefficients design, receive beam-

forming design, and energy partition optimization for

maximizing the TCTB are effectively addressed through

a three-step block coordinate descending (BCD) opti-

mization algorithm with guaranteed convergence. The

non-convex property and strongly coupled optimization

variables of the formulated TCTB maximization problem

make it difficult to obtain the global optimal solution.

To address this issue, we propose a three-step BCD op-

timization algorithm to effectively separate the coupling

and solve the problem by addressing three sub-problems

iteratively. The DC (difference of convex functions) pro-

gramming method is leveraged to solve the first and third

sub-problems respectively for RIS reflecting coefficients

design and receive beamforming design with guaranteed

convergence, while the optimal solution of the second

sub-problem for receive beamforming design is obtained

via eigenvalue decompositions.

• A CSI-based deep learning architecture with DNN-CSI

is constructed to facilitate the online implementation of

the proposed optimization-based BCD algorithm with

significantly reduced complexity. Supervised learning is

adopted to train the DNN-CSI using the data samples

generated by the proposed BCD algorithm. It is shown

that this CSI-based data-driven method can sufficiently

capture the mapping of the BCD algorithm to the opti-

mization solution, with lightweight inference complexity.

Satisfactory and stable performance can be achieved in

both scenarios without and with strong line-of-sight (LoS)

direct links between the UEs and the AP.

• A location-only deep learning architecture is further

constructed that can effectively predict the solution of

the proposed BCD algorithm without the need for pilot

channel estimation and feedback during online infer-

ence. This data-driven method is also based on supervised

learning, and it performs well when LoS direct links are

available for UEs. The complexity of both training and

testing can be greatly reduced compared with the CSI-

based learning architecture since only UEs’ locations are

needed as the input feature. Thus, more lightweight online

implementation can be achieved.

• High effectiveness and robustness of the CSI-based

and the location-only deep learning architectures to the

uncertainty of the input CSI and UEs’ locations are val-

idated. The scenarios with corrupted input features to the

two proposed deep learning architectures are considered

to validate their effectiveness and robustness.
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Fig. 1. An illustration of the RIS-aided MEC architecture, where a K-element
RIS assists the multiplexing computation offloading of N UEs. The phase
shifts of the RIS elements can be adaptively adjusted by the AP through the
dedicated control channel, so as to refine the signal propagations.

Simulation results are presented to evaluate the performance

of the proposed BCD optimization algorithm and the two deep

learning architectures. It is confirmed that the proposed BCD

algorithm highly outperforms the other three traditional bench-

marks. In addition, the CSI-based deep learning architecture

can always approach the performance of the BCD algorithm in

both scenarios without and with LoS direct links between the

UEs and the AP. It is noticeable that the location-only deep

learning architecture can replace the CSI-based architecture to

provide a satisfactory data-driven solution in the scenario with

LoS direct links, with much less required overheads. Besides,

it is shown that the constructed two deep learning architectures

can effectively emulating the proposed BCD algorithm even

in the more practical scenarios with uncertainty in the input

information of CSI and UEs’ locations.

The rest of this paper is organized as follows. Section II

introduces the considered system model and presents the

corresponding problem formulation. The BCD algorithm is

proposed in Section III to provide an optimization solution to

the formulated problem, while two deep learning architectures

are shown in Section IV to offer the learning-based solutions.

The implementation setting and complexity reduction of the

deep learning approaches are discussed in Section V. Sec-

tion VI provides the simulation results, and we conclude our

paper in Section VII.

Notations—In this paper, the upper and lower case bold

symbols denote matrices and vectors, respectively. The nota-

tions (·)T and (·)H represent transpose and conjugate transpose

for vectors or matrices. In addition, ⊗ denotes the Kronecker

product. Tr {A} is the trace of square matrix A. Also, eig {A}
denotes the set of all the eigenvalues of A, and eigvec {·} gives

the eigenvector for a given eigenvalue of A. ∇Xf(X) denotes

the Jacobian matrix of function f(X) with respect to (w.r.t.)

the matrix X, and ∂Xg(X) denotes a subgradient of function

g(X) w.r.t. X. 〈X1,X2〉 , R{tr(XH
1 X2)}, where R{·} is

the real-value operator. Finally, diag{x} is the diagonal matrix

formed by the elements of vector x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided MEC system as shown in Fig. 1,

which consists of N single-antenna ground UEs, one RIS with

K reflecting elements, and one M -antenna AP. The RIS can

be flexibly installed on the surrounding building walls, and it

is under the control of the AP through a wireless controller to

dynamically adjust the phase shift of each reflecting element.

By choosing a desirable location of the RIS, it is possible to

achieve LoS connections between the RIS and the AP as well

as the UEs within a certain area.

A. Completed Task-Input Bits (CTB) with Partial Offloading

Each UE n ∈ N = {1, 2, . . . , N} has intensive computation

task-input bits (e.g., program codes and input parameters) to be

dealt with, but with a limited energy budget dedicated for com-

pleting these task bits, denoted as En in Joules (J). A partial

offloading mode is adopted to handle UEs’ computation tasks,

which are suitable to the augmented reality (AR) applications

mentioned in [2]. For these kinds of computation tasks, UEs’

task-input bits can be arbitrarily divided to facilitate parallel

operations at UEs for local computing and offloading to the

AP for remote computing. Hence, the accounted computation

energy consumption of each UE includes that both used

for local computing and computation offloading. The grid-

powered AP is co-located with a powerful MEC server for

helping UEs compute their offloaded tasks and it is also

capable of downloading UEs’ computation results, both in

negligible time.1 We use Cn to represent the amount of re-

quired computing resource, i.e., the number of CPU cycles, for

completing 1-bit of UE n’s input data. Our aim is to maximize

the TCTB of all UEs each with a limited energy budget

during a given time slot T , which is equivalent to maximizing

the computation efficiency of the RIS-assisted MEC system,

including both energy efficiency and time efficiency referring

to computation rate [26–29].

We first introduce a partition parameter an ∈ [0, 1] for UE

n ∈ N , and anEn J of energy will be used for computation

offloading while (1 − an)En J of energy will be used for

local computing. In this case, the transmit power of UE n for

computation offloading is given as

pn =
anEn

T
, anẼn, ∀n ∈ N , (1)

with Ẽn = En/T for n ∈ N .

Let sn denote the task-input data-bearing signal transmitted

by UE n ∈ N for computation offloading with |sn| = 1. Note

that all the UEs with offloading requirements transmit their

signals simultaneously in a multiplexing way within the given

time slot, and thus we can express the corresponding received

signal y ∈ CM×1 at the AP as [31]

y =

N∑

n=1

(HAPΦhr,n + hd,n)
√
pnsn + n, (2)

1In this paper, we ignore the execution latency at the MEC server due
to the fact that the MEC server is grid-power supplied and has a super-
high computing capability, and thus the corresponding execution latency is
negligible compared with that consumed at the UEs [5, 6, 8, 15, 26–30]. In
addition, we assume that the UEs’ computation results are with very small
sizes, e.g., a few command bits, which can be ignored especially compared
with their task-input bits, and thus the AP with a sufficient power supply can
transmit the results back to UEs with negligible time [5–8, 12, 14, 15, 26–28].



where hd,n ∈ CM×1 is the direct link between UE n and

the AP, hr,n ∈ C
K×1 indicates the relay channel between

UE n and the RIS, and HAP ∈ CM×K represents the channel

between RIS and the AP. We assume that the channels {hd,n},

{hr,n} and HAP are quasi-static within the given time slot.

Additionally, Φ = diag{φ} indicates the reflection-coefficient

matrix of the RIS, where φ = [φ1, . . . , φK ]T and φk = ejθk

being the phase shift of the k-th reflecting element of the

RIS with θk ∈ [0, 2π] for k ∈ K = {1, 2, . . . ,K}. Also,

n ∼ CN (0, σ2IM ) is the the additive white Gaussian noise

(AWGN) at the AP with σ2 being the noise power. The linear

beamforming strategy is then adopted at the AP to decode the

UEs’ transmit signals, and wn ∈ C
M×1 is the specific receive

beamforming vector for UE n. Thus, the estimated signal for

UE n can be given as

ŝn = wH
ny (3)

= wH
n

N∑

n=1

(HAPΦhr,n + hd,n)
√
pnsn +wH

nn, ∀n ∈ N .

Based on the analysis above, we can obtain the uplink signal-

to-interference-plus-noise ratio (SINR) for offloading UE n’s

tasks as

γn(a,wn,φ) = (4)

anẼn|wH
n (HAPΦhr,n + hd,n)|2

N∑
i=1,i6=n

aiẼi|wH
n (HAPΦhr,i + hd,i)|2 + σ2‖wH

n‖2
, ∀n ∈ N ,

where we denote an energy partition vector a = [a1, . . . , aN ].
Then, the CTB of UE n through computation offloading can

be expressed as [32]

Roff
n (a,wn,φ) = BT log2(1 + γn(a,wn,φ)), ∀n ∈ N , (5)

where B is the given bandwidth shared with all the UEs.

