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When Probabilistic Shaping Realizes Improper Signaling

for Hardware Distortion Mitigation

Sidrah Javed, Student Member, IEEE, Ahmed Elzanaty, Member, IEEE, Osama

Amin, Senior Member, IEEE, Basem Shihada, Senior Member, IEEE, and

Mohamed-Slim Alouini, Fellow, IEEE

Abstract

Hardware distortions (HWDs) render drastic effects on the performance of communication systems.

They are recently proven to bear asymmetric signatures; and hence can be efficiently mitigated using

improper Gaussian signaling (IGS), thanks to its additional design degrees of freedom. Discrete asym-

metric signaling (AS) can practically realize the IGS by shaping the signals’ geometry or probability. In

this paper, we adopt the probabilistic shaping (PS) instead of uniform symbols to mitigate the impact of

HWDs and derive the optimal maximum a posterior detector. Then, we design the symbols’ probabilities

to minimize the error rate performance while accommodating the improper nature of HWD. Although

the design problem is a non-convex optimization problem, we simplified it using successive convex

programming and propose an iterative algorithm. We further present a hybrid shaping (HS) design to

gain the combined benefits of both PS and geometric shaping (GS). Finally, extensive numerical results

and Monte Carlo (MC) simulations highlight the superiority of the proposed PS over conventional

uniform constellation and GS. Both PS and HS achieve substantial improvements over the traditional

uniform constellation and GS with up to one order magnitude in error probability and throughput.

Index Terms

Hardware distortion, asymmetric signaling, error probability analysis, improper discrete constella-

tions, improper Gaussian noise, non-uniform priors, optimal detector.

I. INTRODUCTION

Exponentially rising demands of high data rates and reliable communications given the limited

power and bandwidth resources impose enormous challenges on the next generation of wireless

communication systems [1], [2]. Various research contributions propose new configurations

and novel techniques to address these challenges [3], [4]. Nonetheless, the performance of
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TABLE I: List of Abbreviations

OFC Optical fiber communications SNR Signal-to-noise ratio FSO Free-space optics

IGS Improper Gaussian signaling PDF Probability density function r.v. Random variable

PGS Proper Gaussian signaling EbNo Energy per bit per noise ratio MC Monte Carlo

HWD Hardware distortion AWGN Additive white Gaussian noise TB Theoretical bound

NS No-shaping QAM Quadrature amplitude modulation RF Radio frequency

GS Geometric shaping PSK Phase shift keying PEP Pairwise error probability

PS Probabilistic shaping DoF Degrees of freedom BER Bit error rate

HS Hybrid shaping ML Maximum likelihood DM Distribution matching

AS Asymmetric signaling MAP Maximum a posterior UB Upper bound

KKT Karush Kuhn Tucker SCP Successive convex programming LB Lower bound

such systems can be highly degraded by the hardware imperfections in radio frequency (RF)

transceivers [5]. Such imperfections give rise to additive signal distortions emerging from the

phase noise, mismatched local oscillator, imperfect high power amplifier/low noise amplifier,

non-linear amplitude-to-amplitude and amplitude-to-phase transfer [6]–[8]. Various contributions

emphasized the distinct improper behavior of these hardware distortions (HWDs) [9]–[12], which

requires effective compensation techniques to meet the performance demands.

The improper Gaussian signaling (IGS) is proven as an effective scheme to mitigate the deteri-

orating effects due to the existence of improper noise or interference in wireless communication

systems. More precisely, IGS is a generalized complex signaling that allows the signal compo-

nents to be correlated and/or to have unequal power, as opposed to proper Gaussian signaling

[13]. IGS offers an additional degrees of freedom (DoF) in signaling design characterized by

the circularity coefficient [14]. Several studies highlight the significance of IGS to improve the

system performance under improper interference [15]–[18]. Recent studies quantified the impact

of IGS in improving the ergodic rate and outage performance by effectively dampening the

improper noise effects in multi-antenna or multi-nodal system settings [19]–[21], IGS benefits

can also be reaped in various full-duplex/half-duplex relay settings by effectively compensating

the residual self-interference, inter-relay interference and/or HWD [11], [20], [22].

A. Background

Despite the overwhelming benefits of IGS, it is practically infeasible owing to the high

detection complexity and unbounded peak-to-average power ratio [2], [23]. This motivated the

researchers to design some equivalent finite and discrete asymmetric signaling (AS) schemes for
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practical implementation. Improper discrete constellation, or AS, entails redesigning the symmet-

ric discrete signal constellation to convert it into an asymmetric signal [2]. Several studies focused

on geometric shaping (GS) as a possible designing scheme to improve system performance. GS

transforms equally spaced symbols to unequally spaced symbols (due to correlated and/or unequal

power distribution between quadrature components of the symbols) in a distinct geometric

envelop such as ellipse [24], parallelogram [23], [25] or some irregular envelop [26]. A family

of improper discrete constellations generated by widely linear processing of a square M -ary

quadrature amplitude modulation (QAM) depict parallelogram envelop [23]. Similarly, GS based

on optimal translation and rotation also yields parallelogram envelop [25]. However, conditioned

on high signal-to-noise ratio (SNR) and higher order QAM, the optimal constellation is the

intersection of the hexagonal lattice/packing with an ellipse where the eccentricity determines

the circularity coefficient [24]. GS has emerged as a competent player to reduce shaping loss

and improve reception at lower signal-to-noise ratios in terrestrial broadcast systems [27], [28].

GS parameters can be designed for diverse objectives such as capacity maximization [23], bit

error rate (BER) reduction [25], and symbol error probability minimization [24]. Although the

asymmetric discrete family of constellations is practical, they exhibit two types of loss, i.e.,

shaping loss and packing loss in approaching IGS theoretical limits [23].

B. Motivation and Related Work

Most of the efforts to close the gap between practical AS and theoretical IGS are concentrated

around GS with a limited focus on probabilistic shaping (PS), as another way to implement

AS for HWD. Given a fixed number of symbols and the symbol locations, an asymmetric

constellation can be obtained by adjusting the symbol probabilities [29]. We aim to find the

optimal probabilities of the symbols that can improve the system performance under improper

HWD. Once the optimal probabilities are computed, the symbols can be probabilistically shaped

using a distribution matching (DM), which maps uniformly distributed input bit string into M -

QAM/phase shift keying (PSK) symbols with the target distribution. Numerous DM techniques

are proposed for rate adaptation such as constant composition DM [30], sphere shaping and shell

mapping [31], [32], adaptive arithmetic DM [33], and Trellis-Based [34] and compressive DM

[35] based on syndrome encoding [36] and compressive sensing [37], respectively.

PS-based schemes have been employed to enhance the system performance in optical fiber

communications (OFC) and free-space optics (FSO). In OFC, multiple transformations are

presented to approach Gaussian channel capacity using PS including prefix codes [38], [39],
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many-to-one mappings combined with a turbo code [40], distribution matching [41] and cut-

and-paste method [42]. Furthermore, multidimensional coded modulation format with hybrid

probabilistic and geometric constellation shaping can effectively compensate non-linearity and

approach Shannon limits in OFC [43]. Coded modulation scheme with PS aims to solve the

shaping gap and coarse mode granularity problems [44]. Interested reader can read the classic

work [45] for the design guidelines of AS in the coherent Gaussian channel with equal signal

energies and unequal a priori probabilities. Probabilistic amplitude shaping is another concept

that can only be used for symmetric constellation with coherent modulation, which greatly limits

its application [46]. For FSO, a practical and capacity achieving PS scheme with adaptive coding

modulation is proposed with intensity modulation/direct detection [47].

The concept of PS is widely employed in the OFC and FSO systems. However, it is quite novel

in wireless communication systems and few studies have contributed in this domain [48]–[51].

