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Abstract—Covert communication conceals transmission of
messages from Alice to Bob out of a watchful adversary, Willie,
who tries to determine if a transmission took place or not.
While covert communication in a basic, vanilla setting where all
variables are known to Willie, results in the well-known square-
root law, when a jammer is present and assists Alice by creating
uncertainty in Willie’s decoder, a strictly positive transmission
rate is possible.

In this work, we analyze the case where the jammer is
equipped with multiple antennas. Specifically, we analyze the
effect of multiple antennas at the jammer on Alice’s transmission
power and consequently on the transmission rate. We consider
both cases, one in which the channel knowledge is known and
one in which it is unknown by the jammer. We formulate
several optimization problems for the transmission strategies of
the jammer, to maximize his assistance to Alice, in terms of
maximizing a ratio between Willie’s and Bob’s noise variances.

When the channel information is known to the jammer, we
show that the optimal strategy of the jammer is to perform
beamforming towards a single direction with all his available
power. This direction though, is not trivial, since it reflects an
optimal tradeoff point between minimizing the interference at
Bob and maximizing the interference at Willie. When the channel
knowledge is unknown, we show that the optimal strategy of the
jammer is either to transmit isotropically to all directions or
to the null-space of Bob, where this choice depends on certain
channel conditions. This is in contrast to current schemes in the
literature. Furthermore, we extend the optimization problems to
the case where Bob is also equipped with multiple antennas, and
provide insightful results, shown to be asymptotically optimal,
accompanied by simulations.

I. INTRODUCTION

In covert communication (also known as Low Probability
of Detection - LPD) Alice tries to reliably communicate a
message to Bob, such that a watchful adversary Willie remains
unaware of the presence of the communication. To make this
possible, Alice may use the fact that the channels between all
participants are subject to some kind of noise, and therefore
she can try to hide her communication within the margin of
uncertainty at Willie’s decoder. In fact, for AWGN channels, it
was shown in [1]] that Alice can covertly transmit O(y/n) bits
in n channel uses (a.k.a the square root law). Extensions for
binary symmetric, discrete memoryless, multiple access and
fading channels were done in [2]-[6], respectively.

This law essentially means that the transmission rate goes
to zero with n; however, subsequent works showed that O(n)
bits in n channel uses can be achieved, namely, a strictly
positive rate, if Willie suffers from some kind of uncertainty
in his received noise power [7]-[9]. The uncertainty may be
a result of inaccurate knowledge of his noise or a result of an
active node which confuses Willie (e.g., a jammer that varies
his noise power randomly). The ability to achieve a strictly

positive rate is of great importance since not only Alice can
transmit a meaningful amount, but existing coding schemes
can be used instead of designing special codes which are
suitable only for covert communication.

The limits of covert communication in a multiple-antenna
setting were first established in [10]. Therein, it was shown
that in case Alice is equipped with multiple antennas, her
best strategy is to perform beamforming towards Bob, which
results with a multiplicative constant gain to the square root
law, by the number of independent paths between her and
Bob. However, the case where such a communication channel
includes a jammer which is equipped with multiple antennas
is still open and remains unclear under various settings. For
example, the knowledge the jammer has on the Channel
State Information (in particular the CSI of Willie), and his
preference on which user to assist, may affect his strategy,
and the resulting rates, significantly.

In this work, we analyze the effect of multiple antennas
at the jammer on covert communication, while assuming the
jammer chooses to assist Alice and Bob. For simplicity, we
assume that Alice and Willie have a single antenna. Note that
a strictly positive power (hence, rate) can be achieved when
there is a jammer with a single antenna ([9]]) and that the limits
for MIMO settings without a jammer were already examined
in [10]. Therefore, adding more antennas to Alice and Willie
won’t contribute much additional insight.

The jammer’s assistance comes in the form of transmitting
Artificial Noise (AN) while using all his multiple antennas.
Thus, his transmission strategy is reflected by the covari-
ance matrix for the random vector he chooses. In a way,
this covariance matrix defines the power allocation and the
directions for that allocation. Accordingly, we analyze the
behavior of Alice’s transmission power as a function of the
jammer’s strategy which, to the best of our knowledge, was
not yet examined under the settings of covert communication.
Recently, and independently with this work, covert communi-
cation in the presence of a multi-antenna jammer was studied
in [11]]. Therein, the authors fixed a certain jamming strategy,
of transmitting AN diffusely into the null-space of Bob, and
optimized the covert rate by optimizing Alice’s strategy (also
having multiple antennas). In this work, we show that such a
strategy is not always optimal, for both cases of known and
unknown CSI of Willie, and show that under certain scenarios,
transmitting AN outside the null-space of Bob, although it
adds noise to his reception, is still better, since it is able to
significantly jam Willie’s receiver.

The notion of AN transmission was also considered for
wiretap channels, where the AN was used to improve the



secrecy rate of the system. These works can be roughly
divided into two cases, which differ by the source of the AN
transmission. In the first case, it is assumed that the transmitter
(Alice) is equipped with multiple antennas and she performs
simultaneously the secret transmission and the AN. E.g., [[12]-
[17]]. In the second case, there exist an additional node(s) in
the system, e.g., a relay(s) [18]-[21] or a dedicated jammer
[22], [23]], which output AN to degrade the eavesdropper’s
channel. At the heart of the analysis of these mentioned
works, one can find several optimization problems depending
on the models’ assumptions. A major factor in all is the CSI,
which is known or unknown to the nodes in the system.
Regardless of this knowledge, it was shown in [[13] that the
transmission of AN can guarantee a minimal secrecy rate.
This result is consistent with the fact that a positive rate
is also achievable in covert communication problems when
there exists uncertainty at Willie’s detector. Similarly to the
wiretap channel problems, in this work, we are faced also
with optimization problems for the optimal AN transmission
strategy of the jammer. However, these optimization problems
are originated from different settings, and therefore require
different treatment due to the covertness requirement.

Main Contribution: In this work, we explore the effect
of multiple antennas of an uninformed jammer on covert
communication. We analyze the covert rate as a function of
the jammer’s transmission strategy. We choose to use Bob’s
received SNR as our figure of merit since in most cases the
actual rate of any coding scheme is an increasing function
of the SNR. This is, of course, true for the AWGN channel
as well. Specifically, we consider the optimization problems
that arise when maximizing the received SNR at Bob by
optimizing the jammer’s strategy, defined by his covariance
matrix. As part of the solution for these optimization prob-
lems, we concentrate on a covertness-achieving transmission
scheme (construction) for Alice. Specifically, we provide the
transmission power as a function of the jammer’s transmission
strategy for the cases where CSI on Willie is globally known or
unknown. We show that this power ensures that the system is
covert; that is, Willie has nothing better to do besides guessing
if communication occurred or not. We show that multiple
antennas at the jammer provide additional gain for Alice’s
transmission power with respect to the case of a single antenna
jammer. Furthermore, when the CSI of Willie is unknown, we
show that the transmission power of Alice is an increasing
function of the number of antennas the jammer has.

Provided that the system is covert, i.e., assuming Alice
uses the covertness achieving construction, we solve the op-
timization problem which turns out to be not trivial, as the
jammer’s strategy affects Bob’s SNR in opposite directions.
Nevertheless, under this construction, we solve both optimiza-
tion problems for the cases of known and unknown CSI of
Willie. The solutions essentially describe the directions and
power allocations the jammer’s transmission should use. When
the CSI is known, the optimal transmission strategy for the
jammer is to transmit in a single direction, with all of his
available power. In general, this direction is not trivial, since

it takes into account both the channel coefficients to Bob as
well as those to Willie. Thus, the transmission direction has a
tradeoff between being orthogonal to Bob and in the direction
of Willie. When the CSI of Willie is unknown, yet the CSI of
Bob is known to the jammer, we show that transmitting the
AN diffusely into the null-space of Bob is not always optimal.

Furthermore, we consider the case where Bob is also
equipped with multiple antennas and uses a linear receiver.
This provides even further depth and complexity to the op-
timizations in question, as Bob takes an active part in the
decoding process. We extend the optimization problems for
this case and present several transmission strategies that the
jammer should take to assist Alice as much as possible, as
well as the detection strategies Bob should employ when he
has multiple antennas. The suggested strategies are compared
to the optimal solution using numerical results. For the low
SNR regime, some of the suggested strategies are shown to
be asymptotically optimal.