As for the case of local computing, the dynamic voltage

and frequency scaling (DVFS) technique is adopted at all

the UEs for increasing the computation energy efficiency

through adaptively controlling the CPU frequency used for

computing [33]. Thus, the computation energy consumption

of UE n ∈ N can be expressed as Tκnf
3
n, where κn

is the effective capacitance coefficient of UE n, and fn is

the CPU frequency of its processing server. Also, we have

(1− an)En = Tκnf
3
n, and thus we can calculate fn as

fn = 3

√
(1− an)En

Tκn

, ∀n ∈ N . (6)

Hence, the CTB of UE n for local computing can be given as

Rloc
n (an) =

fnT

Cn

=
T

Cn

3

√
(1 − an)Ẽn

κn

, ∀n ∈ N . (7)

B. Problem Formulation

We aim at maximizing the TCTB of all the UEs with

limited energy supply {En}n∈N in the given time slot T ,

including their CTB through both computation offloading and

local computing, where the objective TCTB is maximized

through jointly optimizing the reflection coefficients in φ, the

receive beamforming vectors in W = [w1, . . . ,wN ], and the

energy partition parameters in a. As we mentioned before,

maximizing the TCTB in this scenario can maximize the

computation efficiency in both time and energy [26–29]. The

corresponding TCTB maximization problem is formulated as

problem (P0) given below

(P0) : max
a,W,φ

N∑

n=1

(
Roff

n (a,wn,φ) +Rloc
n (an)

)
(8a)

s.t. an ∈ [0, 1], ∀n ∈ N , (8b)

|φn| = 1, ∀n ∈ N , (8c)

which is a non-convex optimization problem since the opti-

mization variables φ, W, and a are strongly coupled. Hence, it

is computationally difficult to find the global optimal solution

of problem (P0), similar in [12–15]. To address this issue, we

propose a three-step BCD optimization algorithm to effectively

separate the coupling among the optimization variables and

solve this problem iteratively with guaranteed convergence.

III. BCD OPTIMIZATION ALGORITHM DESIGN

The proposed BCD algorithm is operated in three major

steps by solving three sub-problems iteratively. In the χ-th

(χ = 1, 2, . . . ) iteration, we first design the RIS reflecting

coefficients in φ, with given Wχ−1 and aχ−1 obtained in

the previous iteration, and denote the solution as φχ. Then,

with given aχ−1 and the obtained φχ, we show that the

receive beamforming vectors in W have closed-form optimal

solutions, presented as Wχ. We finally optimize the energy

partition parameters in a with the obtained φχ and Wχ,

indicating the solution as aχ. With the given initial W0 and

a0, we can prove that the proposed three-step BCD algorithm

can be performed with guaranteed convergence. Next, we will

demonstrate the details of the BCD optimization algorithm for

solving the three sub-problems in the χ-th iteration.

A. RIS Reflecting Coefficients Design

In the χ-th iteration of the BCD algorithm, we first consider

designing the RIS reflecting coefficients, i,e, φ, with given

W = Wχ−1 and a = aχ−1. With the given energy partition

parameters in a, we can equivalently obtain the UEs’ transmit

power as pn = anẼn. Then, the RIS’s reflecting coefficients

design problem (P1) can be described as

(P1) : max
φ

N∑

n=1

log2(1 + γn(φ)) (9a)

s.t. |φk| = 1, ∀k ∈ K, (9b)

which is still non-convex and difficult to deal with directly.

According to the expression of γn(φ) in (4) for n ∈ N , we

can re-express |wH
n (HAPΦhr,i + hd,i)|2 as

|wH
n (HAPΦhr,i + hd,i)|2 (10)

=|wH
nHAPdiag(hr,i)φ+wH

nhd,i|2

=|hRIS
r,n,iφ+ hd,n,i|2, ∀n, i ∈ N ,



where hRIS
r,n,i = wH

nHAPdiag(hr,i) ∈ C1×K and hd,n,i =

wH
nhd,i. By defining a matrix Qn,i ∈ C

(K+1)×(K+1) as

Qn,i =

[
(hRIS

r,n,i)
HhRIS

r,n,i, (hRIS
r,n,i)

Hhd,n,i

hH
d,n,ih

RIS
r,n,i, 0

]
, ∀n ∈ N , (11)

and a vector φ̃ = [φ1, . . . , φK , ξ]T ∈ C(K+1)×1 with an

auxiliary scalar ξ, we can then re-express |hRIS
r,n,iφ+hd,n,i|2 =

φ̃
H
Qn,iφ̃ + |hd,n,i|2 = Tr(Qn,iΨ) + |hd,n,i|2, where Ψ =

φ̃φ̃
H ∈ C(K+1)×(K+1) is a positive semidefinite matrix (PSD)

related to the RIS reflecting coefficients.

Note that each added item in the objective function, i.e.,

log2(1 + γn(φ)), can be re-written as

log2(1 + γn(φ)) = log2(1 + γn(φ̃)) (12)

= log2

(
N∑

j=1

pj |wH
n (HAPΦhr,j + hd,j)|2 + σ2||wH

n ||2
)

− log2

(
N∑

i=1,i6=n

pi|wH
n (HAPΦhr,i + hd,i)|2 + σ2||wH

n ||2
)

= log2

(
N∑

j=1

pj(Tr(Qn,jΨ) + |hd,n,j|2) + σ2||wH
n ||2

)

− log2

(
N∑

i=1,i6=n

pi(Tr(Qn,iΨ) + |hd,n,i|2) + σ2||wH
n ||2

)

, F1,n(Ψ)− F2,n(Ψ), ∀n ∈ N ,

where F1,n(Ψ) and F2,n(Ψ) are two concave functions w.r.t.

Ψ. Hence, the problem (P1) can be equivalently transformed

into the following problem (P̃1)

(P̃1) : max
Ψ�0

N∑

n=1

F1,n(Ψ)− F2,n(Ψ) (13a)

s.t. Ψk,k = 1, ∀k = 1, 2, . . . ,K + 1, (13b)

rank(Ψ) = 1. (13c)

Even though the objective function in (13a) and the rank-one

constraint (13b) make problem (P̃1) non-convex, it is easy to

note that the objective function is a sum of differences of con-

cave functions. Next, we will show that the DC programming

[34] can be leveraged to effectively address the issues of the

objective function and the rank-one constraint.

As for the objective function, in the (l+1)-th (l = 0, 1, . . . )
iteration of the DC programming, the second concave item,

i.e., F2,n(Ψ) for n ∈ N , can be approximated by its linear

upper bound at the point Ψ(l) (the solution obtained from the

previous l-th iteration), which is given as

F2,n(Ψ) ≤ F̂2,n(Ψ;Ψ(l)) = F2,n(Ψ
(l))+ (14)

N∑
i=1,i6=n

pi
〈
(Ψ−Ψ(l)),∇ΨTr(Qn,iΨ)|Ψ=Ψ(l)

〉

ln 2

(
N∑

i=1,i6=n

pi(Tr(Qn,iΨ(l)) + |hd,n,i|2) + σ2||wH
n ||2

) ,

where ∇ΨTr(Qn,iΨ)|Ψ=Ψ(l) denotes the Jacobian matrix of

Tr(Qn,iΨ) w.r.t. Ψ at the point Ψ(l), and it is easy to note

that the equality holds when Ψ = Ψ(l).

As for the rank-one constraint, it can be equivalentlly

transformed into the following form

Tr(Ψ) − ||Ψ||s = 0, (15)

where ||Ψ||s denotes the spectral norm of the PSD matrix Ψ. It

is noticeable that Tr(Ψ) =
∑

K+1
k=1 ρk(Ψ) and ||Ψ||s = ρ1(Ψ),

where ρk(Ψ) indicates the k-th largest singular value of Ψ.

Hence, the equality of Tr(Ψ) = ||Ψ||s holds when the rank-

one constraint is satisfied with ρ1(Ψ) > 0 and ρk(Ψ) = 0 for

k = 2, . . . ,K + 1, and vice versa. Similarly, in the (l+ 1)-th
iteration of the DC programming, a linear lower-bound of the

convex item ||Ψ||s at the point Ψ(l) can be expressed as

||Ψ||s ≥ ||Ψ(l)||s +
〈
(Ψ−Ψ(l)), ∂Ψ||Ψ||s|Ψ=Ψ(l)

〉
(16)

, Υ(Ψ;Ψ(l)),

where ∂Ψ||Ψ||s|Ψ=Ψ(l) is a subgradient of the spectral norm

||Ψ||s w.r.t. Ψ at the point Ψ(l), and the equality holds when

Ψ = Ψ(l). Note that one subgradient of ||Ψ||s at point Ψ(l)

can be efficiently computed as z1z
H
1 , where z1 is the vector

corresponding to the largest singular value of Ψ(l) [35].

With the obtained linear lower bound of ||Ψ||s in (16),

we can generate an approximate rank-one constraint of (15),

which is shown as

Tr(Ψ)−Υ(Ψ;Ψ(l)) ≤ εΨ, (17)

where εΨ is a positive threshold with very small value close

to zero. The approximated rank-one constraint can guarantee

that 0 ≤ Tr(Ψ) − ||Ψ||s ≤ Tr(Ψ) − Υ(Ψ;Ψ(l)) ≤ εΨ, and

the rank-one constraint can be approached with an arbitrary

accuracy by setting εΨ infinitely close to zero.

