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Abstract—In industrial internet of things (IIoT), ultra-reliable
and low-latency communication (URLLC) is proposed to guar-
antee the requirement of real-time wireless control systems
in worst case, so as to maintain the system working in all
cases. However, it is extremely challenging to maintain URLLC
throughout the whole control process due to the scarcity of
wireless resource. This paper develops an autonomous device-
to-device (D2D) communication scheme by jointly considering
reliability in URLLC and control requirement. In the proposed
scheme, we consider the actual control requirement, i.e., control
convergence rate, into communication design, where we find
that it can be converted into a constraint on communication
reliability. Then, the communication reliability constraint comes
from control aspect, instead of URLLC, which leads to that
the system does not need to guarantee worst case in URLLC.
Second, the sensors autonomously decide whether to be activated
with optimal probabilities to participate in the control process,
which can maintain the communication reliability requirement
with significantly less resource consumption. Simulation results
show remarkable performance gain of our method. For instance,
compared with fixed activation probability 40% only considering
URLLC, the average power consumption of the proposed method
can be reduced by at most about 100%.

Index Terms—URLLC, real-time wireless control, autonomous
D2D communication.

I. INTRODUCTION

RECENTLY, real-time wireless control networks are pro-

posed to deal with the limitation in spatial and topology

extension and high financial cost in equipment maintenance

of the wired control networks for industrial internet of things

(IIoT) [1]. In such networks, the control process begins from

sensors [2], where the sensors measure the current state of the

plants. Then, the controllers estimate the sampled state of the

plants and calculate the control inputs. After that, the control

inputs are sent to corresponding actuators to update the states

of the plants. However, it is very difficult to maintain the high

requirement of real-time wireless control. To deal with this

issue, ultra-reliable and low-latency communication (URLLC)

is adopted as a critical communication scenario in the coming

fifth generation (5G) mobile communications [3] [4].
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However, it is extremely challenging to maintain both

stringent communication reliability and low latency in URLLC

by only one transmitter (i.e., one sensor in this paper) to obtain

good overall system performance. In this paper, we introduce

device-to-device (D2D) communications to deal with this issue

since D2D communication is promising to reduce resource

consumption, lower communication latency, and improve re-

liability [5]–[8], where multiple sensors are adopted to serve

a specific plant measure the sample parameter, e.g., the tem-

perature of the strip steel in hot rolling process, to achieve the

ultra-reliable and low-latency property. Furthermore, the joint

design of communication and control are adopted to further

reduce the communication resource consumption in URLLC.

However, there are two critical challenges to be solved in D2D

enabled URLLC for real-time wireless control systems.

The first challenge is how to design D2D activation methods

for real-time control applications. The traditional D2D activa-

tion methods can be cellular assisted or autonomous [9]–[11].

The cellular assisted methods activate D2D communications

with the help of device information at base station (BS), e.g.,

devices’ location. However, the signaling overhead is very

high, and the interacting communication with BS leads to high

communication latency [12]. Thus, it is not suitable to use

cellular assisted D2D activation methods in URLLC for real-

time wireless control systems. On the other hand, in traditional

autonomous methods, the devices need to transmit reference

signals to conduct the D2D activation [13], where the energy

consumption is very high and the latency is extremely large.

In summary, it is difficult to use existing methods for real-time

control applications with URLLC requirements.

The second challenge is how to achieve good overall system

performance by jointly considering D2D communication and

control systems. URLLC scenario is proposed to guarantee

the worst case of mission-critical real-time wireless control.

However, the control system may not need such extremely high

quality-of-service (QoS) all the time. Thus, wireless resource

consumption is expected to be further reduced by jointly

designing communication and control [14]. The joint design

of communication and control systems is a method by jointly

considering parameters from both communication aspect and

control aspect to obtain good overall system performance.

There are some recent research on the joint design of control

and communication in wireless control systems [15]–[21]. For

example, in [15]–[17], the authors took the communication

time delay and reliability into control systems and evaluated

their effects on the control performance. In [18]–[21], the

authors proposed different control algorithms to reduce com-
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munication consumption. However, these research are based

on the existing wireless communication protocols, e.g., WiFi

or ZigBee, which cannot guarantee the QoS requirement for

real-time wireless control systems since the delay is very

high [22]. Some other works discussed the joint design of

communication and control in URLLC for real-time wireless

control systems [2], [23], [24]. For instance, in [23], the

authors discussed the effect of different communication QoS

on control performance throughout the control process, where

they found that the communication energy consumption can

be significantly reduced by dynamic QoS allocation while

maintaining good control performance. These works show that

good overall system performance can be obtained by jointly

designing communication and control in URLLC enabled

real-time wireless control systems. However, all of them are

centralized control via BS, where the stringent QoS in URLLC

may not be guaranteed due to high information exchange.

Some research further discussed the joint design of con-

trol and communication for vehicular platoon in vehicle-to-

everything (V2X) and swarming in UAV networks [25][26].

In these works, the authors discussed the relationship between

control stability and communication delay, and developed

some methods based on the relationship. However, they fo-

cused on group property, e.g., platooning or swarming, which

can not be used in real-time wireless control for IIoT. The

requirement of each plant in IIoT should be guaranteed in real-

time wireless control systems, which can not be maintained

by the group property in these related works. In addition,

according to [27], considering each specific plant, the system

stability is affected by the communication reliability, instead of

the transmission time delay. The stability is guaranteed by the

control convergence rate constraint in this paper. Based on that,

we analyze the relationship between the control convergence

rate and communication reliability and discuss the effect of the

control convergence rate on the communication consumption.

In addition, since it is required that communication should

maintain ultra-reliability and low-latency property in real-

time wireless control for each plant, finite blocklength and

its corresponding channel capacity is adopted, which is novel

for wireless communications and is not discussed in these

related works. Finally, the motivation of this paper is to match

sensors with each plant to maintain stringent communication

and control requirements, which is extremely challenging and

not discussed in these works.

We notice that some research discussed the D2D design

in URLLC for industrial automation [28] [29], where they

tried to maintain the extremely high QoS requirement in

URLLC. For instance, the authors in [28] developed a two-

phase transmission protocol to exploit the D2D transmission

from the controller to the actuator for URLLC. Under their

protocol, each group’s messages are combined together and

multicast to the leaders from the BS in the first phase, while

the leaders relay the messages to the other users in their groups

in the second phase. However, the transmitter selection in D2D

communications is BS assisted, where the intercommunication

time delay cannot be ignored. In addition, the communication

from BS to the final devices is divided into two phases,

which raises the transmission time delay. These transmission

settings would significantly increase the resource consumption

to maintain the time delay and reliability requirements in

URLLC. Furthermore, the authors missed the actual control

requirement and only the high reliability from URLLC was

guaranteed, where the huge amount of resource consumption

in URLLC cannot be reduced. In summary, the D2D design

in these works is to guarantee the QoS URLLC at all costs.

This may impede the deployment of URLLC in IIoT due to

the serious scarcity of wireless resource, instead of reducing

the resource consumption to benefit the URLLC deployment.

This paper proposes a new autonomous D2D transmission

scheme to deal with the extremely high QoS requirements

in URLLC for real-time wireless control systems. In [8], we

proposed the primary idea of autonomous D2D transmission

scheme without control requirement. In this paper, our goal

is to minimize D2D transmission energy consumption by

jointly considering reliability constraint in URLLC and control

constraint, where the allocated time resource of URLLC is

assumed to be constant in this paper to simplify our discussion.