II. SYSTEM MODEL

We consider a system in which Alice ("a" in the channel
coefficients notation) wishes to communicate covertly with
Bob ("b") while Willie ("w") remains uncertain of this commu-
nication. Also, we assume that there is a third participant, the
jammer ("j"), who assists Alice and Bob. This paper focuses
on covert communication with a positive covert rate. Thus, we
assume that the uniformed jammer assists Alice in creating
uncertainty at Willie’s decoder continuously, regardless of
whether or not Alice transmits (Similarly to [9]). The model
is depicted in Figure [T}

Alice and Willie are equipped with a single antenna, while
Bob and the jammer are equipped with M and N antennas,
respectively. The channel between all participants is subject
to block fading and AWGN. In this setting, Willie tries to
detect whether transmission by Alice was made or not, by
performing a statistical hypothesis test on his received signal.
In this test, the null hypothesis Ho is that Alice does not
transmit, while the hypothesis H; is that Alice transmits.
Throughout, lower case letters represent random variables,
bold lower case represent random vectors, and bold upper
case represent random matrices. Thus, under each of the
hypotheses, the received signals at Bob and Willie in the ¢th
channel use are

Hl : ybm = ZL’[i]hab + Hjbll[i] + nb[i}
Yoli] = 2[i]haw + ui]Thjy, 4 14, i) )
Ho: yoli] = Hjp\/Pyuli] + ny[i]

yolil = /Prufi] hju + nu[il,

where z[i] is the complex symbol transmitted by Alice in the
ith channel use, with average power P, (i.e., E[|z[i]|?] = P,)
and ufi] = (wy[i], wa[i], ..., wn][i])T is the vector transmitted
by the jammer at the 7th channel use, with a covariance matrix
¥ = E[u[i]u[i]'] such that E[u[i]Tu[i]] = 1. u[i] is multiplied
by \/E where P; is the total transmission power of the
jammer.
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Fig. 1. Covert communication model where an independent jammer who
assist the communication by transmitting AN.

The channel coefficients between Alice, Willie and Bob
are hqy, € C and hy, € CM,| respectively. hj,, € CV and
Hj, € CM*¥ are the channel coefficients from the jammer
to Willie and Bob, respectively. These channel coefficients are
assumed to have a zero-mean complex Gaussian distribution
with unit variance and are considered to be fixed for the
period of n channel uses (a slot). In addition, both Bob and
Willie endure complex additive Gaussian noise denoted by
ny, ~ CN(0,021p %) and ny, ~ CN(0,02).

The CSI of Willie affects the ability of the jammer to
contribute to the covert communication between Alice and
Bob. We thus separate the scenarios where the CSI of Willie
is globally known or unknown. When the CSI is known,
we assume all nodes know hg, and hj,,. When the CSI is
unknown, only the statistics of hq,, and hj;,, are known to all
nodes. In any case, we assume that Willie has full CSI of all
channel coefficients and that Alice, Bob and the jammer know
Hjb and hab-

The jammer’s assistance comes in the form of AN with
a total power P; using his multiple antennas. Since he has
N antennas, he is free to choose how to allocate P; and to
which direction to transmit. Hence, the transmitted vector by
the jammer is ufi] ~ CA(0,X) where the total power P;
is allocated according to ¥. Again, such AN assistance does
not impair the assumption that the jammer is uninformed.
Note that the case in which the jammer has some kind of
knowledge on when Alice is transmitting results in a very
different problem, for which other type of assistance may be
optimal.

To create uncertainty at Willie’s decoder, the jammer must
vary his total power P;, independently in each n channel uses
(81, [9], [24]. That is, the value of P; must be unknown
to Willie and changed in a way which he cannot estimate
efficiently. Therefore, following similar assumptions as in [9],
[24]), we assume that P; is a uniform r.v. on [0, Py,q5] with
the probability density function (pdf) given by,

L if0<z< P
fr;(2) = {P . @)

0 otherwise ,

and it is redrawn every n channel uses independently. The

realization of P; in each slot is denoted by p;. Throughout,
we assume that P,,,, is a fixed parameter of the system and
it is known to all. Note also that if Willie had not known
the channel coefficients, the jammer could have used a noise
distribution with constant variance, since the uncertainty would
arise from the random channel coefficients [9].

As stated above, the jammer allocates its power P; in
each slot according to the covariance matrix . His goal
is to choose ¥ which assists Alice and Bob as much as
possible. Without loss of generality, the jammer transmits with
d < N directions with the fraction of power allocated to each
direction represented by the vector &€ = (¢4, ...,&4)T such that
& > 0 and 27:1 & = 1. Thus, the covariance matrix ¥ is
represented as ¥ = VX VT where X is a diagonal matrix with
£ as its elements and V is a matrix with the corresponding
directions as its columns. Note that under this definition, the
matrix X is of dimension d x d and V is of dimension N x d.

Similar to previous works on covert communication ([1],
[81, [9], [24]), we assume that Alice and Bob share a codebook
which is used only once and is not revealed to Willie ;
however, Willie knows its statistics.

Remark 1: Since the jammer assists Alice and Bob, this
model and its analysis are also suitable, under some assump-
tions, to the situation where Bob is equipped with a full-duplex
transceiver and he is the source of the AN. Moreover, in
this case, any assumptions on the channel knowledge between
them become trivial.

A. Covert Criteria

Upon receiving the vector y,,, Willie performs hypothesis
testing to determine if transmission by Alice took place or not.
That is, he tries to distinguish between the two hypotheses
Ho and H;. The optimal test for that manner, in terms of
minimizing the probability of error, is to apply the Neyman-
Pearson criterion, resulting in the likelihood ratio test:

Hy
Py >
B <

Ho

where Py and P; are the probability distributions of Willie’s
observations under the hypotheses Hy and #;, respectively,
and 7 is a threshold which Willie can choose to trade-off
between his two error probabilities, Py;p and Ppa. Puyp
is the probability of miss detection in case a transmission
occurred and Pr4 is the probability of false alarm in case
a transmission did not occur. In this work, we follow the
standard criteria for covertness in the covert communication
literature [1]], [8]], [Oll, [25]. Namely, we have the following.

Definition 1 (Covert Communication criteria): Alice’s trans-
mission is considered covert if

3)

Pyp+Pra>1—c¢, “4)

where € > 0 is the covertness requirement.
Throughout, we assume that ¢ is a fixed parameter of the
system and it is known to all. Note that this criterion is



acceptable for the following reason. Willie can easily choose
a strategy with Pr4 = 0 and Py;p = 1, by simply declaring
Ho at all times, regardless of his channel measurements.
Analogously, Pr4 = 1 and Py;p = 0 are achieved by always
declaring H;. Requiring Py;p + Pra > 1 — € is therefore
equivalent to forcing Willie to at most time-share between
these two trivial strategies.

B. Performance Metric and Reliability

In this work, we examine the received SNR at Bob such
that Alice’s transmission is covert for a given covertness
requirement €. In what follows, we describe Bob’s received
SNR for fixed ¥,p; and a fixed transmission power from
Alice. First, for the case where Bob has a single antenna (i.e.,
M = 1) and then for the case of multiple antennas which
Bob may use beneficially. Such a distinction will help us
focus only on the jammer’s strategy first. Clearly, the SNR
is affected by Alice’s transmission power, regardless of the
way it is chosen. In this work, we set this power such that the
covertness constraint is met. Specifically, in Corollary [2] given
later on, we provide a sufficient condition for Alice’s power,
and prove that the resulting value is a function of solely ¥,
hence we write P, = P,(X). Thus, in case Alice transmitted
with some power P,(X), the received SNR of Bob is given
as follows:

Pa(2)|hab‘2 _ Pa(VvX)‘habP
pihl,Shy, + 02 p;jhl, VXVihj, + 02’

SNR;} = 5)
where Hjy, in this case, is a single column matrix denoted as
hj.