Hence, we can obtain an approximation problem of (P̃1) at

the (l + 1)-th iteration as

(P1.1) : max
Ψ�0

N∑

n=1

F1,n(Ψ)− F̂2,n(Ψ;Ψ(l)) (18a)

s.t. Ψk,k = 1, ∀k = 1, 2, . . . ,K + 1, (18b)

Tr(Ψ) −Υ(Ψ;Ψ(l)) ≤ εΨ, (18c)

which is a convex optimization problem and can be readily

solved by the existing convex solvers such as CVX [36],

and the optimal solution can be obtained as Ψ(l+1). Through

choosing Ψ(0) = Ψχ−1 = φ̃χ−1φ̃
H
χ−1, it is easy to prove that

the feasibility of problem (P1.1) in each iteration l can always

be guaranteed since Ψ(l−1) is always a feasible solution.

Lemma 1. The objective function of problem (P1) in (13a)

monotonically increases with the iteration index l as

F1,n(Ψ
(l+1))− F2,n(Ψ

(l+1)) (19)

(a)

≥F1,n(Ψ
(l+1))− F̂2,n(Ψ

(l+1);Ψ(l))

(b)

≥F1,n(Ψ
(l))− F̂2,n(Ψ

(l);Ψ(l))

=F1,n(Ψ
(l))− F2,n(Ψ

(l)), ∀n ∈ N ,

where (a) comes from the inequality (14) and (b) holds since

Ψ(l) is a feasible solution while Ψ(l+1) is the optimal solution

of problem (P1.1) in (18). Also, the objective function of



problem (P̃1) is upper-bounded by the UEs’ limited energy

budgets. Hence, Problem (P̃1) in (13) as well as its equivalent

form (P1) in (9) can be solved through the DC programming

method with guaranteed convergence [34]. The final solution

of Ψ at the convergence of the (l + 1)-th iteration of the DC

programming is the solution of the BCD algorithm at the χ-th

iteration, i.e., Ψχ = Ψ(l+1).

With the obtained Ψχ, we can retrieve φ̃χ by decomposing

Ψχ = φ̃χφ̃
H
χ with denoting φ̃χ = [φχ,0, ξχ,0]

T, and then

it is easy to obtain the RIS reflecting coefficient vector at

the χ-th iteration of the BCD algorithm as φχ = φχ,0/ξχ,0
and accordingly Φχ = diag{φχ}. In order to facilitate the

following analysis of designing the algorithm, we define the

effective UE-AP channels with given Φ (or φ) as

hn(Φ) = HAPΦhr,n + hd,n, ∀n ∈ N . (20)

B. Receive Beamforming Design

With given a = aχ−1 (pn = anẼn, n ∈ N ) and Φ = Φχ,

the sub-problem for optimizing the AP’s receive beamforming

vextors for each UE, i,e, wn for n ∈ N , can be expressed as

the following problem (P2)

(P2) : max
W

N∑

n=1

Roff
n (wn), (21)

which can be equivalently solved by addressing N parallel

sub-problems for each n ∈ N as

(P2.1) : max
wn

γn(wn) =
wH

nΘnwn

wH
nΘ−nwn

, (22)

where Θn = pnhn(hn)
H and Θ−n =

∑N

i=1,i6=n pihi(hi)
H +

σ2IM , with the effective channel {hn}n∈N given in (20).

Lemma 2. It is easy to note that problem (P2.1) in (22) is

a generalized eigenvector problem, and its optimal solution

w∗
n should be the eigenvector corresponds to the largest

eigenvalue of the matrix (Θ−n)
−1

Θn. Hence, the optimal

w∗
n of problem (P2.1) for n ∈ N can be given as

w∗
n = eigvec

{
max

{
eig{(Θ−n)

−1
Θn}

}}
. (23)

We then denote the receive beamforming matrix obtained

at the χ-th iteration of the BCD algorithm as Wχ =
[w∗

1 , . . . ,w
∗
N ], which is used in the following subsection.

C. Energy Partition Optimization

Here, the sub-problem (P3) for optimizing the energy par-

tition parameters in a with given Φ = Φχ and W = Wχ is

considered, which is given below

(P3) : max
a

N∑

n=1

(
Roff

n (a) +Rloc
n (an)

)
(24a)

s.t. an ∈ [0, 1], ∀n ∈ N . (24b)

Note that problem (P3) is non-convex because of the non-

concave items {Roff
n (a)}n∈N in the objective function (24a).

Actually, Roff
n (a) for n ∈ N can be re-expressed as the

difference of two concave functions as follows

Roff
n (a) , Roff

n,1(a) −Roff
n,2(a−n) = (25)

BT log2

(
N∑

j=1

ajẼj |wH
nhj |2 + σ2||wH

n ||2
)
−

BT log2

(
N∑

i=1,i6=n

aiẼi|wH
nhi|2 + σ2||wH

n ||2
)
,

where a−n = [a1, . . . , an−1, an+1, . . . , aN ].
Then the problem (P3) can also be solved with the DC

programming method, where the second concave function

in (25), i.e., Roff
n,2(a−n), can be substituted by its linear

upper bound, so as to obtain a concave approximation of

Roff
n (a). Assuming a(m) is the solution obtained at the m-

th (m = 0, 1, . . . ) iteration of the DC programming, a linear

upper bound of Roff
n,2(a−n) at the point a(m) can be obtained

through the first-order Taylor series expansion as

Roff
n,2(a−n) ≤ R̂off

n,2(a−n; a
(m)
−n ) (26)

= Roff
n,2(a

(m)
−n ) +

N∑

i=1,i6=n

Roff′

n,2,i(a
(m)
−n ) ∗ (ai − a

(m)
i ),

where Roff′

n,2,i(a
(m)
−n ) = BT

ln 2
Ẽi|w

H
nhi|

2

N∑
j=1,j 6=n

a
(m)
j

Ẽj |wH
nhj |2+σ2||wH

n ||2
is

the first-order derivative of Roff
n,2(a−n) w.r.t. ai at the point

a
(m)
−n . It is easy to note that the equality holds when a−n =

a
(m)
−n . At the (m+1)-th iteration of DC programming, we aim

at maximizing the following approximation problem

(P3.1) : max
a

N∑

n=1

(
Roff

n,1(a)− R̂off
n,2(a−n; a

(m)
−n ) +Rloc

n (an)
)

(27a)

s.t. an ∈ [0, 1], ∀n ∈ N , (27b)

which is a convex problem and can be easily solved by CVX

[36]. Through solving problem (P3.1) with CVX, the optimal

solution, i.e., a(m+1), can be finally obtained.

Lemma 3. The objective function of problem (P3) in (24a)

is monotonic increasing w.r.t the iteration index m as

Roff
n (a(m+1)) +Rloc

n (a(m+1)
n ) (28)

(a)

≥Roff
n,1(a

(m+1))− R̂off
n,2(a

(m+1)
−n ; a

(m)
−n ) +Rloc

n (a(m+1)
n )

(b)

≥Roff
n,1(a

(m))− R̂off
n,2(a

(m)
−n ; a

(m)
−n ) +Rloc

n (a(m)
n )

=Roff
n (a(m)) +Rloc

n (a(m)
n ),

where (a) comes from the inequality (26) and (b) holds since

a(m) is a feasible solution while a(m+1) is the optimal solution

of problem (P3.1) in (27). Besides, the objective (24a) is upper-

bounded due to the limited energy supply of UEs. In summary,

the convergence of the proposed DC programming method for

solving problem (P3) in (24) can be guaranteed [34]. We can

obtain the final solution of a at the χ-th iteration of the BCD

algorithm when the DC programming converges at the (m+1)-

th iteration, which is denoted as aχ = [a
(m+1)
1 , . . . , a

(m+1)
N ].



D. Benchmark with Zero Forcing (ZF) Receive Beamforming

An important benchmark scheme of our proposed algorithm

is leveraging ZF receive beamforming at the AP, and thus the

receive beamforming matrix obtained in Section III-B should

be replaced as Wχ = [w1,ZF, . . . ,wN,ZF] = H(HHH)−1

in the χ-th iteration of the proposed BCD algorithm, where

H = [h1, . . . ,hN ] ∈ CM×N is the compact matrix of the

UEs’ equivalent channels. For the case of M ≥ N with

independent and identically distributed (i.i.d.) channels, the

interference among the UEs can be eliminated, and thus the

offloading rate of UE n can be rewritten as

Roff
n,ZF(an) = BT log2

(
1 +

anẼn

σ2||wH
n,ZF||2

)
, ∀n ∈ N , (29)

which is concave w.r.t. an. Then the problem (P3) in (24)

is reduced to a convex optimization problem, which can be

optimally solved by CVX in a parallel fashion by addressing

N sub-problems for n ∈ N given below

(P3.2) : max
an

(
Roff

n,ZF(an) +Rloc
n (an)

)
(30a)

s.t. an ∈ [0, 1]. (30b)

It is known that the ZF receive beamforming cannot effectively

deal with the cases when M < N , while our proposed optimal

solution in Section III-B can perform well even in these cases,

which will be validated in the simulation results.

E. Algorithm, Convergence, and Complexity

The proposed three-step BCD optimization algorithm for

solving the original TCTB maximization problem (P0) in (8)

is summarized in Algorithm 1, through which problem (P0)

can be effectively solved with guaranteed convergence [37]. In

fact, the convergence can be easily proved based on Lemma

1, 2, and 3, and we can show that the objective function of

problem (P0) in (8a) gradually increases with the iteration

index χ through updating φ, W, and a iteratively.