For example, enumerative amplitude shaping is proposed as a constellation shaping scheme for

IEEE 802.11 which renders Gaussian distribution on the constituent constellation [48]. Moreover,

a modification to 5G new radio polar code with higher order modulation through probabilistic

shaping can improve the error correction performance for additive white Gaussian noise (AWGN)

channels [49]. Similarly, PS has been proposed to maximize the mutual information between

transmit and receive signals for non-linear distortion effects in AWGN channels [50]. In addition,

rotated-QAM based PS scheme is also analyzed for ergodic constellation constrained capacity

maximization rendering closed-form pairwise error probability (PEP). The GS is implemented

using rotation and then probability mass function is separately designed to attain a hybrid effect

[51]. A very recent study has proposed joint PS/GS design using training neural networks for

joint optimization of bit-wise mutual information in bit-interleaved coded modulation systems

[52]. Nevertheless, the literature for hardware distorted communications with PS as well as hybrid

shaping (HS) is still lacking. To the best of authors’ knowledge, these asymmetric schemes have

not been used to enhance the error performance or to realize the IGS for wireless communication

systems with improper HWDs.

C. Contributions

In this paper, we propose PS as a method to realize improper signaling, which is beneficial

in mitigating the impact of HWD on the BER performance. Motivated by IGS’s theoretical

results in various scenarios [2] and the issues associated with GS, such as high shaping gap and
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coarse granularity, we adopt PS to realize the IGS scheme and combat HWD to assure reliable

communications. In the following, we summarize the main contributions as:

• We derive the optimal maximum a posterior (MAP) detector for a discrete AS and carry

out BER analysis for the adopted HWD communication system.

• We design the probabilistic shaped AS under power and rate constraints for hardware

distorted system and propose adaptive algorithm that tune the symbol probabilities for PS

to minimize the BER performance.

• We further suggest a hybrid shaped AS scheme that reaps benefits of both PS and GS and

present an adaptive algorithm that tune both signal probability and shaping parameters.

D. Paper Organization and Notation

The rest of the paper is organized as: Section II describes HWD model and optimal receiver

for the adopted system. In section III, we present the error probability analysis using the union

bound on pairwise error probability and derive BER for generalized M -ary modulation scheme.

Next, we propose PS design using successive convex programming (SCP) algorithm and some

toy examples for comprehensive illustration in section IV. Later, HS parameterization and design

along with the respective MAP and error probability analysis is carried out in section V, followed

by the numerical results in Section VI and the conclusion in Section VII.

Notations: In this paper, |a| and a∗ represent the absolute and complex conjugate of a scalar

complex number a. The probability of an event A is defined as Pr(A). The notations fz(z) and

fz|y(z|y) denote the probability density function (PDF) and conditional PDF of a random variable

(r.v.) z given y. The operator E[.] denotes the expected value. Considering a r.v. Λ, the real/in-

phase and imaginary/quadrature-phase components of Λ are denoted as ΛI and ΛQ, respectively.

Moreover, f ′(x) denotes the first order derivative of f(x) with respect to x. Additionally, Z+

represents a set of positive integers. v = [vI vQ]T is the real-composite vector representation

of the complex number v = vI + i vQ. Furthermore, x(k) and p(k) represent the instance values

of the variable x and vector p, respectively, in the kth iteration of an algorithm.

II. SYSTEM DESCRIPTION

Impropriety incorporation is crucial for the systems dealing with improper signals, noise, or

interference. Such characterization helps in meticulous system modeling, accurate performance

analysis, and optimum signaling design. We direct readers to [2, eq. 4-7] and [2, Def. 1a, 6-9]

for some preliminaries of statistical impropriety characterization. This will help to comprehend
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the impropriety concepts in the adopted system model with HWD. Then, the transceiver HWD

model is described, and the optimal receiver is derived.

A. Transceiver Hardware Distortion Model

Consider a single-link wireless communication system suffering from various hardware im-

pairments. The non-linear transfer functions of various transmitter RF stages, such as digital-

to-analog converter, band-pass filter and high power amplifier result in accumulative additive

distortion noise ηt ∼ CN (0, κt, κ̃t), where |κ̃t| ≤ κt [5], [53].1 These distortions raise the noise

floor of the transmitted signal xtx = xm+ηt, where xm is the single-carrier band-pass modulated

signal taken from M -ary QAM or M -ary PSK constellation with a probability mass function

pm , pX(xm) rendering the transmission probability of symbol xm, and p , [p1, p2, · · · , pM ].

Let us define the set that includes all possible symbol distributions as

S =

{
p : p = [p1, p2, · · · , pM ],

M∑
j=1

pj = 1, pj ≥ 0, ∀j ∈ {1, 2, · · · ,M}

}
.

The transmitted signal further undergoes a slowly varying flat Rayleigh fading channel g∼
CN (0, λ, 0). Moreover, the receiver further induces an additive distortion ηr, resulting from the

non-linear transfer function of low noise amplifier, band-pass filters, image rejection low pass

filter, analog-to-digital converter. It is important to highlight that the receiver distortions are in

addition to the conventional thermal noise at the receiver.

y =
√
α g (xm + ηt) + ηr + w; m ∈ {1, 2, · · · ,M}, (1)

where α is the transmitted power. The AWGN w and receiver HWD ηr are distributed as w ∼
CN (0, σ2

w, 0) and ηr ∼ CN (0, α|g|2κr, αg
2κ̃r). The additive Gaussian distortion model for the

aggregate residual RF distortions is backed by various theoretical investigations and measurement

results, see, e.g., [6]–[8], [53]–[58] and references therein. This can also be motivated analytically

by the central limit theorem. Furthermore, the improper nature of these additive distortions is

motivated by the widely linear transformation (WLT) caused by the imbalance between in-phase

and quadrature-phase branches during the up-conversion and down-conversion phases [59].

Lemma 1 (Aggregate effect of transceiver distortions [5], [19]). For the following generalized

received signal model

y =
√
αgxm + z; m ∈ {1, 2, . . . ,M}, (2)

1The additive distortion noise is the equivalent aggregate baseband model of accumulative HWDs from various RF blocks[5].
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where z ,
√
αgη + w is the aggregate interference, accumulating the effect of both transmitter

and receiver distortions η ∼ CN (0, κ, κ̃) with variance κ = κt + κr, pseudo-variance κ̃ =

κ̃t + κ̃r, and circularity coefficient Cη = |κ̃|/κ in addition to the thermal noise w. Thus, z is the

r.v. which can be modeled as an improper noise, i.e., z ∼ CN (0, v, ṽ), where v = α|g|2κ+ σ2
w

and ṽ = αg2κ̃. The degree of improperness of this aggregate interference can be categorized

using circularity quotient Cz = ṽ/v.

It is important to note that (2) reduces to the conventional signal model y =
√
αgxm + w

in case of ideal hardware, i.e., κ = 0, which is induced by imposing κt = κr = 0 and also

κ̃ = 0 [2]. Exploiting the relation between the v, ṽ and the variances σ2
I = E{z2

I}, σ2
Q = E{z2

Q}
along with their mutual correlation rzIzQ = E {zIzQ}, we get v = E

{
|z|2
}

= σ2
I + σ2

Q and

ṽ = E {z2} = σ2
I − σ2

Q + i2rzIzQ . Their inter relation enables us to evaluate the variance of zI

and zQ as given in (3) and (4), respectively, as well as

σ2
I =

v + ṽI
2

=
α|g|2κ+ σ2

w + α< (g2κ̃)

2
, (3)

σ2
Q =

v − ṽI
2

=
α|g|2κ+ σ2

w − α< (g2κ̃)

2
, (4)

Furthermore, the non-zero pseudo-variance ṽ = σ̃2
z motivates us to evaluate the correlation

between zI and zQ, i.e., correlation coefficient ρz using rzIzQ as

ρz =
rzIzQ
σIσQ

=
0.5ṽQ
σIσQ

=
α= (g2κ̃)√(

α|g|2κ+ σ2
w

)2 − (α< (g2κ̃))2
. (5)

HWD can leave drastic effects on the system performance as they raise the noise floor. Although,

the entropy loss of improper noise is less than the proper noise but it is difficult to tackle.