When Bob has multiple antennas, he can take an active part
in the communication strategy. For example, by steering his
antennas away from the jammer. We assume that Bob uses a
linear receiver. In this case, Bob performs a linear operation
on the received signal; specifically, Bob projects the received
vector onto a subspace which on one hand diminishes the
effect of the AN from the jammer and on the other intensifies
Alice’s transmission. That is, we have

clyy [i] = x[i]cThab + cTHﬂ7 pjuli] + c'ny [4],

where ¢ denotes the linear filter. The output of this receiver
has SNR
Pa(2)|CThab‘2 Pa(Va X)|CThab‘2
ct (ijﬂ,EH;b + O’?I) c cf (ijijXVTH;b + UEI) C
6)
The SNR is sufficient to derive the covert rate for the
block fading and AWGN channels as it is an injective (and
increasing) function of the SNR [26]. However, considering
the CSI knowledge assumptions taken in this work, the SNR
expressions in (3) and (@) are random as they are a function
of the varying AN noise variance P;. Thus, to show that
there exist a positive covert rate R (without guaranteeing
the maximum rate achievable) such that Bob can decode the
transmission successfully with a probability of error that goes
to zero, we note the following. First, p; is unknown to Bob

and Alice; however, since the statistics of P; is known to all,
Alice and Bob can derive a non-trivial bound as they know
Pruaz. Second, when the CSI of Willie is known, the jammer’s
strategy, i.e., &, can be computed directly from the specific
realization of hg, and h;, and the bound on p;. When the
CSI of Willie is unknown, we chose to maximize a lower
bound on the SNR, hence show that the jammer’s strategy is
characterized only by the rank used for ¥. Specifically, under
the assumptions made in this work, it is either NV — 1 or N,
depending on the value of p;. Accordingly, from the above,
Alice and Bob can derive a lower bound on the SNR and agree
on the covert rate such that the communication is reliable.
We note that the SNR expressions above and the suggested
analysis and results in this work can be used also for the
scenario in which the channel coefficients h,; and Hj; are
unknown to Alice and Bob and only their statistics are known.
In this case, there is a non-zero probability that the received
SNR will be lower than any predefined value. For such fading
channels, one of the acceptable performance metrics is the
¢—outage capacity. This is the maximal transmission rate R
such that the outage probability P.°“*(R) is less than ¢ [26,
Ch. 5]. Thus, for a given outage probability ¢, we say that
Alice and Bob can communicate reliably and covertly with
a covert rate R and outage ¢, if the covert criteria @]) is
satisfied and R < Cy, where Cy is the channel ¢—outage
capacity from Alice to Bob. Now, to find such R, one needs
to devise a different lower bound on the SNR by using the
known distribution of the channel’s fading coefficients along
with the bound on p;. For example, one can use a global lower
bound for the SNR, which is a function of the channel’s fading
coefficients, given in Section for that manner.

III. TRANSMISSION STRATEGIES AND ALICE’S
TRANSMISSION POWER FOR M =1

In this section, we analyze the jammer’s AN transmis-
sion strategies along with the construction of a covertness
achieving transmission scheme by Alice. Note that under our
performance metric, Alice’s transmission scheme is eventually
measured by the power, P,(X), for a given € and as a function
of the jammer’s strategy X..

We start by formulating an optimization problem for the
AN transmission strategy, to maximize Bob’s received SNR,
provided that the system is covert. We distinguish between
the cases of known and unknown CSI of Willie, which
influences the transmission strategy. As mentioned in Section
the Jammer’s strategy is reflected by the covariance matrix
¥ = VXV, which can be described by the matrices V and
X alone since it assumed that the jammer uses all of his power,
p;, for transmission.

Accordingly, we define the problem as follows

Pa(V,X) | hap|?
max T x
VX pihl, VXVihy, + o7

N ©)
st. 0<& <1, Zfl =1,
=1

Pyp+ Pra2>1—e



Proposition 1: Let P>*(V,X) be the optimal transmission
power of Alice to assure covertness, i.e., satisfying @). Thus,
the optimization problem (1) is equivalent to

P (V, X) | ha|?
max T 5
VX phl, VXVihy, + o7

N (3
st 0<§ <1, Zgl =1.
=1

Unfortunately, the optimization problem in (8) is non-convex
and does not seem to have a closed form solution. This is
mainly since Py;p and Pr 4 are affected by both the jammer’s
strategy (V,X) as well as Alice’s choice of power. Thus, the
utility (SNR) and the constraint (covertness) interplay non-
trivially.

Consequently, we suggest a sub-optimal solution by provid-
ing a transmission scheme by Alice which assures a sufficient
condition for covertness, for every V and X. This will allow
us to provide an explicit expression for Alice’s transmission
power, ensuring that the system is covert as a function of
V and X. That is, we first make sure (@) is satisfied and
Willie is unable to decide if transmission occurred. We then
find the optimal strategy by optimizing on V and X. Thus,
in the reminder of this section, an optimal strategy for the
Jjammer refers to a one solving @®), yet with a lower bound
PS(V,X) < P&*(V,X), which is given in the follow-
ing lemma. Specifically, Lemma [I] bellow expresses Alice’s
transmission power, P,(V,X), as a function of any specific
strategy, i.e., a fixed ¥ and p; by the jammer, such that the
communication is covert.

Lemma 1: Assume a block fading AWGN channel and a
Jjammer with N antennas, who transmits AN with a fixed
covariance matrix ¥ and a total transmission power of pj.
For a given covertness requirement, € > 0, as long as Alice
transmits with power

€Prax i T
P < {5 VXV Ty, )

the system is covert, i.e., @) applies and Willie is unable to
decided if transmission occurred, and Alice’s rate is strictly
positive.

Proof of Lemmal[l} Construction: We employ a Gaussian
random codebook consisting of M messages of size n. That is,
the codebook is generated by independently drawing symbols
from a zero-mean complex Gaussian distribution with variance
P, and it is assumed to be used only once. When Alice
wishes to transmit, she picks a codeword and transmits its
n symbols as the sequence {z[¢]}?_,. Such a construction
was also used in other covert communication works for the
AWGN channel such as, [[1f], [9]], [24]]. In what follows, under
this construction, given ¢ and a fixed ¥, we show how to set
P, such that the covertness requirement (@) is satisfied. Note
that this construction will be used also in the proof of Lemma

Optimal hypothesis testing: The optimal test for Willie to
distinguish between Ho and H;, given in (B), can be written
as

Py [T, Fyuli] >

™ n 7,
Po Iz fy. <
Ho

(10)

where f;/)w i and fylw[i] are the probability distributions of
Willie’s observation in a single channel use under the hy-
potheses Ho and H;, respectively. Note that we may write
the joint distributions Py and P; as a multiplication of the
marginal distributions since both the channel uses and the
code are 7.i.d. In particular, under Hg and given p;, fgw [i] is
CN(0,09), and under H; and given p;, f?}w[i] is CN(0,0})
where,

oY, = o2 + p;hl, Bhy,, an
o4y = 0% + pihl Bhyy + Palhaw|*.

The terms in the last line above reflect the self-noise power of
Willie, the received AN power and the transmission power of
Alice, respectively. It would be beneficial to express o;,, ¢ €

wr

{0,1} in (TT) using the representation £ = VXVT as follows

oY, = o2 + p;jhl , VXVTh,,
w

(12)
=02 +pjhl , VXVTh, + Polhaw|*.

(
ol

In [9], by using Fisher-Neyman factorization and likelihood
ratio ordering techniques, it was shown that the above optimal
ratio test is eventually an energy test on the average received
power. This applies to our model as well, since from Willie’s
point of view, the models are the same. Specifically, the
average received power, P;+v, is compared with a threshold
T’

Ha

. 1< g >
Py & =3 lyulill® 27 (13)

i=1 HO

One can realize that, given p;, the average received power
i
Pjev is a Gamma r.v. with parameters k = n and § = 2= for

i

i = 0,1, ie. Pl ~ I'(n,Z=). Furthermore, as n — oo, by
the weak law of large numbers, P/ ¢~ converges in probability
to Jfﬂ.

Covertness achieving P,: Willie compares P, 2* to a thresh-
old 7; however, this threshold depends on the distribution
of P; and thus may be optimized by Willie. The following
analysis shows that for any threshold 7 that Willie sets for
himself, which is not known to anyone but Willie, there exists
a construction by Alice such that holds. Specifically, we
bound each of the probabilities Py;p and Pr4 for a given
value of p; resulting with sufficient conditions for covertness.
Following similar conditioning arguments as in [9], for a fixed
p;j, we have

Pra(pj) = Pi(Py > 7|Ho, pj). (14)



Recall that given p; and Ho, P, ~ Gamma(n %) and as

n — oo, Prav converges in probability to ¢0. Thus, for any
given covertness requirement € > 0, one can ﬁnd 8%, n) — 0
as n — oo such that

o) — 380 < Prev <00 + 6% Ho,pj) > 1 — %

Note that the dependence of ° on € and n is omitted to ease
notation. Since

P(Ple > 0 — 8|Ho,p;)
P,(Plew > 09 — 8% Ho, p))
(60 — 6% < Prev < 60 + 6% Ho, p;),

P.(

0
P.(oy,

for any d(e) > 6°(¢), then for any 7 < 00 —

( 5(e) we have
Py(

Prev > 1Mo, pj) > 1 — % (15)
Similarly for Py;p given pj,
Prp(pj) = Pe(Py < 7|H1,pj). (16)

1
Now, Plav ~ Gamma(n Zw) and as n — oo, Pjev con-
verges in probability to . Thus, one can find 61(6 n) —0
as n — oo such that

€
711}—(51 < Prav SO’}U-F51|IH1,])]‘) >1——.

