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Harnessing Wireless Channels for Scalable and
Privacy-Preserving Federated Learning
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Abstract— Wireless connectivity is instrumental in enabling
scalable federated learning (FL), yet wireless channels bring
challenges for model training, in which channel randomness
perturbs each worker’s model update while multiple workers’
updates incur significant interference under limited bandwidth.
To address these challenges, in this work we formulate a
novel constrained optimization problem, and propose an FL
framework harnessing wireless channel perturbations and inter-
ference for improving privacy, bandwidth-efficiency, and scala-
bility. The resultant algorithm is coined analog federated ADMM
(A-FADMM) based on analog transmissions and the alternating
direction method of multipliers (ADMM). In A-FADMM, all
workers upload their model updates to the parameter server (PS)
using a single channel via analog transmissions, during which
all models are perturbed and aggregated over-the-air. This
not only saves communication bandwidth, but also hides each
worker’s exact model update trajectory from any eavesdropper
including the honest-but-curious PS, thereby preserving data
privacy against model inversion attacks. We formally prove the
convergence and privacy guarantees of A-FADMM for convex
functions under time-varying channels, and numerically show the
effectiveness of A-FADMM under noisy channels and stochastic
non-convex functions, in terms of convergence speed and scala-
bility, as well as communication bandwidth and energy efficiency.

Index Terms— Analog federated ADMM, digital federated
ADMM, distributed machine learning, privacy, time-varying
channels.

I. INTRODUCTION

W IRELESS connectivity has a great potential to scale
up federated learning (FL) [1]–[3] by cutting the wires

between workers and their parameter server (PS). To this
end, recent works have studied FL over wireless links, and
improved the communication and energy efficiencies by opti-
mizing worker scheduling, transmission power, and computing
operations [4]–[16]. However, wirelessly connected work-
ers may interfere with each other during their over-the-air
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transmissions, while competing over limited bandwidth. Most
existing works avoid such interference by allocating dedicated
channels to different workers [4]–[8], which is not scalable
and requires significant amounts of bandwidth to support a
large number of workers. Alternatively, taking a cue from
FL operations, several recent works have proposed a method
harnessing interference without separate channel allocation
[12]–[16] as we review next.

As illustrated in Fig. 1(a), FL aims to minimize
�N

n=1 fn(Θ)

assuming N workers, by periodically uploading the local
model θn (or local gradient ∇fn(Θ)) of each worker and
downloading a global model Θ from the PS. Under digital
transmissions, i.e, digital FL, (i) the PS first receives each
θn through a separate channel per each worker, and (ii)
combines them into a global model Θ = 1

N

�N
n=1 θn. The

first step is however vulnerable to model inversion and recon-
struction attacks [17], [18] by an honest-but-curious PS. Since
the entire model update trajectory is observable, the PS can
infer the training samples, violating data privacy. Furthermore,
it is not communication-efficient because workers have to be
assigned orthogonal channels in order for the PS to decode
their models. However, the PS only needs

�N
n=1 θn rather than

individual local models, motivating the need for analog over-
the-air aggregation schemes as described next.

Unlike digital signal transmission of bit streams, each
analog signal directly represents an element θn,i of θn by
its amplitude, allowing signal superposition. Exploiting this
property, each worker in analog FL transmits an analog
signal θn,i over a shared channel among all workers, through
which all θn,i’s are superpositioned over the air while hiding
each private local model in the crowd. Consequently, the PS
receives

�N
n=1 hn,iθn,i that is perturbed by complex fading

channel hn,i. Due to the perturbed models, the convergence
and accuracy of analog FL depend significantly on the channel
characteristics. To obviate this problem, it is common to cancel
out the perturbation via a channel inversion method dividing
θn,i by hn,i before transmissions, as illustrated in Fig. 1(b).
With channel inversion, transmissions are only allowed when
|hn,i|2 ≥ ε, in order to avoid excessive transmit power
due to the inversion [12]–[14]. The choice of ε is heuristic,
hindering the convergence analysis of analog FL. Moreover,
this approach does not guarantee privacy. For example, when
only one worker has a good gain in one channel, it reveals
its local model updates to the PS, compromising privacy. Last
but not least, the rule of transmitting only when |hn,i|2 ≥ ε
totally ignores the power of the transmitted symbol itself.
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Fig. 1. Schematic illustrations of: (a) digital federated learning (FL), (b) analog FL with channel inversion, and (c) analog-federated ADMM (A-FADMM)
without channel inversion.

Note that we are sending analog signals, and hence these
limitations mandate a non-channel inversion method with
formal convergence and privacy guarantees.

In this paper, we propose A-FADMM, a novel federated
learning framework rooted in the alternating direction method
of multipliers (ADMM) and analog over-the-air aggregation
without channel inversion. Compared to the existing analog
FL algorithms [12]–[14] based on first-order methods such as
GD and SGD, A-FADMM is a second-order method providing
faster convergence [19], [20]. Furthermore, A-FADMM does
not apply channel inversion, so the PS receives the aggregate
of perturbed model updates, thereby preserving privacy even
when a single worker is transmitting over a given channel. This
is done by integrating channel perturbations into the problem
formulation, which may hamper the convergence particu-
larly under time-varying channels. A-FADMM thus carefully
updates the model parameters so that the time-varying channel
does not hinder its convergence. Our major contributions are
summarized as follows.

• On the theory front, this is the first work on analog trans-
mission based distributed ADMM (primal-dual method)
ensuring convergence while preserving privacy, under
convex functions and time-varying channel dynamics.
Existing works on analog FL focus on first-order pri-
mal methods, without proving convergence nor privacy
guarantees [12]–[14].

• On the algorithmic front, our proposed A-FADMM is the
first analog FL algorithm overcoming channel perturba-
tions without channel inversion while ensuring conver-
gence over time-varying channels.

• We numerically show that A-FADMM converges faster
with comparable accuracy, compared to its digital trans-
mission counterpart D-FADMM. Our simulations clar-
ify under which conditions A-FADMM is preferable to
D-FADMM, in terms of energy-efficiency, low-latency,
and scalability.

• To further support the feasibility of A-FADMM, we elab-
orate on how to cope with constrained transmit power.
Moreover, to corroborate the feasibility under stochastic
and non-convex functions, we provide simulation results
for the stochastic version of A-FADMM (SA-FADMM)

based on a deep neural network (DNN) in an image
classification task.

The rest of the paper is structured as follows. In Section II,
the proposed Analog Federated ADMM (A-FADMM) is
described. The convergence of the proposed algorithm is
studied in Section III, and the privacy analysis is provided
in Section IV. The effectiveness of A-FADMM is numerically
corroborated in Section V, in terms of accuracy and communi-
cation efficiency for linear regression and image classification
using DNNs, followed by our conclusion in Section VI.

II. ANALOG FEDERATED ADMM

A-FADMM aims to aggregate multiple workers’ updates at
the PS without competition on the available bandwidth via
analog transmissions. In this section, we describe A-FADMM
operations based on a novel problem formulation, and explain
how A-FADMM copes with the nuisances incurred by analog
transmissions, in terms of time-varying channel fading, noise,
and transmit power limitation.

A. Problem Formulation

The original problem of FL is to minimize 1
N

�N
n=1 fn(Θ)

with N workers, by locally minimizing fn(θn) at each worker
and globally averaging their model parameters θn at the PS.
This boils down to the average consensus problem (P1) below.