It requires some meticulously designed improper signaling like IGS for effective mitigation.

However, IGS is difficult to implement because of the unbounded peak-to-average power ratio

and high detection complexity [2], [23]. Therefore, researchers resort to the finite discrete AS

schemes obtained by GS.

We propose PS as another way to realize AS in order to effectively dampen the deteriorating

effects of improper HWD. PS aims to design non-uniform symbol probabilities for a higher order

QAM to minimize BER offering more degrees of freedom and adaptive rates. In the following

section, we carry out the error probability analysis of the adopted system which lays foundation

for the proposed PS design.
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B. Optimal Receiver

Conventional systems with Gaussian interference employ least-complex receivers with either

minimum Euclidean or maximum likelihood detectors. However, such receivers cannot accom-

modate the unequal symbol probabilities and improper noise. Therefore, the optimal detection

in the presented scenario can only be achieved by the MAP detector at the expense of increased

receiver complexity. Considering the improper Gaussian HWD and the non-uniform priors of

the constellation symbols, the optimal MAP detection is given by

m̂PS = arg max
1≤m≤M

pX(xm)fYI,YQ|X,g (yI, yQ|xm, g) , (6)

where fYI,YQ|X,g (yI, yQ|xm, g) is the conditional Gaussian PDF of y representing maximum

likelihood (ML) function given xm and g 2 derived using [2, eq. 43], as expressed in (7)

fYI,YQ|X,g (yI, yQ|xm, g)=
1

2πσIσQ

√
1− ρ2

z

exp

 −1

2 (1−ρ2
z)

 (yI−
√
α<(gxm))

2

σ2
I

+
(yQ−

√
α=(gxm))

2

σ2
Q

+

−2ρz(yI−
√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ

 .

(7)

III. ERROR PROBABILITY ANALYSIS

Considering the non-uniform priors and improper noise, the error probability analysis is carried

out based on the optimal MAP detector presented in Section II. Symbol error probability Ps is

the accumulated error probability of all symbols with respect to their prior probabilities and is

given as

Ps =
M∑
m=1

pm Pr (e|xm), (8)

where Pr (e|xm) is the probability of an error event given symbol xm was transmitted. In order

to yield a tractable and simplified analysis especially for higher order modulation schemes, Ps

can be upper bounded as

Ps ≤
M∑
m=1

M∑
n=1
n 6=m

pmPmn, (9)

where, Pmn is the PEP, which represents the probability of deciding xn given xm was transmitted,

ignoring all the other symbols in the constellation [60]. The PEP can be evaluated using the

MAP rule in (6) as

Pmn = Pr
{
pm fYI,YQ|X,g (yI, yQ|xm, g) ≤ pnfYI,YQ|X,g (yI, yQ|xn, g)

}
. (10)

2This work assumes M -QAM modulation in a coherent system. Therefore, channel state information is first estimated at the

receiver and then shared with the transmitter which is used in both optimization and coherent detection stages.
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By substituting the conditional probability from (7) in (10) and after some mathematical sim-

plifications, the PEP can be written as in (11),

Pmn=Pr

2
(
1−ρ2

z

)
ln

(
pm
pn

)
≤

 (yI−
√
α<(gxm))

2
−(yI−

√
α<(gxn))

2

σ2
I

+
(yQ−

√
α=(gxm))

2
−(yQ−

√
α=(gxn))

2

σ2
Q

+

+
2ρz(yI−

√
α<(gxn))(yQ−

√
α=(gxn))−2ρz(yI−

√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ

 .

(11)

Now, we find the in-phase and quadrature-phase components of the received signal y for a given

transmitted symbol xm as follows

yI =
√
α< (gxm) + zI , (12)

yQ =
√
α= (gxm) + zQ, (13)

respectively. Then, we substitute yI and yQ in (11), which can be further simplified obtaining,

Pmn = Pr

{
ψ ≥ 2

(
1− ρ2

z

)
ln

(
pm
pn

)
+ αγmn

}
, (14)

Let ξmn = g dmn = g (xm − xn), with given channel coefficient g and dmn representing the

distance between the mth and nth symbol. Then, γmn in (14) can be defined as

γmn ,
ξmn

2
I

σ2
I

+
ξmn

2
Q

σ2
Q

−
2ρzξmnIξmnQ

σIσQ

, (15)

where ξmnI and ξmnQ are the real and imaginary components of ξmn. Moreover, ψ in (14) is

obtained by the superposition of zI and zQ as

ψ=2
√
αρz

[(
ξmnQ
σIσQ

− ξmnI
ρzσ2

I

)
zI +

(
ξmnI
σIσQ

−
ξmnQ
ρzσ2

Q

)
zQ

]
. (16)

Clearly, ψ is another zero mean Gaussian random variable with variance σ2
ψ expressed as

σ2
ψ = 4

(
1− ρ2

z

)
αγmn. (17)

Conclusively, Pmn is the complementary cumulative distribution function of ψ and is given as

Pmn = Q

2 (1− ρ2
z) ln

(
pm
pn

)
+ αγmn

2
√

(1− ρ2
z)αγmn

 . (18)

Substituting the PEP derived in (18) to (9) along with the Gray coding assumption yields the

following theoretical upper-bound on BER

Pb≤PUB
b ,

1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ
(
βmnln

(
pm
pn

)
+

1

2βmn

)
, (19)
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where βmn ,
√

1− ρ2
z/
√
αγmn. The BER expression depends on the constellation size, prior

probabilities of the symbols, power budget, mutual distances between the transmitted and received

erroneous symbols under Rayleigh fading, and HWD statistical characteristics. Interestingly, for

an ideal system employing PS without HWDs, the BER bound in (19) reduces to

Pb≤PUB
b ,

1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ

σ2
wln

(
pm
pn

)
+ α|g dmn|2√

2ασ2
w|g dmn|2

 (20)

which can be derived from (19) for κ = κ̃ = 0. This will render uncorrelated proper/symmetric

noise with σ2
I = σ2

w

2
, σ2

Q = σ2
w

2
and ρz = 0. We can use this as a benchmark to quantify the

performance loss caused by the HWDs.

In contrast to the monotonically decreasing BER for the ideal systems (20), the BER in (19)

saturates after a specific SNR in the hardware-distorted transceivers. In this regard, we carry out

the asymptotic analysis of the bit error probability to quantify the error floor as high SNR. Let

us set

Υ = lim
α→∞

(
1− ρ2

z

)
, 1− (= (g2κ̃))

2(
|g|4κ2

)
− (< (g2κ̃))2 , (21)

and

lim
α→∞

αγmn = ξmn
2
I

(
lim
α→∞

σ2
I

α

)−1

+ ξmn
2
Q

(
lim
α→∞

σ2
Q

α

)−1

− 2ξmnIξmnQ

(
lim
α→∞

σIσQ

αρz

)−1

. (22)

Thus, using (3)-(5) to evaluate the limit in (22) and further substituting (21) and (26) to obtain

lim
α→∞

βmn renders the following error floor

lim
α→∞

Pb≤
1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ


2Υ ln

(
pm
pn

)
+

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
− 2

<(gdmn)=(gdmn)=(g2κ̃)
(|g|2κ)

2
−(<(g2κ̃))2

)
√

4Υ

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
− 2<(gdmn)=(gdmn)=(g2κ̃)

(|g|2κ)
2
−(<(g2κ̃))2

)
.

(23)

We can see that the error floor depends on the adopted M -ary constellation, channel coefficient,

HWD statistical characteristics, and symbol probabilities.