P.(c 5

Again, since

pr(pnw < oL+ 8|H1,p))
P.(Plev < oy + 0" [Hi,p;))
P (00 — o' < Pl < 60 + 61 Hy,p)),

for any d(e) > 51(6), then for any 7 > o} + §(¢) we have
PPy < lHi,py) > 1 -3 (17)

max{d°(e,n),0%(e,n)} where we note that

Set d(e,n) =
5(e,n) — 0 as n — oo as well. Since 0¥, ol and § implicit]y
— (5 <

depend on p;, define the set of intervals P = {p] coY
T < ol + d}. Thus, for all p; ¢ P, either or
satlsﬁed and we have,

Pup(p;) + Pralp;) > 1—5 (18)

Since P; is a uniform r.v. we have

:P,(02,75<T<0111,+5)
—p T — 02 — Pylhaw|* — 6 <p < T—02 46
h! VXVih;, h! VXVih;,
Palhaw|? + 26
Prmazh!,VXVih;,’

19)
where the inequality in the last line is due to the possibility that
the boundries in the probability computation are outside the
support of P; (i.e. outside [0, Pp,qz]). Note that the uniformly
assumption on P; is critical for the result being independent
of 7. Therefore, if we set P, = jpm‘“‘”z hi »VXVThj, and

d(e) = "““” hT »VXVTh;,, for sufficiently large n, we are
are left w1th
P(P) <

l\D\m

Considering all the above in order we have,
Pyip + Pra = Ep, [Pyp(Pj) + Pra(P))]
> Ep,[Pyup(Pj) + Pra(P;)|PCIP(P*
>1—e.

) (20)

The above shows that as long as Alice transmits with power
P, = AEIZTSTZ hT VXV h;,, the system is covert. The rate of
Alice can be obtalned by using P, above in Bob’s SNR, which
can be lower bounded by a constant, providing a positive rate.
|
Lemma [I] provides the transmission power of Alice as
a function of Willie’s CSI and the jammer’s strategy, in a
form of a multiplicative gain hJr VXVTh]w /1haw|?. This
multiplicative gain is with respect to the case of a single
antenna jammer as given in [9], which equals P, = % if
we adjust their model assumptions to ours. Note that although
haw and hj,, are known, in the beginning of each slot, they
are redrawn and thus P, should be updated accordingly. This
means that the shared codebook needs to be updated as well.
However, in the next section we provide analysis for this
random gain and the corresponding received SNR. Using this
analysis, one can first realize that the probability of this gain
to be equal to zero, is zero. This eventually ensures a positive
covert rate. Furthermore, one can compute the probability of
this gain to be above some value. That is, define an outage
criteria such that Alice would not transmit if the rate is too
low. Using this criteria, Alice and Bob can agree on a covert
rate.
Our main results for M = 1 are presented in the following
subsections with respect to the cases of known or unknown
CSI of Willie.

A. Known CSI of Willie

Theorem 1: Assume a block fading AWGN channel and a
Jjammer with N antennas, who transmits AN with covariance
matrix ¥ and a total transmission power of p;. For a given
covertness requirement € > 0 with globally known CSI of
Willie, the optimal strategy for the jammer, i.e., the solution
for the maximization problem in [8)) while Alice is transmitting
with the power given in Lemma is the following power
allocation,

¥ =vvi, @21
where
e (22)
l[all

and q is the eigenvector which corresponds to the highest
eigenvalue of the matrix
-1
(hjbhjb +oI) (hjwhjw) , (23)

2

g
where o = .
2



—05 o<

Fig. 2. An example for the optimal direction of the AN transmission by the
jammer for a specific realization of the channel fading coefficients for the
case of M =1and N = 3.

Hence the optimal strategy is to transmit AN in a single
direction. The optimal direction, v*, depends on both channel
vectors hj,, and hj,. While it is hard to gain insight on
the actual direction from (23) one can gain intuition from
Equation (28) in the proof of Theorem [I| where, it is clearly
seen that v*, on one hand, should be close to the direction
of Willie, i.e., maximize the projection on hj,, while on
the other hand it should be orthogonal to Bob as much as
possible, i.e., minimize the projection on h;;. Figure E] depicts
a visualization for a specific channel realization for N = 3
antennas. One can easily observe that the optimal direction is
indeed pointed towards Willie while being close to orthogonal
to the direction of Bob.

Proof of Theorem [I} Setting Alice’s transmission power
in the maximization problem (8) according to (9) guarantees
that the transmission is covert. Then, we have

St ], VXV o o

p;hl,VXVihy, + o2

max
V,X

(24)

To solve the above, we first find the optimal X for any given
V. Accordingly, for a fixed V, similar to [27], we further
simplify (24) as follows

Pm(lfl)
max
pj X
where ¢; = €|hap|?/4|haw|? depends on Alice’s channels, o =
2
2o, w = V'h;, and b = V'hy,. Note that

wiXw _ Zl]\ilflwlz
biXb + o Zlf\ilglb%+g

wiXw
bi'Xb + o’

(25)

:Cl

We wish to show that the optimal power allocation &*
(which defines X), for a fixed w and b, is a unit vector. To this
end, we examine two indices ¢ and j in £&* which have power
allocations (¢;,&;) such that & + &; = p;;, where p;; > 0
is some constant. We will show first that either §; = p;; or
&; = pi; must occur, hence, eventually, the optimal power

allocation is a unit vector (since for any two indices ¢ and
J, it is always better to move the allocation from one to the
other, until one is exhausted).

The optimization problem on & can be written as follows,

N 2
max f (&) £ max 7§l:1 S
: ST e+

 max Disi SWi Wi + wiE;
€ D1 &by + 076 + b?fj +o
~ ax D isi Swi +wig +w(pij — &)
€ Dy S F V76 0 (piy — &)+ o
~ nax Dy QWi + & (Wi — wF) +wipy; .
€ D1 §b7 + &i(b7 —03) +b3pij +o

Taking the derivative of the above according to &; shows
that the function f(£) is either monotonically increas-
ing or monotonically decreasing with §&; depending on

the sign of (w} — w7) (Zl#i,j &b7 +O'+b?pij) — (b7 —

b?) (Zl;éi,j Gui + wgz‘/’ij> :

Thus, for every two indices 4,7, if f(£€) is monotonically
decreasing in &;, set {; = p;;. On the other hand, if f(£) is
monotonically increasing in &;, set §; = 0. This essentially
means that the optimal strategy of the jammer is to allocate
all his power towards a single direction.

In order to find this direction, which is the corresponding
eigenvector v, we may write the unit rank matrix ¥ as ¥ =
vv't, Note that v is constrained to have a unit norm, i.e.,
viv = 1. Returning to the maximization problem in (24), we
have,

T Th.
P h! VXVTh,,
01— max — ! (26)
pj VX hijXVThjb +o
T Th.
Pros h: vv'hj,
= max —— d @7
pj v hjbvahjb +oviv
Pma:v VTh' hT‘wv
= max ?w J (28)
pj v vThjbhjbv +oviv
Pmaw VTh ‘thwV
= max ]T J 29)
pj v vi(hphj, +ol)v
Pz viwv
= 30
C1 D, VX viBv ) ( )

where, W = h;,hf,,, and, B =h;h, + oI The above
maximiztion problem is also known as the Rayleigh quotient
[28], which is maximized by the eigenvector that corresponds
to the highest eigenvalue of the matrix B~'W. Denote this

vector by q, the optimal v is,

_a
lal



B. Unknown CSI of Willie

We revisit Equation (9). When h;,, and hg, are unknown
to Alice, she cannot determine her transmission power in order
to stay covert. Moreover, without h;,,, it is not clear how to
perform the optimization on h}wghjw, in order to maximize
Bob’s SNR. We thus take the following course of action. We
first lower bound Bob’s SNR by a separable function, that will
facilitate the optimization on ¥. We then provide a sufficient
condition for Alice’s power, independent of hj;,, yet using
the optimal ¥ which resulted from the above optimization.
The result is a strictly positive transmission power for Alice,
a strictly positive SNR of Bob, e—covert transmission, with
the optimal jamming strategy given the lower bound.

Accordingly, the following proposition provides a global
lower bound on Bob’s SNR, for any realization of the chan-
nel’s coefficients, if Alice uses the same code construction as
given in the proof of Lemma [I]

Proposition 2: Using the code construction given in the
proof of Lemma |l| for any realization of Willie’s CSI, Bob’s
received SNR is lower bounded by

||hij2 _min &
i cood

clpmaz =1

pj  hjll? max & +o
=1 d

,,,,,

)

€29

Proof: Setting Alice’s transmission power in the maxi-
mization problem (8) according to (9) while using the nota-
tions of Theorem [T} we have

C1Pmar h;wVXVThjw
Pi  hl,VXVih+o

(32)

For any vector h and matrices V, X, we have [28, Theorem
2.4.3]:

[h]? min & <h'VXVTh < |[|h]* max &, (33)
i=1,...,d i=1,...,d
and the bound follows immediately. ]

For covert communication, a natural choice would be to
maximize the lower bound, for example, to ensure that the
SNR is above a certain level with very high probability. This
may be a very important promise since it enables Alice to
communicate while remaining undetected. We thus assume for
the rest of this section that the jammer strategy is subject to
maximizing the lower bound on Bob’s SNR given in (31).
The following proposition provides the jammer strategy for
this case.