The computational complexity of the proposed three-step

BCD optimization Algorithm 1 in each iteration mainly lies

in the DC programming for solving problem (P1) to design

the RIS reflecting coefficients and problem (P3) to optimize

the energy partition parameters. Note that the complexity of

solving problem (P1.1) in (18) and problem (P3.1) in (27)

can be estimated as with the order of O(K6) and O(N3.5)
according to the complexity of solving convex problems with

interior point method [38]. Denote the number of iterations

for solving problem (P1) and problem (P3) as L1 and L3,

respectively, thus the total computational complexity of Al-

gorithm 1 can be further given as O(L(L1K
6 + L3N

3.5)),
where L represents the total iteration number of the the BCD

algorithm. It is easy to observe that the complexity of the

proposed algorithm increases dramatically with the number of

RIS reflecting elements and the number of UEs.

IV. DEEP LEARNING ARCHITECTURES

The proposed BCD Algorithm 1 provides an effective opti-

mization method for solving the TCTB maximization roblem

(P0) in an iterative way. Although the BCD optimization

Algorithm 1 Three-Step BCD Optimization Algorithm for

Solving the Original TCTB Maximization Problem (P0)

1: Input T , N , M , K, B, {En, Cn, κn,hd,n,hr,n}n∈N , HAP,
and the tolerant thresholds ε, ε1, ε3;

2: Initialize The iteration index χ = 0 and φ0, W0, a0;
3: Repeat
4: χ = χ+ 1;
5: Step 1: Initialize l = 0, φ(0) = φχ−1, W = Wχ−1, a =

aχ−1;
6: Repeat 1
7: a) Solve problem (P1.1) with CVX to obtain Ψ

(l+1);

8: b) Calculate R
(l+1)
1 =

∑N

n=1 F1,n(Ψ
(l+1))−F2,n(Ψ

(l+1));
9: c) l = l + 1;

10: End Repeat 1 until convergence, i.e., |R
(l)
1 −R

(l−1)
1 | < ε1

(l > 1), and obtain Ψχ = Ψ
(l); Then we decompose Ψχ =

φ̃χφ̃
H
χ with denoting φ̃χ = [φχ,0, ξχ,0]

T; Thus, we can obtain

φχ = φχ,0/ξχ,0 and Φχ = diag{φχ};
11: Step 2: Initialize φ = φχ and a = aχ−1;
12: Obtain Wχ according to Lemma 2;

13: Step 3: Initialize m = 0, a(0) = aχ−1, φ = φχ, W = Wχ;
14: Repeat 3
15: a) Solve problem (P3.1) with CVX to obtain a

(m+1);
b) Calculate the TCTB at the (m+1)-th iteration, represented

as R
(m+1)
3 =

∑N

n=1

(
Roff

n (a(m+1)) +Rloc
n (a

(m+1)
n )

)
;

c) m = m+ 1;

16: End Repeat 3 until convergence, i.e., |R
(m)
3 −R

(m−1)
3 | < ε3

(m > 1), and obtain aχ = a
(m);

17: Calculate the TCTB at the χ-th iteration, which is denoted as
Rχ =

∑N

n=1

(
Roff

n (aχ,wn,χ,φχ) +Rloc
n (an,χ)

)
by substitut-

ing Wχ, aχ and φχ into the objective function of problem (P0).

18: End Repeat until convergence, i.e., |Rχ −Rχ−1| < ε (χ > 1),
and obtain the maximum TCTB Rχ with the solution W

∗ =
Wχ, a∗ = aχ, φ∗ = φχ.

algorithm can achieve effective solutions with guaranteed

convergence, its high computational complexity may hinder it

from being applied in real-time applications, which is a major

bottleneck for most of the iterative optimization algorithms

proposed in existing works [12–15]. However, the effec-

tiveness, robustness, and computational overhead of online

implementations are known as crucial indicators for practical

networks. One way to overcome this drawback is leveraging

the deep learning methods, not only due to the fact that

DNNs are regarded as universal function approximators but

also because deep learning is well known as a promising way

to achieve effective online implementations [16–18]. Hence,

in this section, we explore the potentials of deep learning

approaches in obtaining effective solutions of the original

problem (P0).

The proposed deep learning methods in this section aim at

reducing the computational complexity of the proposed BCD

optimization algorithm by effectively emulating this algorithm

via supervised learning, so as to facilitate lightweight online

implementation of the BCD algorithm with high accuracy

and stability. Moreover, the use of DNNs enabled the de-

sign of a location-only deep learning approach that reduces

overheads for CSI estimation and feedback compared to the

BCD algorithm. Through training the constructed DNNs of-

fline with data samples generated from the BCD algorithm,

the DNNs are capable of learning the inherent mappings

of the algorithm and output effective solutions mimicking



this algorithm. Hence, we can use the trained DNNs to

predict the required solutions online with significantly reduced

computational complexity/running time. Specifically, we resort

to the deep learning approaches to obtain partial solution of

problem (P0), including the RIS reflecting coefficients in φ

and the energy partition parameters in a. Then, we can directly

obtain the receive beamforming vectors in W via Lemma 2

without learning. In this way, we can effectively combine the

prior knowledge (Lemma 2) with deep learning to achieve

the required solution of the proposed BCD algorithm, with

reduced cost for constructing, training, and testing the DNNs.

As mentioned before, the channel links between UEs and

the RIS as well as that between the RIS and AP are very

likely to be LoS channels, when the location of the RIS is

carefully planned. For the multiplexing computation offloading

mechanism considered in this paper, the direct links between

UEs and the AP play a significant role in providing multi-

path diversity gain for wireless communications. Two typical

RIS-aided edge computation offloading scenarios in terms

of whether LoS direct links exist between UEs and AP are

considered here as shown in Fig. 2, where one is without LoS

direct links denoted as scenario (a) and the other is with strong

LoS direct links denoted as scenario (b). In order to effectively

deal with these two scenarios, we construct two deep learning

architectures in the following two subsections.

hr,n

UE n

hd,n

MEC

server

AP

RIS

HAP

h

hr,n

UE n

hd,n

MEC

server

AP

RIS

HAP

(a) (b)

Fig. 2. Two typical RIS-aided edge computation offloading scenarios in terms
of whether LoS direct links exist between UEs and the AP: (a) Scenario
without LoS direct links between UEs and AP where the LoS direct paths are
blocked by objects such as buildings (urban area); (b) Scenario with strong
LoS direct links between UEs and AP where no obstruction exists along the
direct signal paths (suburb area).

A. CSI-Based Deep Learning Architecture

For scenario (a) without LoS direct links between UEs and

AP, a CSI-based deep learning architecture is given, as shown

in Fig. 3, to obtain the solutions of {φ, a,W}. The real and

imaginary parts of the channel coefficients {hd,n}, {hr,n} and

HAP constitute the input feature of the constructed DNN-CSI,

represented by the input vector x with a dimension of I =
2(MN+KN+MK). In contrast, the normalized angles of the

RIS reflecting coefficients φ, denoted as θ̃ = θ/2π, and the

energy partition parameters in a constitute the corresponding

output vector y = [θ̃1, . . . , θ̃K , a1, . . . , aN ] with the dimension

of (K + N). It is easy to note that all the elements of the

output vector are within the range of [0, 1], and thus we can

use the sigmoid function, i.e., Sigmoid(z) = 1
1+e−z as the

output activation function. With the final output φ and a of the

DNN-CSI, the optimal receive beamforming vector for each

UE n ∈ N , i.e., wn, can be readily obtained according to

Lemma 2 in Section III-B.

Lemma 2

Input

Channel

Coefficients x
Obtaining  and a (y)

DNN-CSI

W

Channel

Coefficients

Fig. 3. The architecture for obtaining the solutions of {φ,a,W} with the
CSI-based DNN-CSI.

TABLE I
LAYOUT OF DNN-CSI FOR OBTAINING φ AND a

Layer Size Parameter Activation

Input Layer I - -
Layer1-1 (Dense) 1024 1024(I+1) ELU
Layer1-2 (BN) 1024 4096 -
Layer1-3 (Dropout 0.1) 1024 0 -
Layer2-1 (Dense) 512 524800 ELU
Layer2-2 (BN) 512 2048 -
Layer2-3 (Dropout 0.1) 512 0 -
Layer3-1 (Dense) 256 131328 ELU
Layer3-2 (BN) 256 1024 -
Layer3-3 (Dropout 0.1) 256 0 -
Layer4-1 (Dense) 128 32869 ELU
Layer4-2 (BN) 128 512 -
Layer4-3 (Dropout 0.1) 128 0 -
Layer5-1 (Dense) 128 16512 ELU
Layer5-2 (BN) 128 512 -
Layer5-3 (Dropout 0.05) 128 0 -
Output Layer (Dense) K+N (K+N )(128+1) sigmoid

Total Trainable Parameters 1,632,288 (M=8,N=8,K=24)

Here, we adopt a feedforward DNN with the layout in

Table I, which consists of an I-dimensional input layer, 5

normal hidden dense layers (layers 1-1, 2-1, 3-1, 4-1, 5-1),

and a (K + N)-dimensional output layer, which are the key

functional layers of DNN-CSI. There are respectively 1024,

512, 256, 128, 128 neurons for the five hidden layers of the

DNN-CSI. The function of exponential linear units (ELU) is

leveraged as the activation functions of the hidden layers with

ELU(z) =

{
z, if z > 0,

α(exp(z)− 1), otherwie, z ≤ 0,
(31)

which has many attractive advantages such as high learning

speed, high robustness with zero-centered outputs, etc.2 It

should be noted that we add the Batch-Normalization layers

(layers 1-2, 2-2, 3-2, 4-2, 5-2) and Dropout layers (layers 1-

3, 2-3, 3-3, 4-3, 5-3) between two normal dense layers to

accelerate the training speed, avoid gradients vanishing, as

well as prevent overfitting of the DNN. To be specific, this

fully connected feedforward DNN-CSI is with 10% of random

dropout of neurons for the hidden layer 1 to hidden layer 4

and 5% of random dropout for the hidden layer 5 during each

training epoch, so as to avoid overfitting.