IV. PROPOSED PROBABILISTIC SIGNALING DESIGN

We aim to design the non-uniform symbol probabilities, which minimize the BER of the

adopted system suffering from HWD. The optimization is carried out given power and rate

constraints. The rate of the conventional QAM with uniform symbol probabilities and modulation

order Mu is fixed, i.e., R = log2(Mu). However, we seek the maximum benefits of PS by allowing



11

a higher-order modulation with Mnu > Mu, where Mnu, which is also fixed, is the modulation

order of the constellation with non-uniform probabilities p. Thus, the rate of this scheme can

be designed such that R , H(p) ≥ log2(Mu), rendering more design flexibility and hence

is capable of reducing the BER. PS is capable of changing the transmission rate by changing

the symbol distribution for a fixed modulation order, unlike uniform signaling, which needs to

change the modulation scheme’s order to change the rate for uncoded communications.

After designing the symbol probabilities, we can implement PS by using distribution matching

at the transmitter to map uniformly distributed input bits to Mnu−QAM/PSK symbols [30]–[35].

For instance in constant composition DM, the designed distribution is quantized with a step

size of 1/np, where np is the frame length. The target PMF p is approximated by an np-type

distribution, i.e., p̃ ∼ [z1/np, z2/np, . . . , zMnu/np], where zj is a positive integer representing the

number of times at which the jth symbol appears in the frame. The quantization error between

the p and p̃ is negligible for asymptotically large np. Moreover, a large np allows us to realize

very small symbol probabilities with the least possible symbol appearing just once in the entire

frame yielding a minimum resolution of 1/np.

At the receiver, the symbols can be detected using the proposed MAP detector (6) that

incorporates the prior symbol distribution. Finally, the estimated PS symbols are inverted back

to the uniformly distributed bits using distribution dematching. Arithmetic codes can be used to

achieve low complexity invertible mapping between the uniform bits and PS symbols and vice

versa [30].

In the following, we formulate the PS design problem and propose an algorithm to obtain the

non-uniform symbol probabilities followed by some toy examples.

A. Problem Formulation

In this section, we consider a fixed symmetric Mnu− QAM/PSK constellation. The vector

p , [p1, p2, . . . , pMnu ] represents the probabilities of the PS shaped symbols. The non-uniform

probabilities are designed to minimize the upper bound on the BER derived in (19). In particular,

we formulate the problem as

P1 : minimize
p∈S

PUB
b (p) (24a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (24b)

H(p) ≥ log2 (Mu) , (24c)



12

where (24b) and (24c) represent the average power and rate constraints, respectively, and H(p)

is the source entropy, which represents the transmit rate in terms of bits/symbol and is defined as

H(p) ,
Mnu∑
m=1

−pm log2 (pm) . (25)

Since communication systems with higher transmission rate and lower BER are always prefer-

able, the constraint (24c) assures that the PS has at least the same rate of the uniform scheme.

Interestingly, the concave nature of the entropy function renders a convex constraint in p. On

the contrary, if we consider designing the two systems to have exactly the same rate, i.e,

H(p) = log2 (Mu) instead of (24c), this would yield not only non-convexity, but also may

cause degradation in performance by shrinking the feasible area.

Another observation for the rate constraint is that Mnu should be larger than or equal Mnu

so that (24c) is satisfied. For Mnu = Mu, the distribution should be uniform to satisfy the

rate constraint because uniform signaling has the largest entropy. Therefore, Mnu > Mu is the

preferred choice to attain non-uniform probabilities which can render significant performance

gains. Therefore, the idea is to minimize the BER by properly designing a higher order non-

uniformly distributed Mnu-QAM/PSK with the same energy and at least the same rate as those

of a lower order uniformly distributed Mu−QAM/PSK.

B. Optimization Framework

The optimization problem P1 (24) is a non-convex optimization problem owing to the non-

convex objective function even though all the constraints are convex. Therefore, we propose

successive convex approximation approach to tackle it. We begin by approximating PUB
b (p)

with its first order Taylor series approximation. First order Taylor series approximation of a

function f (x) around a point x(k) is given as

f̃
(
x, x(k)

)
≈ f

(
x(k)
)

+∇xf
(
x(k)
) (
x− x(k)

)
. (26)

Thus, we need to compute ∇pPUB
b and evaluate it at p(k) to compute P̃UB

b

(
p,p(k)

)
.

∇pPUB
b =

[
∂PUB

b

∂p1

∂PUB
b

∂p2

. . .
∂PUB

b

∂pMnu

]
. (27)

In order to compute ∂PUB
b /∂pt, we rewrite (19) as

PUB
b =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n 6=m

pm

∞∫
Ωmn

e−
u2

2

√
2π
du, (28)
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Algorithm 1 Successive Convex Programming
1: Initialize i← 0, ε←∞ and Set tolerance δ

2: Choose feasible starting point p(i)

3: while ε ≥ δ do

4: Evaluate P̃UB
b

(
p,p(i)

)
5: Solve P1a and obtain p using p(i)

6: Update p(i+1) ← p, ε←
∥∥p(i+1) − p(i)

∥∥, and i← i+ 1

7: end while

8: p∗ ← pi+1

9: P∗b ≤ PUB
b (P∗)

where

Ωmn = βmn ln

(
pm
pn

)
+

1

2βmn
. (29)

From (28) and by applying the Leibniz integral rule, we get

∂PUB
b

∂pt
≤ 1

log2 (Mnu)

Mnu∑
n=1,
n6=t,
m=t

(
Q (Ωmn)− βmn√

2π
e−

Ω2
mn
2

)
+

1

log2 (Mnu)

Mnu∑
m=1,
m 6=t,
n=t

βmnpm√
2πpn

e−
Ω2
mn
2 . (30)

Now, PUB
b can be approximated from (26), (27), and (30) using first order Taylor series expansion

around an initial probability vector p(k) as

P̃UB
b

(
p,p(k)

)
,PUB

b

(
p(k)
)
+∇pPUB

b

(
p(k)
)(
p−p(k)

)
. (31)

Successive convex programming minimizes P1 by iteratively solving its convex approximation

P1a as presented in Algorithm 1.

P1a : minimize
p∈S

P̃UB
b

(
p,p(k)

)
(32a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (32b)

H(p) ≥ log2 (Mu) , (32c)

It begins with the initiation of counter i, stopping criteria ε and the stopping threshold δ. Secondly,

we choose some feasible PMF set p(i) ∈ S which satisfies the constraints (24b) and (24c). This

initial feasible point can be chosen in two different ways:
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1) We can initiate with a uniform constellation with equi-probable Mnu symbols. This selec-

tion will render H(p) = log2 (Mnu) satisfying (24c) with strict inequality. Furthermore,

the constellation is normalized to satisfy (24b) with strict equality.

2) We can start with a feasible Mnu constellation with any Mu symbols having probabilities

1/Mu and the rest Mnu −Mu symbols with zero probability of transmission. This choice

will render H(p) = log2 (Mu) satisfying (24c) with strict equality. However, we can choose

any Mu symbols from Mnu normalized constellation which yield average power less than

1, satisfying (24b).

The while loop starts by evaluating the approximation P̃UB
b

(
p,p(i)

)
around p(i). The convex

problem P1a is solved using the Karush Kuhn Tucker (KKT) conditions derived in Appendix

A to obtain the optimal probabilities for P1a [61]. The solution obtained in this iteration is

updated as p(i+1) and is used to evaluate the stopping criteria ε←
∥∥p(i+1) − p(i)

∥∥ as shown in

Algorithm 1. The loop ends when the change in two subsequent solution parameters in terms

of the `2 norm is less than a predefined threshold δ. Once the stopping criteria is attained, the

solution parameters p(∗) are guaranteed to render a BER P∗b which will be lower than the bound

PUB
b (P∗).

C. Toy Examples

A comprehensive illustration of probabilistically shaped Mnu = 8-QAM with aggregate HWD

power κ = 0.99 and a 2 bits/symbol rate constraint, corresponding to Mu = 4, is presented in Fig.