Proposition 3: To maximize the lower bound in (1)), the
Jjammer should direct the AN towards d directions, with all
of his available power equally divided between them. That is
Y = VXV, with V being a unitary matrix of dimension
N x d with rank d and X = éldxd.

Proof: The proof follows since Zf & = 1 and we wish
to maximize the smallest £ and minimize the highest &;, thus
letting &; = é for all ¢ will maximize the lower bound in (3I).

|

Note that the above proposition is consistent with Theorem
E], in which the jammer transmits in a single direction, i.e.,

d = 1 for the case of known CSI. On the other hand, when
the CSI of Willie is unknown (h;,, and h,, are not known and
random), to maximize the SNR, the jammer strategy should
follow Proposition 3| In fact, transmitting AN uniformly in all
directions is consistent with AN transmission strategies for the
case of unknown CSI towards the adversary in the context of
wiretap channel, e.g., [12], [[13]. However, while the reason
for transmitting uniformly across the basis of the null-space
of Bob was intuitive in [12], [13], herein we prove that this
choice actually maximises the lower bound on Bob’s SNR.

Considering the above, and similarly to the previous subsec-
tion, we first express Alice’s transmission power, PS(V, X)),
which assures covertness for the case of unknown CSI of
Willie.

Lemma 2: Assume a block fading AWGN channel and a
Jjammer with N antennas, who transmits AN with his total
transmission power, p;, equally divided into d arbitrary direc-
tions. Le., rank(X) = d. For a given covertness requirement
€ > 0 when the CSI of Willie is unknown, as long as Alice
transmits with power

P, < €Prnax (E)E,
- 126111% 6

(34)

the system is covert. l.e., @) applies and Alice’s rate is strictly
positive.

Proof of Lemma[2} The construction is similar to the one
given in Lemma E} However, now, to obtain the covertness
achieving power P,, one needs to consider the channel’s
statistics for hg,, and hj,, as well as P; when computing the
probability P,(P) in equation (T9). To do so, we upper bound
P,(P) and find P, such that (@) applies. Specifically, we can
write for all o > 0

P.(P) = P, (7?‘|haw\2 > a) P (Jhaw? > @) +
P (Plhanl® < @) P (Jhaul* < ) G39)

<P, (|hawl? > o) +P, (P‘|hw\2 < a) .

Denoting ¥ = h}wVXVThjw we can further upper bound
the above for all > 0

P (P) < P (Jhaul® > @) + Py (P|[haul? < @)
P, (s ? > o)
+ P (P|lhawl < 0, @ < B) P, (¥ < B)
+h (P‘\hawﬁ <a,¥> B) P, (¥ > B)
<Pr (Jhaw]? > @) + P, (¥ < B)
+ P (Plhaul® < 0,9 = ).

Recall the definition of P = {p; : 00 — 6 <7 <ol + 6} If
we substitute « and 3 for |hau,\2 and U, respectively, we can
upper bound the third term in the equation above and thus
increase the probability. That is, set « and S in (I9). This



replacement can only increase the length of the considered
interval. Since the distribution is uniform, we have

P (P) <P (Jhawl® > ) + P (¥ < )
+ P (Plhaul? < a0 > )
< Py (lhaw!? > a) +P, (T < B)

T—02 —Paa—§ 7—02—1—5)
+ P, <pP< —
(Frgretsns
26 + P,
<P, ([haw|? > ) + P, (¥ < B) + B+ a
Tnaa/ (37)

Since |hqw|? is a x?(2) r.v., by setting o = 2In ¢ we have,

P; (|haw|? > @) = % (38)

To obtain the distribution of W, recall that the elements of
the dlagonal matrix X are all equal to 1/d, hence, ¥ =
1hT VIVt h;, = ipl vvT h;,. Since V is a unitary

djw
matrix, hjwV is distributed as a complex Gaussian vector of
length d with independent variables. Accordingly, d - ¥ is a
X%g 4 LV This is also consistent with [29, Theorem 2, Ch.1],
using a different approach. Thus, we compute

P, (¥ < B) =P, (dV < dB)

© (dﬁ ( 35>>d
(1)
<

Where (a) follows from the Chernoff bound which requires
that 0 < 8 < 2 and (b) follows for such 3. (c) is by setting
8= % (i/g Note that this choice of 3 satisfies the Chernoff’s
bound requirement for all € € (0,1) and d € Z1T\{0}.

Thus, setting P, = =Bep o and§= 5183 Pmax We have,

(39)

—~
=

INE

a2
P (P) < =
T — 2 .
Continuing similar to the proof of Lemma [I] the covertness
criteria Py;p + Prpa > 1 — € holds. [ |

In the following corollary, we present the covertness achiev-
ing transmission power for Alice in the case where the
jammer has a single antenna (i.e., N = 1). We note that
this result is different from the one obtained in [9], as the
model assumptions are different. In [9], it was assumed that
Willie does not know his own CSI, thus the jammer may
use AN with constant variance P; = Py,q5. Of course, this
eventually affects Alice’s power. In this work, we assume a
stringent model where Willie knows his own CSI, therefore
the communicating parties cannot assume that the channel
randomization is enough to confuse Willie. Thus, the jammer
must employ AN with varying power.

Corollary 1: Assume a block fading AWGN channel and
a jammer with a single antenna and a total transmission
power of p;, where the CSI of Willie is unknown. For a given

covertness requirement € > 0, as long as Alice transmits with
power

<1n17§ €

- lng 12

Praz, (40)
the system is covert. Le., @) applies and Alice’s rate is strictly
positive.

Proof: Following the same steps as the proof of Lemma
when the jammer is equipped with a single antenna, the
received power of the AN at Willie is p;|h;,|*. Thus, in the
proof of Lemma [2] I ¥ = |hjy|? which is distributed as a
X2(2) rv.. Therefore we may set 3 = 2In z=, which results
inP (¥ <p)= [

A more strict upper bound for Alice’s transmission power
can be obtained following to the inequality h‘hlli;“” > xv/x, for

0 < z < 1, which results with P, < (%)2.5 %

Corollary 2: Given the jammer’s strategy X, for the case
of known and unknown CSI of Willie, for any fixed € and
Proaa, a covertness achieving, strictly positive, power of Alice
is attainable.

The proof follows immediately from the proofs of Lemmas
[1] and [2] for the case of known and unknown CSI of Willie,
respectively.

As Lemma [2] suggests, the covertness-achieving power of
Alice for the case of unknown CSI, assuming equal power
allocation, only depends on the number of directions the
jammer transmits into. Again, such an assumption is mo-
tivated by the desire to promise minimal value for Alice’s
transmission power. Accordingly, the optimal strategy under
such assumptions is given in the following theorem.

Theorem 2: Assume a block fading AWGN channel, and a
Jjammer with N antennas, who transmits AN with covariance
matrix X such that his total transmission power, p;, is equally
divided into d arbitrary directions. For a given covertness
requirement € > 0 with unknown CSI of Willie, the optimal
strategy for the jammer, is the following power allocation (for
N > 2 antennas),

2= VXV, (41
where in case 0 = % < ¥
Pj N(g NON=T
. . 1
Vi=Q ad X' = Iv-nxw-n, (42
otherwise,
Ve (Q’ ) and, X' = Slvxn, - (43)
||thH N X

where Q is a matrix whose columns span the null-space of
hjp.

The above result implies that when Willie’s CSI is unknown,
the jammer should transmit his AN either to the null-space of
Bob or isotropically to all directions. The choice depends on
the magnitude of the channel hj,. That is, for fixed N, o’f,
and p;, if ||hj| is high, the optimal strategy would be to
transmit only to the null-space. On the other hand, when
|hjp| is low, transmitting to all directions (including Bob’s)
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Fig. 3. Simulation results for Bob’s received SNR as a function of o for
N = 4 antennas at the jammer, where the CSI of Willie is unknown. The
SNR values are normalized so the leading constant coefficients is equal to 1.

would be better in the sense of maximizing the covert rate.
An interpretation for the above is possible by considering the
parameter o which reflects the ratio between the "bad" noise
power that Bob endures due to his own antenna noise and the
"good" AN power which helps Alice and consequently helps
Bob’s SNR. When o is low Bob endures more "bad" noise and
thus the jammer should avoid adding more noise power in the
direction of Bob. Note also that Theorem [2] refers only to the
case of a multiple antenna jammer (i.e. N > 2). N =1 is not
considered since no optimization can be performed. Moreover,
not transmitting AN is not possible as it results with zero
covert rate (a square root law).