B. Location-Only Deep Learning Architecture

For scenario (b) with strong LoS direct links between UEs

and AP, the CSI-based deep learning architecture given in the

previous subsection is still applicable. Nevertheless, note that

2We use the default form of ELU function in the Keras platform with α=1.



the channel coefficients as well as the solutions of {φ, a,W}
are highly related to the locations of UEs, i.e., {(xn, yn)}n∈N ,

in this scenario, and thus we may use the UEs’ locations as

the only input feature of DNNs to obtain {φ, a,W}. In our

considered scenarios, we assume that each UE is installed

with an advanced global positioning system (GPS) module

for outdoor localization [39] and is capable to apply the

Wi-Fi round-trip time technology and standards for indoor

localization [40], through which UEs’ location information can

be obtained with high accuracy.3

In order to further use the known relations between the

solutions, e.g., Lemma 2 presenting the relationship between

{W} with {φ, a} and the channel coefficients, a location-

only deep learning architecture is proposed as shown in

Fig. 4. Here, two DNNs are constructed, where DNN-Loc1

aims at calculating the channel mapping between the UEs’

locations and the channel coefficients with 2N -dimensional

input feature z and I-dimensional output feature denoted as

y1 while DNN-Loc2 focuses on obtaining {φ, a} with input

feature z and (K +N)-dimensional output feature denoted as

y2. Then the optimal receive beamforming matrix, i.e., W, can

be easily calculated based on Lemma 2 in Section III-B. Note

that the complicated pilot channel estimation and feedback

can be removed when utilizing the location-only deep learning

architecture for online implementation.

Lemma 2
DNN-Loc2

Obtaining  and a (y2)

Input

UEs

Locations z

DNN-Loc1

Channel Mapping (y1)
W

Fig. 4. The architecture for obtaining the solutions of {φ,a,W} with the
location-only DNN-Loc1 and DNN-Loc2.

TABLE II
LAYOUT OF DNN-LOC1 FOR CHANNEL MAPPING

Layer Size Parameter Activation

Input Layer 2N - -
Layer1-1 (Dense) 512 512(2N+1) ELU
Layer1-2 (BN) 512 2048 -
Layer1-3 (Dropout 0.1) 512 0 -
Layer2-1 (Dense) 512 262656 ELU
Layer2-2 (BN) 512 2048 -
Layer2-3 (Dropout 0.1) 512 0 -
Layer3-1 (Dense) 256 131328 ELU
Layer3-2 (BN) 256 1024 -
Layer3-3 (Dropout 0.1) 256 0 -
Layer4-1 (Dense) 128 32869 ELU
Layer4-2 (BN) 128 512 -
Layer4-3 (Dropout 0.1) 128 0 -
Layer5-1 (Dense) 256 33024 ELU
Layer5-2 (BN) 256 1024 -
Layer5-3 (Dropout 0.05) 256 0 -
Output Layer (Dense) I I(256+1) sigmoid

Total Trainable Parameters 702,208 (M=8,N=8,K=24)

The layout of the feedforward DNN-Loc1 and DNN-Loc2

are given in Table II and III, respectively, where both have

3According to the data shown in the website of GPS.gov, for high-end users
with dual-frequency receivers and/or augmentation systems, the GPS accuracy
can be dramatically boosted, which can enable real-time positioning within a
few centimeters and long-term measurements at the millimeter level [39]. It
is shown in [40] that an one-meter accuracy indoor localization is available
for smart devices through the Wi-Fi round-trip time technology by 2018.

5 normal hidden dense layers. There are respectively 512,

512, 256, 128, 256 neurons for the five hidden layers of the

DNN-Loc1, and respectively 512, 256, 128, 64, 32 neurons for

the five hidden layers of the DNN-Loc2. Similarly, the layers

of Batch-Normalization and Dropout are also utilized for the

DNN-Loc1 and DNN-Loc 2 with same dropout police of the

DNN-CSI. Here, the sigmoid activation function is not only

leveraged at the output layer of the DNN-Loc2 for obtaining

{φ, a} but also at that of the DNN-Loc1 for channel mapping

where the output data samples are scaled into the range of [0, 1]
with the MinMaxScaler in Tensorflow. In the testing stage, an

inverse transformation of MinMaxScaler is used to achieve the

required form of the output feature.

TABLE III
LAYOUT OF DNN-LOC2 FOR OBTAINING φ AND a

Layer Size Parameter Activation

Input Layer 2N - -
Layer1-1 (Dense) 512 512(2N+1) ELU
Layer1-2 (BN) 512 2048 -
Layer1-3 (Dropout 0.1) 512 0 -
Layer2-1 (Dense) 256 131328 ELU
Layer2-2 (BN) 256 1024 -
Layer2-3 (Dropout 0.1) 256 0 -
Layer3-1 (Dense) 128 32896 ELU
Layer3-2 (BN) 128 512 -
Layer3-3 (Dropout 0.1) 128 0 -
Layer4-1 (Dense) 64 8256 ELU
Layer4-2 (BN) 64 256 -
Layer4-3 (Dropout 0.1) 64 0 -
Layer5-1 (Dense) 32 2080 ELU
Layer5-2 (BN) 32 128 -
Layer5-3 (Dropout 0.05) 32 0 -
Output Layer (Dense) K+N (K+N )(32+1) sigmoid

Total Trainable Parameters 186,304 (M=8,N=8,K=24)

C. Input Feature Uncertainty

In the previous subsection, an ideal scenario is considered

where we assume that the input features to the CSI-based and

the location-only DNNs, i.e., the input vector x of CSI in

Fig. 3 and the input vector z of UEs’ locations in Fig. 4, are

perfectly known. In this case, the constructed DNNs can be

trained and tested based on the perfect input information of

CSI and UEs’ locations. However, the obtained CSI and UEs’

locations are usually imperfect in practice due to the deviation

of channel estimation and GPS/Wi-Fi localization.

In this section, we focus on a more practical scenario where

the input features of CSI and UEs’ locations for the CSI-

based DNN and the location-only DNNs are corrupted with

uncertainty. For the input vector x of CSI, the corresponding

corrupted counterpart is x̂ = x+△x, where △x ∼ N (0, σ2
△x

)
following the normal distribution is the random offset of the

achieved CSI to the perfect CSI. For the input vector z of

UEs’ locations, the corresponding corrupted counterpart is ẑ =
z + △z, where △z ∼ N (0, σ2

△z
) is the random offset (in

meter) of the achieved UEs’ locations to the perfect ones.4

In this practical case with uncertain input features, the CSI-

based DNN and the location-only DNNs are trained and tested

4In the simulation results, the default standard deviation of σ△x
is set as

0.001 according to the setting in [41] and the default standard deviation of
σ△z

is set as 1 based on the localization accuracy of GPS given in GPS.gov
[39] and the Wi-Fi round-trip time technology shown in [40].



based on the corrupted input information of CSI and UEs’

locations, respectively. The effectiveness and robustness of

the two proposed deep learning architectures are validated

by comparing their performance in the cases with perfect

and imperfect input features, also comparing with the BCD

optimization algorithm, which will be shown in Section VI.

V. IMPLEMENTATION AND COMPLEXITY REDUCTION OF

THE DEEP LEARNING APPROACHES

In this section, we indicate the implementation setting of

the proposed CSI-based and location-only deep-learning archi-

tectures. In addition, the comparison results of the two deep

learning methods as well as the proposed BCD optimization

algorithm in terms of the average running time are given,

which further validates the potentials of the two proposed data-

driven approaches in reducing the computational complexity

for achieving lightweight online implementations.

The training (including validation) and testing of the con-

structed DNNs are implemented based on the platforms of

Tensorflow and Keras via supervised learning. Also, the adap-

tive moment estimation (Adam) optimizer is utilized to train

the DNNs with adaptive learning rates. We adopt the mean

absolute error (MAE) as the loss function for the CSI-based

DNN-CSI given in Table I and the location-only DNN-Loc2

given in Table III for obtaining φ and a. Through training

the weights and bias terms between layers, the input-output

mappings of these two DNNs are driven to emulate the inher-

ent mapping of the proposed BCD optimization algorithm. In

contrast, the mean square error (MSE) is leveraged as the loss

function for the location-only DNN-Loc1 given in Table II for

achieving the location-channel mapping. The other parameters

relating to training and testing the constructed DNNs are given

in the following Table IV.

TABLE IV
PARAMETERS RELATED TO TRAINING AND TESTING

Parameter Values

Number of training samples 200000
Number of testing samples 10000
Batch size 128
Number of epoches 1000
Initial learning rate 0.001
Validation split 0.2

A. Comparison between Two Deep Learning Approaches

For the CSI-based deep learning architecture, it is required

to obtain CSI in advance via pilot channel estimation for time

division duplex (TDD) systems. Due to the random charac-

teristics of wireless channels, it is quite difficult to estimate

CSI accurately especially considering the pilot contamination.