1. The relation between optimal prior probabilities and two different SNR values is displayed in

Fig. 1(a) when the system is subjected to highly improper distortion noise as shown in Fig. 1(b).

Clearly in Fig. 1(a), the probability distribution is quite non-uniform for lower SNR level such

as α = 0 dB. However, it starts adopting uniform distribution of 0.25 for four of it’s symbols,

while zero probabilities for the remaining four symbols.

It is interesting to visualize the corresponding symbol constellations for both α = 0 dB

and α = 30 dB. For α = 0 dB, probabilistically shaped 8-QAM designates six symbols with

significant transmission probabilities as highly probable symbol (HPS) whereas renders two

symbols as least probable symbols (LPS) as depicted in Fig. 1(c). On the other hand, PS at

α = 30 dB only resorts to transmitting four of it’s symbols, i.e., s1, s3, s6, and s8 (HPS) and

discards the rest as depicted in Fig. 1(d). Notably, this technique assigns lowest probabilities to

the symbols which are mostly affected by the highly improper noise in first and third quadrant.

It is important to emphasize that the distortion power is proportional to the transmit power. This
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Fig. 1: 8-QAM probability distribution at Rate = 2 bits/symbol.

strengthens distortions at high SNR and leads to the negligible transmission probabilities for

the highly affected symbols. Hence, it is capable of achieving lower BER while maintaining

2 bits/symbol rate for a fair comparison with traditional 4-QAM using the same power budget.

V. HYBRID SHAPING WHERE CONVENTIONAL MEETS STATE-OF -THE-ART

In this section, we increase the AS design flexibility by allowing joint GS and PS, which we call

it here HS, to improve the underlying communication system performance further. Throughout

the design procedure, HS transforms the equally spaced uniformly distributed QAM/PSK symbols

to unequally spaced symbols in a geometric envelope with non-uniform prior distribution. Thus,

HS aims to optimize the symbol probabilities (i.e., PS) and some spatial shaping parameters for

the constellation (i.e., GS).
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A. Hybrid Shaping Parameterization

Apart from the non-uniform priors, consider the asymmetric transmit symbol vm = [vmI vmQ]T

resulting from the GS on the conventional baseband symmetric M -QAM/M -PSK symbol xm =

[xmI xmQ]T as vm = ARxm, where

A (ζ) =

[ √
1 + ζ 0

0
√

1− ζ

]
, (33)

with translation parameter ζ ∈ (0, 1). Furthermore, the rotation is given by

R (θ) =

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

]
, (34)

with rotation angle θ ∈ (0, µ π/2) for some constant µ. Uniformly distributed symmetric M -

QAM constellation has a rotation symmetry of nπ/2, n ∈ Z+ rendering µ = n to be good choice

for GS. However, non-uniformly distributed M -QAM constellation can only be rotationally

symmetric after 2nπ, thus µ = 4n is suitable for HS. This technique renders non-uniformly

spaced symbols in a parallelogram envelop. It is important to highlight that this transformation

preserves the power requirement. Power invariance of the rotation is a well known fact in the

literature [60]. However, the wisdom behind the structure of A (ζ) is unfolded in the following

theorem.

Remark 1. GS parameterization using translation matrix A (ζ) preserves the power invari-

ance of a complex random variable and inculcates asymmetry/improperness with the circularity

coefficient ζ .

Proof. The proof is presented in Appendix B. Furthermore, the generalization of the same

concept to the symmetric discrete constellations such as M -QAM and M -PSK is also described

in Appendix B.

B. Optimal Receiver

The optimal receiver for hybrid shaped AS is also a MAP detector as derived in (6), but with a

modified reference constellation vm in place of xm for all m ∈ {1, 2, · · · ,Mnu}. More precisely,

the detected symbol, m̂HS, is the one that maximizes the posterior distribution, i.e.,

m̂HS = arg max
1≤m≤Mnu

pV (vm)fYI,YQ|V,g (yI, yQ|vm, g) , (35)

where, fYI,YQ|V,g (yI, yQ|vm, g) is similar to (7) by replacing all appearances of xm with vm for all

m ∈ {1, 2, · · · ,Mnu}. It is worth noting that this MAP detector includes all the HS parameters.
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At first, it includes non-uniform prior probabilities of the symbols pV (vm) in the detection

process unlike conventional ML detector. Next, it requires an updated reference constellation vm

to incorporate the GS parameters for appropriate detection.

C. Error Probability

HS follows the same BER bound as derived in (19) but with modified γmn. It can now be

written using the following quadratic formulation as a function of ζ and θ.

γmn (ζ, θ) = xT
mnR (θ)TA (ζ)TGA (ζ)R (θ)xmn, (36)

where xmn is the real composite vector form of ξmn = gdmn given by

xmn =
[
ξmnI ξmnQ

]T
, (37)

and G contains the statistical characteristics of the aggregate noise including in-phase noise

variance, quadrature-phase noise variance, and the correlation between these components.

G =

 1
σ2
I

−ρz
σIσQ

−ρz
σIσQ

1
σ2
Q

 . (38)

Thus, the BER of HS can be upper bounded as

PUB
b,HS (p, ζ, θ) =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n 6=m

pmQ

( √
1− ρ2

z√
αγmn (ζ, θ)

ln

(
pm
pn

)
+

√
αγmn (ζ, θ)

2
√

1− ρ2
z

)
. (39)

D. Problem Formulation

HS targets the joint design of PS PMF p and GS parameters involving translation ζ and

rotation θ parameter to minimize the BER bound given in (39).

P2 : minimize
p∈S,0≤ζ≤1,

0≤θ≤2π

PUB
b,HS (p, ζ, θ) (40a)

subject to
Mnu∑
m=1

|vm|2pm ≤ 1, (40b)

H(p) ≥ log2 (Mu) , (40c)

where the average power constraint (24b) is updated as (40b) to account for the possible change

in the power of the symbols by geometrically shaping the constellation. However, the proposed

rate constraint (40c) remains intact. Additionally, there are some boundary constraints on ζ and

θ, respectively.
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Intuitively, it is quite difficult to tackle this non-convex multimodal joint optimization problem.

Therefore, we resort to the alternate optimization of PS parameters (p) and GS parameters (ζ, θ)

using sub-problems P2a and P2b, respectively. Problem P2a designs the PS parameters for some

given ζ and θ. It is quite similar to the problem P1 and thus, can be solved using Algorithm 1.

P2a : minimize
p∈S

PUB
b,HS (p, ζ, θ) (41a)

subject to (40b), (40c). (41b)

On the other hand, the GS optimization problem designs ζ and θ for fixed symbol probabilities

p, given as

P2b : minimize
0≤ζ≤1,
0≤θ≤2π

PUB
b,HS (p, ζ, θ) . (42)

The optimization problem P2b is a multimodal non-convex problem which is hard to tackled

even by the SCP approach as employed in Section IV. The difficulty arises due to the absence

of any constraints which restrict the feasibility region. The feasibility space enclosed by the

boundary constraints is highly insufficient to serve our purpose. Therefore, we can approximate

the solution using any of the following two methods

• Trust region reflective method: This method defines a trust region around a specific initial

point and then approximate the function within that region. The convex approximation is the

first order Taylor series approximation using the gradient. It begins by minimizing convex

approximation of the function to obtain a solution. This solution is the perturbation in the

initial point rendering a new point which should minimize the original function. Otherwise,

we need to shrunk the trust region and repeat the process. Reflections are used to increase

the step size while satisfying box constraints. After each iteration, we receive a new point

which renders a lower objective function than the initial point. This iterative approach leads

us to a local minimum and stops when some specified stopping criterion are met [62], [63].

• Gradient descent: This method is a relatively faster approach to tackle the problem at hand. It

is owing to the fact that it does not involve any approximation and underlying optimization.

It begins with an initial point and keeps updating the point in the descent direction using the

gradients and a step size until it reaches a local solution or satisfies some stopping criterion

[61].