In particular, we answer the questions on how to activate D2D

transmission and how to meet control requirements. The main

contributions of this paper are as follows.

• We propose a probability-based D2D activation and

power allocation scheme, which allows each sensor au-

tonomously to decide whether to participate the control

process without interactive communications. This scheme

can guarantee the communication reliability requirement

with time constraint and the control requirement.

• We analyze the relationship between control and com-

munication, where we find that the control convergence

rate requirement can be converted into the communication

reliability constraint. This provides a guidance on D2D

power allocation, and can significantly reduce energy

consumption.

• We develop an optimal D2D transmission method by

balancing failed reduction efficiency (FRE) for all sen-

sors, which can optimize activation probability and min-

imize transmission power under the reliability constraint

in wireless communications while guaranteeing control

requirement. Here, the FRE is defined as the ratio of

the failed transmission probability and the corresponding

transmission energy consumption.

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Section III, the optimization

problem with both communication and control constraints is

formulated. In Section IV, we obtain the optimal probability-

based activation method and transmission power allocation

method. In Section V, simulation results are provided to show

the performance. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless control model

that 𝑀 independent sensors (i.e., transmitting devices) intend

to serve a plant (i.e., receiving device) by direct D2D com-

munications. However, the proposed method can be easily

extended to the scenario with 𝐾 plants.When the plant needs

to work, it would first send a request to the BS in 5G
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Fig. 1: System model.

URLLC scenario. Then, the BS would broadcast the necessary

information, i.e., the position of the plant, the operation time

of the plant, and the allocated frequency, to the sensors. Then,

the sensors would be activated and transmit using the proposed

method. Furthermore, if a sensor malfunction is detected,

the BS can set the activation probability of this sensor to

be zero via the broadcasting phase. In such a system, each

sensor is activated with a certain probability, where the active

sensors sample the plant state and transmits it to the controller

embedded in the plant via the wireless channel. Then, the

controller chooses the strongest signal as its desired signal,

calculates the control command, and sends a command to the

actuator to update plant’s current state1.

The system model in Fig. 1 is widely considered in real in-

dustrial scenarios [31], we provide a real industrial application

by the following Example 1.

Example 1: As shown in Fig. 2, a typical industrial scenario,

i.e., hot rolling process in a factory, is adopted to show that

the adopted model is valid. Such a scenario contains heating

furnaces, reversing rougher, finishing mill, laminar cooling,

and down cooling [31], where the distance between different

sub-process is given in Fig. 2. According to [32], the area

of the factory building is about 150000 square meters of floor

space, which is scarcely partitioned. Ceiling height varies from

12.5 to 18 m. The roof is formed from tar paper and gravel

and is supported by sheet steel and dense steel truss work.

To achieve better communication performance, the height of

wireless communication facilities (e.g., the receiver wired

1Note that the sensors obtain state observations and then send the observa-
tions to the controller for state estimation. [30].

connected to the plant and its corresponding sensors) is set

to 2 m above the floor [32]. Clusters consisting of different

wireless communication facilities are divided by the served

plants. For instance, the receiver connected to the furnaces

and the corresponding sensors are divided into cluster 1. In

such a large area scarcely partitioned with plenty of plants

and the height of wireless communication facilities over the

floor, both the free space channel gain model and Rayleigh

fading are valid according to the measurement in [32]. To

avoid interference, different frequency bands are allocated for

different clusters, and orthogonal frequency division multiple

access (OFDMA) is adopted to avoid interference among

different sensors in each cluster. As shown in Fig. 2, the state,

i.e., the temperature of the strip steel in each sub-process, is

monitored by massively deployed sensors2. Compared with

only using one sensor in a sensor-plant loop, multiple sensors

can maintain ultra-reliable and low-latency requirement in

real-time control. Then, the measured parameter is sent to the

controller over wireless channels. After that, the state estima-

tion is calculated by the Kalman Filter inside the controller,

and the control decision is made by the linear feedback unit.

Finally, the decision is sent to the actuator, where the valves of

water nozzles is adjusted to reach the required exit temperature

of the strip steel. �
In the following of this section, the system model consid-

ering both communication latency and reliability is presented

for the performance evaluation in real-time wireless control

systems. Note that all the notations to be used throughout the

paper for communication and control are summarized in Table

I and II, respectively.

A. Communication Model

In this subsection, we provide a typical communication

model with transmission latency and packet error probability

in URLLC. As shown in Fig. 1 (a), to guarantee the fairness of

each plant, 𝑀 sensors are uniformly distributed3 in a certain

circle region with radius 𝑅, and the plant is in the center of

the region. Here, each sensor is activated based on a certain

probability. In addition, the plant only treats the strongest

signal from the sensors as its desired signal and ignores others.

Furthermore, OFDMA is adopted to avoid interference. In the

following of this subsection, we introduce the channel model

2In practice, it is very risky to deploy one or two sensors that are close to
the controller. This is because line-of-sight communications can not always
be guaranteed in practical setup with many uncontrollable factors. In other
words, the sensors with short distance do not always provide strong signals,
while some sensors with larger distance may provide strong signals in some
situations. Another reason that we recommend deploying a large number of
sensors over the whole area is to meet the required performance in URLLC.

3In this paper, we assume that the sensors are uniformly distributed in
the given area. This is because the future factories are expected to face
the dynamic market demand, short product life-cycle, and flexibility need,
where re-configurable manufacturing system will be one of the most important
solutions. In such a system, manufacturing facilities are with great flexibility
to form a new production line for customized products. Then, it becomes
a natural choice to deploy sensors with uniform distribution, which would
maximize the flexibility of the reconfigurable manufacturing [33]. In addition,
other distributions would work well in some cases or applications. In this
paper, the proposed method also works in these cases by changing the uniform
distribution to other distributions.
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Fig. 2: A typical industrial scenario of the system model: hot rolling process.

TABLE I: Summary of Notations for Communication

𝐵𝑚 Allocated bandwidth for the 𝑚-th sensor 𝑅 Coverage radius of the sensor distribution

𝐶𝑚 Shannon capacity of the 𝑚-th sensor 𝑛 𝛼𝑛 Indicator for packet loss

𝑔𝑚 Path-loss of the 𝑚-th sensor 𝑇𝑢 Time resource of the uplink for the 𝑚-th sensor

ℎ𝑚 Small scale fading for the 𝑚-th sensor 𝑉𝑚 Channel dispersion for the 𝑚-th sensor

𝑙𝑚 Distance between the 𝑚-th sensor and the plant 𝛾𝑚 Received SNR from the 𝑚-th sensor

𝑁0 Variance of the AWGN at the plant 𝑝max Maximum of transmission power

𝑀 Total number of sensors in the coverage of the base station 𝜀 Packet loss probability of the uplink for the plant

𝑚 Index of the sensors (1 ≤ 𝑚 ≤ 𝑀 ) 𝜀𝑡ℎ Maximum packet error probability in communications

𝑝𝑚 Transmission power spectral density 𝛾𝑡ℎ SNR threshold

𝑎 The inside radius of a typical circle ring 𝑏 The outside radius of a typical circle ring

2𝑟 The distance between the inside bound to outside bound 𝜀0 Normalization of the transmission error

𝐽𝑐 (𝑎) The average energy consumption 𝑀𝑎 The number of sensors inside the circle ring

𝜑 Normalization of the sensor’s active threshold 𝜑𝑚 The active threshold for the 𝑚-th sensor

used and the channel capacity between sensor 𝑚 and the plant

in URLLC, respectively.