Moreover, the difficulty for wireless channel estimation may

dramatically increase and the accuracy may degrade when the

adopted subcarriers are with higher frequencies or the APs

are with larger set of antennas which lead to more random

multi-path fading or larger dimension size of CSI.

In comparison, UEs’ location information is less random

and its dimension size being independent of the number of

APs’ antennas is much smaller than that of the corresponding

CSI. Hence, it is much easier and more convenient to obtain

UEs’ location information in practice. In addition, highly

accurate location information for UEs in both outdoor and

indoor scenarios can be guaranteed thanks to the advanced

GPS modules [39] and the Wi-Fi round-trip time technology

[40]. In fact, the location-only deep learning architecture

provides a promising way to emulate the proposed BCD

algorithm for lightweight online implementation, which can

remove the complicated pilot channel estimation and feedback

prior to wireless communications for task offloading.

Furthermore, in Table V, we present the values of trainable

parameters, training time, testing time, and average inference

time of the constructed DNN-CSI, DNN-Loc1, DNN-Loc2

for the case with M = 8, N = 8, K = 24 in both cases

with perfect and imperfect input features.5 It is shown that

the time overhead for training and testing the constructed

DNNs with imperfect input features is slightly larger than

that with perfect input features due to the fact that more

complicated input-output mappings need to be figured out.

Note that the total required training parameters of the two

location-only DNNs are considerably less (nearly half) than

that of the DNN-CSI as shown in Table I-III. Also, the training,

testing, and inference overhead can be significantly reduced

by leveraging the location-only data-driven method, which is

verified by the much less required training, testing, and average

inference time of DNN-Loc1, DNN-Loc2 shown in Table V

that are only around 60% of those for DNN-CSI in both

cases.6 Hence, it is of great benefits to leverage the location-

only deep learning architecture in situations that it can provide

satisfactory inference solutions, such as in the scenario with

strong LoS direct links between UEs and AP.

TABLE V
PROCESSING TIME OF THE PROPOSED ALGORITHMS

Parameter DNN-CSI DNN-Loc1 DNN-Loc2

Trainable parameters 1,632,288 702,208 186,304

Training samples (x,y) (z,y1) (z,y2)
Training time 5.7426 h 3.3504 h 1.3979 h
Testing time 0.3883 s 0.2418 s 0.1025 s
Average inference time 38.83 µs 24.18 µs 10.25 µs

Training samples (x̂,y) (ẑ,y1) (ẑ,y2)
Training time 6.0345 h 3.5123 h 1.4862 h
Testing time 0.4015 s 0.2568 s 0.1156s
Average inference time 40.15 µs 25.68 µs 11.56 µs

Average BCD Running Time 28.7 s

B. Complexity Reduction Compared with the BCD Algorithm

As we mentioned in Section IV, the proposed deep learning

methods aim at emulating the proposed BCD algorithm with

reduced computational complexity, so as to make it possible

for lightweight online implementation. In Table V, the average

running time of the BCD algorithm for one realization is

also given for comparison, i.e., 28.7 s, which is almost 106

times to those of the two proposed deep learning methods

that the CSI-base and the location-only DNNs only require

5The training, testing, and inference time in Table V correspond to the
processing time by a computer with 64-bit Intel(R) Core(TM) i5-9600KF CPU
@3.7GHz and 32 GB RAM, running Python 3.7.7 and Tensorflow 2.1.0. Note
that the training and testing time can be further reduced when implemented
through more powerful computing servers.

6The training, testing, and inference time of the location-only architecture
are the maximum of those for DNN-Loc1 and DNN-Loc2 (such as 3.3504 h,
0.2418 s, 24.18 µs for the case with perfect input feature) since these two
DNNs can be trained and tested in a parallel way.



TABLE VI
SIMULATION PARAMETERS

Parameter Symbol Value

The parameters related to the square serving area ys, D 20m, 40m

The location of the AP (0, yAP,H0) (0,20,5) m

The location of the RIS (xR, 0,HR) (40,0,20) m

The length of the time slot T 5 seconds

Number of UEs N 8

Number of AP’s antennas M 8

Number of RIS’s reflecting elements K = KyKz 24=8 × 3
Energy budgets of UEs En (n ∈ N ) 10 J

Required CPU cycles per bit of UEs Cn (n ∈ N ) 200 cycles/bit

The effective switched capacitance of UEs κn(n ∈ N ) 10−28

The total system bandwidth B 40 MHz

The noise power σ2 −60dBm

The channel power gain at a reference distance of d0=1 m L0 −10dB
The channel attenuation coefficients αd, αr, αAP 3.5, 2.5, 2

The standard deviation of the offset to the perfect CSI σ△x
0.001

The standard deviation of the offset to the perfect UEs’ locations σ△z
1

38.83 µs (40.15 µs) and 24.18 µs (25.68 µs) for the case

with perfect (imperfect) input features. This result effectively

validates the ability of the proposed deep learning architectures

in reducing the computational complexity/running time for

providing lightweight online inference solutions.
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Fig. 5. The average running time for one realization of the proposed solutions
versus the number of UEs (N ) in the scenarios with NLoS and LoS direct
links: (a) Optimization-based solutions, (b) Learning-based solutions without
and with input uncertainty.

In Fig. 5, we further show more details of the average run-

ning time for one realization of the proposed BCD optimiza-

tion algorithm, the CSI-based and location-only deep learning

architectures versus the number of UEs (N ), in the scenarios

with NLoS and LoS direct links, respectively. In addition, the

corresponding results of the two deep learning methods in

the cases with input feature uncertainty are also provided. It

is noticeable that the average running time, i.e., the average

inference time, of both two deep learning architectures are

always quite small in all scenarios (measured in microsecond-

µs) and increase slightly with N , especially compared with

those of the proposed BCD algorithm (measured in second-

s) that increase quite considerably with N . Specifically, the

average running time of the CSI-based leaning architecture is

nearly millionth and the location-only learning architecture is

less than millionth of that required by the corresponding BCD

optimization solution, which indicates that lightweight online

implementations are available by the proposed two data-driven

architectures via periodically training.

VI. SIMULATION RESULTS

In this section, simulation results are given to verify the

effectiveness and performance improvement of the proposed

BCD optimization algorithm as well as the CSI-based and

location-only deep learning architectures. In addition, the

effectiveness and robustness of the two proposed deep learning

methods to the corrupted input features of CSI and UEs’

locations with uncertainty is also validated by simulations.

A three-dimensional (3D) Euclidean coordinate system is

adopted to describe the locations of the AP as (0, yAP, H),
the RIS as (xR, 0, HR) and UE n ∈ N as (xn, yn, 0), all

measured in meters (m) as shown in Fig. 1. The aided RIS

is with a uniform rectangular array (URA) of K = KyKz

reflecting elements, while the M -antenna AP is equipped with

a uniform linear array (ULA). We assume that the N ground

UEs are randomly distributed in a square serving area of D×
D m2, with four vertices at horizontal locations of (xs, 0),
(xs+D, 0), (xs, D), and (xs+D,D). We consider the Rician

fading channel model to account for both the LoS and non-

LoS (NLoS) components of all the channels as [42]

hr,n =

√
̺r

1 + ̺r
hLoS
r,n +

√
1

1 + ̺r
hNLoS
r,n , ∀n ∈ N , (32)

HAP =

√
̺AP

1 + ̺AP
HLoS

AP +

√
1

1 + ̺AP
HNLoS

AP , (33)

hd,n =

√
̺d

1 + ̺d
hLoS
d,n +

√
1

1 + ̺d
hNLoS
d,n , ∀n ∈ N , (34)

where ̺r, ̺AP, ̺d indicate the corresponding Rician factors.

Without loss of generality, we denote ζr = ̺r

1+̺r
, ζAP =

̺AP

1+̺AP
, ζd = ̺d

1+̺d
as the Rician parameters related to the

LoS components which are used to generate the channels in

the simulations. Assuming that a half-wavelength spacing is

assumed among adjacent elements/antennas at the RIS and AP,

the LoS components modeled in the angular domain are then

given as [42, 43]

hLoS
r,n =

√
Lr,ne

r
r,n(β

r
r,n, γ

r
r,n), ∀n, (35)

HLoS
AP =

√
LAPe

r
AP(β

r
AP)(e

t
R(β

t
R, γ

t
R))

H, (36)

hLoS
d,n =

√
Ld,ne

r
d,n(β

r
d,n), ∀n, (37)



where err,n(β
r
r,n, γ

r
r,n) ∈ CK×1 = err,n,y(β

r
r,n, γ

r
r,n) ⊗

err,n,z(β
r
r,n, γ

r
r,n) with err,n,y(β

r
r,n, γ

r
r,n) = {exp(jπ(ky − 1)

sinβr
r,nsinγ

r
r,n)}

Ky

ky=1 ∈ CKy×1 and err,n,z(β
r
r,n, γ

r
r,n) =

{exp(jπ(kz−1)cosβr
r,nsinγ

r
r,n)}Kz

kz=1 ∈ CKz×1, erAP(β
r
AP) =

{exp(jπ(m − 1)sinβr
AP)}Mm=1 ∈ CM×1 and erd,n(β

r
d,n) =

{exp(jπ(m − 1)sinβr
d,n)}Mm=1 ∈ CM×1 are the receive array

steering vectors with the effective angles of arrival (AOAs).