Figure [3] depicts the turning point of the average SNR value
when comparing the strategy of transmitting the AN isotrop-
ically to all directions against transmitting only in the null-
space. The simulation was performed for e = 0.05 and N =4
antennas at the jammer. As described in Theorem [2] the figure

l[hyol*
N(%—l/N(N—l)_l)

4(%71% ~ 6.1[dB]D the jammer should switch strategy in
order to maximize the SNR.

Proof of Theorem [} Setting Alice’s transmission power
in the maximization problem () according to (34) guarantees
that the transmission is covert. Then, considering that X is a

diagonal matrix with & = % for all [, we have
1
e (5) " [haol®
max ; >
V.d pjhijXVThjb + o},
1
s.t. gl = g,

The above can be simplified to

depicts that around the point of 0 = E

1=1,..4d

1
Pma,.'r (6/) 4
Co max

) (44)
pj b 27:1 éb? to

’ 2 2
where ¢y = Shael” o/ _ e 5 %o and b = VThj,. Let Q

2elne’ 6’ j
be a matrix whose columns span the null-space of hj;, and

U||hyp|? is distributed as a x32, r.v.

let V be a matrix with any d columns taken from the columns
of Q, i.e., V is of dimension N X d. Since the numerator is
an increasing function of d and in the denominator we can
have b7 =0 for [ = 1,..., N — 1 due to the choice of V, any
d < N — 1, will result in a lower SNR. Thus, one needs to
consider only the cases of d = N — 1 and d = N, for which
the target function in @4) is equal to

if d=N-1
() “
———— if d=N.
Tl + o

12 .
]\76/71”/};?% the SNR is larger for the

case where d = N. Thus, in this case, V must span the
whole space. So, by setting V* = (Q , Hﬁﬁ)
by = ||h;y|| and the resulting value for the target function
in @3). Otherwise, it is better to transmit in d = N — 1
directions and only in the null-space of Bob, i.e., V¥ = Q
which completes the proof. [ |

When o >

we have

IV. AN TRANSMISSION AND DETECTION STRATEGIES FOR
M > 1 ANTENNAS AT BOB

In this section, we analyze the AN transmission strategy
of the jammer and the detection strategy of Bob in case Bob
has M > 1 antennas. When Bob is equipped with multiple
antennas, the AN transmission and the detection strategies
of the jammer and Bob are coupled and depend on the joint
information both have.

Accordingly, we formulate a global optimization problem
on both the transmission of the jammer and the detection of
Bob where, similar to Section we restrict ourselves to
constructions which satisfy the covertness requirement (@) for
the cases of known and unknown CSI of Willie, respectively.

Recall that Bob employs a linear receiver. Thus, following
the SNR expression in (), and assuming that the system is
covert (i.e. Alice is transmitting with a covertness achieving
power P¢(X)), we may write the global optimization problem
as follows,

P;(Vv X)|cThab|2
max
ViXe cf (pHu VXVIH], + 031 o

(40)

N
st. 0<& <1 and, Zfl =1.
=1

Note that ¢ should be optimized together with ¥ (i.e.,
with V and X) which leads to yet another non-convex
optimization problem. In the following subsections, we suggest
strategies for Bob and the jammer which decentralized the
global optimization above to obtain practical solutions for the
cases of known and unknown CSI of Willie, respectively. The
numerical results of the suggested strategies are shown to
be very close to the optimal solution of (46), which can be
acquired numerically.



A. Known CSI of Willie

The following lemma asserts that regardless of Bob’s filter,
under the covertness construction given in Lemma [I] the
jammer should direct his AN to a single direction.

Lemma 3: For any linear filter c, the optimal strategy for
the jammer, i.e., the solution to (@6) when the CSI of Willie is
known, is to transmit all his available power towards a single
direction.

Proof: Substituting Alice’s transmission power given in
@) in @6), the maximization problem in (@6) can be reduced
as follows,

Prnaz T
4€|haw B hjwVXVThjw

of (pH; VXVIH], + 031) c
frzeshl, VXV TRy,
cip;H; VXVTHI ¢ + o2||c|?
wiXw
b’ "Xb’ + o|c|?’

Th |2
nax lc"hyp|

= max |c'hg|? “7)
V,X,c

PmCL‘T
= max cs3 |cThg|?
b X o pj

2
where c3 = €/4|hqw|% 0 = -, w = VThj, and b is of the
J

form b’ = VTH; »€ Where V is any unitary matrix. Following
the same analysis performed in the proof of Theorem|I] it can
be shown that for any fixed w,b’ and c the optimal power
allocation &* (i.e., the diagonal of X) is a unit vector. ]

Lemma [3] agrees with the conclusion of Theorem [I] for a
single direction strategy (when M = 1) and shows that since
Bob is equipped with several antennas yet a fixed filter, the
jammer should transmit in a single direction. Accordingly,
using Lemma [3] the maximization problem in (6) can be
reduced as follows,

Prax (h§w""Thjw) |cThg|?

c3 max .
bj Ve ¢t (HijVTH];-b + O'I) c

(48)

Inspired by existing works on MIMO communication, we
suggest and analyze sub-optimal solutions for the above op-
timization problem. Specifically, we consider the null steer-
ing (also known as "masked beamforming") and Maximal
Ratio Combiner (MRC) techniques ([30], [31f]) which Bob
and the jammer may perform independently to simplify the
optimization problem. That is, instead of solving the global
optimization for both strategies simultaneously, we fix one and
perform optimization on the other. In a way, these sub-optimal
schemes decentralized the global optimization problem by
forcing the jammer and Bob to rely only on themselves
and their ability to enhance the covert rate. Later on, in
Corollary [7] we show that some of the suggested strategies
are asymptotically optimal as o grows.

In what follows we present analysis for the sub-optimal
strategies described above. We solve the optimization problem
in (48) first for a fixed ¢ and then for a fixed v. Then, we
suggest strategies for the jammer and Bob given a fixed c or
a fixed v. Specifically, we first consider a fixed linear filter,

¢, as an MRC filter, to match the channel between Alice and
Bob, ignoring the AN. Then fix v by the jammer, to be in
the direction of Willie. Lastly, we consider the strategy of
canceling the AN at Bob’s receiver by either the jammer or
Bob where, depending on the number of antennas each has,
they may agree in advance upon the responsibility for the
cancelation task.

Fixed c:

For any fixed ¢ we have the following theorem.

Theorem 3: For a fixed linear filter c, the strategy for the
Jjammer, i.e., the solution to @ when the CSI of Willie is
known, is the following power allocation,

Y= V*V*T, (49)
where v* is the eigenvector which corresponds to the highest
eigenvalue of the matrix B~'W, where W = hjwh;-,w and,
B = hh' + oc|2I for, h = H;bc.

Proof: Assuming c is fixed, the optimization problem in
(48)) is reduced to,

h;wvvfhjw
max
vV ocf (HjbvaH;b + UI) c
vThju,h}wv
aX - =
v hivvth + g]|c||2
vThjwh;r-wv

v (hh’r + O‘||C||2I) v

= Imax

which is the Rayleigh quotient maximization problem [28].
Note that we neglect the constants in since we are
interested only in v. Thus, similarly to the proof of Theorem
setting W = hjwh;w and, B = hh' + o||c||?I, where
h= H;f »C- the optimal v is the eigenvector which corresponds
to the highest eigenvalue of the matrix B~'W. [ |
Fixed v:
For any fixed v we have the following theorem.

Theorem 4: For a fixed v, the strategy for Bob, i.e., the
solution to @8)) when the CSI of Willie is known, is the linear
filter c* which is the eigenvector that corresponds to the
highest eigenvalue of the matrix B~*W, where W = habhlb
and B = Hy,vwiH], + oL

Proof: Assuming v is fixed the optimization problem in
([48) is reduced to,

|CThab‘2
max
¢ cf (HjbvaHJ;b + O’I) c
T
~ max cThabhabc

¢ cf (Hﬂ,vaH;b + UI) c’

which is agin the Rayleigh quotient maximization problem
[28]. Thus, setting W = hgh, and B = Hj,vviH|, +
oI, the optimal c is the eigenvector which corresponds to the
highest eigenvalue of the matrix B~ W. ]

As a consequence of Theorems [3] and ] we now present the
strategies in the following corollaries. The corollaries provide



the specific linear filter ¢ and the direction vector v of Bob
and the jammer to be set in ({@8).

Corollary 3: When Bob employs a MRC for the channel
between him and Alice while ignoring the AN, i.e., ¢ = hyy,
the solution to [@8) is v* = H% where v is the eigenvector
which corresponds to the highest eigenvalue of the matrix
B~ 'W, where W = hjwh;w, B = hh' + o/c|?T and,
h= H;r.bc.