1) Channel Model: We consider that the channel model

consists of the small-scale fading and large-scale attenuation

coefficients between sensor 𝑚 and the plant, which are repre-

sented as ℎ𝑚 and 𝑔𝑚 for the uplink from the 𝑚-th sensor to the

plant, respectively. We assume that the large-scale attenuation

coefficient is represented by path-loss, which can be expressed

as [34]

𝑔𝑚 =
𝐶

𝑙𝜆𝑚
, (1)

where 𝑙𝑚 is the distance between transceiver, 𝐶 is a constant,

and 𝜆 ∈ [2, 6] is the path loss factor. Since we consider 𝑀
sensors are uniformly distributed in a circle with the plant in

the center, then we have the probability distribution function

(PDF) of the sensors with distance 𝑙 as

𝑓𝑙 (𝑙) =
2𝑙
𝑅2 , (2)

where 𝑅 is the radius of the circle. Then, we can obtain the

pdf of the path loss as

𝑓𝑔𝑚 (𝑔𝑚) =
𝐶𝑔−2

𝑚

𝑅2 , 𝑔𝑚 ≥
𝐶

𝑅2 , (3)

where 𝜆 = 2 is adopted [32].
The small-scale fading ℎ𝑚 follows Rayleigh distribution

with mean zero and variance 𝜎2
0 = 1 [32]. Then, the PDF

of its power can be expressed as

𝑓ℎ2
𝑚
(ℎ2

𝑚) = 𝑒−ℎ
2
𝑚 . (4)

However, the end-to-end (E2E) latency is no more than 1 ms

in URLLC, which is less than the channel coherence time [35].

Then, for the 𝑚-th sensor, the small-scale fading is constant

during the transmission period [36].
2) Channel Capacity: According to [35] and [37], we can

obtain the successful transmit bits in one frame for the 𝑚-th

sensor in URLLC can be expressed as

𝑅𝑚 = 𝐶𝑚 −

√
𝑉𝑚

𝑇𝑢𝐵𝑚
𝑓 −1
𝑄 (𝜀𝑚) +

log(𝑇𝑢𝐵𝑚)

2𝑇𝑢𝐵𝑚
, (5)

where the first term on the right hand of (5) is the achievable

Shannon capacity without transmission error, the second term
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TABLE II: Summary of Notations for Control

A System parameter on state in continuous control function u(𝑡) Control command

B System parameter on command in continuous control function 𝑐 Control performance constraint on wireless communications

x(𝑡) Plant state in continuous control function u𝑛 Control command for simplify

𝑁 Total sampling time index in control process x𝑛 Plant state in discrete time control function

𝑛 Sample time index Δ( ·) Lyapunov-like function

n(𝑡) Disturbance caused by AWGN in continuous control function 𝚽𝑛
0 System parameter on input in discrete control function

n𝑛 Disturbance in discrete time control function 𝚽𝑛
1 System parameter on input caused by time delay

n̄𝑛 Generalized disturbance Q Given positive definite matrix

R𝑚 Variance of n𝑚 (𝑡) 𝛀𝑑 Generalized system parameter on state

𝑠𝑛 Sample period of the 𝑚-th plant at time index 𝑛 𝛀𝑛 System parameter on state in discrete control function

𝑠𝑛 Idle time before the sampling at time index 𝑛 𝜉𝑛 Generalized plant state

R𝑚 Variance of n̄𝑛 𝜌 Control convergence rate

is the minus error bits introduced by channel dispersion 𝑉𝑚,

and the third term is the approximation of the reminder terms

of order log(𝑇𝑢𝐵𝑚)/(𝑇𝑢𝐵𝑚). In addition, 𝐵𝑚 is the occupied

bandwidth, 𝜀𝑚 is the transmission error probability, and 𝑓 −1
𝑄 (·)

is inverse of 𝑄 function. We need to note that 𝑇𝑢 is the

allocated time resource, which is treated as the transmission

time delay4. Furthermore, we assume that the single-sided

noise spectral density is represented by 𝑁0, then according

to [35], we have Shannon capacity 𝐶𝑚 and channel dispersion

𝑉𝑚 as follows, respectively,

𝐶𝑚 = 𝑇𝑢𝐵𝑚 log (1 + 𝛾𝑚) , (6)

and

𝑉𝑚 = 𝑇𝑢𝐵𝑚 (log 𝑒)2
(
1 −

1
(1 + 𝛾2

𝑚)

)
, (7)

where 𝛾𝑚 is the received signal-to-noise-ratio (SNR) and can

be expressed as

𝛾𝑚 =
ℎ2
𝑚𝐵𝑚𝑔𝑚𝑃𝑚

𝑁0𝐵𝑚
=

ℎ2
𝑚𝑔𝑚𝑝𝑚
𝑁0

, (8)

where 𝑝𝑚 is the single-sided transmission power of the 𝑚-th

sensor.

B. Control Model

In this subsection, we provide the real-time control model

with communication time delay and reliability. As shown in

Fig. 1 (b), the control process is conducted as follows. First, 𝑀
sensors are activated with a certain probability to guarantee the

control requirement, which take samples of the current plant

state and transmit them to the controller inside the plant. Then,

the controller estimates the state by Kalman Filter based on

the strongest signal among the sensors, calculates the control

command, and sends it to the actuator by wired link. Here, the

4Here, only allocated time resource is considered as the transmission time
delay in the transmission. Since we focus on the effect of control requirement
on communication design, the serving time delay, queueing time delay, and
other time delays are not considered to simplify our discussion, which is
treated as our future work.

Kalman Filter inside the controller is responsible for the state

estimation by both prior information and posterior information,

which is proved to be an optimal estimator in linear control

process. More details about the calculations in the Kalman

Filter can be found in [24]. Finally, the plant state updates

by the received control command. Based on the above control

process, the linear differential equation5 of the plant can be

expressed as [16]

𝑑x(𝑡) = Ax(𝑡)𝑑𝑡 + Bu(𝑡)𝑑𝑡 + 𝑑n(𝑡), (9)

where x(𝑡) is the plant state, u(𝑡) is the control input, and

n(𝑡) is the disturbance caused by additive white gaussian noise

(AWGN) with zero mean and variance R. In addition, A and B
represent the physical system parameter matrices (more details

can be obtained in [39]).

We assume that 𝑠𝑛 represents the sample period at time

index 𝑛, which consists of the wireless transmission time delay

𝑇𝑢 and an idle period 𝑠𝑛. Their relationship can be expressed

as

𝑠𝑛 = 𝑠𝑛 + 𝑇𝑢 , (10)

where 𝑛 = 1, 2, · · · , 𝑁 represents the sampling time index in

the control process. Then, the discrete time control model with

time delay 𝑇𝑢 can be obtained as [15]

x𝑛+1=𝛀𝑛x𝑛+𝚽𝑛
0u𝑛+𝚽𝑛

1u𝑛−1+ n𝑛, (11)

where 𝛀𝑛 = 𝑒A𝑠𝑛 , 𝚽𝑛
0 =

(∫ 𝑠𝑛
0 𝑒A𝑡𝑑𝑡

)
· B, and 𝚽𝑛

1 =(∫ 𝑠𝑛
𝑠𝑛

𝑒A𝑡𝑑𝑡
)
· B.