Also, etR(β
t
R, γ

t
R) ∈ CK×1 = etR,y(β

t
R, γ

t
R) ⊗ etR,z(β

t
R, γ

t
R)

is the transmit array steering vector with the effective angles

of departure (AOD), where etR,y(β
t
R, γ

t
R) = {exp(jπ(ky − 1)

sinβt
Rsinγ

t
R)}

Ky

ky=1 ∈ CKy×1 and etR,z(β
t
R, γ

t
R) = {exp(jπ

(kz − 1)cosβt
Rsinγ

t
R)}Kz

kz=1 ∈ CKz×1. Here, β and γ respec-

tively represent the elevation and azimuth of AOA or AOD.

Lr,n, LAP and Ld,n in (35)-(37) model the distance-

dependent path loss of the corresponding channels. Suppose

that each element of the RIS has a 3 dBi gain due to the fact

that only the front half-space reflects signals [44], while each

antenna of the AP has an isotropic radiation pattern with 0

dBi antenna gain. Then we have Lr,n = 100.3L0(dr,n/d0)
−αr ,

LAP = 100.3L0(dAP/d0)
−αAP and Ld,n = L0(dd,n/d0)

−αd ,

where dr,n, dAP, dd,n are the corresponding Euclidean dis-

tances between the transceivers, L0 is the average constant

path loss for all the channels at the reference distance of d0,

and αr, αAP, αd are the channel attenuation coefficients.

In addition, the NLoS components of the channels in (32)-

(34) are modeled as the Rayleigh fading combining with the

distance-dependent path loss as follows

hNLoS
r,n =

√
Lr,nηr,n =

√
100.3L0(dr,n/d0)−αrηr,n, (38)

HNLoS
AP =

√
LAPΓAP =

√
100.3L0(dAP/d0)−αAPΓAP, (39)

hNLoS
d,n =

√
Ld,nηd,n =

√
L0(dd,n/d0)−αdηd,n, (40)

where ηr,n ∼ CN (0, IK), ΓAP ∼ CN (0, IM ), and ηd,n ∼
CN (0, IM ) denote the corresponding Rayleigh fading coeffi-

cients. In the following simulation results, we assume that the

LoS channels between the RIS and the AP as well as UEs

are achieved by deploying the RIS at a desirable location, and

thus ζr = ζAP = 1. The other basic simulation parameters are

listed in Table VI unless specified otherwise.

A. Results in the Scenario without LoS Direct Links

In this subsection, the LoS paths of UEs’ direct links are

blocked as shown in the scenario (a) of Fig. 2, which is quite

common in practical communications especially in central

building districts of urban areas. Hence, we set ζd = 0 in this

subsection. Numerical results for the proposed optimization

solution (‘BCD-Optimized Solution’), the CSI-based deep

learning solution (‘DL CSI-Based’) as well as its counterpart

with input uncertainty (‘DL CSI-Based Uncertainty’) are pre-

sented in comparison with three traditional benchmarks, where

the ‘Direct Offloading-No RIS’ scheme corresponds to the

case without deploying RIS, the ‘ZF Receive Beamforming’

scheme considers the ZF beamforming for detecting UEs’

signals as in Section III-D, and the ‘Equal Energy Allocation’

scheme is operated by equally allocating the UEs’ energy

budgets for local computing and computation offloading.7

In Fig. 6, we first show the TCTB of all the considered

schemes w.r.t. the UEs’ uniform energy budget, i.e., E = En

for n ∈ N . From this figure, we can observe that the TCTB

curves of all the schemes increase with E, which coincides

with the intuition that more computation task-input bits can

be completed if the UEs are endowed with more energy. It is

clear to see that significant performance improvement can be

achieved by the proposed BCD-Optimized Solution, verifying

the great benefits of deploying the aided RIS, also jointly

optimizing the RIS coefficients, the receive beamforming and

the UEs’ energy allocation. It is confirmed that the proposed

BCD algorithm provides 26% improvement in TCTB over the

benchmark of direct offloading without the assistance of RIS.

More importantly, the CSI-based deep learning method can

achieve a performance very close to the proposed optimization

solution no matter with perfect or imperfect input feature

of CSI, which clearly demonstrates that the CSI-based deep

learning architecture proposed in Section IV-A can effectively

emulate the proposed BCD optimization algorithm, with a

much reduced online complexity and high robustness.
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Fig. 6. The TCTB of UEs versus the UEs’ uniform energy budget E = En

for n ∈ N .
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Fig. 7. The TCTB of UEs versus the number of AP’s antennas M with
N = 8.

7Note that the learning-based works mentioned in the Introduction section
either focus on traditional MEC or RIS-aided downlink architectures, and
none of them consider the RIS-aided MEC systems. Even though some
optimization schemes of RIS-aided MEC systems were given in [12–15],
different performance metrics or scenarios were considered as discussed in the
Introduction. Hence, these works and our current work are not comparable.



The performance in terms of TCTB versus the number of

the AP’s antennas is presented in Fig. 7. The effectiveness,

robustness, and generalizability of the proposed CSI-Based

deep learning architecture is further validated by the results

that its performance can always approach that of the BCD-

Optimized Solution in both scenarios with and without input

uncertainty no matter how many antennas are installed at the

AP. Although we can see that all the curves of TCTB increase

as M grows, it is obvious that the performance of proposed

optimization solution and the DL CSI-Based schemes are

far more superior and stable than that of the other baseline

solutions especially in the situations of M < N . When the

AP has to serve more UEs than its installed antennas, the

performance gap between the DL CSI-Based with and without

input uncertainty is slightly larger, while the performances of

the schemes with ZF Receive Beamforming and Equal Energy

Allocation degrade dramatically. This is due to the fact that

the ZF receive beamforming is incapable of separating out the

signal streams when they are more than the number of receive

antennas. Also, in these situations, the interference manage-

ment through designing the UEs’ energy allocation plays a

significant role in guaranteeing the system performance.

In Fig. 8, we study the effects of the number of UEs, i.e., N ,

on the system performance of TCTB. Here, the effectiveness

of the CSI-based deep learning architecture is further verified

in the scenarios with different number of users considering

both perfect and imperfect input CSI, which also demonstrates

its robustness and the generalizability. Similar results can be

observed as from Fig. 7 that our proposed BCD-Optimized

Solution as well as the CSI-based deep learning schemes with

and without input uncertainty have strong robustness in dealing

with the cases when serving more UEs than the number of the

AP’s antennas. These cases are particularly relevant to massive

connectivity scenarios. Instead of degrading the performance

like the benchmarks, our proposed solutions are able to provide

even better performance as N becoming larger than M through

effectively designing the receive bearmforming vectors and the

UE’s energy allocation.
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Fig. 8. The TCTB of UEs versus the number of UEs N with M = 8.

B. Results in the Scenario with Strong LoS Direct Links

In this subsection, we focus on implementing the mentioned

schemes in the scenario where strong LoS direct links exist

for UEs in the considered serving area, which is exactly the

scenario (b) of Fig. 2. This scenario is practically relevant

when considering the suburb districts, and we set ζd = 1 in

the following simulation results. In this scenario, the location-

only deep learning architecture (‘DL Location-Only’) can

be leveraged to mimic the mapping of the proposed BCD

algorithm. In addition, the performance of its counterpart

solution with uncertain input UEs’ locations denoted as ‘DL

Location-Only Uncertainty’ is also given in this subsection.
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Fig. 9. The TCTB of UEs versus the UEs’ uniform energy budget E = En

for n ∈ N .

We first show the TCTB performance of all the considered

schemes versus the UEs’ uniform energy budget E in Fig.

9. Obviously, both the CSI-based and the location-only deep

learning methods can achieve excellent system performance,

in both scenarios with and without input uncertainty. Even

though the DL Location-Only solution is slightly worse than

the DL CSI-Based solution which is almost the same as

the BCD-Optimized Solution, it is far more superior than

the other benchmarks. It is noticeable that the TCTB gap

between the DL CSI-Based and DL Location-Only schemes

becomes slightly smaller in the scenarios with uncertain input

features. More importantly, the UEs’ locations are quite easier

to obtain compared with the related CSI, which makes it

more flexible to achieve online implementation through the

location-only deep learning architecture in both scenarios with

perfect and imperfect input features. Also from this figure, we

can clearly see that the ZF Receive Beamforming scheme is

even worse than the scheme without RIS and the scheme of

Equal Energy Allocation. The reason behind this is that in

the considered scenario with LoS direct links, the effective

channels of different UEs may be highly correlated, and it is

almost impossible to distinguish different UEs’ data streams

through ZF receive beamforming especially in the cases with

M ≤ N . This phenomenon further indicates the importance

of effectively designing the AP’s receive beamforming and

managing the UEs’ energy budgets.

Fig. 10 depicts the TCTB curves versus the number of

the AP’s antennas, i.e., M . Clearly, the results in this figure

further demonstrate the effectiveness, the robustness and the

generalizability of the CSI-based DNN architecture in different

scenarios combined with the results in the previous subsection

and the location-only DNN architecture in situations where

AP is installed with different number of antennas. If only

uncertain input features are available, we can observe that

the DL Location-only scheme can almost approach the DL

CSI-Based when M < N . Similar to the results in Fig. 9,
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Fig. 10. The TCTB of UEs versus the number of AP’s antennas M with
N = 8.

the performance of the ZF Receive Beamforming scheme is

unacceptable when M ≤ N . When M is greater than N ,

like M = 12, the disadvantages of the scheme without RIS

becomes more obvious since all the other schemes can achieve

much better performance with the assistance of the RIS.
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Fig. 11. The TCTB of UEs versus the Rician channel parameter ζd.