Corollary 4: When the jammer directs his AN towards
Willie, i.e., v = Hilljiz\l’ the solution to @I) is the linear filter
c* which is the eigenvector that corresponds to the highest
eigenvalue of the matrix B™'W, where W = habhlb and
B= HjbvaH;b + oL

As mentioned above, the cancelation of the AN at Bob’s
receiver depends on the number of antennas that Bob and the
jammer have. If Bob has more antennas than the jammer, i.e.,
M > N, then he can find a null-space for the columns of H;,
such that the linear filter ¢ will satisfy ¢?Hj, = 0. In other
words, Bob projects the received vector y,[i] at the ith channel
use onto a subspace spanned by the null-space of Hj,. That
is, we have

clypli] = oilc hyy + " Hypvi] + ¢ nyli]

= z[i]c hyy + Ty [i].

The above implies that the vector h in Theorem [3|is equal to
zero. Note that Bob may choose ¢ to improve the SNR while
still restricting c to being in null-space of H;;. Consequently,
we have the following corollary.

Corollary 5: When Bob cancels the AN and chooses c such
that,

|CJrhab|2
c= arg max

cecnullspace(H;p) O—EHCH2 .

(50)

The optimal strategy for the jammer is the following power
allocation,

¥ =vivii, 51
where, L
A — L (52)
b |

Proof: Since Bob cancels the received AN from the
jammer, following the notations of Theorem [3] we have
B! =B = o|c/|*T and W = hjwh}w. Since the matrix
BW is of rank 1, it has only a single non-zero eigenvalue
which hj,, is its corresponding eigenvector. ]

Corollary [5] essentially shows that when Bob can cancel the
AN, the jammer can transmit his AN towards Willie without
degrading the covert rate between Alice and Bob.

On the other hand, if the jammer has more antennas than
Bob, ie., N > M, then, the jammer may construct his
covariance matrix such that the received AN power at Bob
will fall first in the null-space of the columns of H, and
then as close as possible towards the direction of Willie. This
strategy is different than the optimal one obtained in Theorem
[T] since here the direction is always orthogonal to Bob. Thus,
setting v such that it satisfies H;; v = 0, the jammer is able to

cancel the AN at Bob. Similarly, v can be optimized further
while restricted to be in the null-space. Accordingly we have
the following corollary.

Corollary 6: When the jammer cancels the AN and chooses
v such that,

v = (53)

arg max (h}wvahjw> .
vEnullspace(H?b)
The optimal strategy for Bob is to perform a MRC for the
channel between Alice and himself. That is,

c® = hgp. (54)

Proof: Since the jammer cancels the AN in advance, fol-
lowing the notations of Theorem |4, we have B~! = B = o1
and W = habhlb. Since the matrix BW is of rank 1,
it has only a single non-zero eigenvalue which h,;, is its
corresponding eigenvector (this solution is also known as the
matched filter [31])). [ |
Corollary [f] essentially states that once the jammer is able to
cancel his AN in advance at Bob’s receiver, Bob only performs
maximal ratio combining to maximize his received SNR.

Lastly, we have the following corollary which states that,
as o grows (the low SNR regime), corollaries [3] and [] are
asymptotically optimal.

Corollary 7: For o — 00, the strategies suggested in
corollaries [3] and [| are asymptotically optimal in the sense
of approching the global optimum of (43).

Proof: At the limit of ¢ — o0, the effect of the AN
noise term in the denominator of the SNR expression in (48)
becomes negligible thus is reduced to

(hT vahjw) lcThgy|?

Jw
e ollell?

; (55)

which is maximized when Bob employ an MRC and the AN
noise transmission is in the direction of Willie. ]

Remark 2 (The case M = N): In case the jammer and Bob
have the same number of antennas, the sub-optimal schemes
suggested herein are not applicable due to the fact that Hj,
and H;fb are square matrices and thus a null-space does not
exist for them. Therefore, other types of schemes must be
performed. We note that in any case, one can use either
Corollary [3] or Corollary [ as a possible scheme.

Simulation results which compare the normalized average
SNR value, as a function of o, are depicted in Figure [4] for the
cases of M < N, M = N and M > N. The figures compare
the optimal solution for the global optimization problem (@3)
(solved using Mathematica 12) with the suggested sub-optimal
schemes given in Corollaries B4]5] and [6]

We note that the strategy of canceling the AN given in
Corollaries [5] and [6] are depicted in Figures [4(a)| and for
the cases of M < N and M > N, respectively. When M = N
neither Bob nor the jammer can cancel the AN as the matrices
H;, and H% are square. Thus, only corollaries (3| and |4{ are
depicted in Figure [4(b)]

One can observe several interesting insights from the sim-
ulation results. The first is that when M < N, choosing the
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are normalized so the leading constant coefficient is equal to 1.

strategy that fixes ¢ to be the MRC and optimizing only on
v (Corollary |3) performs very well compared to the optimal
solution of 8] On the other hand, when M > N, it is better
to choose the strategy which fixes v to be in the direction
of Willie and optimize only on c (Corollary [). This can
be explained by the number of DoF which are left for the
optimization. That is, for example, when M < N and we fix
c we are left with NV variables in the optimization problem
which can provide a more accurate search for the optimum.
A piece of additional evidence for that is the fact that the two
curves unite when M = N.

The second observation is that as o grows (low SNR
scenario), consistent to Corollary [/} the sub-optimal schemes,
with the exception of the AN cancelation scheme, coincide
with the optimal SNR making them asymptotically optimal
schemes.

Finally, one can observe that the strategy of canceling the
AN is always worse than MRC or directing the noise towards
Willie. The reason lies in the fact that once the AN is canceled,
the inner products in the numerator are restricted to be only in
the specific null-space of Bob (as can be seen in equations (50)
and (53)). This evidently, restricts much the SNR value as the
figures depict. Moreover, even when o — oo this restriction
remains and thus there is no convergence to the optimal SNR.

B. Unknown CSI of Willie

When the CSI of Willie is unknown, similar to the M =1
case, Alice transmits with the power given in Lemma [2] in
order to guarantee a covert transmission and the jammer
transmits with all of his available power equally divided
to d directions. Accordingly, we have the following global
optimization problem for Bob and the jammer,

eP €N |t (2
S (5) 7 leTha|

max

Vide ot (pHy VXVIH], + 031) ¢ (56)
1

st &=, 1=1..d

Again, to avoid the complexity in (56), we restrict the
attention to several sub-optimal solutions. Specifically, in case

Bob has M > N antennas, he can cancel the AN by projecting
it onto the null-space of H;; and choosing ¢ which is closest
to h,,. The jammer’s strategy for this case is given in the
following theorem.

Theorem 5: Assume M > N and set:

‘CThab|2
argimax CIRICE
cenullspace(H;p) gy ||C||

ct =

(57)

Then the optimal strategy for the jammer when the jammer
has no CSI of Willie and he transmits with all of his available
power, p;, equally divided to all directions, is the following

power allocation,
1

2 - NINxN.
Proof: Once the interference term in the denominator of
(36) is gone, the jammer should maximize the number of
direction d which is IV regardless of the specific directions.
|
The above theorem implies that once Bob can cancel the noise,
the jammer should try to impair Willie’s detection as much as
possible. This is different from the result in Theorem [2] since
now Bob takes an active part in the reception which enables
the jammer to concentrate on Willie and to transmit in every
direction (as Willie’s channel is unknown).
In case the jammer has more antennas than Bob (M < N),
a naive solution would be to cancel the AN by setting the
matrix V to span the null-space of H]Tb In this case the rank
of Vis N—M,ie., d = N— DM, which affects the numerator
in (56) directly and especially when N is on the same order as
M. However, according to Corollary [6] we know that in case
the jammer can completely remove the AN interference, Bob’s
optimal linear filter is the MRC c* as given in the corollary.
In fact, since Bob uses a linear filter cancelling his AN should
require only one DoF. We thus suggest a scheme for which
the jammer relies upon this choice of Bob for the linear filter
c* and can null the equivalent one dimensional channel and
benefiting from the remaining DoF he has. This strategy is
given in the following theorem.
Theorem 6: For the fixed linear filter c* = hyy, the optimal
strategy for the jammer when the CSI of Willie is unknown

(58)



and the jammer transmits AN with covariance matrix ¥ such
that his total transmission power, p; , is equally divided into
d arbitrary directions, is the following power allocation,

= VXV, (59)
- _ 7 [[&
where in case 0 = = < — ,
Pj N(g N(N—=1) *1)HC*H2
* ~ * 1
V*=Q and, X" = ﬁI(N—l)x(N—l)- (60)
Otherwise,
v ={Q h d X* I 1)
= y T~ and, = Z7INXN;
([l N

where h = H}bc* and Q is a matrix whose columns span the

null-space of h.