Assuming 𝜉𝑛 = (x𝑇𝑛 u𝑇𝑛−1)
𝑇 is the generalized state, then

the control function in (11) can be rewritten as

𝜉𝑛+1 = 𝛀𝑑𝜉𝑛 +𝚽𝑑u𝑛 + n̄𝑛, (12)

5Note that nonlinear systems can be replaced by linear systems with
linearization in a small range near the operating point, which is reasonable and
widely used [38]. From this perspective, our method can be used in nonlinear
models.
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where n̄𝑛 = (n𝑇𝑛 0)𝑇 and 𝚽𝑑 =

(
𝚽𝑛

0
I

)
. We assume 𝛀𝑛 = 𝛀.

Then, we have 𝛀𝑑 =

(
𝛀 𝚽𝑛

1
0 0

)
.

Considering the packet loss, we have the successful packet

transmission probability Pr{𝛼𝑛 = 1} = 1 − 𝜀 and the failed

packet transmission probability Pr{𝛼𝑛 = 0} = 𝜀, where 𝜀
represent that 𝑀 sensors are failed in transmission. In addition,

we assume that the state estimator is perfect. Then, we have

the close-loop system in (12) can be rewritten as

𝜉𝑛+1 =

{
𝛀𝑑𝜉𝑛 +𝚽𝑑u𝑛 + n̄𝑛, if 𝛼𝑛 = 1,
𝛀𝑑𝜉𝑛 + n̄𝑛, if 𝛼𝑛 = 0, (13)

which can be rewritten in a general way as

𝜉𝑚,𝑛+1 =

{
𝛀𝑒1𝜉𝑚,𝑛 + n̄𝑛, if 𝛼𝑛 = 1
𝛀𝑒0𝜉𝑚,𝑛 + n̄𝑛, if 𝛼𝑛 = 0, (14)

where 𝛀𝑒1 = 𝛀𝑑 + 𝚽𝑑𝐾 , 𝛀𝑒0 = 𝛀𝑑 , and 𝐾 is the control

command feedback parameter.

In the above discussion, we have obtained the wireless

control model6 where both communication time delay and

packet loss have been taken into account. In the following of

this paper, we will formulate the optimization problem and

propose corresponding iterative method to obtain the D2D

transmission scheme.

III. PROBLEM FORMULATION FOR D2D ACTIVATION AND

TRANSMISSION

In this section, we formulate the D2D activation and power

allocation problem to guarantee the stringent QoS while mini-

mizing communication energy consumption. In the following,

we first provide objective function, communication constraint,

and control constraint. Then, we formulate the optimization

problem to minimize total communication energy consump-

tion.

A. Objective Function

Since sensors are usually powered by battery [41], minimiz-

ing energy consumption is very important in real-time wireless

control systems. Thus, the objective is to minimize energy

consumption7 at each time index 𝑛, which can be expressed

as

𝐽𝐸 = E

[
𝑀∑
𝑚=1

𝑇𝑢𝐵𝑚𝑝𝑚,𝑛

]
. (15)

In this paper, instead of discussing the tradeoff of the

resource consumption in URLLC, we intend to show the

performance of the proposed autonomous D2D transmission

scheme in URLLC for real-time wireless control systems by

jointly considering communication and control aspects, where

the adopted criteria is energy consumption. To simplify the

6According to [40], to maintain the stability of the wireless control system,
the following assumption should be satisfied: The packet loss probability in
URLLC and the control system parameters satisfy 𝜌

(
(1− 𝜀) (𝛀𝑑 +𝚽𝑑𝐾 ) ⊗

(𝛀𝑑+𝚽𝑑𝐾 ) + 𝜀𝛀𝑑 ⊗𝛀𝑑
)
, where 𝜌( ·) is the spectral radius, 𝐾 is the control

command feedback parameter, and ⊗ is the Kronecker product.
7Here, since we focus on wireless transmission, only communication energy

consumption is considered in this paper.

Fig. 3: The model to calculate the reliability probability.

discussion, we assume that the allocated time resource (i.e., the

transmission time delay) 𝑇𝑢 and bandwidth 𝐵𝑚 are constant.

Thus, the energy consumption is equivalent to the power

consumption. Then, (15) can be rewritten as

𝐽 = E

[
𝑀∑
𝑚=1

𝑝𝑚,𝑛

]
, (16)

where the expectation is calculated over the uniform distribu-

tion of the sensors, i.e.,the distance of the sensors from the

plant.

B. Control Constraint

We consider the control state convergence rate as the control

performance. To obtain the reduction rate, we adopt Lyapunov-

like control cost function [2]

Δ(𝜉𝑛) = 𝜉𝑇𝑛 Q𝜉𝑛, (17)

where Q is positive definite. To guarantee the control stability,

the Lyapunov-like function should decrease at given conver-

gence rate8 𝜌 < 1, which can also guarantee the state return to

the pre-set point. Then, for any possible 𝜉𝑛, the Lyapunov-like

functions needs to satisfy [42]

E[Δ(𝜉𝑛+1) |𝜉𝑛] ≤ 𝜌Δ(𝜉𝑛) + 𝑇𝑟 (QR′), (18)

where E[·] represents the expectation operator and R′ =
(R𝑇 0)𝑇 is the variance of n̄𝑛 = (n𝑇𝑛 0)𝑇 .

C. Communication Constraint

The QoS requirements in URLLC include low latency and

ultra-reliability. We assume that the latency is no more than

the allowed upper bound in this paper. Then, the communi-

cation constraint introduced by QoS requirement is the ultra-

reliability, where we assume that the upper bound of the packet

loss probability is 𝜀𝑡ℎ . Here, the packet loss probability for the

𝑚-th sensor consists of two parts: the first part is the packet

error probability 𝜀𝑚 in (5), and the second part is the packet

loss probability when SNR 𝛾𝑚 is less than a threshold 𝛾𝑡ℎ
that can guarantee the received bits. To calculate the overall

8It is shown in [42] that the control convergence is guaranteed with 𝜌 < 1.
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reliability probability inside the circle with radius 𝑅, we divide

it into multiple circle rings. As shown in Fig. 3, we consider

a typical circle ring with inside radius 𝑎, outside radius 𝑏 and

the length from the inside bound to outside bound 2𝑟. Then,

the number of sensors inside the circle ring can be expressed

as

𝑀𝑎 =
𝑏2 − 𝑎2

𝑅2 · 𝑀, (19)

Furthermore, we assume that the activated probability of the

sensors insider the circle ring is represented by 𝑃𝑎 (𝑎) and

the transmission power of these sensors is represented by

𝑝(𝑎) when 𝑟 → 0. Then, we can obtain that the cumulative
distribution function (CDF) of the SNR of the sensors inside

the circle ring can be expressed as

𝐹Γ (𝛾 |𝑎 ≤ 𝑙 ≤ 𝑏) = Pr
{
ℎ2𝑔𝑝(𝑙)

𝑁0
≤ 𝛾

}

=
∫ 𝐶

𝑎2

𝐶

𝑏2

∫ 𝛾𝑁0
𝑝 (𝑎)𝑔

0
𝑓𝑔 (𝑔) 𝑓ℎ2 (ℎ2)d𝑔dℎ2

=
∫ 𝐶

𝑎2

𝐶

𝑏2

∫ 𝛾𝑁0
𝑝 (𝑎)𝑔

0

𝐶𝑔−2

𝑅2 𝑒−ℎ
2
d𝑔dℎ2

=
∫ 𝐶

𝑎2

𝐶

𝑏2

𝐶𝑔−2

𝑏2 − 𝑎2
(
1 − 𝑒−

𝛾𝑁0
𝑝 (𝑎)𝑔

)
d𝑔

= 1 −
𝑝(𝑎)𝐶

𝑁0 (𝑏2 − 𝑎2)𝛾

(
𝑒−

𝛾𝑎2𝑁0
𝑝 (𝑎)𝐶 − 𝑒−

𝛾𝑏2𝑁0
𝑝 (𝑎)𝐶

)
,

(20)

where we omit the subscribe 𝑚 since the calculation is

based on the distance, instead of number of sensors. Then,

considering the SNR threshold 𝛾𝑡ℎ , the packet loss probability

inside the circle ring can be expressed as

𝐹Γ (𝛾𝑡ℎ |𝑎≤𝑙 ≤ 𝑏)=1−
𝑝(𝑎)𝐶 (𝑒−

𝛾𝑡ℎ𝑎2𝑁0
𝑝 (𝑎)𝐶 −𝑒−

𝛾𝑡ℎ𝑏2𝑁0
𝑝 (𝑎)𝐶 )