Interestingly, both of these methods require the gradients of PUB
b,HS (p, ζ, θ) with respect to ζ

and θ. Gradients are used either to approximate the function with it’s first order Taylor series
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Algorithm 2 Alternate Optimization
1: Initialize j ← 0, ε←∞ and Set tolerance δ

2: Choose feasible starting points p(j), ζ(j), and θ(j).

3: Evaluate P
UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
.

4: while ε ≥ δ do

5: Solve P2a using Algorithm 1 with starting point p(j) and given ζ(j), θ(j) to obtain p(j∗)

6: Solve P2b with starting points ζ(j),θ(j) and given p(j∗) to obtain ζ(j∗), θ(j∗)

7: p(j+1) ← p(j∗), ζ(j+1) ← ζ(j∗), and θ(j+1) ← θ(j∗)

8: Evaluate P
UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
.

9: Update ε←
∥∥∥P

UB(j+1)
b,HS − P

UB(j)
b,HS

∥∥∥ and j ← j + 1

10: end while

11: Solution parameters: p∗ ← pj+1, ζ∗ ← ζj+1, θ∗ ← θj+1

12: Objective function: PUB∗
b,HS ← P

UB(j+1)
b,HS

13: Consequence: P∗b,HS ≤ PUB∗
b,HS

approximation within a trust region or to find the next point in the descent direction. The gradients

are evaluated and presented in Appendix C.

E. Proposed Algorithm

The joint optimization problem P2 can be tackled using the alternate optimization algorithm as

presented in Algorithm 2. It solves the sub problems P2a and P2b alternately and iteratively. It

begins with some starting feasible points p(j), ζ(j), and θ(j) and evaluates P
UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
as a benchmark. The alternate optimization begins by solving P2a to minimize PUB

b,HS with

respect to p given a pair of ζ and θ. It is achieved by replacing all entries of xm with vm =

ARxm ∀m. p(j∗) is obtained using the framework provided in Algorithm 1 which solves P1a

iteratively. Then, the optimum p(j∗) is used as a given PMF to obtain the pair ζ(j∗) and θ(j∗) by

solving P2b. These optimum parameter values are updated to attain next initial points. Moreover,

P
UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
is also evaluated to compare the decrease in objective function.

The norm of this difference is stored in ε and the process is repeated until this value drops below

a preset threshold δ. Eventually, the solution parameters are updated in (p∗, ζ∗, θ∗) which yield

the minimized BER upper bound PUB∗
b,HS using HS. Therefore, these HS parameters are capable

of rendering a BER P∗b,HS lower than the bound PUB∗
b,HS. Numerical evaluations reveal that the

stopping criteria is mostly met in just one iteration. Interestingly, the sequential order of step 5
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(c) HS for Proper Noise
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(f) HS for Improper Noise

Fig. 2: Different asymmetric signaling designs for proper and improper aggregate interference

and 6 in Algorithm 2 need to be chosen carefully as PS-then-GS is not equivalent to GS-then-PS.

Simulation results reveal that PS demonstrates better performance than GS at significant HWD

levels whereas GS outperforms PS for negligible HWD levels (for some Mnu-QAM). Therefore,

it is imperative to decide the order of shaping for HS as per the system HWD level. Notably,

the first shaping method is dominant and it is given as the input for the second one for a further

refinement. Therefore, the shaping order in the form PS-then-GS is the preferred choice for

significant HWD levels and vice versa.

HS can be implemented by choosing the transmit symbols for the translated and rotated signal

constellation, i.e., vm = A (ζ∗)R (θ∗)xm. Furthermore, the symbols are transmitted according

to the optimized p∗ where ζ∗, θ∗ and p∗ are designed using Algorithm 2. Upon reception, they

are detected using the MAP detector as presented in (35).

F. Illustrative Example

We present a comprehensive example to highlight the design of various distinct asymmetric

constellations for a fixed rate of 4 bits/symbol. The red color visualizes constellation symbols

with quite low probabilities. Fig. 2 represents different AS schemes assuming either proper
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Cη = 0 or highly improper Cη = 0.9 HWDs, respectively. We use 16-QAM for GS whereas

32-QAM for both PS and HS. The shaping parameters are designed/optimized for a system

suffering from high HWD, i.e., κ = 0.99 at 30dB SNR. Fig. 2(a) and 2(d) illustrate equally prior

geometrically shaped constellation symbols in the presence of proper and maximally improper

noise, respectively. Fig. 2(a) is a mere rotation of the original 16-QAM in the presence of proper

HWDs whereas Fig. 2(d) also inculcates the translation rendering a squeezed parallelogram

envelop in vertical axis. Next, probabilistic shaped constellations are presented in Fig. 2(b) and

2(e) for proper and maximally improper distortions, respectively. Evidently, the formation of red

symbols around the origin transforms from a symmetric circle in Fig. 2(b) to an ellipse in 1st

and 3rd quadrant in Fig. 2(e) corresponding to the respective symmetric and asymmetric noise.

This reveals the reason behind superior performance of PS as it is capable of assigning negligible

transmission probabilities to the symbols which are mostly affected by the aggregate noise as per

it’s proper/improper characteristics. Furthermore, this probabilistic shaped constellation under-

goes GS to obtain hybrid shaped QAM constellation as shown in Fig. 2(c) and 2(f) under proper

and maximally improper noise, respectively. This transformation allows the constellation to align

itself as per the underlying noise characteristics and further improves the system performance.

VI. NUMERICAL RESULTS

Numerical evaluations of the adopted HWD system are carried out to study the drastic effects of

hardware imperfections and the effectiveness of the mitigation strategies. The performance of the

proposed asymmetric transmission schemes PS and HS is quantified as opposed to the benchmark

no-shaping (NS) and conventional GS, with varying energy per bit per noise ratio (EbNo) and

HWD levels. EbNo is obtained by normalizing SNR with the transmission rate. Moreover, GS can

be implemented by transmitting symbols from a reshaped constellation vm = A (ζ∗)R (θ∗)xm,

where ζ∗ and θ∗ can be obtained by solving P2a given uniform prior distribution. Upon reception,

they are detected using the ML detector which is the simplified form of optimal MAP detector

(35) given uniform prior probabilities. This ML detector considers the reshaped constellation

symbols vm as the reference to detect the received symbols.

For most of the numerical evaluations we assume Gray coded square QAM constellations of

order Mu = 8, i.e., R = log2(Mu), for NS and GS as benchmarks. For PS and HS we employ

Mnu = 32-QAM with rate at least as high as that of GS, i.e., R ≥ log2(Mu). Moreover, we

consider practical HWD values for the transmitter κt = 0.01 and receiver κr = 0.12. The

pseudo-variances are derived from the κ̃tI = κt/4, κ̃rI = κr/4, and correlation coefficient
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Fig. 3: BER Performance for a range of EbNo with κ = 0.13 in AWGN channel.

ρη = 0.9. Intuitively, AWGN channel assumes g = 1 and circularly symmetric Rayleigh fading

channel is generated using λ = 1. Furthermore, the transmission EbNo is taken as 30 dB.

The aforementioned values of the parameters are used throughout the numerical results, unless

specified otherwise.

First, we evaluate the performance of various AS schemes for a range of EbNo from 0 dB

to 50 dB in an AWGN channel as shown in Fig. 3(a). We employ Mu-QAM for NS and

GS whereas Mnu-QAM for PS and HS. The BER upper bound (BER-UB) of PS and HS are

given by (19) and (39), respectively, whereas the BER-UB of NS and GS are derived from

(19) and (39) by assuming uniform distribution, respectively. The BER performance improves

with increasing EbNo till 30 dB and then undergoes saturation owing to the presence of HWD.