Proof: Considering that ¢* = h;, is fixed and using
notations from the proof of Theorem the maximization
problem (56) can be reduced to,

()7
max T
Vid cTH ), VX VIH ¢t + of[c*||?
1

L ()"

X = =~ )
V.d htVXVth + o||c*|]2

where h = H;r.bc*. The above can be simplified further to

()7

max
d
&b 3oy qbF + oflet|?

where b = VTh. We result with a similar to the expression in
the proof of Theorem [J] and thus the rest follows similarly. W

V. CONCLUSION

In this work, we considered the problem of covert com-
munication in the presence of a jammer who is equipped
with multiple antennas. The jammer assists Alice and Bob by
transmitting AN that creates uncertainty at Willie’s detector
and enables Alice and Bob to communicate with a positive
rate. The transmission strategies which affect this rate are
examined and analyzed in the form of optimization problems
for the cases of full CSI and partial CSI at the jammer. The
use of multiple antennas provides a multiplicative gain to the
covertness achieving transmission power with respect to the
case of a single antenna jammer. Specifically, under certain
assumptions, this gain is an increasing function of the number
of antennas at the jammer.

When Bob is equipped with a single antenna the optimal
strategy for a jammer with full CSI is beamforming the AN
with all available power to a specific direction, which is close
to the direction of Willie while being orthogonal to Bob as
much as possible. On the other hand, in the case of partial CSI,
when the jammer does not know the channel toward Willie, the
optimal AN transmission strategy is to transmit isotropically
to all directions or to the null-space of Bob, where the choice

depends on certain channel conditions. Finally, when Bob is
equipped with multiple antennas and is assumed to employ
a linear receiver, several sub-optimal schemes are suggested
along with numerical results. These results show that the
strategy of letting the jammer transmit his AN towards Willie
while letting Bob employ MRC is an asymptotically optimal
solution for the global optimization problem which includes
both Willie’s and Bob’s strategies.

ACKNOWLEDGMENT

The authors would like to thank Alejandro Cohen for
discussions that helped prompt this work.

REFERENCES

[1] B. A. Bash, D. Goeckel, and D. Towsley, “Limits of reliable commu-
nication with low probability of detection on AWGN channels,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 9, pp. 1921—
1930, 2013.

[2] P. H. Che, M. Bakshi, and S. Jaggi, “Reliable deniable communication:

Hiding messages in noise,” in Information Theory Proceedings (ISIT),

2013 IEEE International Symposium on. 1EEE, 2013, pp. 2945-2949.

L. Wang, G. W. Wornell, and L. Zheng, “Fundamental limits of

communication with low probability of detection,” IEEE Transactions

on Information Theory, vol. 62, no. 6, pp. 3493-3503, 2016.

[4] M. R. Bloch, “Covert communication over noisy channels: A resolv-
ability perspective,” IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2334-2354, 2016.

[5] K. S. K. Arumugam and M. R. Bloch, “Keyless covert communication
over multiple-access channels,” in Information Theory (ISIT), 2016 IEEE
International Symposium on. 1EEE, 2016, pp. 2229-2233.

[6] M. Tahmasbi, A. Savard, and M. R. Bloch, “Covert capacity of non-
coherent rayleigh-fading channels,” IEEE Transactions on Information
Theory, vol. 66, no. 4, pp. 1979-2005, 2019.

[7]1 P. H. Che, M. Bakshi, C. Chan, and S. Jaggi, “Reliable deniable com-
munication with channel uncertainty,” in Information Theory Workshop
(ITW), 2014 IEEE. 1EEE, 2014, pp. 30-34.

[8] S. Lee, R. J. Baxley, M. A. Weitnauer, and B. Walkenhorst, “Achieving
undetectable communication,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 7, pp. 1195-1205, 2015.

[9] T. V. Sobers, B. A. Bash, S. Guha, D. Towsley, and D. Goeckel,
“Covert communication in the presence of an uninformed jammer,” IEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 6193—
6206, 2017.

[10] A. Abdelaziz and C. E. Koksal, “Fundamental limits of covert com-
munication over mimo awgn channel,” in 2017 IEEE Conference on
Communications and Network Security (CNS). 1EEE, 2017, pp. 1-9.

[11] M. Forouzesh, P. Azmi, N. Mokari, and D. Goeckel, “Covert communi-

cation using null space and 3d beamforming: Uncertainty of willie’s

location information,” IEEE Transactions on Vehicular Technology,

2020.

A. Khisti and G. Wornell, “Secure transmission with multiple antennas:

The MISOME wiretap channel,” arXiv preprint arXiv:0708.4219, 2007.

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE

transactions on wireless communications, vol. 7, no. 6, pp. 2180-2189,

2008.

[14] A. Mukherjee and A. L. Swindlehurst, “Fixed-rate power allocation
strategies for enhanced secrecy in MIMO wiretap channels,” in 2009
IEEE 10th Workshop on Signal Processing Advances in Wireless Com-
munications. 1EEE, 2009, pp. 344-348.

[15] A. L. Swindlehurst, “Fixed SINR solutions for the MIMO wiretap
channel,” in 2009 IEEE International Conference on Acoustics, Speech
and Signal Processing. 1EEE, 2009, pp. 2437-2440.

[16] A. Khisti and G. Wornell, “Secure transmission with multiple antennas

II: The MIMOME wiretap channel,” arXiv preprint arXiv:1006.5879,

2010.

S.-H. Tsai and H. V. Poor, “Power allocation for artificial-noise secure

MIMO precoding systems,” IEEE Transactions on Signal Processing,

vol. 62, no. 13, pp. 3479-3493, 2014.

3

—

[12]

[13]

[17]



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless
physical layer security via cooperating relays,” IEEE transactions on
signal processing, vol. 58, no. 3, pp. 1875-1888, 2010.

J. Huang and A. L. Swindlehurst, “Cooperative jamming for secure
communications in MIMO relay networks,” IEEE Transactions on
Signal Processing, vol. 59, no. 10, pp. 48714884, 2011.

H.-M. Wang, Q. Yin, and X.-G. Xia, “Distributed beamforming for
physical-layer security of two-way relay networks,” IEEE Transactions
on Signal Processing, vol. 60, no. 7, pp. 3532-3545, 2012.

S. Luo, J. Li, and A. P. Petropulu, “Uncoordinated cooperative jamming
for secret communications,” IEEE transactions on information forensics
and security, vol. 8, no. 7, pp. 1081-1090, 2013.

S. A. A. Fakoorian and A. L. Swindlehurst, “Solutions for the MIMO
Gaussian wiretap channel with a cooperative jammer,” /IEEE Transac-
tions on signal Processing, vol. 59, no. 10, pp. 5013-5022, 2011.

X. Chen, J. Chen, H. Zhang, Y. Zhang, and C. Yuen, “On secrecy
performance of multiantenna-jammer-aided secure communications with
imperfect csi,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 10, pp. 8014-8024, 2015.

K. Shahzad, X. Zhou, S. Yan, J. Hu, F. Shu, and J. Li, “Achieving
covert wireless communications using a full-duplex receiver,” IEEE
Transactions on Wireless Communications, vol. 17, no. 12, pp. 8517-
8530, 2018.

B. A. Bash, D. Goeckel, and D. Towsley, “Covert communication gains
from adversary’s ignorance of transmission time,” IEEE transactions on
wireless communications, vol. 15, no. 12, pp. 8394-8405, 2016.

D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels
with secrecy constraints,” in Information Theory, 2007. ISIT 2007. IEEE
International Symposium on. 1EEE, 2007, pp. 2466-2470.

A. M. Mathai and S. B. Provost, Quadratic forms in random variables:
theory and applications. M. Dekker New York, 1992.

R. J. Pavur, “Quadratic forms involving the complex gaussian,” Ph.D.
dissertation, Texas Tech University, 1980.

L. C. Godara, “Application of antenna arrays to mobile communications.
ii. beam-forming and direction-of-arrival considerations,” Proceedings of
the IEEE, vol. 85, no. 8, pp. 1195-1245, 1997.

A. Goldsmith, Wireless communications. Cambridge university press,
2005.



	I Introduction
	II System Model
	II-A Covert Criteria
	II-B Performance Metric and Reliability

	III Transmission Strategies and Alice's Transmission Power for M=1
	III-A Known CSI of Willie
	III-B Unknown CSI of Willie

	IV AN Transmission and detection Strategies for M>1 Antennas at Bob
	IV-A Known CSI of Willie
	IV-B Unknown CSI of Willie

	V Conclusion
	References