In Fig. 11, we show the influence of the Rician channel

parameter related to the LoS components of the direct links,

i.e, ζd. It can be seen that the performance of the DL CSI-

Based scheme can always achieve satisfactory performance

very close to the proposed BCD-Optimized Solution if perfect

CSI is available, no matter the UEs’ direct links are highly

faded without LoS components as in ζd = 0, or with LoS

components as ζd > 0 and even ζd = 1. This result indicates

that the perfect input feature of CSI is capable of capturing

sufficient information in emulating the proposed BCD opti-

mized solution. In contrast, the DL Location-Only scheme

can achieve good performance when ζd is close to 1, but

the performance degrades as ζd decreases. This is reasonable

since the optimization solution becomes less relevant to the

UE’s locations as ζd becomes smaller where the small-scale

Rayleigh fading accounts more. Compared with the DL CSI-

Based scheme, the performance of DL Location-Only solution

is more stable and degrades slighter when ζd = 1 with

uncertain input feature. Fig. 11 verifies that the location-only

DNN architecture is more suitable to the scenarios where

strong LoS direct links for UEs are present, just coinciding

with our original intention as in Section IV-B. Interestingly, we

can see that the performance of the schemes except for the two

DL Location-Only solutions degrades as ζd increases, which

highlights that the channel fading is beneficial to wireless com-

munications when considering the multiplexing computation

offloading since channel fading provides an additional degree

of freedom for avoiding channel correlation [42]. While for

the case of ζd = 1, the performance becomes worse since the

UEs’ channels are highly correlated and no fading can be used

to achieve the additional degree of freedom gain.
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Fig. 12. The TCTB of UEs versus the Input features’ uncertainty level.

Fig. 12 presents the TCTB performance of the two deep

learning architectures versus the uncertainty levels of the CSI

and UEs’ locations, respectively represented by σ△x and

σ△z. Case (a) and (b) show the performance of the CSI-

based learning solution in the scenarios with NLoS and LoS

direct links, respectively, while case (c) demonstrates that of

the location-only learning method in the scenario with LoS

direct links. From these three cases, we can observe that the

performance degradation is much less when M ≥ N , which

is quite obvious for the CSI-based learning method in (a) and

(b). In addition, the CSI-based learning solution degrades more

serious in the scenario with LoS direct links in (b) compared

with the NLoS case in (a), due to the fact that the DNN-CSI

in LoS scenario (b) without channel fading is more sensitive

to the input uncertainty in CSI. Based on (b) and (c), it is

noticeable that the location-only solution is less sensitive to the

uncertain input feature in the scenario with LoS direct links,

which further indicates its higher stability and robustness for

fulfilling lightweight online implementation in this scenario.

VII. CONCLUSION

In this paper, a RIS-aided MEC architecture with multi-

plexing computation offloading has been investigated, where

the RIS constructively reflects the UEs’ offloaded input-data-

bearing signals to improve the UEs’ computation efficiency.

During a given time slot, the TCTB of all the UEs with limited

energy budgets is maximized by jointly optimizing the RIS

reflecting coefficients, the receiving beamforming vectors and

UEs’ energy partition strategies for local computing and com-

putation offloading. A three-step BCD optimization algorithm

is proposed to solve the formulated non-convex TCTB maxi-

mization problem iteratively with guaranteed convergence. In

addition, two deep learning architectures based on CSI and the

UEs’ locations are constructed to mimic the mapping of the

BCD algorithm with a considerable complexity reduction. The



simulation results have confirmed that significant performance

improvement can be achieved by leveraging the proposed

BCD algorithm comparing with some existing schemes. For

both scenarios with perfect and imperfect input features,

the CSI-based learning architecture can always approach the

performance of the BCD algorithm, while the more practical

location-only learning architecture can provide satisfactory and

more robust performance when strong LoS direct links exist

between UEs and AP.

REFERENCES

[1] X. Hu, C. Masouros, and K. Wong, “Removing channel estimation
by location-only based deep learning for RIS aided mobile edge com-
puting,” in proc. IEEE Inter. Conf. Commun. (ICC), Virtual/Montreal,
Canada, June 2021, pp. 1–6.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, fourthquarter
2017.

[3] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, Jun. 2015.

[4] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[5] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[6] X. Hu, K. Wong, and K. Yang, “Wireless powered cooperation-assisted
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 17, no. 4,
pp. 2375–2388, Apr. 2018.

[7] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.

Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[8] X. Hu, L. Wang, K. Wong, M. Tao, Y. Zhang, and Z. Zheng, “Edge and
central cloud computing: A perfect pairing for high energy efficiency
and low-latency,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp.
1070–1083, 2020.

[9] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

[10] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.

Mag., vol. 58, no. 1, pp. 106–112, 2020.

[11] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 4157–4170, 2019.

[12] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo,
“Latency minimization for intelligent reflecting surface aided mobile
edge computing,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp.
2666–2682, 2020.

[13] S. Hua, Y. Zhou, K. Yang, and Y. Shi, “Reconfigurable intelligent surface
for green edge inference,” arXiv preprint arXiv:1912.00820, 2019.

[14] Y. Liu, J. Zhao, Z. Xiong, D. Niyato, Y. Chau, C. Pan, and B. Huang,
“Intelligent reflecting surface meets mobile edge computing: Enhancing
wireless communications for computation offloading,” arXiv preprint
arXiv:2001.07449, 2020.

[15] T. Bai, C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Resource allocation for intelligent reflecting surface aided wireless
powered mobile edge computing in OFDM systems,” arXiv preprint
arXiv:2003.05511, 2020.

[16] K. Hornik, M. Stinchcombe, H. White et al., “Multilayer feedforward
networks are universal approximators.” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[18] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp.
563–575, 2017.

[19] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[20] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Springer: Mobile Networks and Applications, pp. 1–8, 2018.

[21] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE

Trans. Emerg. Topics Comp., pp. 1–1, 2019.
[22] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning

for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comp., pp. 1–1, 2019.

[23] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning based intelligent reflecting surface for secure
wireless communications,” pp. 1–1, 2020.

[24] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface as-
sisted multiuser MISO systems exploiting deep reinforcement learning,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, 2020.

[25] A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas,
“Deep channel learning for large intelligent surfaces aided mm-wave
massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 9,
pp. 1447–1451, 2020.

[26] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, 2018.

[27] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Trans. Wire-
less Commun., vol. 19, no. 5, pp. 3170–3184, 2020.

[28] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, Sep. 2018.

[29] X. Hu, K. K. Wong, and Y. Zhang, “Wireless-powered edge computing
with cooperative UAV: Task, time scheduling and trajectory design,”
IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8083–8098, 2020.

[30] X. Hu, K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and
edge computing: Scheduling and trajectory optimization,” IEEE Trans.

Wireless Commun., vol. 18, no. 10, pp. 4738–4752, Oct. 2019.
[31] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless

network via joint active and passive beamforming,” IEEE Trans. Wireless

Commun., vol. 18, no. 11, pp. 5394–5409, 2019.
[32] C. E. Shannon, “A mathematical theory of communication,” The Bell

system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
[33] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-

optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep.
2013.

[34] P. D. Tao et al., “The DC (difference of convex functions) programming
and DCA revisited with DC models of real world nonconvex optimiza-
tion problems,” Annals of operations research, vol. 133, no. 1-4, pp.
23–46, 2005.

[35] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp.
2022–2035, 2020.

[36] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2008.

[37] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[38] K. Wang, A. M. So, T. Chang, W. Ma, and C. Chi, “Outage constrained
robust transmit optimization for multiuser miso downlinks: Tractable
approximations by conic optimization,” IEEE Trans. Signal Process.,
vol. 62, no. 21, pp. 5690–5705, 2014.

[39] U.S. Air Force, “Official U.S. government information about the Global
Positioning System (GPS) and related topics: GPS Accuracy,” GPS.GOV,
2020, https://www.gps.gov/systems/gps/performance/accuracy/.

[40] F. van Diggelen, R. Want, and W. Wang, “How to achieve 1- me-
ter accuracy in android,” Android Location, Google, 2018, https:
//www.gpsworld.com/how-to-achieve-1-meter-accuracy-in-android/.

[41] F. Sohrabi, H. V. Cheng, and W. Yu, “Robust symbol-level precoding
via autoencoder-based deep learning,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2020, pp. 8951–8955.
[42] D. Tse and P. Viswanath, Fundamentals of wireless communication.

Cambridge university press, 2005.
[43] L. Yuan, R. Jiang, and Y. Chen, “Gain and phase autocalibration of large

uniform rectangular arrays for underwater 3-d sonar imaging systems,”
IEEE Journal of Oceanic Engineering, vol. 39, no. 3, pp. 458–471, 2014.

[44] Q. Wu and R. Zhang, “Joint active and passive beamforming op-
timization for intelligent reflecting surface assisted swipt under qos
constraints,” arXiv preprint arXiv:1910.06220, 2019.