Further increase in bit energy also results in an increase in the distortion variance, as the system

experiences an error floor which can be deduced from (23). Evidently, the proper/symmetric

QAM is suboptimal and the BER performance is significantly improved using AS. Conventional

GS is not beneficial at lower EbNo values, but it significantly improves the performance for higher

EbNo values pertaining to the increased symbol space [25]. On the other hand, the proposed

PS is capable of minimizing the BER for the entire range of EbNo. Substantial gains can be

achieved by taking another step forward and employing HS. Therefore, we can safely conclude

that the best performance can be achieved using PS for EbNo ≤ 15 dB and HS for EbNo ≥
15 dB. At 20 dB, the BER reductions for GS, PS, and HS schemes with respect to unshaped

constellation are approximately 52.22%, 66.67%, 80%, respectively. The numerical results in
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Fig. 3(a) depict close accordance between the derived BER-UBs and the corresponding Monte

Carlo (MC) performance of the various transmission schemes.

For the same system settings, we compare two different parameterization techniques to achieve

asymmetric GS, which is a building block of HS, in Fig. 3(b). The GS-AR scheme represents our

proposed GS scheme based on the optimal translation A and rotation R. This scheme induces a

power imbalance between in-phase and quadrature components instead of their mutual correlation

[25]. We compare this GS scheme with the well known WLT scheme referred as GS-WLT.

We use the similar parameterization as adopted in [23] for our BER minimization problem

and numerically solve the resultant non-convex optimization problem 3. The comparison of GS

schemes has been extended to hybrid shaping: where HS-AR and HS-WLT apply the proposed

PS scheme to determine non-uniform probability distribution but respective GS techniques.

Evidently, the candidate schemes perform equally good at low EbNo values but our proposed

AR scheme outperforms WLT scheme in both GS and HS for relatively higher EbNo values.

Given the simulation settings as in Fig. 3(a), we analyze system throughput (correctly received

bits/symbol) for a range of EbNo values where the lower bound on system throughput can be

obtained as

T LB (p) =
[
1− PUB

b (p)
]

H(p) (43)

The throughput lower-bound (Th-LB) of all the transmission schemes can be calculated using

their respective BER-UBs in (43). Fig. 4(a) validates the derived Th-LBs using MC simulations. It

further depicts negligible throughput gain of GS over NS but noticeable throughput improvement

using PS or HS. For instance, 1.5%, 6% and 7% percentage increase in throughput can be

observed using GS, PS, and HS over NS at EbNo = 5 dB. At very low SNR, all the schemes

depict unsatisfactory performance, as the required transmission rate can be higher than the

maximum achievable rate which is related to the channel capacity. For moderate SNR, the

throughput gain of the proposed schemes is quite substantial; nevertheless, it undergoes saturation

when EbNo ≥ 20 dB. Interestingly, PS/HS saturates at 3 bits/symbol following rate fairness

constraint with negligible BER whereas other schemes saturate below 3 bits/symbol depicting

significant BER even though the entropy of 8-QAM with uniform distribution is log2(8) = 3.

Later, we analyze the behavior of various AS schemes with increasing distortion levels and

their impact on the system throughput at EbNo = 30 dB. Fig. 4(b) compares the throughput

performance of Mu-QAM NS and GS with Mnu1 = 16-QAM PS and HS as well as with

3We omit the derivation and implementation details of GS-WLT and HS-WLT due to the limited space.
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Fig. 4: Throughput Performance in AWGN channel.

Mnu2 = 32-QAM PS and HS. System throughput decreases almost linearly with increasing

HWD for all forms of signaling but with different slopes. NS demonstrates the steepest slope

with increasing HWD and all the other AS schemes render gradual slopes. Quantitative analysis

shows the slopes of −0.55, −0.41, −0.28, and −0.24 using NS, GS, 16-QAM PS/HS, and

32-QAM PS/HS, respectively, with increasing HWD. Therefore, PS and HS present the most

favorable results as compared to the GS. Their performance can be even improved by increasing

the modulation order. Another important observation is the overlapping response of PS and HS

especially for higher ordered QAM, which suffices PS and revokes the need of HS to perform

even better.

A similar analysis is undertaken to study the impact of increasing HWD on the system BER

performance in an AWGN channel. We assume 8-QAM for NS and GS whereas 16-QAM for

PS and HS as depicted in Fig. 5(a). Expectedly, the BER increases with increasing HWD levels

and AS based systems achieve lower BER by efficiently mitigating the drastic HWD effects.

Undoubtedly, the NS scheme suffers the most, but GS helps to decrease the BER to some

extent. Further compensation can be achieved using the proposed PS and HS. Surprisingly, GS

outperforms PS and HS at the lowest HWD values, e.g., κ = 0.11, in Fig. 5(a) but PS/HS

maintain their superiority for κ ≥ 0.17. Interestingly, PS/HS are still capable of outperforming

GS even for the lowest HWD levels pertaining to their rate adaptation capability and added DoF

using 32-QAM as highlighted in Fig. 5(b). We can observe enhanced mitigation offered by the

32-QAM PS/HS as compared to the 16-QAM PS/HS due to the added DoF. Evidently, there is a
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Fig. 5: HWD mitigation for PS and HS at EbNo = 30 dB in an AWGN channel.

trade-off between increased complexity and performance gain, which must be taken into account

while choosing Mnu as per the system capability. For instance, we observe BER compensation

of 66% and 77.5% using 32-QAM PS and HS, respectively, whereas BER compensation of 55%

and 65% using 16-QAM PS and HS, respectively, at κ = 0.22 HWD level.

Another simulation example depicts the performance of the discussed AS schemes over a

range of EbNo for two distinct scenarios of perfect receiver and perfect transmitter as presented

in Fig. 6(a). Perfect receiver system as the name specifies includes ideal zero-distortion receiver

but imperfect transmitter with κt = 0.07 whereas perfect transmitter system involves ideal zero-

distortion transmitter but imperfect receiver with κr = 0.15. Note that the lower value of κt

relative to κr is due to the fact that transmitters employ sensitive equipment to exhibit low

distortions because the transmitter distortions are far more drastic than the receiver distortions.

Interestingly, GS outperforms PS at EbNo > 15 dB for the perfect receiver case as opposed

to EbNo < 15 dB where PS is still a better choice. HS outperforms both of them irrespective

of the EbNo range classification. At such low HWD level, the BER percentage reduction of

81.82%, 90.91%, 94.55% is observed using PS, GS, and HS at 30 dB EbNo. Regarding the

perfect transmitter scenario, GS and PS reverse the trend for higher EbNo level. Now the PS

clearly outperforms GS for the entire range of EbNo and the HS marks its superiority over both

of these schemes. At 0.15 HWD level, the EbNo gain of 8 dB, 12 dB, and 13 dB are estimated

using GS, PS, and HS to attain the BER of 10−2.

Finally, the average (ergodic) BER performance of the adopted system with κ = 0.22 HWD
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Fig. 6: System BER performance with varying EbNo levels

level is evaluated over a Rayleigh fading channel for a range of EbNo values as given in Fig. 6(b).

Evidently, the AS schemes preserve their BER trends and order. Clearly, average BER decreases

with increasing EbNo and then undergoes saturation yielding an error floor. The derived BER

bounds are also validated using MC simulations rendering a tighter bound for higher EbNo

values. GS improves the average BER as compared to the NS scenario but PS and HS maintain

their superior performance. Signaling schemes of GS, PS, and HS offer a percentage reduction

of 54.55%, 63.64%, and 70.45%, respectively, in the average BER performance at 40 dB EbNo.

In a nutshell, we can conclude that the GS offers significant BER reduction at higher SNR

values as opposed to the PS which offers universal gains. Moreover, the perks of HS are also

prominent for higher SNR and higher M -ary modulation but depicts PS comparable performance

at lower SNR values. Therefore, we recommend to employ HS given high SNR but resort to

PS for lower SNR values to save additional computational expense. Additionally, GS is a better

choice for slightly distorted systems whereas PS/HS are the optimal choice for moderate to

severely distorted systems. Furthermore, we can achieve improved performance by employing

higher-order QAM constellations for PS/HS given adequate resources. On the other hand, the

throughput gains are eminent at considerably lower SNR values and higher distortion values.