(P1) min
Θ,{θn}N

n=1

N�
n=1

fn(θn)

s.t. θn = Θ, ∀n (1)

Primal-dual methods can solve (P1), among which ADMM
is one popular approach [19]–[21]. To implement this using
digital transmissions, workers transmit their local model
updates to the PS through orthogonal channels, wherein each
local model is the primal variable θn while its dual variable ιn

is locally updated. Next, we explain the steps of the standard
ADMM technique [19]–[21] in solving (P1).
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The augmented Lagrangian of (P1) is written as

Lρ(Θ, {θn}Nn=1, {ιn}Nn=1)

=
N�

n=1

fn(θn) +
N�

n=1

�ιn, θn −Θ�

+
ρ

2

N�
n=1

� θn −Θ �22, (2)

where ρ > 0 is a constant penalty for the disagreement
between θn and Θ. At iteration k + 1, each worker updates
its primal variable by solving the following problem

θk+1
n = argmin

θn

�
fn(θn) + �ιk

n, θn −Θk�

+
ρ

2
� θn −Θk �22

�
. (3)

Based on all workers’ primal variable updates {θk+1
n }Nn=1 and

previous dual variables {ιk
n}Nn=1, PS updates the global model

Θk+1 as follows

Θk+1 =
1
N

N�
n=1

(θk+1
n +

1
ρ
ιk

n). (4)

Finally, given the updated global model Θk+1, each worker
updates the dual variable ιk+1

n as follows

ιk+1
n = ιk

n + ρ(θk+1
n −Θk+1). (5)

To implement ADMM operations, each worker uploads θk+1
n

to the PS, and then downloads Θk+1 from PS, followed
by locally updating the dual variable ιk+1. Under digital
transmission, the entire bandwidth is orthogonally allocated
to each worker, while each update uploading or downloading
corresponds to exchanging a fixed number of bits, e.g., 32 bits
per model’s element. To cope with channel fading and noise,
adaptive modulation and error-correction coding are used in
digital transmission.

By contrast, using analog transmissions, N workers trans-
mit the i-th element of their updates using the same i-th
subcarrier (channel). The benefit of analog transmissions is
to aggregate all workers’ updates over-the-air in one channel
use, but at the cost of perturbations by channel fading hn,i

which are assumed to follow an independent and identically
distributed (IID) complex Gaussian distribution. These fading
perturbations are often cancelled by multiplying 1/hn,i before
transmission, i.e., channel inversion [12]–[14]. Alternatively,
we avoid channel inversion by reformulating (P1) into (P2)
below, where the subscript i denotes the i-th element.

(P2) min
Θ,{θn}N

n=1

N�
n=1

fn(θn) (6)

s.t. hn,iθn,i = hn,iΘi, ∀n, i (7)

where the subscript i represents the i-th element in the vector.
Note that, in (P2), we assume that the channel is constant and
the system is noise free. We will relax these assumptions later
in the section. In (P2), constraint (1) is recast as its equivalent
constraint (7) that allows A-FADMM to be updated directly
using perturbed updates, i.e., constraints (1) and (7) are the

exact same constraint. Multiplying both sides of the equation
with h does not change the constraint. We are utilizing analog
transmission without resorting to channel inversion. Therefore,
the parameter server will receive an aggregated and channel
perturbed version of the local models instead of the aggregate
models. Hence, to account for the channel perturbed values
of the models in the updating step of ADMM and ensure
convergene, we introduce the channel in the constraint and
carry out the analysis. With that we, are able to derive an
updating formula of the primal and dual variables relying on
the aggregated and channel perturbed versions of the local
models. The details are explained in the next section.

B. Primal, Dual, and Global Model Updates

The Lagrangian of (P2) is written as follows

Lρ(θn, ι) =
N�

n=1

fn(θn) +
d�

i=1

N�
n=1

ι∗
n,ihn,i(θn,i −Θi)

+
ρ

2

d�
i=1

N�
n=1

|hn,i|2(θn,i −Θi)2, (8)

where ι∗
n,i is the conjugate of the complex dual variable ιn,i,

d is the cardinality of θn (i.e., model size), and ρ > 0 is a
constant penalty for the local and global model disagreement.
At iteration k + 1, each worker updates its primal variable
θk+1

n so as to minimize Lρ(θn,Θk, ιk). Hence, θk+1
n,i , ∀i =

1, · · · , d, should satisfy the following equation

0 ∈ ∂ifn(θk+1
n ) + ιk

n,i

∗
hn,i + ρ|hn,i|2(θk+1

n,i −Θk
i ), (9)

where ∂ifn(·) denotes the i-th element in the sub-gradient
vector of fn(·).

Next, PS updates the i-th element Θk+1
i of the global model

that minimizes Lρ(θk+1
n ,Θ, ιk). By taking the derivative of

Lρ(θk+1
n ,Θ, ιk) with respect to Θi and equating to zero,

Θk+1
i is given by

Θk+1
i =

1�N
n=1 |hn,i|2

N�
n=1

�
|hn,i|2θk+1

n,i + hn,iι
k
n,i

∗
/ρ

�
.

(10)

Finally, the dual variables are updated at each worker as
follows

ιk+1
n,i = ιk

n,i + ρhn,i(θk+1
n,i −Θk+1

i ). (11)

Next, we will discuss how to implement the aforementioned
update rules under time-varying channel fading, noise, and
transmit power limitation.

C. Time-Varying Channel

The primal-dual update rules in (9) and (11) do not ensure
the non-increase of the optimality gap when hk+1

n,i �= hk
n,i.

In this case, instead of updating θk+1
n,i using (9), we choose

θk+1
n,i = θk

n,i, and find ιk
n,i

∗
that satisfies (9); in other

words, the primal update problem (9) is flipped to the dual
update problem. In doing so, A-FADMM copes with the
channel changes reflected in the dual variables, and ensures
that the primal-dual variables are still optimal for the given
channel hk+1

n,i .
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Fig. 2. An illustration of uplink and downlink communication in A-FADMM under channel noise.

Algorithm 1 Analog Federated ADMM (A-FADMM)

1: Input: N, fn(θn)∀n, ρ, K , Output: θn, ∀n
2: Initialization: θ(0)

n ,Θ(0)
n , ι(0)

n , ∀n
3: A-FADMM:
4: while k ≤ K do
5: All workers (n ∈ {1, · · · , N}): in Parallel
6: for i = 1, · · · , d do
7: if hk+1

n,i = hk
n,i then

8: Find θk+1
n,i that satisfies (14)

9: else
10: θk+1

n,i = θk
n,i

11: Find (ιk
n,i)∗ that satisfies (14)

12: end if
13: end for
14: Send (hk+1

n,i )
∗
θk+1

n,i + (ιk
n,i)

∗
/ρ, ∀i = 1, · · · , d to the

parameter server
15: Parameter Server:
16: Find Θk+1

i that satisfies (13)
17: Broadcast Θk+1

i , ∀i = 1, · · · , d to all workers
18: All workers (n ∈ {1, · · · , N}): in Parallel
19: Update ιk+1

n,i locally via (15)
20: k ← k + 1
21: end while

D. Uploading and Downloading Information

We assume that every worker knows its individual channel
hk+1

n,i , while the PS knows the aggregate channel
�N

n=1 |hk+1
n,i |2

using pilot signals [22]. Then, to update the i-th element
of the global model Θi, each worker uploads hk+1

n,i

∗
θk+1

n,i +

ιk
n,i

∗
/ρ, where h∗

n,i is the conjugate of the complex chan-

nel hn,i. Hence, after channel perturbation, the PS receives
�N

n=1(|hk+1
n,i |2θk+1

n,i +hk+1
n,i ιk

n,i
∗
/ρ) in (10). By downloading Θi,

each worker locally updates the primal and dual variables
using (9) and (11), respectively.

E. Noisy Channel

In practical systems, the received signal is not only per-
turbed by channel fading but also distorted by additive
white Gaussian noise (AWGN). Under digital transmissions,
the noise can be alleviated using digital modulation and error
correction coding schemes [23], [24]. By contrast, A-FADMM
conveys uncoded information using analog transmissions.
Therefore, the received information is perturbed by multi-
plicative fading and distorted by additive noise. A-FADMM
directly utilizes the fading perturbed updates, yet still corrects
channel noise using matched filtering (i.e., correlator receiver)
as follows.