𝑁0 (𝑏2 − 𝑎2)𝛾𝑡ℎ
. (21)

For 𝑀𝑎 sensors with active probability 𝑃𝑎 (𝑎) , we have the

packet loss probability as

𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏, 𝑀) = (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))𝑀𝑎𝑃𝑎 (𝑎) . (22)

Furthermore, we assume that the transmission error proba-

bility 𝜀𝑚 is constant for each sensor-to-plant link, which is

represented as 𝜀0. Then, the CDF of the overall packet loss

probability can be expressed as

𝐹Γ (𝛾𝑡ℎ) =
∫ 𝑅

0
𝑓𝑎 (𝑎) (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏, 𝑀)) d𝑎, (23)

where 𝑙 → 0 and 𝑓𝑎 (𝑎) = 2𝑎/𝑅2. Then, the overall reliability

probability for the plant can be expressed as

Pr {𝛼𝑛 = 1} = 1−𝜀0 − 𝐹Γ (𝛾𝑡ℎ). (24)

D. Optimization Problem

In this subsection, we formulate the optimization problem,

which can be described in Problem 0, i.e., P0,

P0 : min
𝑃𝑎 (𝑎) , 𝑝 (𝑎)

𝐽 (25a)

s.t. E[Δ(𝜉𝑛+1) |𝜉𝑛] ≤ 𝜌Δ(𝜉𝑛) + 𝑇𝑟 (QR′), (25b)

Pr {𝛼𝑛 = 1} = 1 − 𝜀 ≥ 1 − 𝜀𝑡ℎ , (25c)

0 ≤ 𝑃𝑎 (𝑎) ≤ 1, (25d)

0 ≤ 𝑝(𝑎) ≤ 𝑝max, (25e)

where 𝐽 = 𝑀
∫ 𝑅

0 𝑓𝑎 (𝑎)𝑝(𝑎)𝑃𝑎 (𝑎)d𝑎 is based on the distance

between the sensor and plant, and Pr {𝛼𝑛 = 1} = 1 − 𝜀 =
1− 𝜀0 − 𝐹Γ (𝛾𝑡ℎ). Here, (25a) is the objective function, i.e.,

power consumption, constrained by communication and con-

trol. Given time and frequency resource, power consumption

𝐽 is equivalent to energy consumption. Equation (25b) is the

constraint coming from control convergence rate. Equation

(25c) is the reliability constraint coming from URLLC, where

𝜀𝑡ℎ is the threshold of the packet loss probability in URLLC.

Equation (25d) is the constraint on sensors’ activation prob-

ability at distance 𝑎, and equation (25e) is the constraint on

sensors’ transmission power at distance 𝑎.

In (25), the sensors autonomously decide whether to be ac-

tivated to participate in the control process. Then, the activated

sensors need to adjust their transmission power without inter-

communication to minimize total energy consumption, which

leads to solving P0 extremely challenging. In the following of

this paper, we propose a failed reduction efficiency (FRE) to

deal with P0.

IV. THE OPTIMAL SOLUTION FOR D2D ACTIVATION AND

TRANSMISSION

In this section, we solve the optimization problem P0
to obtain the D2D activation and power allocation method.

First, we analyze the relationship between communication and

control, and convert the control constraint in (25b) into the

communication constraint based on the relationship. Then, P0
with communication and control constraints can be recast to

a problem that depends only on communication constraints.

Finally, each sensor can obtain its optimal activation probabil-

ity and transmission power by balancing FRE for all sensors

based on the distance between the sensors and the plant.

A. Relationship Between Control and Communication

From (13), we find that the expression E[Δ(𝜉𝑛+1) |𝜉𝑛] de-

pends on the packet transmission probability, where we can

obtain that the Lyapunov-like function can be expressed as

E[Δ(𝜉𝑛+1) |𝜉𝑛]=Pr{𝛼𝑛 = 1}𝜉𝑇𝑛 𝛀𝑇
𝑒1Q𝛀𝑒1𝜉𝑛

+ Pr{𝛼𝑛 = 0}𝜉𝑇𝑛 𝛀𝑇
𝑒0Q𝛀𝑒0𝜉𝑛+ 𝑇𝑟 (QR′).

(26)

Submitting (26) into (25b), we can obtain

Pr{𝛼𝑛 = 1}≥
𝜉𝑇𝑛 (𝛀

𝑇
𝑒0Q𝛀𝑒0 − 𝜌Q)𝜉𝑛

𝜉𝑇𝑛 (𝛀𝑇
𝑒0Q𝛀𝑒0−𝛀

𝑇
𝑒1Q𝛀𝑒1 )𝜉𝑛

, (27)
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where 𝜉𝑛 ≠ 0. Let

𝑐 = sup
𝑦∈R𝑛 ,𝑦≠0

𝑦𝑇 (𝛀𝑇
𝑒0Q𝛀𝑒0 − 𝜌Q)𝑦

𝑦𝑇 (𝛀𝑇
𝑒0Q𝛀𝑒0 −𝛀𝑇

𝑒1Q𝛀𝑒1 )𝑦
(28)

represent the supremum of the rihgt-hand term in (27). Ac-

cording to [2], we can obtain the optimal 𝑐∗. Then, we can

obtain that the communication reliability is not constrained

by the requirement in URLLC, but the control reduction rate

requirement from control systems, i.e., 𝑐∗(𝜌). Then, P0 can

be rewrite as

P1 : min
𝑃𝑎 (𝑎) , 𝑝 (𝑎)

𝐽 (29a)

s.t. 𝐹Γ (𝛾𝑡ℎ) ≤ 1−𝜀0 − 𝑐∗, (25𝑑), and (25𝑒).

B. Optimal Sensor Activation and Power Allocation

In this subsection, we propose an optimal algorithm to solve

the problem P1. Compared with traditional exhaustive search

algorithm with exponential complexity, the complexity of our

algorithm grows linearly, which is easy to be deployed and

used in real scenarios.

1) Failed Reduction Efficiency: To obtain the optimal so-

lution, we first introduce the FRE. The average energy con-

sumption can be expressed as

𝐽𝑐 (𝑎) = 𝑃𝑎 (𝑎)𝑝(𝑎). (30)

Then, the packet loss probability in (22) can be rewritten as

𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏, 𝑀) = (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))𝑀𝑎
𝐽𝑐 (𝑎)
𝑝 (𝑎) . (31)

The FRE is defined as the ratio of the packet loss probability

and the energy consumption 𝐽𝑐 (𝑎). Then, FRE can be obtained

by taking partial derivation on 𝐽𝑐 (𝑎) in (31), i.e.,

𝐷 (𝐽𝑐 (𝑎), 𝑝(𝑎), 𝑎) =
𝜕𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏, 𝑀)

𝜕𝐽𝑐 (𝑎)

=
𝑀𝑎

𝑝(𝑎)
ln (𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙≤ 𝑏))(𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤𝑏))𝑀𝑎

𝐽𝑐 (𝑎)
𝑝 (𝑎) ,

(32)

where the FRE is negative since ln (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏)) is

negative. This means that lower FRE leads to larger power

efficiency. Thus, to minimize transmission power in (25a),

we can maintain high power efficiency and omit low power

efficiency by FRE adjustment, where we can obtain both

active probability and transmission power allocation during

this process since FRE is related with the active probability

𝑝(𝑎) as shown in (32).