VII. CONCLUSION

This work proposes probabilistic and hybrid shaping to realize asymmetric signaling in digital

wireless communication systems suffering from improper HWD. Instinctively, all forms of

asymmetric shaping are capable of decreasing the BER, and this performance gain improves with
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TABLE II: First Order Necessary KKT Conditions

Index KKT Conditions Satisfied with Reason

1 :Mnu ∇pL (p∗, λ∗) = 0, ∀1 ≤ m ≤Mnu ∇pL (p∗, λ∗1, λ∗2, λ∗3) = 0 Saddle point of the dual problem

Mnu+1 λ∗1

(
Mnu∑
m=1

|xm|2p∗m − 1

)
= 0

Mnu∑
m=1

|xm|2p∗m = 1, λ∗1 ≥ 0 Maximum power transmission

Mnu+2 λ∗2

(
Mnu∑
m=1

p∗m − 1

)
= 0

Mnu∑
m=1

p∗m = 1, λ∗2 ≥ 0 Equality constraint

Mnu+3 λ∗3 (log2 (Mu)−H(p∗)) = 0 H(p∗) = log2 (Mu), λ∗3 ≥ 0 BER -Rate tradeoff

increasing SNR and/or increasing HWD levels with respect to NS. However, PS outperforms GS

and performs equally well as HS. We can achieve more than 50% BER reduction with PS/HS

over traditional GS. The perks of PS come at the cost of increased complexity in the design and

decoding process. The HS scheme is capable of improving the system performance in terms of

the BER as well as throughput. However, for less HWD levels and low EbNo, the benefits of

HS over PS are limited while requiring additional complications in optimization, modulation,

and detection procedures. Therefore, PS emerges as the best choice in the trade-off between

enhanced performance and added complexity.

APPENDIX A

KKT CONDITIONS

The convex non-linear constraint problem P1a can be efficiently solved using the first order

necessary KKT conditions. We begin by writing the Lagrangian function L as

L (p, λ1, λ2, λ3)=P̃UB
b

(
p,p(k)

)
+λ1

(
M∑
m=1

|xm|2pm−1

)
+λ2

(
M∑
m=1

pm−1

)
+λ3(log2 (Mu)−H(p)) ,

(44)

where the Lagrange multipliers are λ1, λ2, λ3 ≥ 0. Next. we evaluate the gradient of the (44)

with respect to the optimization variables in p

∇pL =

[
∂L
∂p1

∂L
∂p2

. . .
∂L
∂pMnu

]
, (45)

where the partial derivative of L with respect to pm is given by

∂L
∂pm

=
∂PUB

b

(
p(k)

)
∂pm

+ λ1|xm|2 + λ2 + λ3

(
1

ln(2)
+log2 (pm)

)
, ∀ 1 ≤ m ≤Mnu (46)

Suppose that there is a local solution p∗ of P1a and the objective function P̃UB
b

(
p,p(k)

)
along with

the constraints (24b) and (24c) are continuously differentiable. Then, there exists a Lagrange
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multiplier vector λ∗, with components λi, where i ∈ (1, 2, 3), such that the necessary first

order KKT conditions (as presented in Table II) are satisfied at (p∗, λ∗). Interestingly, the KKT

conditions are satisfied with

∇pL (p∗, λ∗1, λ
∗
2, λ
∗
3) = 0,

M∑
m=1

|xm|2p∗m = 1,
M∑
m=1

p∗m = 1, H(p∗) = log2 (Mu) . (47)

owing to the maximum transmission power preference, equality constraint and BER -Rate trade-

off , respectively. Interestingly, the complimentary slackness for both inequality constraints is

satisfied with strictly positive Lagrange multipliers yielding a feasible optimal solution. These

Mnu + 3 solution parameters
(
p∗1, p

∗
2, . . . , p

∗
Mnu

, λ∗1, λ
∗
2, λ
∗
3

)
can be efficiently obtained by simul-

taneously solving the equations in (47) using Levenberg-Marquardt algorithm [64].

APPENDIX B

TRANSLATION WITHIN POWER BUDGET

In this appendix we present the proof of Remark 1. It is straightforward to prove that the trans-

lation v = Aw does not change the variance/power but only introduce asymmetry/improperness.

Considering the transformation caused by the translation v =
√

1 + ζwI + i
√

1− ζwQ, the

power/variance is given by

σ2
v = (1 + ζ)σ2

wI
+ (1− ζ)σ2

wQ
. (48)

Using the symmetric nature of r.v. w, i.e., σ2
wI

= σ2
wQ

, it is clear that σ2
v = σ2

w. On the other

hand, the pseudo-variance can be calculated as

σ̃2
v = (1 + ζ)σ2

wI
− (1− ζ)σ2

wQ
+ i2

√
1− ζ2E {wIwQ}. (49)

Again, the symmetry implies E {wIwQ} = 0. Thus, the circularity coefficient can be derived

from (49), i.e., |σ̃2
v |/σ2

v = ζ .

The same concept can be extended to the symmetric discrete constellations with uniform

prior probabilities. Considering the transformation caused by the translation vm =
√

1 + ζxmI +

i
√

1− ζxmQ, the power of the transformed constellation is given by

P =
1

M

(
(1 + ζ)

M∑
m=1

x2
mI + (1− ζ)

M∑
m=1

x2
mQ

)
. (50)

Using the symmetric property of the original discrete constellation
M∑
m=1

x2
mI =

M∑
m=1

x2
mQ, it is

clear that the power is preserved as P = 2
M

M∑
m=1

x2
mI . Moreover, the non-zero pseudo-variance is

given by

P̃ = ζP +
2i

M

√
1− ζ2

M∑
m=1

xmI xmQ. (51)
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Again, the symmetry implies
M∑
m=1

xmIxmQ = 0. Thus, the circularity coefficient can be derived

from (51), i.e., |P̃ |/P = ζ .

APPENDIX C

GRADIENT FOR OPTIMIZATION

The gradient of the upper bound on BER w.r.t GS parameters is given as

∇GPUB
b =

[
∂PUB

b

∂ζ

∂PUB
b

∂θ

]
,

=
1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

∆mn

[
∂γmn
∂ζ

∂γmn
∂θ

]
, (52)

where ∆mn is the common part in both partial derivatives.

∆mn =
pmγ

−3/2
mn

2
√

2π

√
1− ρ2

z

α
e−

Ω2
mn
2

(
ln

(
pm
pn

)
− 1

2β2
mn

)
. (53)

Moreover, the partial derivative of γmn with respect to the translation parameter ζ is given as

∂γmn
∂ζ

=
ξ̄2
mnI

σ2
I

+
2ρz ξ̄mnI ξ̄mnQ

σIσQ

ζ√
1− ζ2

−
ξ̄2
mnQ

σ2
Q

, (54)

where, ξ̄mnI = ξmnI cos(θ) − ξmnQ sin(θ) and ξ̄mnQ = ξmnI sin(θ) + ξmnQ cos(θ). Furthermore,

the partial derivative of γmn with respect to the rotation parameter is evaluated as

∂γmn
∂θ

= 2
1 + ζ

σ2
I

(
ξmnI cos(θ)− ξmnQ sin(θ)

) (
−ξmnI sin(θ)− ξmnQ cos(θ)

)
+

+2
1− ζ
σ2

Q

(
ξmnI sin(θ) + ξmnQ cos(θ)

) (
ξmnI cos(θ)− ξmnQ sin(θ)

)
+

− 2ρz
σIσQ

√
1− ζ2

(
ξmn

2
I cos(2θ)− ξmn2

Q cos(2θ)− 2ξmnIξmnQ sin(2θ)
)
. (55)
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