In the uplink of iteration k + 1, as illustrated in Fig. 2,
each worker uploads its update hk+1

n,i

∗
θk+1

n,i +ιk
n,i

∗
/ρ to the PS

over the i-th subcarrier for T seconds. Propagating through the
wireless channel, each update is perturbed by fading (i.e., mul-
tiplying by hk+1

n,i ), aggregated across all workers, and distorted
by channel noise (i.e., adding ẑk+1

i (t) ∼ CN (0, No)). Con-
sequently, the PS receives

�N
n=1(|hk+1

n,i |2θk+1
n,i +hk+1

n,i ιk
n,i

∗
/ρ)+

ẑk+1
n,i (t) at every instant t ∈ [0, T ], where the AWGN ẑk+1

n,i (t) ∼
CN (0, No). The matched filter (i.e., correlator receiver) at PS
integrates the received signals during T , and takes a sample
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at t = T , resulting in

1
T

� T

t=0

�	 N�
n=1

|hk+1
n,i |2θk+1

n,i +ιk
n,i

∗
hk+1

n,i /ρ


+ẑk+1

i (t)
�

dt

=
N�

n=1

|hk+1
n,i |2θk+1

n,i +ιk
n,i

∗
hk+1

n,i /ρ+zk+1
n,i , (12)

where the resultant noise zk+1
n,i ∼ CN (0, N0/T ) whose

variance is reduced from N0 to N0/T . Accordingly, the global
model update is given by

Θk+1
i =

�N
n=1

�
|hk+1

n,i |2θk+1
n,i + hk+1

n,i ιk
n,i

∗
/ρ+ Re{zk+1

n,i }
�

�N
n=1 |hk+1

n,i |2
,

(13)

where Re{zk+1
n,i } is because Θk+1

i is real. Note that ιk
n,i is

complex, but the term hk+1
n,i ιk

n,i
∗ is still real.

Likewise, in the downlink, the matched filter at each worker
provides hk+1

n,i Θk+1
i + zk+1

n,i . To make this output fit with the
primal and dual updates, the output is multiplied by hk+1

n,i

∗
,

and |hk+1
n,i |2Θk+1

i +hk+1
n,i

∗
zk+1

n,i is used for the following primal
update rule

0 ∈ ∂ifn(θk+1
n ) + (ιk

n,i)
∗hk+1

n,i

+ρ|hk+1
n,i |2(θk+1

n,i −Θk
i )− ρRe{hk+1

n,i

∗
zk+1

n,i }, (14)

and the dual update rule is given by

ιk+1
n,i = ιk

n,i + ρhk+1
n,i (θk+1

n,i −Θk+1
i )− ρRe{zk+1

n,i }. (15)

The aforementioned operations of A-FADMM are summarized
in Algorithm 1 in the previous page.

F. Power Control

Another practical concern is each worker’s transmit power
limitation. In order not to violate the maximum power budget
P , before transmission each worker calculates its local power
scaling factor αk+1

n such that (αk+1
n )2

�d
i=1 |hk+1

n,i

∗
θk+1

n,i +

ιk
n,i

∗
/ρ|2 = P , and sends αk+1

n to the PS. Then, the PS
determines αk+1 = min{αk+1

1 , · · · , αk+1
N } that is down-

loaded by every worker. Finally, each worker transmits
αk+1(hk+1

n,i

∗
θk+1

n,i +ιk
n,i

∗
/ρ) to the PS, and after matched filter-

ing and dividing by αk+1, the PS obtains
�N

n=1(|hk+1
n,i |2θk+1

n,i +

hk+1
n,i ιk

n,i
∗
/ρ) + zk+1

n,i /αk+1 for the global model update. Note
that αk+1 and αk+1

n are scalar values that can be exchanged
with negligible communication overhead, e.g., through sepa-
rate control signaling channels [25].

III. CONVERGENCE ANALYSIS

In this section, we prove the optimality and convergence
of A-FADMM for convex functions under noise-free but
time-varying channels. Before stating the main results of the
paper, we make the following assumptions

• Assumption 1: The local functions fn are convex, proper
and closed,

• Assumption 2: The unaugmented Lagrangian L0 has a
saddle point.

The necessary and sufficient optimality conditions are the
primal and dual feasibility given by

θ�
n = Θ� ∀n and (16)

0 ∈ ∂ifn(θ�
n) + μ�

n,i ∀n, (17)

where the superscript � denotes the value at the convergence
point. The term μn,i = ιn,i

∗hn,i is the dual variable com-
bined with channel fading. According to (11), μn,i is updated
as follows

μk+1
n,i = μk

n,i + ρ|hk+1
n,i |2rk+1

n,i , (18)

where rk+1
n,i = θk+1

n,i − Θk+1
i is the n-th worker’s primal

residual. Applying the modified dual update rule (18) to the
primal update rule (9), we obtain

0 ∈ ∂ifn(θk+1
n ) + μk+1

n,i + Sk+1
n,i , (19)

where Sk+1
n,i = ρ|hk+1

n,i |2(Θk+1
i − Θk

i ) is the n-th worker’s
dual residual. Now, we are in position to introduce our first
result, Lemma 1.

Lemma 1: For the iterates θk+1
n the optimality gap of A-

FADMM, is upper and lower bounded as follows.

(Lower bound)
N�

n=1

�
fn(θk+1

n )− fn(θ�
n)

�

≥
N�

n=1

d�
i=1

μ�
n,ir

k+1
n,i (20)

(Upper bound)
N�

n=1

�
fn(θk+1

n )− fn(θ�
n)

�

≤ −
N�

n=1

d�
i=1

�
μk+1

n,i rk+1
n,i − Sk+1

n,i (θ�
n,i − θk+1

n,i )
�
. (21)

The detailed proof is provided in Appendix VII-A. The main
idea for the proof is to utilize the optimality of the updates in
(9) and (10). We derive the upper bound for the objective
function optimality gap in terms of the primal and dual
residuals as stated in (21). To get the lower bound in (20) in
terms of the primal residual, the definition of the Lagrangian
(8) is used at ρ = 0. The result in Lemma 1 is used to derive
the main results in Theorem 1 as presented next.

Theorem 1: When fn(θn) is closed, proper, and convex ∀n
and the Lagrangian L0 has a saddle point, under a time-
varying channel, A-FADMM satisfies the following statements.
Then, the optimality gap is non-increasing, i.e.,

N�
n=1

d�
i=1

{ 1
ρ|hk+1

n,i |2

(μk+1

n,i − μ�
n,i)

2 − (μk
n,i − μ�

n,i)
2
�

+ρ|hk+1
n,i |2

�
(Θk+1

i −Θ�
i )

2 − (Θk
i −Θ�

i )
2
�
} ≤ 0. (22)

The detailed proof of Theorem 1 is provided in Appendix VII-
B. For the time-invariant scenario, we have the following
corollary.

Corollary 1: For A-FADMM under a time-invariant channel
where hk+1

n,i = hk
n,i ∀k, it holds that
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• The optimality gap converges to zero as k →∞, i.e.,

lim
k→∞

N�
n=1

fn(θk
n) =

N�
n=1

fn(θ�) (23)

• Both primal and dual residuals converge to zero as k →
∞, i.e.,

lim
k→∞

rk
n,i = lim

k→∞
Sk

n,i = 0 (24)

The proof can be found in Appendix VII-C. The
key idea is to define the Lyapunov function V k =
�N

n=1

�d
i=1[

1
ρ|hn,i|2 (μk

n,i − μ�
n,i)

2 + ρ|hn,i|2(Θk
i − Θ�

i )2] and

show that the difference between V k+1 and V k monotonically
decreases with k. This property enables proving that both
primal and dual residuals converge to zero. Next, we apply
Lemma 1, and prove the optimality gap goes to zero.