2) Transmission Power Simplification for FRE: Given av-

erage power 𝐽𝑐 (𝑎0) at a certain distance 𝑎0, the FRE is a

function of 𝑝(𝑎0). Once the optimal 𝑝(𝑎) is obtained for all

𝑎 and 𝐽𝑐 (𝑎), i.e., 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)), the FRE is a function

of 𝐽𝑐 (𝑎) and 𝑎. Then, by 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)), the parameters

to solve (29) reduce from three to two, where 𝑝∗(𝑎) can be

calculated after we obtain optimal 𝐽𝑐 (𝑎). Next, we focus on

obtaining the optimal 𝑝∗(𝑎) for given 𝑎 and 𝐽𝑐 (𝑎), which can

be obtain by solving the following optimization problem,

P2 : min
𝑝 (𝑎)

𝐷 (𝐽𝑐 (𝑎), 𝑝(𝑎), 𝑎) (33a)

s.t. 0 ≤ 𝑝(𝑎) ≤ 𝑝max. (33b)

We need to note that solving P2 in (33) is equivalent to solving

P1 in (29) for given 𝑎 and 𝐽𝑐 (𝑎). Taking partial derivation on

𝑝(𝑎) in (33a), we can obtain (34) on the top of next page.

Observing (34), it is difficult to solve (33) by the derivation.

To solve the problem, we adopt exhaustive search method

in [43] to obtain the optimal 𝑝∗(𝑎). The complexity of the

method is determined by the length of quantized values of 𝑎
and 𝐽𝑐 (𝑎). We assume the length of quantized values of 𝑎 and

𝐽𝑐 (𝑎) is 𝜇 and 𝜈, respectively. Then, the computing complexity

is 𝜇 × 𝜈.

3) Optimal Solution: By obtaining 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)),
the parameters to solve (29) reduce from three to two. Then,

the FRE can be expressed as 𝐷 (𝐽𝑐 (𝑎), 𝑝
∗(𝑎), 𝑎). To obtain

the solution for (29), we can prove that the following property

holds.

Property 1: For each distance 𝑎, the FRE with 𝑝∗(𝑎)
monotonically increases with average power 𝐽𝑐 (𝑎).

Proof: See Appendix A.

This property indicates that larger energy consumption at

the sensor leads to lower power efficiency, where we can

obtain the minimum FRE when 𝐽𝑐 (𝑎) = 0. We can set a

FRE threshold 𝜑 < 0 to determine the transmission power

of the sensor. Then, we have the following property about the

threshold.

Property 2: The threshold 𝜑 is suitable for all sensors inside
the circle with radius 𝑅.

Proof: See Appendix B.

By Property 2, we can obtain 𝐽𝑐 (𝑎) as

{
𝐽𝑐 (𝑎) = 0, if 𝐷 (0, 𝑝∗(𝑎), 𝑎) > 𝜑,
𝐽𝑐 (𝑎) > 0 and 𝐷 (𝐽𝑐 (𝑎), 𝑝

∗(𝑎), 𝑎) = 𝜑, if 𝐷 (0, 𝑝∗(𝑎), 𝑎) ≤ 𝜑.
(35)

Substituting (35) into (32), we can obtain the optimal 𝐽∗𝑐 (𝑎)
as

𝐽∗𝑐 (𝑎) = max
(
0,

𝑝∗(𝑎)

𝑀𝑎
·

ln (−𝜑𝑝∗(𝑎)) − ln (−𝑀𝑎 ln(𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))

ln(𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))

)
.

(36)

Then, substituting (36) into (31), we can obtain the failed

probability for distance 𝑎 as

𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤ 𝑏, 𝑀, 𝜑)= (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))
𝑀𝑎

𝐽∗𝑐 (𝑎)

𝑝∗ (𝑎) . (37)

From (24) and (37), we can obtain the reliability as

Pr∗{𝛼𝑛=1}=1−𝜀0−

∫ 𝑅

0
𝑓𝑎 (𝑎)𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏, 𝑀, 𝜑)d𝑎. (38)

Let Pr∗ {𝛼𝑛 = 1} = 𝑐∗. Then, we can obtain the optimal 𝐽∗𝑐 (𝑎)
for the sensors by finding suitable 𝜑. Finally, the transmission

power 𝑝∗(𝑎) for the sensor and the activate probability 𝑃∗
𝑎 (𝑎)
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𝐷 ′ (𝐽𝑐 (𝑎), 𝑝(𝑎), 𝑎) =
𝜕𝐷 (𝐽𝑐 (𝑎), 𝑝(𝑎), 𝑎)

𝜕𝑝(𝑎)
=

𝑀𝑎 (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))𝑀𝑎
𝐽𝑐 (𝑎)
𝑝 (𝑎)

𝑝3 (𝑎) (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))
ln (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏)) ·

[𝐽𝑐 (𝑎)𝑀𝑎 ln (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏)) + 1]
[
𝑝(𝑎) (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))′ − (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏)) ·

ln (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))
]
.

(34)

where (𝐹Γ (𝛾𝑡ℎ |𝑎 ≤ 𝑙 ≤ 𝑏))′ is the partial derivation on 𝑝(𝑎).

can be obtained by solving 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)) and (30),

respectively.

Finally, we briefly summary the above iterative method. Af-

ter the constrain on control convergence rate converted to the

constraint on communication reliability, the original problem

𝑃0 can be rewritten as a pure communication optimization

problem 𝑃1 for given convergence rate, where the parameters

are distance 𝑎, activation probability 𝑃(𝑎), and transmission

power 𝑝(𝑎). By defining FRE, 𝑃1 can be further rewritten

as 𝑃2. We rewrite average transmission power as the product

of activation probability and transmission power at distance

𝑎, i.e., 𝐽𝑐 (𝑎) = 𝑃𝑎 (𝑎)𝑝(𝑎). Then, the optimal 𝐽∗𝑐 (𝑎) can be

obtained by minimizing FRE, where (36) is the closed-form

expression for 𝐽∗𝑐 (𝑎). What follows, the optimal transmission

power 𝑝∗(𝑎) and activation probability 𝑃∗
𝑎 (𝑎) can be obtained

by solving equations, i.e., 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)) and (30) for

each distance 𝑎. Finally, by iterating distance 𝑎, we can obtain

optimal 𝑝∗(𝑎) and 𝑃∗
𝑎 (𝑎) for each 𝑎.

4) Computing Complexity: From the above discussion, the

computing complexity is 𝜇 × 𝜈 with respect to time by

exhaustive search method to find 𝑝∗(𝑎) = 𝑓 (𝑎, 𝐽𝑐 (𝑎)). If

the computing complexity in finding optimal solution is 𝜃
with respect to time. Then, the total computing complexity

is 𝜂 = 𝜃 × 𝜇 × 𝜈 with respect to time. Thus, the computing

complexity of the proposed method is O(𝜂) and increases

linearly with respect to time.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate

the performance of the proposed method, where the system

model is the same as shown in Fig. 1.