IV. PRIVACY ANALYSIS

Revealing the local model update trajectory is vulnerable
to model inversion and membership attacks [17], [18]. These
attacks can reconstruct a data sample via a generative model
such as a generative adversarial network (GAN) [26], and
identify which worker used the sample during its local model
training. Against such an adversarial inverse problem, we aim
to preserve privacy defined as follows.

Definition 1 [27]: A mechanism M : M(X)→ Y is defined
to be privacy preserving if the input X cannot be uniquely
derived from the output Y .

We treat X as local models to be protected, and consider
Y as the known information at an eavesdropper such as PS or
another worker. Under digital transmissions, PS receives every
local model θk+1

n , always violating privacy. Under analog FL
wherein PS receives

�N
n=1 θk+1

n after channel inversion, for
certain iterations when only one worker sends the local model
to PS, privacy is violated.

In sharp contrast, PS in A-FADMM receives�N
n=1(|hk+1

n,i |2θk+1
n,i + hk+1

n,i ιk
n,i

∗
/ρ). This does not violate

privacy since the reception is the aggregate of fading-perturbed
and dual-variable-distorted local models while h∗

n,i, ιk
n,i

∗
,

and N are unknown at PS. Consequently, according to
Definition 1, A-FADMM preserves the privacy of every local
update in a local model and its gradient, against PS or any
eavesdropper knowing the global model trajectory.

In the literature of FL, privacy has often been analyzed
through the lens of differential privacy (DP) [3], [28], [29].
A well-known DP mechanism is to distort the local or global
model updates by injecting an additive random noise with
zero mean and a constant variance. Compared to such a DP
mechanism, A-FADMM distorts the local model updates by
adding a random variable hk+1

n,i ιk
n,i

∗
/ρ whose statistical prop-

erties are non-trivial and time-varying according to the locally
computed dual variable updates ιk

n,i

∗
. Moreover, A-FADMM

additionally perturbs the local model updates by multiplying
the random fading gain, i.e., |hk+1

n,i |2θk+1
n,i . Furthermore, the PS

receives the aggregated sum of all perturbed signals of all
workers which hides each individual’s updated model.

Both additive random distortion with time-varying statistics
and multiplicative random perturbation of A-FADMM are

ill-suited for DP analysis. Therefore, it is infeasible to fairly
compare the existing DP based mechanisms and that of A-
FADMM. Instead, following the privacy analysis in [27],
we aim to show that any eavesdropper cannot uniquely infer
a local model under A-FADMM, as stated in the following
theorems.

Theorem 2: Unless Θk+1
i = θk+1

n,i (i.e., before conver-
gence), at every k + 1, A-FADMM preserves the privacy
of each local model update θk+1

n,i and gradient update
∂fn(θk+1

n ) ∀n, i.
Proof: Intuitively, we show that the inverse problem of an

eavesdropper is to solve a set of equations at every iteration,
in which the number of unknowns is larger than the number
of equations. Therefore, each worker’s local model or gradient
cannot be uniquely derived. In fact, since θ0

n,i and ι0
n,i∀n ∈

{1, · · · , N}, ∀i ∈ {1, · · · , d}, are initiated randomly, then
their values cannot be revealed by the eavesdropper. For
simplicity, we assume that fn(θk+1

n ) is differentiable and the
system is noise free. The eavesdropper needs to solve either
of the following two equations to derive θ1

n,i

⎧⎨
⎩θ1

n,i = ρ|h1
n,i|2Θ0

i−∇ifn(θ1
n)−(λ0

n,i)
∗h1

n,i

ρ|h1
n,i|2 , if h1

n,i = h0
n,i

θ1
n,i = θ0

n,i, if h1
n,i �= h0

n,i

(25)

Then, we can write

θ1
n,i =

�
ρ

N�
n=1

|h1
n,i|2Θ1

i − ρ

N�
m=1,m �=n

|h1
m,i|2θ1

m,i

−
N�

n=1

(ι0
n,i)

∗h1
n,i

�
/
�
ρ|h1

n,i|2
�
. (26)

Note that the eavesdropper knows Θ0
i and Θ1

i . However,
the values of h1

n,i, ι0
n,i, ∇ifn(θ1

n), ρ
�N

m=1,m �=n |h1
m,i|2θ1

m,i,
and θ0

n,i are unknown. Hence, even at the absence of the noise
at the receiver, the eavesdropper cannot have a unique solution
for θ1

n,i and/or∇ifn(θ1
n) since the number of variables V = 5

is greater than the number of equations E = 2. Writing the
same equations for iteration k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θk
n,i =

ρ|hk
n,i|2Θk−1

i −∇ifn(θk
n)−(λk−1

n,i )∗hk
n,i

ρ|hk
n,i|2

,

if hk
n,i = hk−1

n,i

θk
n,i = θk−1

n,i ,

if hk
n,i �= hk−1

n,i

(27)

θk
n,i =

�
ρ

N�
n=1

|hk
n,i|2Θk

i − ρ

N�
m=1,m �=n

|hk
m,i|2θk

m,i

−
N�

n=1

(ιk−1
n,i )∗hk

n,i

�
/
�
ρ|hk

n,i|2
�
. (28)
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as well as for iteration k + 1⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θk+1
n,i =

ρ|hk+1
n,i |2Θk

i −∇ifn(θk+1
n )−(λk

n,i)
∗hk+1

n,i

ρ|hk+1
n,i |2 ,

if hk+1
n,i = hk

n,i

θk+1
n,i = θk

n,i,

if hk+1
n,i �= hk

n,i

(29)

θk+1
n,i =

�
ρ

N�
n=1

|hk+1
n,i |2Θk+1

i − ρ

N�
m=1,m �=n

|hk+1
m,i |2θk+1

m,i

−
N�

n=1

(ιk
n,i)

∗hk+1
n,i

�
/
�
ρ|hk+1

n,i |2
�
. (30)

Similarly, the eavesdropper knows Θk
i and Θk+1

i . However,
hk+1

n,i , ιk
n,i, ∇ifn(θk+1

n ), ρ
�N

m=1,m �=n |hk+1
m,i |2θk+1

m,i , and θk
n,i

are unknown. We clearly see that if the algorithm has not
converged to the optimal solution yet at iteration k + 1.
i.e., θk+1

n,i �= Θk+1
i , then there is no unique inversion of θk+1

n,i

since the number of variables is more than the number of
equations. This finalizes the proof.

Theorem 3: When Θk+1
i = θk+1

n,i (i.e., at conver-
gence), A-FADMM preserves the privacy of the local
model trajectory {θ0

n,i, · · · , θk
n,i} and gradient trajectory

{∂fn(θ1
n), · · · , ∂fn(θk+1

n )} ∀n, i.
Proof: In brief, we show that after A-FADMM conver-

gence when all local models become identical and known
to an eavesdropper, this information cannot be used to
derive a unique trajectory of each worker’s local model
and gradient updates. When θk+1

n,i = Θk+1
i , ∀n, i, we know

from (30) that the following terms can be found at the
PS:

�N
n=1 |hk+1

n,i |2Θk+1
i , ρ

�N
m=1,m �=n |hk+1

m,i |2θk+1
m,i . How-

ever, the terms (ιk
n,i)

∗hk+1
n,i and ρ|hk+1

n,i |2 cannot be found,
and these two terms are needed to retrieve a unique solution
for ∇ifn(θk+1

n ) using (29). Hence, ∇ifn(θk+1
n ) cannot be

uniquely derived. From (27)-(28), we clearly see that knowing
θk+1

n,i , Θk
i , and Θk−1

i are not enough to find a unique solution
for ∇ifn(θk

n) and θk
n,i since all other terms in the two

equations including hk
n,i and ιk−1

n,i are also unknown. There-
fore, the individual model at the convergence point do not
release any unique information about the updating steps of the
model and the function gradient trajectory, which concludes
the proof.

V. EXPERIMENTS

To validate our theoretical foundations, we numerically
evaluate the performance of A-FADMM in convex (linear
regression) and non-convex (image classification using DNNs)
problems.

A. Simulation Settings

For linear regression, we use the California Housing
dataset [30] consisting of 20000 samples with 6 features,
i.e., model size d = 6. At iteration k, the loss is given as
|�N

n=1[f(θk
n) − f(θ�)]|. For image classification, we use the

MNIST dataset [31] comprising 60000 training and 10000 test
samples, each of which represents a hand-written 0-9 digit

image. In this case, we consider a 3-layer fully connected
multi-layer perceptron (MLP) comprising an input layer with
784 neurons, two hidden layers with 128 and 64 neurons,
respectively, and an output layer with 10 neurons, resulting
in the model size d = 109184. We use the rectified linear
unit (ReLu) activation function, softmax output, and cross
entropy loss.

By default, we consider N =100 workers with SNR=40dB,
each of which stores the same number of training samples
equally divided and allocated from the training dataset. These
workers are supported using 10 and 4096 subcarriers for linear
regression and DNNs, respectively. Following the LTE cellular
standards [25], each subcarrier provides 15KHz bandwidth
during 1ms. Each channel realization is coherent during 10
iterations, and is randomly generated by a Rayleigh fading
distribution with zero mean and unit variance for every 10
iterations.

To focus primarily on the uplink bandwidth bottleneck in
the simulations, analog transmissions are utilized only for
the uplink, while digital transmissions are considered in the
downlink where the PS broadcasting the global updates with-
out any bandwidth competition. Consequently, in the resultant
A-FADMM implementation under channel noise, the global
model update after the analog uplink reception follows (13)
as in Algorithm 1, whereas the primal and dual updates
(originally given as (14) and (15) in Algorithm 1) after the
digital downlink reception use the following rules:

0 ∈ ∂ifn(θk+1
n ) + (ιk

n,i)
∗hk+1

n,i + ρ|hk+1
n,i |2(θk+1

n,i −Θk
i )

(31)

ιk+1
n,i = ιk

n,i + ρhk+1
n,i (θk+1

n,i −Θk+1
i ). (32)

These noise-free primal and dual update rules are implemented
as follows. In the digital downlink, each worker decodes
Θk+1

i , and manually perturbs it as |hk+1
n,i |2Θk+1

i that is used
for updating primal and dual variables via (31) and (32).

In A-FADMM, the i-th element of the models of all workers
are uploaded using the i-th sub-carrier. In linear regression,
the model size is less than the number of available subcarriers,
i.e., d = 6 < 10, and hence A-FADMM requires only one
time slot (one upload) to upload all workers’ models at each
iteration. In image classification where d = 109184, it requires
109184/4096� = 27 time slots to uploads all workers’
models per iteration.

In D-FADMM, the number of uploading time slots depends
not only on the number of subcarriers but also on the channel
gain of each subcarrier. To be precise, following the LTE
cellular standards [25], each subcarrier provides Wi = 15KHz
bandwidth during 1ms. Each channel realization is coherent
during 10 iterations, and is randomly generated by a Rayleigh
fading distribution with zero mean and unit variance for
every 10 iterations. When each model element consumes
32 bits, the n-th worker requires the uploading time slots
T̂n that is the minimum Tn satisfying the following condition� Tn

t=1

�4096/N
i=1 Rn,i(t)dt ≥ 32 d, where Rn,i(t) = Wi log2(1 +

P |hn,i(t)|/(WiN0)) follows from the Shannon formula. Since
each worker has independent channel realizations, to upload all
workers’ models to PS, it requires T̂ = max{T̂1, T̂2, · · · , T̂N}
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time slots. Based on Algorithm 1, D-FADMM is implemented
by replacing (13) for Θk+1

i , (14) for θk+1
n,i , and (15) for ιk+1

n,i

with (9), (10), and (11), respectively.
In (8), we choose the penalty constant ρ = 0.5 yielding

fast convergence for both digital and analog implementations
from our observations. To run the experiments, we use Matlab
for linear regression and TensorFlow for image classification,
operated in a MacBook Air computer (1.8 GHz Intel Core
i5 CPU, 8 GB 1,600 MHz DDR3 RAM). For each plot,
we run 5 simulations, and report mean values (solid curves)
and standard deviations (shaded areas, omitted for negligible
values). Finally, we compare A-FADMM with the following
benchmark algorithms.

• D-FADMM is the digital communication version of
A-FADMM, wherein the total bandwidth is equally
divided and allocated to each worker whose model ele-
ment consumes 32 bits. i.e., the value of each element in
the model vector is transmitted using 32 bits. Following
A-FADMM, we use ρ = 0.5.

• A-GD is the analog communication versions of the
distributed gradient descent algorithm (GD) with chan-
nel inversion that allows the n-th worker to upload its
update only when the channel gain |hk

n,i| ≥ �. We use
� = 10−6 for communication and 10−4 learning rate for
GD operations. We observed that A-GD diverges for a
larger learning rate.

For the image classification task, we use the following base-
lines and hyperparameters.

• A-SFADMM is the stochastic version of A-FADMM
using DNNs. For the ADMM problem, we use ρ = 0.5.
For the local problem at each global iteration, each
worker selects a mini-batch of size 100 samples at ran-
dom, and uses the Adam optimizer with 0.01 learning rate
to update its local model. Per global iteration, we consider
20 local iterations. For different choices of local iterations
and learning rates, we study their impact on convergence
speed and accuracy in Figures 6 and 7.

• D-SFADMM is the stochastic version of D-FADMM
which are utilized in the classification problem using
DNN. Following A-SFAMM, we use ρ = 0.5, Adam
optimizer with 0.01 learning rate, mini-bath size 100, and
20 local iterations per global iteration.

• A-SGD is the stochastic version of A-GD with channel
inversion (i.e., analog FL). Following A-GD, we use
� = 10−6 for communication. For SGD operations,
we use mini-batch size 100, and choose the learning rate
0.005. Note that from our observations, A-SGD incurs
high oscillation under the learning rate 0.01 used in
A-SFADMM and D-SAFDMM.

For both linear regression and image classification task,
the notation 10x implies an algorithm with 10x more sub-
carriers (bandwidth) than the default setting. For exam-
ple, compared to A-SFADMM using 4096 subcarriers,
A-SFADMM-10x utilizes 40960 subcarriers at each itera-
tion. Accordingly, given the MLP model size d = 109184,
A-SFADMM-10x requires 109184/40960� = 3 time slots

for uploading all workers’ models, which is 9x less than
A-SFADMM requiring 109184/4096� = 27 time slots.

B. Communication Efficiency

In linear regression, as observed in Fig. 3(a), A-FADMM
requires the lowest communication rounds until achieving a
target loss 10−4. Even with 10x more subcarriers, D-FADMM
fails to reach the same speed due to the orthogonal subcarrier
allocation to each worker under limited bandwidth. However,
if one aims to achieve very low loss below 10−4, A-FADMM
suffers from noisy reception, and D-FADMM may thus be a
better choice, as long as very large bandwidth and/or long
uploading time are available. In image classification, Fig.4(a)
shows that A-SFADMM achieves the highest accuracy the
minimum number of communication rounds. In fact, it is
even more communication-efficient than D-SFADMM with
10x more subcarriers (D-SFADMM-10x).

For both tasks, analog FL (i.e., A-GD and A-SGD) strug-
gles with intermittent uploads due to the truncated channel
inversion (transmitting only when |hn,i| ≥ β). This yields too
many communication rounds in linear regression (A-GD) and
high variance in image classification (A-SGD), highlighting
the importance of non-channel inversion methods used in
A-FADMM and A-SFADMM.