For URLLC, we assume that the bandwidth is 1 MHz, the

single-sided noise spectral density is −174 dBm/Hz, the large-

scale path loss constants is 𝐶 = −113.4 dB, the radius of the

circle is 𝑅 = 100 m, the number of sensors is 𝑀 = 200, the

maximum transmission power for the sensors is −17 dBm,

the transmission error probability is 𝜀0 = 10−6, and the

transmission time delay is 𝑇𝑢 = 0.5 ms. In addition, the SNR

thresholds are [5 10] dB. In addition, since traditional cellular

assisted method and autonomous method can not guarantee the

QoS requirement in URLLC, we consider a method that all

the sensors are activated to guarantee the URLLC requirement

as the traditional D2D transmission method for comparison.

For control, we assume that Ω𝑒0 = 2.5 and Ω𝑒1 = 0.8 and the

given positive definite weight matrix is Q = 1, the variance of

the disturbance matrix n𝑚 (𝑡) is 1, i.e., R𝑚 = 1, and the sample

period is 𝑠𝑚,𝑛 = 100 ms. In addition, we adopt the average
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Fig. 4: Control cost with time increasing.

Fig. 5: Optimal 𝑐∗ with different control convergence rate 𝜌.

control cost to evaluate the control performance and can be

expressed as [44]

𝐽𝑎𝑣𝑒 =

∑𝑁
𝑛=1 𝑥

2
𝑛

𝑁
, (39)

where 𝑁 = 𝑇/𝑠𝑚,𝑛 is adopted, and 𝑇 is the total time of the

control process.

A. Control performance

Fig. 4 shows the control cost 𝐽𝑎𝑣𝑒 with time increasing,

where different control convergence rates 𝜌 are considered,
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Fig. 6: The sensor activation probability with different distance

between the sensor and the plant.

i.e., 0.01, 0.5, and 0.9. From the figure, all the curves increase

at the initial time. This is because the changes of plant state

leads to the increasing of 𝐽𝑎𝑣𝑒 before the control system

being stable. Furthermore, with time increasing, the control

state will be stable and the control cost curves maintains in a

horizontal level, where the control cost increases when control

convergence rates 𝜌 increases. This indicates small 𝜌 leads to

low the average control cost.

Fig. 5 shows the constraint of the control on the communi-

cation, i..e, the optimal 𝑐∗, when control convergence rate 𝜌 is

different. From the figure, the curve decreases monotonically

from 𝑐∗ = 1 to 𝑐∗ = 0 with 𝜌, which matches the expression in

(28), i.e., 𝑐∗ decreases monotonically with respect to 𝜌. Thus,

higher communication reliability guarantees lower 𝜌, which

leads to lower control cost, i.e, higher control performance.

This is reasonable since higher communication reliability can

maintain fast and steady state update, which can reduce the

control cost. On the contrary, lower communication reliability

results in more packet loss, which can violate the required

control convergence rate and then leads to higher control cost

[2]. Since the communication reliability cannot be larger than

1 and less than 0, 𝑐∗ remains 0 when the control convergence

rate 𝜌 is larger than 6.2.

B. Communication performance

Fig. 6 shows sensor activation probability when the distance

between the sensor and the plant is different, where we

considered different SNR threshold 𝛾𝑡ℎ = 5 dB and 𝛾𝑡ℎ = 10
dB. In addition, we asume that 𝜀𝑡ℎ = 𝜀0 − 𝑐∗, where different

reliability requirements are considered, i.e., 𝜀𝑡ℎ = 10−2 and

𝜀𝑡ℎ = 10−5. From the figure, all curves decrease from 1 with

distance increasing. This is reasonable since small distance

between sensor and plant leads to that small transmission

power can guarantee the SNR threshold with large probability.

Considering different SNR thresholds 𝛾𝑡ℎ , the curve with large

𝛾𝑡ℎ is higher than that with small 𝛾𝑡ℎ for given distance and

given 𝜀𝑡ℎ . This is reasonable since more active sensors are

needed to satisfy larger 𝛾𝑡ℎ . Thus, the activation probability
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Fig. 7: The average transmission power with different distance

between the sensor and the plant.
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Fig. 8: The transmission power allocation with different SNR

threshold 𝛾𝑡ℎ .

is larger for larger 𝛾𝑡ℎ . Moreover, considering different 𝜀𝑡ℎ ,

the curve with small 𝜀𝑡ℎ is higher than that with large 𝜀𝑡ℎ for

given distance and given 𝛾𝑡ℎ . This is reasonable since high

active probability can guarantee high reliability, i.e., small

𝜀𝑡ℎ . In addition, compared with the traditional method with

activation probability being 1, the proposed method in this

paper do not need all sensors keeping active. Furthermore,

from Fig. 6, we can observe that when the distance is large,

the activation probability becomes small. This means that

more sensors are required to achieve the required reliability

if sensors are deployed from a large distance. In other words,

the relationship between reliability and the number of sensors

is related to the distance.

Fig. 7 shows the average transmission power 𝐽𝑐 (𝑎) when

the distance between the sensor and the plant is different,

where the SNR threshold 𝛾𝑡ℎ and packet loss threshold 𝜀𝑡ℎ
are the same with Fig. 6. From the figure, all the curves of

the proposed method decrease with distance increasing. This is

reasonable since fewer sensors are activated when the distance
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is larger as shown in Fig. 6. Thus, the average transmission

power 𝐽𝑐 (𝑎) is lower at larger distance. Considering different

SNR thresholds 𝛾𝑡ℎ , the curve with large 𝛾𝑡ℎ is high than

that with small 𝛾𝑡ℎ for given distance and given 𝜀𝑡ℎ . This is

reasonable since more transmission power is needed to satisfy

larger 𝛾𝑡ℎ . Moreover, considering different 𝜀𝑡ℎ , the curve with

small 𝜀𝑡ℎ is higher than that with large 𝜀𝑡ℎ for given distance

and given 𝛾𝑡ℎ . This is reasonable since more transmission

power can guarantee high reliability, i.e., small 𝜀𝑡ℎ . Moreover,

compared with traditional method with maximum transmission

power to maintain URLLC and control requirements, the

average transmission power of the proposed is significantly

lower, e.g., when 𝛾𝑡ℎ = 5 dB and 𝜀𝑡ℎ = 10−5, the transmission

power the proposed method is reduced by about 14 dB at

distance 100 m.

Furthermore, we also consider the case when the activation

probability is considered with 𝛾𝑡ℎ = 10 dB and 𝜖𝑡ℎ = 10−2,

where only communication reliability from URLLC is con-

sidered. Both the curves with activation probabilities 0.4 and

0.8 monotonously increase with distance. This is because

the activated sensors should try to maintain the reliability

requirement with more transmission power when the distance

is larger, which leads to the larger average power, i.e., 𝐽𝑐 (𝑎) =
𝑃𝑎 (𝑎)𝑝(𝑎) in (29) at larger distance. From the figure, the

average power consumption of the proposed method optimiz-

ing activation probability is significantly lower than that with

the same probability. For instance, the average transmission

power of the proposed method is reduced by about 100% dB

compared with the case that activation probability is 40% and

only URLLC is considered when 𝛾𝑡ℎ = 10 dB and 𝜖𝑡ℎ = 10−2.