C. Energy Efficiency vs. Accuracy

In this experiment, we assume that there are sufficient
subcarriers to upload every update in one time slot, and
focus on wireless communication energy consumption that
often exceeds computing energy [32]. We measure the loss
or accuracy when the total channel uses

�j
i=1 Mi at time slot

j reaches a target maximum number of channel uses, where
Mi is the number of subcarriers used in time slot i.

With linear regression task and 100k maximum number of
channel uses, Fig. 3(b) shows that A-FADMM always achieves
order-of-magnitude lower loss than D-FADMM, even at very
low −10dB SNR, i.e., low transmit power. With 200k channel
uses, D-FADMM outperforms A-FADMM, but only at high
SNR exceeding 20dB. This advocates that A-FADMM is more
energy-efficient and bandwidth-efficient.

In image classification, as shown by Fig. 4(b), A-SFADMM
not only outperforms D-SFADMM, but also achieves the
maximum test accuracy even when the SNR is as low as
−10dB and the maximum number of channel uses is 30M.
By contrast, D-SFADMM with 40dB SNR and 60M channel
uses achieves maximum accuracy that is still lower than
A-SFADMM’s.

D. Scalability

We investigate the scalability of A-FADMM and
A-SFADMM, by counting the number of channel uses
until reaching a target loss or accuracy. We vary the number
of contributing workers, and we assume that the noise power
spectral density is fixed as 10−9W/Hz. In linear regression,
we clearly see from Fig.3(c) that A-FADMM does not require
more channel uses for more workers to achieve a target
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Fig. 3. Linear regression results showing: (a) communication efficiency (loss w.r.t. # of uploads); (b) energy efficiency (loss w.r.t. SNR); and (c) scalability
(# of channel uses w.r.t # of workers).

Fig. 4. Image classification results showing: (a) communication efficiency (test accuracy w.r.t. # of uploads); (b) energy efficiency (test accuracy w.r.t. SNR);
and (c) scalability (# of channel uses w.r.t # of workers).

loss 10−4. By contrast, D-FADMM necessitates the channel
uses linearly proportional to the number of workers due to
the orthogonal bandwidth allocation to every worker. It is
worth mentioning that even with only N = 10 workers,
A-FADMM requires order of magnitude less channel uses
than D-FADMM. Similar trends are observed in Fig.4(b) for
image classification, only except for the cases below N = 10
workers.

E. Sensitivity Analysis

In this subsection, we study the impact of hyperparameters
on the convergence speed and accuracy of A-FADMM and
D-FADMM as well as their stochastic versions. All the train-
ing, communication, and simulation environments are identical
to the settings in Sec. V, except for the hyperparameters:
disagreement penalty weight ρ, learning rate, and the number
of local iterations as elaborated next.

a) Impact of ρ: The penalty weight ρ adjusts the degree
of disagreement between local and global models in both
linear regression and classification tasks. In linear regression,
Fig. 5(a) shows that a larger ρ leads to faster convergence with
diminishing returns for both A-FADMM and D-FADMM. Our
choice ρ = 0.5 in Sec. V is thus a value yielding sufficiently
fast convergence.

In image classification, on the other hand, Fig. 5(b) shows
that a smaller ρ is slower at the beginning, but reaches
the highest test accuracy faster. For small ρ, the penalty of
disagreeing with other workers is not large. Therefore, every
worker is likely to be biased towards its local optima. Since
each worker has only a fraction of the global dataset, the con-
vergence speed is fast, but the accuracy cannot outperform the
global model averaged across all workers. For large ρ, workers
tend to strictly reduce the local model disagreement from
the beginning. This yields a faster jump to a high accuracy
level at the early phase. However, keeping large ρ slows down
the updating step by pushing all workers towards minimizing
the disagreement in their model updates at every iteration.
Given these observations, our choice ρ = 0.5 in Sec. V is
a value yielding sufficiently fast convergence to the highest
accuracy. To obviate the accuracy reduction at the beginning
while keeping fast convergence speed, studying time-varying
ρ (e.g., decreasing ρ from a large value with the number of
iterations) could be an interesting topic for future study.

b) Impact of the Number of Local Iterations: Our image
classification relies on DNNs, and thus cannot be solved in
a closed form expression. Instead, at every global iteration
k, several local iterations are performed, updating each local
model. Ideally, each worker needs to iterate until convergence



ELGABLI et al.: HARNESSING WIRELESS CHANNELS FOR SCALABLE AND PRIVACY-PRESERVING FL 5203

Fig. 5. Impact of the disagreement penalty weight ρ in (a) linear regression
and (b) image classification using DNNs.

before sharing the model update, which may however con-
sume too much time. Alternatively, following the standard
FL settings [1]–[3], we run the local training algorithm (i.e.,
Adam for A-SFADMM and D-SFADMM and SGD for A-
SGD) for a few iterations before uploading each model. The
number of local iterations is critical in ensuring convergence
and achieving high accuracy. As shown in Fig. 6, with 5
local iterations both A-SFADMM and D-SFADMM suffer
from low accuracy, while A-FADMM even struggles with
oscillation. With 20 local iterations, we observe that both
A-SFADMM and D-SFADMM achieve not only convergence
but also the highest accuracy. Optimizing the number of local
iterations is intertwined with learning rate, mini-batch size,
and communication channels. This interesting-but-challenging
problem is deferred to future work.

c) Impact of Learning Rates: In Sec. V, we use the local
optimizer’s (Adam or SGD) learning rate 0.01. Here, we addi-
tionally test the learning rate 0.001 under ρ = 5. As shown
in Fig. 7, for A-SFADMM, the learning rate change does
not affect the convergence speed and accuracy significantly.
By contrast, for D-SFADMM, the learning rate 0.01 leads to

Fig. 6. Impact of the number of local iterations in image classification using
DNNs.

Fig. 7. Impact of the learning rate in image classification using DNNs.

faster convergence, while for A-SGD, the learning rate 0.001
yields less oscillation.

VI. CONCLUSION

In this article, we proposed A-FADMM, and proved its
theoretical convergence and privacy guarantees, while vali-
dating its effectiveness in convex and non-convex problems.
To further improve the applicability, we conclude this article
by addressing several practical issues and possible extensions.

• Asynchronous Transmissions: Analog over-the-air
aggregation is sensitive to asynchronous signal transmis-
sions as both early and delayed arrivals incur additional
noise at reception. To alleviate this problem, it is possible
to turn the less communication rounds of A-FADMM into
longer transmission time of each worker, increasing the
signal overlapping duration compared to the out-of-synch
duration.

• Large Models: To convey large models using analog sig-
nals, model compression methods should be re-designed.
Applying compressive sensing techniques is promising,
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in which a sparsified update is encoded by multiplying a
random matrix before transmission [33], and the received
update is decoded using the approximate message pass-
ing (AMP) algorithm [34].

• Decentralized Architecture: Workers have limited trans-
mit energy, and hence faraway workers are difficult to
reach PS [35], [36], hindering the wide-area coverage
of A-FADMM. It could be therefore interesting to study
the decentralized version of A-FADMM in which every
worker communicates only with neighbors while taking
into account their time-varying network topologies.

VII. APPENDICES

A. Proof of Lemma 1

To prove the statement of the lemma, we will proceed by
proving the following two statements

(i) The upper bound on the optimality gap is given as

N�
n=1

�
fn(θk+1

n )− fn(θ�
n)

�
≤ −

N�
n=1

d�
i=1

μk+1
n,i rk+1

n,i

+
N�

n=1

d�
i=1

Sk+1
n,i (θ�

n,i − θk+1
n,i ), (33)

where μn,i = ιn,i
∗hn,i.

(ii) The lower bound on the optimality gap is given as

N�
n=1

[fn(θk+1
n )− fn(θ�)] ≥ −

N�
n=1

d�
i=1

μ�
n,ir

k+1
n,i . (34)

Proof of statement (i): We note that fn(θn) for all n is
closed, proper, and convex, hence Lρ is sub-differentiable.
Since θk+1

n minimizes Lρ(θn,Θk, ιk
n), the following must

hold true at each iteration k + 1

0 ∈ ∂ifn(θk+1
n ) + μk

n,i + ρ|hk+1
n,i |2θk+1

n,i − ρ|hk+1
n,i |2Θk

i . (35)

Note that when hk+1
n,i �= hk

n,i, we choose θk+1
n,i = θk

n,i,
and under this choice, θk+1

n is still the minimizer of
Lρ(θn,Θk, ιk

n) since ιk
n,i should have been calculated to

satisfy (35) given θk
n,i when there is change in the channel.

Adding and subtracting the term ρ|hk+1
n,i |2Θk+1

i and
re-arranging the terms, we can write

0 ∈ ∂ifn(θk+1
n ) + μk

n,i + ρ|hk+1
n,i |2

�
θk+1

n,i −Θk+1
i

�
+ ρ|hk+1

n,i |2
�
Θk+1

i −Θk
i

�
. (36)

Using the definitions of rk+1
n,i and Sk+1

n,i as well as the update
of μk+1

n,i given in Eq. (18), we obtain

0 ∈ ∂ifn(θk+1
n ) + μk+1

n,i + Sk+1
n,i . (37)

The result in (37) implies that θk+1
n minimizes the following

convex objective function

fn(θn) +
d�

i=1

μk+1
n,i θn,i +

d�
i=1

Sk+1
n,i θn,i. (38)

Next, since θk+1
n is the minimizer of (38), then, it holds that

fn(θk+1
n ) +

d�
i=1

μk+1
n,i θk+1

n,i +
d�

i=1

Sk+1
n,i θk+1

n,i

≤ fn(θ�
n) +

d�
i=1

μk+1
n,i θ�

n,i +
d�

i=1

Sk+1
n,i θ�

n,i, (39)

where θ� is the optimal value of the problem in (6)-(7).
Summing over all workers yields

N�
n=1

fn(θk+1
n ) +

N�
n=1

d�
i=1

μk+1
n,i θk+1

n,i +
N�

n=1

d�
i=1

Sk+1
n,i θk+1

n,i

≤
N�

n=1

fn(θ�
n) +

N�
n=1

d�
i=1

μk+1
n,i θ�

n,i +
N�

n=1

d�
i=1

Sk+1
n,i θ�

n,i (40)

Similarly, Θk+1
i satisfies

0 = −
N�

n=1

μk
n,i + ρ

N�
n=1

|hk+1
n,i |2Θk+1

i − ρ

N�
n=1

|hk+1
n,i |2θk+1

n,i .

(41)

Using the update of μk+1
n,i , we deduce that Θk+1

i minimizes

−
N�

n=1
μk+1

n,i Θi, and therefore, we can write

−
N�

n=1

μk+1
n,i Θk+1

i ≤ −
N�

n=1

μk+1
n,i Θ�

i . (42)

Summing over all i yields

−
N�

n=1

d�
i=1

μk+1
n,i Θk+1

i ≤ −
N�

n=1

d�
i=1

μk+1
n,i Θ�

i . (43)

Adding (40) and (43), we get

N�
n=1

fn(θk+1
n ) +

N�
n=1

d�
i=1

μk+1
n,i θk+1

n,i

+
N�

n=1

d�
i=1

Sk+1
n,i θk+1

n,i −
N�

n=1

d�
i=1

μk+1
n,i Θk+1

i

≤
N�

n=1

fn(θ�
n) +

N�
n=1

d�
i=1

μk+1
n,i θ�

n,i +
N�

n=1

d�
i=1

Sk+1
n,i θ�

n,i

−
N�

n=1

d�
i=1

μk+1
n,i Θ�

i . (44)

After rearranging the terms, we get

N�
n=1

�
fn(θk+1

n )− fn(θ�
n)

�

≤ −
N�

n=1

d�
i=1

μk+1
n,i (θk+1

n,i −Θk+1
i )

+
N�

n=1

d�
i=1

μk+1
n,i (θ�

n,i −Θ�
i )

+
N�

n=1

d�
i=1

Sk+1
n,i (θ�

n,i − θk+1
n,i ). (45)
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Using rk+1
n,i = θk+1

n,i −Θk+1
i , and r�

n,i = θ�
n,i−Θ�

i = 0 gives

N�
n=1

�
fn(θk+1

n )− fn(θ�
n)

�
≤ −

N�
n=1

d�
i=1

μk+1
n,i rk+1

n,i

+
N�

n=1

d�
i=1

Sk+1
n,i (θ�

n,i − θk+1
n,i ). (46)

and hence we have proved the statement (i).
Proof of statement (ii):

We note that for a saddle point (Θ�, θ�, {ι�
n}n) of

L0(Θ�, {θn}n, {ιn}n), it holds that, for all n, we have

L0(Θ�, θ�, {ι�
n}n) ≤ L0(Θk+1, {θk+1

n }n, {ι�
n}n). (47)

Substituting the expression for the Lagrangian from (8) on the
both sides of (47), we get

N�
n=1

fn(θ�) +
N�

n=1

d�
i=1

μ�
n,i(θ

�
n,i −Θ�

i )

≤
N�

n=1

fn(θk+1
n ) +

N�
n=1

d�
i=1

μ�
n,i(θ

k+1
n,i −Θk+1

i ). (48)

Using rk+1
n,i = θk+1

n,i −Θk+1
i , and r�

n,i = θ�
n,i−Θ�

i = 0 gives

N�
n=1

�
fn(θk+1

n )− fn(θ�)
�
≥ −

N�
n=1

d�
i=1

μ�
n,ir

k+1
n,i . (49)

which proves the statement (ii).
Finally, combining the statements (i) and (ii) completes the

proof.

B. Proof of Theorem 1

The proof relies on using the lower and upper bounds
derived in Lemma 1 to show the decrease in the optimality gap.
To this end, we start by multiplying both Eqs. (46) and (49)
by 2, and then add them up to get

2
N�

n=1

d�
i=1

	
μk+1

n,i − μ�
n,i



rk+1

n,i

+ 2
N�

n=1

d�
i=1

Sk+1
n,i

�
θk+1

n,i − θ�
m,i

�
≤ 0 (50)

Since μk+1
n,i = μk

n,i +ρ|hk+1
n,i |2rk+1

n,i , then the first term can be
re-written as

2
N�

n=1

d�
i=1

	
μk+1

n,i − μ�
n,i



rk+1

n,i

= 2
N�

n=1

d�
i=1

	
μk

n,i − μ�
n,i



rk+1

n,i

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2

	
rk+1

n,i


2
. (51)

Since rk+1
n,i = 1

ρ|hk+1
n,i |2

	
μk+1

n,i − μk
n,i



, we can write

2
N�

n=1

d�
i=1

	
μk+1

n,i − μ�
n,i



rk+1

n,i

=
2
ρ

N�
n=1

d�
i=1

1
|hk+1

n,i |2
	
μk

n,i − μ�
n,i


 	
μk+1

n,i − μk
n,i




+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2

	
rk+1

n,i


2
. (52)

Using the fact that μk+1
n,i −μk

n,i = μk+1
n,i −μ�

n,i +μ�
n,i−μk

n,i,
we get

1
|hk+1

n,i |2
	
μk

n,i − μ�
n,i


 	
μk+1

n,i − μk
n,i



=

1
|hk+1

n,i |2	
μk

n,i − μ�
n,i


 	
μk+1

n,i − μ�
n,i


− (μk
n,i − μ�

n,i)
2

|hk+1
n,i |2

. (53)