Fig. 8 indicates the transmission power allocation when

SNR thresholds are different, where the distance between the

sensor and the plant is 0.02 km. In addition, we consider

different 𝜀𝑡ℎ . From the figure, both the curves of the proposed

method increases with SNR threshold 𝛾𝑡ℎ increasing. This is

reasonable since more transmission power at the sensor is

needed to guarantee larger SNR threshold 𝛾𝑡ℎ . Considering

different packet loss threshold 𝜀𝑡ℎ , large 𝜀𝑡ℎ leads to larger

transmission power, which is apparent. However, the tradi-

tional method need to transmit with maximum available power

to maintain larger SNR threshold 𝛾𝑡ℎ with no information

about the plant. From the figure, the proposed method can

reduce the energy consumption by at most 9 dB compared

with the traditional method when SNR threshold is 𝛾𝑡ℎ = 1
dB and the packet loss threshold is 𝜀𝑡ℎ = 10−2.

VI. CONCLUSIONS

In this paper, we proposed an autonomous D2D trans-

mission method in URLLC for real-time wireless control

systems, where both reliability requirement in URLLC and

control requirement were jointly considered. In particular, we

formulated an optimization problem to minimize transmission

energy consumption under the constraints of communica-

tion reliability and control convergence rate. To solve the

problem, we first discussed the relationship between control

convergence rate and communication reliability, where the

control convergence rate constraint was converted into the

constraint on communication reliability. Then, we proposed

a probability-based D2D activation method, where we set

a threshold to determine the transmission strategy of the

sensors. This allowed each sensor autonomously to decide

whether to participate in the control process with guaranteed

reliability requirement in URLLC and control convergence

rate requirement, which can significantly reduce the energy

consumption compared with the traditional D2D transmission

method.

APPENDIX A

This appendix provides the proof for Property 1, i.e., the

FRE with 𝑝∗(𝑎) monotonically increases with average power

𝐽𝑐 (𝑎) for each distance 𝑎.
We assume two average power 𝐽𝑖𝑐 (𝑎) and 𝐽

𝑗
𝑐 (𝑎) for distance

𝑎, where 𝐽𝑖𝑐 (𝑎) < 𝐽
𝑗
𝑐 (𝑎). Then, we have

𝐷
(
𝐽
𝑗
𝑐 (𝑎), 𝑝(𝑎), 𝑎

)
=

𝑀𝑎

𝑝(𝑎)
ln (𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙≤ 𝑏))(𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤𝑏))𝑀𝑎

𝐽
𝑗
𝑐 (𝑎)
𝑝 (𝑎)

= 𝐷
(
𝐽𝑖𝑐 (𝑎), 𝑝(𝑎), 𝑎

)
(𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤𝑏))𝑀𝑎

𝐽
𝑗
𝑐 (𝑎)−𝐽𝑖𝑐 (𝑎)

𝑝 (𝑎) .

(40)

Then, for optimal 𝑝∗(𝑎), we have 𝐷
(
𝐽𝑖𝑐 (𝑎), 𝑝

∗(𝑎), 𝑎
)

≤

𝐷
(
𝐽𝑖𝑐 (𝑎), 𝑝(𝑎), 𝑎

)
. Since 0 ≤ (𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙≤ 𝑏)) ≤ 1, then

we can obtain

𝐷
(
𝐽
𝑗
𝑐 (𝑎), 𝑝(𝑎), 𝑎

)
= 𝐷

(
𝐽𝑖𝑐 (𝑎), 𝑝(𝑎), 𝑎

)
(𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤𝑏))𝑀𝑎

𝐽
𝑗
𝑐 (𝑎)−𝐽𝑖𝑐 (𝑎)

𝑝 (𝑎)

≥ 𝐷
(
𝐽𝑖𝑐 (𝑎), 𝑝

∗(𝑎), 𝑎
)
(𝐹Γ (𝛾𝑡ℎ |𝑎≤ 𝑙 ≤𝑏))𝑀𝑎

𝐽
𝑗
𝑐 (𝑎)−𝐽𝑖𝑐 (𝑎)

𝑝 (𝑎)

≥ 𝐷
(
𝐽𝑖𝑐 (𝑎), 𝑝

∗(𝑎), 𝑎
)
,

(41)

which indicates that the FRE with 𝑝∗(𝑎) monotonically in-

creases with average power 𝐽𝑐 (𝑎) for each distance 𝑎.

APPENDIX B

This appendix provides the proof for Property 2, i.e., the

threshold 𝜑 is suitable for all sensors inside the circle with

radius 𝑅.
For the 𝑚-th sensor with distance 𝑙𝑚 from the plant, we set

a threshold 𝜑𝑚. Then, (35) can be rewritten as (42) on the top

of next page.
We assume that{

𝜑𝑚 ≤ 𝜑, 𝑚 = 1, 2, · · · , 𝑄,
𝜑𝑚 > 𝜑, 𝑚 = 𝑄 + 1, 𝑄 + 2, · · · , 𝑀.

(43)

Then, we have the CDF of the overall packet loss probability

as

𝐹Γ (𝛾𝑡ℎ) =
𝑀∏
𝑚=1

𝐹Γ (𝛾𝑡ℎ , 𝜑𝑚) = 1−𝜀0 − 𝑐∗, (44)

where 𝐹Γ (𝛾𝑡ℎ , 𝜑𝑚) is the overall packet loss probability of the

𝑚-th sensor with threshold 𝜑𝑚. In addition, to obtain minimum

transmission power, 𝐹Γ (𝛾𝑡ℎ) = 1−𝜀0−𝑐
∗ should hold. The total

average transmission power can be expressed as

𝐽𝑐 =
𝑀∑
𝑚=1

𝐽𝑐 (𝑎𝑚, 𝜑𝑚). (45)
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{
𝐽𝑐 (𝑎𝑚) = 0, if 𝐷 (0, 𝑝∗(𝑎𝑚), 𝑎𝑚) > 𝜑𝑚,
𝐽𝑐 (𝑎𝑚) > 0 and 𝐷 (𝐽𝑐 (𝑎𝑚), 𝑝

∗(𝑎𝑚), 𝑎𝑚) = 𝜑𝑚, if 𝐷 (0, 𝑝∗(𝑎𝑚), 𝑎𝑚) ≤ 𝜑𝑚.
(42)

If 𝜑𝑚 = 𝜑, we have

𝐹Γ (𝛾𝑡ℎ) =
𝑀∏
𝑚=1

𝐹Γ (𝛾𝑡ℎ , 𝜑) = 1−𝜀0 − 𝑐∗. (46)

Then, the difference between (44) and (46) can be expressed

as

0 =
𝑀∏
𝑚=1

𝐹Γ (𝛾𝑡ℎ , 𝜑) −
𝑀∏
𝑚=1

𝐹Γ (𝛾𝑡ℎ , 𝜑𝑚)

= −

∫ 𝐽𝑐 (𝑎𝑚 ,𝜑)

𝐽𝑐 (𝑎𝑚 ,𝜑𝑚)

𝐷 (𝐽𝑐 (𝑎), 𝑝
∗(𝑎), 𝑎) d(𝐽𝑐 (𝑎))

≤ 𝜑 (𝐽𝑐 (𝑎𝑚, 𝜑𝑚) − 𝐽𝑐 (𝑎𝑚, 𝜑)) .

(47)

Then, we have

𝐽𝑐 (𝑎𝑚, 𝜑𝑚) ≥ 𝐽𝑐 (𝑎𝑚, 𝜑), (48)

which means that the threshold 𝜑 is suitable for all sensors

to obtain minimum transmission power inside the circle with

radius 𝑅.
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