Now, let’s re-write ρ|hk+1
n,i |2

	
rk+1

n,i


2
, using rk+1

n,i =
1

ρ|hk+1
n,i |2

	
μk+1

n,i − μk
n,i



, as

ρ|hk+1
n,i |2

	
rk+1

n,i


2
=

1
ρ|hk+1

n,i |2
(μk+1

n,i − μk
n,i)

2

=
1

ρ|hk+1
n,i |2

(μk+1
n,i − μ�

n,i)
2

+
1

ρ|hk+1
n,i |2

(μk
n,i − μ�

n,i)
2 − 2

ρ|hk+1
n,i |2

× 	
μk

n,i − μ�
n,i


 	
μk+1

n,i − μ�
n,i



, (54)

where we have used that μk+1
n,i −μk

n,i = μk+1
n,i −μ�

n,i +μ�
n,i−

μk
n,i. Going back to Eq. (51), we can write

2
N�

n=1

d�
i=1

	
μk+1

n,i − μ�
n,i



rk+1

n,i

=
1
ρ

N�
n=1

d�
i=1

1
|hk+1

n,i |2
(μk+1

n,i − μ�
n,i)

2

−1
ρ

N�
n=1

d�
i=1

1
|hk+1

n,i |2
(μk

n,i − μ�
n,i)

2

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2

	
rk+1

n,i


2
. (55)

Now, let’s examine the second term of Eq. (50)

2
N�

n=1

d�
i=1

Sk+1
n,i (θk+1

n,i − θ�
n,i)

= 2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )(θk+1

n,i − θ�
n,i)

= 2ρ
N�

n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )rk+1

n,i

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )(Θk+1

i − θ�
n,i).

(56)
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Using Θk+1
i −θ�

n,i = Θk+1
i −Θk

i +Θk
i −θ�

n,i, we can write

2
N�

n=1

d�
i=1

Sk+1
n,i (θk+1

n,i − θ�
n,i)

= 2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )rk+1

n,i

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )2

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )(Θk

i − θ�
n,i). (57)

Since Θk+1
i −Θk

i = Θk+1
i − θ�

n,i + θ�
n,i −Θk

i , then we get

2
N�

n=1

d�
i=1

Sk+1
n,i (θk+1

n,i − θ�
n,i)

= 2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )rk+1

n,i

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )2

−2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk

i − θ�
n,i)

2

+2ρ
N�

n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i − θ�
n,i)(Θ

k
i − θ�

n,i), (58)

Now, let’s focus the second term of Eq. (58). Using Θk+1
i −

Θk
i = Θk+1

i − θ�
n,i + θ�

n,i −Θk
i , we can write

ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )2

= ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i − θ�
n,i)

2

+ρ
N�

n=1

d�
i=1

|hk+1
n,i |2(Θk

i − θ�
n,i)

2

−2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i − θ�
n,i)(Θ

k
i − θ�

n,i). (59)

Replacing the last equation into Eq. (58), we can write

2
N�

n=1

d�
i=1

Sk+1
n,i (θk+1

n,i − θ�
n,i)

= 2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )rk+1

n,i

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )2

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i − θ�
n,i)

2

−ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk

i − θ�
n,i)

2. (60)

Using Eqs. (55) and (60) in (50), we get

1
ρ

N�
n=1

d�
i=1

(μk+1
n,i − μ�

n,i)
2

|hk+1
n,i |2

−1
ρ

N�
n=1

d�
i=1

(μk
n,i − μ�

n,i)
2

|hk+1
n,i |2

+ρ
N�

n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )2

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2

	
rk+1

n,i


2

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θ�
i )

2

−ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk

i −Θ�
i )

2

+2ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θk
i )rk+1

n,i ≤ 0 (61)

Defining the sequence that measures the difference in the
optimality gap between iterations k + 1 and k as

W k+1 =
1
ρ

N�
n=1

d�
i=1

(μk+1
n,i − μ�

n,i)
2

|hk+1
n,i |2

−1
ρ

N�
n=1

d�
i=1

(μk
n,i − μ�

n,i)
2

|hk+1
n,i |2

+ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk+1

i −Θ�
i )

2

−ρ

N�
n=1

d�
i=1

|hk+1
n,i |2(Θk

i −Θ�
i )

2, (62)

then, Eq. (61) can be re-written as

W k+1 ≤ −ρ
N�

n=1

d�
i=1

|hk+1
n,i |2

�
rk+1

n,i + Θk+1
i −Θk

i

�2

. (63)

From (63), we note that W k+1 is negative since ρ is a positive
constant (ρ > 0) and the sum square term is positive. Hence,
the optimality gap at iteration k + 1 is non-increasing, which
completes the proof.

C. Proof of Corollary 1

Using the derivations made in Theorem 1, we can further
show that, in the case of static channel, i.e. hk+1

n,i = hn,i,
both the primal and dual residuals converge to zero, i.e.
lim

k→∞
rk+1

n,i = 0 and lim
k→∞

Sk+1
n,i = 0. To this end, we start

defining the Lyapunov function
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V k =
1
ρ

N�
n=1

d�
i=1

(μk
n,i − μ�

n,i)
2

|hn,i|2

+ρ

N�
n=1

d�
i=1

|hn,i|2(Θk
i −Θ�

i )
2. (64)

We can re-write (63) as

V k+1 − V k ≤ −ρ

N�
n=1

d�
i=1

|hn,i|2(rk+1
n,i )2

− ρ
N�

n=1

d�
i=1

|hn,i|2
�
Θk+1

i −Θk
i

�2

− 2ρ

N�
n=1

d�
i=1

|hn,i|2rk+1
n,i

�
Θk+1

i −Θk
i

�
(65)

Since Θk+1
i minimizes −�N

n=1 μk+1
n,i Θi, and Θk

i minimizes

−�N
n=1 μk

n,iΘi, then, after summing over i in both sides of
each equation, we can write

−
N�

n=1

d�
i=1

μk+1
n,i Θk+1

i ≤ −
N�

n=1

d�
i=1

μk+1
n,i Θk

i , (66)

−
N�

n=1

d�
i=1

μk
n,iΘ

k
i ≤ −

N�
n=1

d�
i=1

μk
n,iΘ

k+1
i . (67)

Adding Eqs. (66) and (67), we get

N�
n=1

d�
i=1

(μk+1
n,i − μk

n,i)(Θ
k+1
i −Θk

i ) ≥ 0. (68)

Since μk+1
n,i = μk

n,i + ρ|hn,i|2rk+1
n,i , then we get

2ρ
N�

n=1

d�
i=1

|hn,i|2(Θk+1
i −Θk

i )rk+1
n,i ≥ 0. (69)

Thus, using Eq. (65), and summing over the iterations from
k = 1, . . . , K , we get

K�
k=0

�
ρ

N�
n=1

d�
i=1

|hn,i|2
	
rk+1

n,i


2

+ρ
N�

n=1

d�
i=1

|hn,i|2(Θk+1
i −Θk

i )2

+2ρ

N�
n=1

d�
i=1

|hn,i|2(Θk+1
i −Θk

i )rk+1
n,i

�
≤ V 0. (70)

Taking the limit as K →∞, and using the fact that the terms
of the series on the left hand-side are positive, we obtain that
the primal and dual residuals goes to zero as k → ∞, i.e.
lim

k→∞
rk+1

n,i = 0 and lim
k→∞

Sk+1
n,i = 0. Using the upper and lower

bounds, (20) and (21), derived in Lemma 1 and the fact that
both the primal and dual residuals goes to zero as k → ∞,
we get that the optimal gap also goes to zero as k → ∞,
i.e., lim

k→∞
�N

n=1 fn(θk
n) =

�N
n=1 fn(θ�

n), finalizing the proof.
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